A. Cruise Narrative: AR26

A.1. Highlights

WHP Cruise Summary Information

WOCE section designation AR26
Expedition designation (EXPOCODE) 06MT42_1
Chief Scientist(s) and their affiliation Müller, Thomas J./IfMK
Dates 1998.06.16-1998.07.16
Ship Meteor
Ports of call Las Palmas - Lisbon
Number of stations 45
Geographic boundaries of the stations $\quad 18^{\circ} 1.3 \mathrm{E}^{38^{\circ} 30.36 \mathrm{~N}} 9^{\circ} 29.85 \mathrm{E}$
$28^{\circ} 20^{\prime} \mathrm{N}$
Floats and drifters deployed none
Moorings deployed or recovered 4

Contributing Authors:

T. J. Müller, M. Knoll, B. Lenz, F. Lopez-Laatzen, R. Santana, A. Cianca, M.G. Villagarcia, J. Godoy, M.J. Rueda, W. Breves, K.-D. Loquay, O. Zielinski, K. Pape, U. Scüßler, C. v. Oppen, C. Collado-Sánchez, V. Siruela-Matos, F.J. Martín-Muñoz, J.J. Herández-Brito, B. Heyden, W. Kühn, M. Spietz, S. Neuer, T. Freudenthal, M. Schroeter, J. Bollmann, H.-C. John, H. D. Behr

METEOR-Cruise 42/1

Cruise Report

M42/1a: 16.06.-25.06.1998, Las Palmas - Las Palmas
M42/1b: 26.06.-16.07.1998, Las Palmas - Lisbon

Abstract

Leg M42/1 was performed within two major projects of basic marine research. CANIGO (Canary Islands Azores Gibraltar Observations) is a multinational project funded by the European Union to investigate by field experiments and modelling the circulation and watermasses in the subtropical eastern North Atlantic and to determine the distribution and the fluxes of a diversity of parameters in this region. ESTOC is a European time series station that has been set up since 1994 in a joint effort of four institutes from Spain and Germany 60 nm north of Gran Canaria and Tenerife, and that serves as a background station for CANIGO. The aim of leg 42/1 was to exchange and set moorings with current meters and particle traps at selected positions at which currents and vertical particle fluxes are to be measured directly for several months. These moorings are part of a closed box of 45 stations north of the Canary Islands from which balanced fluxes will be calculated by using geostrophic currents that will be adjusted to absolute profiles of ADCP measurements.

Compiled by Thomas J. M Iler
Institut fr Meereskunde an der Universit t Kiel
D sternbrooker Weg 20
24105 KIEL, Germany
Phone: ++431 5973799
Fax: ++4315973981
e-mail: tmueller@ifm.uni-kiel.de

Station Locations for AR26, Müller, 1998

1 Research Objectives

The area north of the Canary Islands until the latitude of Madeira is characterized in the upper layers by recirculating branches of the North Atlantic s subtropical gyre that feed the Canary Current and that are influenced by upwelling events off the African coast. This leg of Meteor cruise 41 was aimed at studying the circulation and transports of water masses, the associated fluxes of bio-geochemical parameters in the water column in this area and their variability in space and time for the summer season. Three earlier cruises (Wefer and M ller, 1998; Knoll et al., in press) have been performed in winter with FS "Meteor" (M37/2, January 1997), and with FS "Poseidon" in spring (P237/3, April 1998) and in autumn (P233, September 1997). The work was embedded mainly in two major interdisciplinary and multinational projects: the European funded marine science and technology project CANIGO (Canary Islands Azores Gibraltar Observations) and the Spanish German ocean time series station ESTOC which is operational since 1994 ca. 100 Km north of Gran Canaria.

Methods included to use moored current meters and particle traps to study the vertical structure of the eastern boundary current and sedimentation rates of a diversity of biochemical parameters at two key sites (Fig. 1.1): (i) in an array of four moorings (EBC) east of Fuerteventura / Lanzarote, an area that is strongly influenced by upwelling and the associated current system, (ii) at the open ocean time series station ESTOC which serves also as a background station for CANIGO. A third mooring site is located at the more oligothophic station LP north of La Palma ($29^{\circ} 45^{\prime} \mathrm{N}, 018^{\circ} 00^{\prime} \mathrm{W}$) that was to be served later during leg M42/4.

To estimate the spatial structure and variability of fluxes in the recirculation regime, a hydrographic box of 45 stations was obtained north of the Canary Islands (Fig. 1.2) to estimate transports of waters masses and bio-chemical parameters. Classic hydrography along with direct current measurenments from lowered and ship mounted ADCP was used. Sampling included also DOC, AI and other trace metals, coccolithophores and diatoms, and zooplankton and fish larvae.

2 Participants / List of Institutions

For logistic reasons, the leg had two parts:

M42/1a: 16.06.-25.06.1998, Las Palmas - Las Palmas; ${ }^{(1)}$
 embarked on 21 June in Arrecife

M42/1b: 26.06.-16.07.1998, Las Palmas - Lisbon

Personnel	Inst.	Responsibility	Leg(s)	
M Iler, Dr. Thomas J.	IfMK	chief scientist	M42/1a	M42/1b
de Boer, Christjan, stud.	IfMK	phys. oceanogr	M42/1a	M42/1b
Carlsen, Dieter, TA	IfMK	moorings	M42/1a	
Dietze, Heiner, stud.	IfMK	phys. oceanogr.	M42/1a	M42/1b
Knoll, Michaela, Dr.	IfMK	phys. oceanogr.		M42/1b
Koy, Uwe, TA	IfMK	CTD,ADCP,moorings		M42/1b
Lenz, Bernd, Dipl.-Oz.	IfMK	phys. oceanogr.	M42/1a	M42/1b
Link, Rudolf, TA	IfMK	ADCP, CTD, moorings	M42/1a	M42/1b
Meyer, Peter, Dipl.-Ing.	IfMK	CTD, moorings	M42/1a	
Lopez-L., Federico, MSc.	IEO	phys. oceanogr	M42/1a	
Garcia-R., Carlos, MSc.	IEO	moorings	M42/1a	
Cisneros-A., Jesus, MSc.	ULPGC	moorings	M42/1a	
Neuer, Susanne, Dr.	GeoB	particle flux	M42/1a	
Freudenthal, Tim, Dipl.-Geol.	GeoB	particle flux		M42/1a
Schroeter, Marcel, Dipl.-Biol,	GeoB	particle flux	M42/1a	
v. Oppen, Caroline, Dr.	UBMCh	trace metals	M42/1a	
Deeken, Aloys, TA	UBMCh	trace metals	M42/1a	
Wilkop, Thomas, Stud.	UBMCh	trace metals	M42/1a	
Sch ssler, Uwe, Dr.	UBMCh	trace metals		M42/1b
Pape, Katja, TA	UBMCh	trace metals		M42/1b
Spietz, Matthias	IBGMH	DOC	M42/1a	
Heyden, Birgit	IBGMH	DOC		M42/1b
K hn, Wilfried Dr.	GeoB	DOC		M42/1b
Zielinski, Oliver, Dipl.-Phys.	UO	Bio-Optics		M42/1b
Breves, Wiebke	UO	Bio-Optics		M42/1b
Loquay, Klaus, TA	UO	Bio-Optics		M42/1b
Llinas, Octavio, Dr. ${ }^{(1)}$	ICCM	nutrient rec.	M42/1a	
Cianca-A., Andres, Msc.	ICCM	mar. chem.		M42/1b
Godoy, Juana, Msc.	ICCM	mar. chem.		M42/1b
Maroto, Leire	ICCM	mar. chem.		M42/1b
Rueda, Maria J. ${ }^{(1)}$	ICCM	mar. chem.	M42/1a	
Villagarcia, M., Dr.	ICCM	mar. chem.		M42/1b
Collado Sanchez, Cayetano, Dr.	ULPGC	trace metals		M42/1b
Munoz, Francisco J.M., MSc.	ULPGC	trace metals		M42/1b
Siruela Matos, Victor, MSc.	ULPGC	trace metals		M42/1b
Bollmann, J rg, Dr.	ETH	coccos		M42/1b
Martinez, Mara Dr.	ETH	coccos		M42/1b
Correira, Antonio, TA	IGM	diatomes		M42/1b
John, H.-C., Dr.	FIS	biol. oceanogr.		M42/1b
	Total		18	26

Institutes

ETH Eidgen ssiche Technishe Hochschule, Z rich, CH
FIS Forschungsinstitut Senckenberg, Taxonomische Arbeitsgruppe, D
GeoB Universit t Bremen, FB 5 Geowissenschaften, D
IBGMH Institut fr Biogeochemie und Meereschemie der Universit t Hamburg,
D
ICCM Instituto Canario de Ciencas Marinas, Telde de Gran Canaria, E IEO Instituto Espanol de Oceanografia, Sta. Cruz de Tenerife, E
IfMK Institut fr Meereskunde an der Universit t Kiel, D
IGM Instituto Geologico e Minero, Lisboa, P
UBMCh Universit t Bremen, FB2 Chemie, Meereschemie, D
UL
Universidade de Lisboa, P
ULPGC Universidad de Las Palmas, Las Palmas de Gran Canaria, E UO Universit t Oldenburg, Fachbereich Physik, D

3 Research Programme

Along the CANIGO and ESTOC scientific goals, METEOR cruise M42/1 was aimed at providing a data base for studying the circulation and water mass transports in the subtropical eastern North Atlantic north and east of the Canary Islands (Fig. 1.1, 1.2). The region encompasses the eastern boundary current system. Determining the variability of the circulation and associated bio-geochemical fluxes on time scales from days to annual and longer, and on spatial scales that include the mesoscale (30 Km) up to basin scale is included. The flow field, the water mass transports and the associated bio-geochemical fluxes in the region are strongly influenced by both, the recirculation of the subtropical gyre that feeds the Canary Current and the seasonally varying trade wind field with its impact on the upwelling system and the eastern boundary current system off Marocco.
To approach the problem, basicly two methods are used. First, at selected positions the vertical structure of currents and the vertical transport of particles are measured for a period of ca 18 months from January 1997 on to cover more than one season. The sites chosen (see Fig. 1.1) are the ESTOC position, an array of four moorings in the eastern boundary current sytem (EBC) east of Lanzarote and Fuerteventura that will be influenced strongly by upwelling events, and a more oligithrophic open ocean position north of La Palma (LP). Current meters and particle traps were exchanged, with a service of instruments scheduled for January 1998 from the German reserach vessel 'Poseidon'. During the first part of M42/1, it was planned to

- exchange the ESTOC current meter mooring (IFMK)
- to exchange the four moorings of array EBC (IFMK, IEO, ULPGC, GeoB)
- to measure the vertical particle flux in the upper 200 m near ESTOC and at the same time to perform incubation experiments (GeoB)
- to measure the concentraions and vertical fluxes of certain trace metals at the ESTOC, EBC and LP sites (UBMCh)

The mooring at site LP $\left(29^{\circ} 45^{\prime} \mathrm{N}, 018^{\circ} 00^{\prime} \mathrm{W}\right.$, GeoB, IFMK) wasl exchanged later during leg M42/4.

Second, a closed box north and east of the Canary Islands is designed with 45 hydrographic stations spaced between 7 nm on and close to the shelf, and 40 nm in the deep basin. On each station, bottom deep CTD and lowered ADCP measurements and water sampling for dissolved oxygen, nutrients and chlorophyll analysis build the basic hydrographic measurements to determine the flow field and the water mass distribution. En-route, the upper ocean current profiles down to 200 m and the sea surface temperature and salinity are measured using a vessel mounted ADCP and a thermosalinograph in combimation with GPS positioning. These basic measurements on the box have already been perfomed during the other three seasons in January 1997 with 'Meteor' (M37/2), and in September 1997 and April 1998 with 'Poseidon' (P233 and P237/3, respectively). During the second part of M42/1 these and additional samples were taken and measurements were made to

- to determine the absolute flow field and with a CTD/rosette/ADCP system and with shipborne ADCP (IFMK)
- to provide water mass information from oxygen, nutrient and chlorophyll (ICCM)
- to use optical sensors attached to a CTD for biological interpretations (UO)
- to take samples for dissolved organic carbon DOC (IBGM)
- to take samples for coccolithophores and diatomees (ETH, UL)
- to measure aluminum and other metals in the water column (ULPGC)
- to detect fish larvae as tracers for intermediate water masses (FIS)

Figure 1.1: Staions and mooring positions during leg M42/1a

Figure 1.2: Stations during leg M42/1b

4 Narrative

For logistic reasons, the leg was divided into two parts. After loading of scientific equipment and embarking of the scientific party, 'Meteor' sailed from Las Palmas on the 26 June 1997 in the afternoon. This first part, leg M42/1a, was aimed at mooring and station work near the centre of the CANIGO array in the eastern boundary current system (EBC), at the ESTOC station and at the more oligotrophic CANIGO position LP north of the island of La Palma at $29^{\circ} 45^{\prime} \mathrm{N}, 018^{\circ} 00^{\prime} \mathrm{W}$ (see Fig. 1.1 for positions). At these stations, special water sampling was performed for trace metal analysis. Near ESTOC, an experiment was designed to determine the vertical flux of particles in theupper thermocline. Additional CTD stations between the mooring positions completed the hydrographic work. En-route, meteorological data, sea surface temperature and salinity, and the vertcal current profile down to 300 m dept was measured almost continuously.
About 3 hours after sailing for legM42/1a, we successfully performed a test station with a CTD/rosette system. Late in the evening, we arrived near ESTOC ($29^{\circ} 10 \mathrm{~N}$, $15^{\circ} 30 \mathrm{~W}, 3610 \mathrm{~m}$ water depth). At a position some 10 nm northeast of ESTOC two drifting moorings with one and three particle traps at 200 m (system T1), and 200 m , 300 m and 500 m (system T3), were deployed to measure for a few days the particle
flux in the upper thermocline. Next, at ESTOC, the first casts with special bottles (GoFlo) and in-situ pumps (ISP) for trace metal sampling were obtained to achieve a densely sampled profile throughout the the water column. On 17 June, at ESTOC the current meter mooring V367-4 was recovered with no losses and a deep CTD/rosette cast was performed.
We then steamed towards the position LP north of the island of La Palma at nominally $29^{\circ} 45 \mathrm{~N}, 18^{\circ} 00 \mathrm{~W}$. We reached that position on 18 June, took the first of two trace metal casts wirth GoFlo and ISP, a deep CTD/rosette cast, and then the second casts with GoFlo and ISP.

While steaming again to the ESTOC station, we took near surface water for incubation experiments on deck. On 19 June, we searched successfully for the two drifting particle trap for recovery. Unfortunately, the system T1 had lost its current meter and its single trap at 200 m . The second system, T3 was recovered completely and reset again. One more cast for trace metal with GoFlo and ISP completed the sampling for trace metals near ESTOC. On 20 June, the ESTOC current meter mooring V367-5 was deployed and a deep CTD/rosette profile taken.

We then steamed to the position of the four CANIGO moorings that we exchanged in the eastern boundary current array EBC from 21 June to 23 June during day time. The four moorings all reach up to 150 m below the surface and carry a total of 23 current meters and 2 particle traps. During the night and between the moooring work, CTD stations on a section parallel to the mooring array and hydrocasts for trace metal near mooring EBC3 in the centre of the arry were obtained. On 21 June in the afternoon, two additional scientists from the ICCM embarked in Arrecife for the ESTOC June 1998 station work to be performed later.
Heading again for the ESTOC position, we took additional CTD stations down to 2000 m below the Mediterranean outflow water to achieve additional more detailed information on the thermocline circulation north of the Canary Islands. The drifting particle trap was successfully recovered on 24 June near ESTOC. Hydrocasts for trace metals with GoFlo in ISP and the June 1998 ESTOC station work completed the sampling programme during this part of M41/1. On the way from ESTOC to Las Palmas a NOAA surface drifter and 5 XBTs were launched.
'Meteor' called in to Las Palmas on 25 June for personnel exchange. The groups from the IEO, ULPGC, GeoB, UBMCh and ICCM involved in mooring work, trace metals and the ESTOC station work disembarked. Embarking were groups from seven institutes from four nations.
'Meteor' sailed from Las Palmas for Leg M42/1b on 26 June in the afternoon. Leg M42/1b was aimed to measure and sample important hydrographic, chemical and bilogical parameters on a closed box north of the Canary Islands (Fig. 1.2) for balance and flux calculations. En-route, the current profile down to 200 m and sea surface temperature and salinity were measured

[^0]aluminum, coccolithophores and plankton were taken from the rosette bottles on roughly every other station. Deep plankton net hauls down to 1000 m and on some stations down to 2000 m were restricted to the continental shelf break and the adjacent deep basin with some additional hawls in the open ocean.

The box basicly consists of three CTD/rosette sections: the first runs almost zonally along mooring array EBC towards ESTOC and then to a position north of La Palma at $29^{\circ} 10 \mathrm{~N}, 18^{\circ} 00 \mathrm{~W}$, the second meridionally towards Madeira until $32^{\circ} 15 \mathrm{~N}$, the third then zonally onto the shelf until the 100 m bottom contour. A total of 45 stations were obtained on these three sections. The box was completed on 12 July at $32^{\circ} 02^{\prime} \mathrm{N}$, $009^{\circ} 52^{\prime} \mathrm{W}$ at 100 m water depth on the Moroccan shelf.
We then set course to Lisbon. Off Portugal, four moorings were to be recovered for the University of Lisbon. Two of them (C3, C6) were retrieved without problems, but with one instrument being damaged. One mooring (C5) did not respond to the acoustic interrogation and release commands. After search courses being completed, this mooring had to be given up. We knew from the fourth mooring (C4) that the acoustic releaser would interrogate but not release; therefore its position was measured accurately ($37^{\circ} 30.13^{\prime} \mathrm{N}, 009^{\circ} 37.76^{\prime} \mathrm{W}, 1570 \mathrm{~m}$ at 1696 m water depth) acoustically. Next, two dredge trials around the mooring were performed, however with no success at 8 Beaufort wind.
'Meteor' called in to Lisbon 16 July in morning.

5. Preliminary Results

5.1 Physical Oceanography

(T. J. M Iler, M. Knoll, B. Lenz, F. Lopez-Laatzen)

Hydrography

Throughout the cruise, a MKIIIB Neil Brown CTD (internal IFMK no. NB4) was used together with a General Oceanics rosette sampler to which 21×10 I Niskin bottles were attached. The space for three more bottles on the rosette frame was needed to simultaneously lower a RDI 150 KHz narrow band acoustic Dopler profiler (IADCP) to measure directly the current shear in the water column.

The CTD's temperature and pressure sensors were calibrated at IFMK one month before the cruise. From in-situ comparisons with reversing electronic thermometers, it is expected that the drift in temperature was less than the resolution of the comparing sensors, i.e. less 1 mK , during the cruise. Accuracy therfore is close to the calibration accuracy, i.e. better 2 mK . Bottom distance estimates showed no significant drift of the pressure sensor besides the offset correction. Accuracy is then estimated to better 5 dbar for high (>3000 dbar) pressures.

Problems arose with the in-situ calibration of the conductivity cell. Firstly, the two Guildline AUTOSAL salinometers that were used subsequently (Table 5.1) showed problems with rinsing the cells. Consequently, many samples had to be omitted for the calculation of the calibration coefficients for the CTD's cell. The salinometers were calibrated with standard seawater batches P131 (K15=0.99984, $\mathrm{S}=34.9945$, stations $304-335$) and P132 (K15=0.99986, S=34.9945, stations 336-356) at the beginning
and at the end of the cruise and frequently in between. Checks for drifts were conducted with substandards from the deep ocean (>3000 m) at least two times per day. It turned out that the calibrations of AUTOSALs were stable to better 0.001 in salinity through the cruise.

Table 5.1.2: Salinometers during the cruise were AS6, AS4 and A6 again. Problems with cell flushing, in particular salinometer AS4, let us use A6 again.

AS6 from 28.06.-09.07. used, stations 304-332
AS4 from 07.07.-09.07. used, stations 333-339
AS6 from 09.07.-14.07. used, stations 340-356 (end)
The other problem that arose, was an extremely strong drift of the CTD's conductivity signal in addition to the usual linear correction (Fig. 5.1.1). Including a drift correction, a single calibration set of 6 parameters for the whole cruise gives a standard deviation of 0.005 for the salinity residuals, mostly due to bottle salinities. Despite the problems described above, the accuracy in the calibrated CTD salinity is estimated to be better 0.003.

Figure 5.1.1: Salinity calibration of the CTD (internal IFMK no. NB4). Upper panel with pre-calibration salinity corrections needed to meet sample salinity (SCOR) versus profile (or cast) number (PROFILE, left) and pressure (PRESSURE, right). Note the unusual strong drift with the profile number. The lower panel shows the residuals after a single overall calibration with 6 parameters including drift correction was apllied to the CTD conductivity values. The standard deviation after calibration is 0.005 in salinity.

As an example, the salinity section along $29^{\circ} \mathrm{N}$ is shown in Figure 5.1.3. The salinity minimum which is indicated at 800 m east of Fuerteventura close to the bottom, is correlated with low oxygen values (see Sect. 5.2) and is a signal for rudiments of Antarctic Intermediate Water (AAIW). All other features are very common. Note the summer season upwelling off the African shelf.

Figure 5.1.3: Salinity section along $29^{\circ} \mathrm{N}$.

ADCP measurements

As navigational system a combined GPS/GLONASS receiver GG24 made by ASHTEC was used. Unfortunately, the non-optimal positions of the newly installed antennas for the ADU2 system (also from ASHTEC) did not yet allow to receive adequate good signals from this system during this leg.

While the (vessel mounted) vADCP worked during the whole cruise, the (lowered) IADCP in many profiles showed so far non-identified problems with sampling. Due to relatively small signals in the eastern basin, further data processing will need reduction of the tidal signal in the measurements.

5.2 Oxygen and Nutrients Measurements

(R. Santana, A. Cianca, M.G. Villagarcia, J. Godoy and M.J. Rueda.)

Sampling

Samples were taken at most stations of the second part of leg M42/1 along the sections of $29^{\circ} \mathrm{N}, 18^{\circ} \mathrm{W}$ and $31^{\circ} \mathrm{N}$. Up to 21 sampling depths with the rosette water sampler attached to the CTD covered the water column, except for chlorophyll that
was sampled only between 200 m depth and the surface (see Tab. 7.3). Samples were taken for oxygen, nutrients and chlorophyll ${ }^{\text {a }}$ a analysis. Samples were collected immediately after the bottles were on board in the following order:

- Oxygen was fixed at once, then was kept for further analysis at the laboratory
- Nutrient samples were frozen immediately at $-20^{\circ} \mathrm{C}$.
- Chlorophyll samples were taken in polypropilene bottles filtering 0.5 litres inmediatelly. The filters were frozen subsequently at $-20^{\circ} \mathrm{C}$.

Oxygen and nutrient sampling observed the WOCE Hydrographic Programme procedures (WOCE, 1994)

Analysis

The samples for dissolved oxygen were analysed on board using the method described in WOCE (1994). Bottles with 125 ml volume were used, and the final titration point was detected using a Metrohm 665 Dosimat Oxygen Auto-Titrator Analyser.

Nutrients were taken in polypropylene bottles which were cleaned and washed with HCl acid and were completely dried in advance, according to the instructions of WOCE (1994). Samples were immediately frozen at $-20^{\circ} \mathrm{C}$, analysing them as soon as possible after arrival at the laboratory. Freezing the samples is a common practice. It does not or only in a non-significant way affect the nitrate+nitrite and the phosphate values (by a slight decrease) and is not detectabl in the silicate values (KREMLING AND wenck,1986; McDonald and McLunghlin, 1982). The nutrient determination were performed with a segmented continuous-flow autoanalyser, a Skalara San Plus System (ICCM).

The automated procedure to determine nitrate and nitrite is based on the cadmium reduction method; the sample is passed through a column containing granulated copper-cadmium to reduce the nitrate to nitrite (WOOD ET AL., 1967), using ammonium chloride as pH controller and complexer of the cadmium cations formed (Strickland and Parsons, 1972). The optimal column preparation conditions are described, e.g., by Nydahl (1976) and Garside (1993).

The Orthophosphate concentration is understood as the concentration of reactive phosphate (Riley and Skirpow, 1975) and according to Koroleff (1983a) is a synonym of adissolved inorganic phosphate. The automated procedure to determine phosphate is based on the following reaction: ammonium molybdate and potassium antimony tartrate react in an acidic medium with diluted solution of phosphate to form an antimony-phospho-molybdate complex. This complex is reduced to an intensely blue-coloured complex, ascorbic acid. The complex is measured at 880nm. The basic methodology for this anion determination is given by Murphy and Riley (1962); the used methodology is the one adapted by Strickland and Parsons (1972).

The determination of the soluble silico compounds in natural waters is based on the formation of the yellow coloured silicomolybdic acid; the sample is acidified and mixed with an ammonium molybdate solution forming molybdosilicic acid. This acid is reduced with ascorbic acid to a blue dye, which is measured at 810 nm . Oxalic acid
is added to avoid phosphate interference. The used method is described in Koroleff (1983b).

Phytoplankton pigments were measured onboard using fluorimetric analysis that followed the methodology described by welschmeyer (1994). A fluorometer TURNER $10-\mathrm{AU}-000$ was used.

Preliminary results
As an example we display the oxygen dtribution along the $29 .$. Nboth in a section (Fig. 5.4) and as Oxygen/Salinity correlation (Fig. 5.5). Most pronounced is a minimum at intermediate depths around 850 m . East of Fuerteventura it is correlated with a salinity minimum representing the presence of rudiments of Antarctic Intermediate Water (AAIW) that is transported northwards with the poleward undercurrent. In the west, it corresponds to the salinity maximum of the Mediterranean water core (MW) which during this cruise is strongest in the west and north of La Palma extends up to 850 m .

The high oxygen values found at surface near the African coast are due to the presence of the easterly winds, characteristic of this area in the summer season..

A signal of the Labrador Water appears in the section along 18...W (not shown here).

Figure 5.4:
Distribution of dissolved oxygen along the 29...N section, Meteor 42/1b

Figure 5.5: Oxygen versus salinity, 29...N,Meteor 42/1b. Dark symbols are from stations east of Fuerteventura Island, lighter dots are from west of Fuerteventura. The characteristics of water masses are indicated: Antarctic Intermediate Water (AAIW) with low oxygen values; North Atlantic Central Water (NACW) and the Mediterranean Water (MW) with higer salinity and slightly higher oxygen values. In the surface, low salinities and higher oxygen values are encountered in the shelf area due to upwelling.

5.3 Bio-optical measurements

(W. Breves, K.-D. Loquay and O. Zielinski)

Objective

The investigation of marine systems like the pelagic cycle in the northeastern Atlantic Ocean is an important pre-requisite for understanding global scale ecodynamics, e.g. the carbon flux. Recently, the application of bio-optical methods, using inherent molecular abilities, like fluorescence and absorption, has met with increasing interest in environmental monitoring. During this cruise a bio-optical in situ probing system, developed at the University of Oldenburg, was successfully applied as a part of CANIGO for the fourth time north of the Canary Islands (previous cruises: 0Jan 97, Apr 97, Apr 98). Additional measurements onboard with laboratory instruments provide complementary data on bio-optical parameters. The investigations are intended to quantify bio-geochemical fluxes in the water column and data will be used within biogeochemical/bio-optical models of this Canary Island region.

Bio-optical methods

Dissolved and particulate substances in seawater can be sensitively characterized with optical methods without additional sample treatment, and therefore very fast. Yellow substances (chromophoric dissolved organic matter, traditionally denoted as Gelbstoff) as a compound of marine dissolved organic matter (DOM), chlorophyll a
and other phytoplankton pigments like phycoerythrin, fucoxanthin, and fucocyanin, and the aromatic amino acid tryptophan, bound to proteins in bacteria and algae can be measured with fluorescence methods. Furthermore, the attenuation coefficient is an optical parameter which depends sensitively on suspended and dissolved substances. Its measurement is of interest not only for the understanding of optical conditions in water, but it also allows for a fast determination of absorbing and scattering matter in the form of depth profiles, which can hardly be obtained with other methods in real time.

Instrumentation and sampling processing

The following lists of instrumentation and sampling procedures is based on the Documentation of Methodologies and Standard Protocols - University of Oldenburg, available at the CANIGO Data Centre:
http://www.marine.ie/datacentre/projects/CANIGO/ :

Laboratory Spectrofluorometer - LS 50 (UOLA1)
Laboratory Spectrophotometer - $\lambda 18$ (UOLA2)
Bio-optical in situ probing system consisting of CTD - Probe, OTS 1500 + Oxygen Sensor (UOLA3)
Multichannel in situ Fluorometer - MFL (UOLA4)
Polychromatic Transmissometer - PAAL (UOLA5)
Daylight Radiometer - RAD (UOLA6)
and an Underwater Central Unit (UOLA7) for the data uplink.

The following sampling procedures were applied:
for measurements of the laboratory spectrofluorometer LS50 from bottle samples
processing of gelbstoff fluorescence (UOLB1)
processing of chlorophyll a fluorescence (UOLB2)
processing of tryptophan fluorescence (UOLB3)
for measurements of the laboratory spectrophotometer $\lambda 18$ from bottle samples
processing of gelbstoff absorbance (UOLB5)
for measurements of the bio-optical in situ probing system
processing of conductivity, temperature, pressure, oxygen and related parameters like salinity, potential temperature or density (UOLB6)
processing of gelbstoff fluorescence (UOLB7)
processing of chlorophyll a fluorescence (UOLB8)
processing of fucoxanthin from chlorophyll a fluorescence (UOLB9)
processing of tryptophan fluorescence (UOLB10)
processing of gelbstoff attenuation (UOLB11)
processing of seston attenuation (UOLB12)
processing of underwater light field parameters like downwelling and upwelling irradiance or PAR(z) (UOLB13)

Up- and downcast profiles with the bio-optical in situ probing system were measured down to 1500 m depth at 46 stations during the cruise, along with onboard laboratory measurements with samples from Niskin bottles taken at the following depths: 10-$25-50-75-100-125-150-200-250-400-600-800-1000-1150-1500-2000-2500-3000-$ 3500-4000 m (under-lined depth are taken regulary at all stations available). Bacteria samples have been taken at stations 312, 314, 326 and 335 and will be analysed by the IfM Kiel, Marine Chemistry Group.

Preliminary results

In the following we present some preliminary CTD and multichannel fluorometer (MFL) data. The transect along $29^{\circ} \mathrm{N}$ started on 26 June 1998 near the African shelf (station 307) and ended on 04 April 1998 north of La Palma (station 335). The salinity distribution (Fig.5.3.1) is displays the well known water masses and the coastal upwelling near the African shelf.

Fig. 5.3.1: Salinity distribution along the transect at latitude 29° N. On the upper x axis station numbers are given and, on the y-axis the pressure in dbar is displayed.

The gelbstoff distribution along the souhtern transect is shown in Fig. 2, with the typical increase of gelbstoff contents with depth, due to photodegradation at the surface.

Fig. 5.3.2: Gelbstoff fluorescence distribution along the transect at latitude $29^{\circ} \mathrm{N}$ down to 1500 dbar. The higher signals at the surface were not caused by higher Gelbstoff concentrations but by straylight of solar radiation.

Fig. 5.3.2 shows the chlorophyll a fluorescence distribution along the transect. In the oligotrophic open ocean one can identify the deep chlorophyll maximum which is typical of the spring/summer situation in the region. Near the shelf and also near the island s west side, coastal upwelling took place and higher phytoplankton abundance could be observed.

Fig. 5.3.3 Chlorophyll a fluorescence distribution in the upper layer along $29^{\circ} \mathrm{N}$.

5.4 Interaction of particles and water

(K. Pape, U. Sch §ler, C. v. Oppen)

Background

Particle-water interaction is a key process in the biogeochemical cycling of chemical elements in the ocean. Uptake onto particulate matter and subsequent sinking mechanisms (scavenging) is the major control on the chemical composition of seawater. This mechanism maintains the concentrations of many elements in seawater rather low, many of which are, thus, called trace elements. The particulate matter itself consists of (i) suspended particulate matter (SPM) which is supposed to consist of almost non-sinkable biogenic and terrestrial detritus with a large surface area and (ii) the relatively fast sinking particles found in particle traps, responsible for the vertical transport to the sediments. The comparison of the trace element composition and the distributions in these three different phases (dissolved, SPM and trap material) are excepted to provide important clues on transport and sorption mechanisms as well as on the general geochemical behavior of these elements in the ocean. Many of the trace elements studied here are essential for marine life, and thus also in the generation of the biogenically induced particle flux within the water column. These trace elements cover a broad range of chemical properties, enabling to study biogeochemical processe in greater detail.

Within the collaborative CANIGO project, the Marine Chemistry Department of the University of Bremen, Germany (UBMC), conducts studies on the biogeochemistry of a suite of trace elements. These elements exhibit different behaviour in the ocean, as can bee seen, e.g. in the vertical profiles of their dissolved concentrations. In addition, input functions may vary strongly between individual elements. For the CANIGO study area, atmospheric inputs of mainly Saharan origin are especially important. This material carries many trace elements with it, that are partially released upon deposition in the ocean. Scavenging of dissolved trace elements and incorporation of particulate trace elements onto sinkable particles of mostly biogenic origin provides a pathway for the coupling of upper water processes influenced by atmospheric input and the deep sea.

During the firts part of the cruise, M42/1a, activities of the UBMC group focussed on particle-water interaction at three different stations along a zonal transect off the African Coast (stations EBC, ESTOC, LP). That part was dedicated to collect suspended particulate material as well as samples for dissolved trace elements in high vertical resolution.

During the second part cruise, $\mathrm{M} 42 / 1 \mathrm{~b}$, we attempted to determine the background field in dissolved trace element concentrations around the three central stations mentioned above (viz. ESTOC), focussing on the upper 1000m of the water column. Samples were collected at four stations along the $29^{\circ} \mathrm{N}$ zonal transect in order to complete the station pattern of the preceedingpart.

The northern zonal transect $31^{\circ} \mathrm{N}$ was also covered with 4 stations to better characterize what may be regarded as the upstream component for the ESTOC area north of the Canary Islands. In addition, we used the M42/1b test station to collect one profile about 30 nm south of the ESTOC station to possibly relate variabilities observed previously to current findings at the ESTOC station. Another station was
covered on the meridional transect SW of Madeira. The southwestern-most station of this cruise was used to collect some deep water for internal calibration purposes.

Sampling

Samples of dissolved trace elements were collected from discrete depths distributed over the whole water column using in-situ pumpuing systems during M42/1a, and from the upper 1000 m by means of 12×12 I GoFlo bottles attached to a rosette sampling device. All samples were collected rigorously applying clean sampling techniques to avoid contamination as far as possible. Sample processing was done under a clean bench inside a clean-air laboratory container onboard. Dissolved trace element samples were pressure-filtered with nitrogen gas through pre-cleaned $0.4^{\circ} \mathrm{m}$ polycarbonate membranes directly from the sampling bottles. Besides trace element sampling, water samples were analyzed for nutrients as well as for oxygen. The macro nutrients nitrate, phosphate and silicate were determined according to standard photometric procedures. Dissolved oxygen was analyzed by titration using the Winkler method. The only trace element to be determined onboard was dissolved Aluminium (Al) by a fluorescence method. All other dissolved trace elements will be analyzed onshore.

Preliminary results

Preliminary results for the distribution of dissolved Al show surface concentrations to be lowest close to the African coast in the EBC area (concentration range for surface waters $13-21 \mathrm{nM}$ for the entire cruise). In this eastern area, a subsurface maximum at $150-200 \mathrm{~m}$ was observed, whereas this signal progressively deminished farther to the west. In general, the profiles obtained indicate a slight increase in Al concentrations with depth within the upper 1000 m of the water column. This pattern appears to be more pronounced along the northern transect $\left(32^{\circ} \mathrm{N}\right)$ than at the southern transect ($29^{\circ} \mathrm{N}$).

5.5 Dissolved aluminium

(C. Collado-S nchez, V. Siruela-Matos, F.J. Mart n-Mu oz and J.J. Hern ndez-Brito)

Introduction

Aluminium distributions in Canary Islands region show a great variability (GeladoCaballero et al ${ }^{\circ}$, 1996). The area, major features are present that could affect the aluminium biogeochemical behaviour, such as elevated aeolian (dust) inputs from the Sahara desert, the proximity to areas of upwelling (150-200 Km) and mesoscale features that are induced by the effect of the islands on the the Canary Current. The aluminium distribution shows a latitudinal gradient from East to West. The study of the Al variations along these gradients and at fixed stations could give a better knowledge of the physical and biogeochemical processes that control the mesoescale distribution of aluminium in the area and its seasonal variability.

Objectives

The main objectives in the cruise were:

- to measure profiles of dissolved aluminium at ESTOC (European Station for Time Series in the Ocean Canary Islands) with high vertical resolution in the summer season
- to measure the aluminium distributions between the African coast and $18^{\circ} \mathrm{W}$ along two different latitudes in the summer season.
- to compare the summer profiles with the winter profiles of M37/2.

Sampling

Sampling was carried out using Niskin bottles provided with springs of silicone rubber. Samples were taken and manipulated wearing plastic gloves to avoid metal contamination. Samples were split into two parts. The first was stored at 150 ml polyethylene bottles and immediately frozen until the analysis at the shore-based laboratory. The second part was measured on board. The containers have been previously cleaned using conventional procedures in the trace metal assay.

Analysis of AI

The HPACSV (High Performance Adsorptive Cathodic Stripping Voltammtry) method (Hern ndez-Brito et al., 1994) was used to measure on board dissolved aluminium in seawater. Samples are prepared in Teflon cups of polarographic cell, containing 10 ml of water, $2 Æ 10-6 \mathrm{M}$ DASA and 0.01 M BESThe solution is purged using nitrogen (3 minutes) to remove dissolved oxygen. The adsorption potential (-0.9 V) is applied to the working electrode, while the solution is stirred. After 40 s accumulation time, the stirring is stopped, and for 5 s the solution is allowed for to became quiet. The scanning is started at -0.9 V and terminated at -1.4 V . The scan is made using staircase modulation with a scan rate of $30 \mathrm{~V} / \mathrm{s}$ and a pulse height of 5 mV . The DASA-Al peak appears at ca. -1.25 V . A standard addition procedure is used to quantify the aluminium concentration of the sample. Determinations were carried out in a flow bench class-100 to avoid contamination of the sample by dust particles.

The electrochemical system used has been designed to measure the instantaneous currents at short times with a low noise level (Hernandez-Brito et al., 1994b). Thus, the analytical time required for each sample is substantially reduced, allowing an increase of measurements on board. A PAR- 303A electrochemical cell with hanging mercury drop electrode (HMDE) was connected to a specially made computercontrolled potentiostat.

Preliminary results

More than 600 samples were analysed on board. Preliminary results show that the aluminium distribution in the water column appears to be related with the physical and biogeochemical processes in the sampling area. Aluminium distribution in the surface waters shows the same maximum concentrations as found during previous cruises at summer and fall at the area. These concentrations decrease from Africa coast to La Palma Island (Fig. 5.5.2).
Mid-depth aluminium distributions seem to be related to the water masses. Stations located west of Lanzarote show higher aluminium concentrations and no salinity minimum at this deepth. An aluminium maximum appears at intermediate waters
(1000-1300m) and it seems to be related with the intrusion of Mediterranean waters. A minimum in the aluminium distributions occurs below the Mediterranean waters. The aluminium concentration increases again at depths larger than 2500m. Stations close to the continental slope show higher aluminium near the bottom layer. This could indicate sediment dissolution or lateral transport of sediment in the deep layers. The profiles in the western most stations show no significant alterations near the bottom.

Fig. 5.5.1

Salinity

5.6 Dissolved organic carbon (DOC) measurements
 (B. Heyden, W. K hn, M. Spietz)

DOC is part of the oceanic carbon pool. Small changes in the DOC cycle may have a large impact on the global carbon cycle. Questions not yet answered are concerned with the nature of DOC and also the problems involved in its measurements (e.g. Suimara \& Suzuki, 1988; Suzuki, 1993; Hedges \& Lee, 1993).

The key issue during the Meteor cruise $\mathrm{M} 42 / 1$ was to determine the vertical distribution of DOC at the three stations ESTOC, EBC and LP (north of La palma), and on the two sections along $29^{\circ} \mathrm{N}$ and $32^{\circ} \mathrm{N}$ to measure the horizontal gradients from the coastal zone to the open sea. In order to resolve seasonal variations as compared to earlier cruises, the sampling was densest in the upper 200 m and in the shelf region.

At thirty nine stations (Tables 7.1 and 7.2), water samples were taken throughout the entire water column with a CTD/rosette. Samples for DOC measurements immediately after sampling were filtered under slight vacuum through precombusted Whatman GF/F filters. After filtration the DOC samples were preserved with phosphoric acid to reach $\mathrm{pH}=2$ and stored in precombusted 10 ml glass ampoules at $5^{\circ} \mathrm{C}$.
The samples will be analysed at the laboratories of the IBGM., Hamburg.
In addition to DOC, during M42/1a at ESTOC, EBC and LP also dissolved organic matter (DOM) was sampled and stored for later analysis at the IBGM, Hamburg.

5.7 Particle flux, production rates and plankton biomass (S. Neuer)

Particle flux measurements with moored particle traps
Particle flux measurements at ESTOC (European Station for Time-series in the Ocean, Canary Islands) are carried out since fall of 1991. They show seasonal and short-term variability due to varying productivity and hydrographic conditions. In addition, this long-.term particle flux record indicates that a large portion of deep particle flux originates laterally. In CANIGO, additional particle traps were placed along the $29^{\circ} \mathrm{N}$ transect, north of La Palma (mooring LP) and between the eastern islands and the Moroccan shelf (moorings EBC2 and 3). Including the ESTOC position, these three main trap locations cover the productivity gradient from shelf region to the oligotrophic gyre. It is intended to distinguish the influence of autochtonous and allochtonous sources of particle flux along the transect.

The EBC2 and EBC3 particle traps are part of current meter moorings of the lfM Kiel. During the first two mooring periods since January 1997, each mooring carried a particle trap in 700 m depth. On June 21 and 22, the second set of moorings, EBC2-2 and EBC3-2, was recovered. The particle trap on EBC2 worked properly, the one on EBC3 did not rotate, and no samples are available. EBC3-3, which also carried an INFLUX current meter mooring 20 m below the trap, was re-deployed on June 23. Supplementing the particle trap on EBC2, a second trap was attached to the mooring line one in 500 and 700 m . By collocating two traps in different depths on one mooring
line, it will now be possible to investigate vertical gradients in the particle flux at EBC as already at the ESTOC and LP locations.

Experiments with drifting particle traps

In addition to moored particle traps, experiments with drifting trap were carried out to determine particulate carbon flux that originates directly from the euphotic zone. Ideally, these sinking flux measurements need to be coupled with measurements of the standing stock and production rates of the plankton community in the euphotic zone (see next section on plankton biomass and production rates).

To study particle flux below the euphotic zone, two surface-tethered particle interceptor arrays were deployed northeast of the ESTOC station, one carrying one trap at 200 m (Trap I, 200 m drifter, Fig. 5.7.1), the other one three traps at 200, 300 and 500 m depth (Trap III, 500 m drifter, Fig. 5.7.2). The traps were attached to a surface buoy carrying an ARGOS transmitter and a Radar reflector. The main buoyancy was located at about 30 m depth to avoid the wind-induced EKMAN layer.

The first deployment period (Trap III-1 and I-1) lasted from June. 16-19. During the deployment period, the 8 mm steel wire of the surface array of I-1 was cut due to unknown reasons and only the surface buoy and two packages of fisher buoys could be recovered. The entire array below the surface was lost. In total, I-1 drifted 60 km (or $21 \mathrm{~km} / \mathrm{d}$) south-west, III-1 drifted only $12.6 \mathrm{~km}(4.4 \mathrm{~km} / \mathrm{d}$) to the west and remained at the same latitude (Fig. 5.3.3). The difference in drift verlocity can be explained by the lacking water resistance of the short drifter. Following the drift course, the loss of the array l-1 probably occurred in the evening of 18 June, one day before recovery.

During the second deployment period, only the 500 m trap was re-deployed from June 19-24. This time, the drifter drifted 29 km north-west with a speed of $6 \mathrm{~km} / \mathrm{d}$.

Fig. 5.7.1 Drifter $\mathrm{I}-1$ carrying one trap at 200 m depth.

Fig 5.7.2 Drifter III carrying traps 200, 300 and 500 m depth.

Figure 5.7.3 Drift course of drifters I-1 and III-1.

Plankton biomass and production rates

To quantify the plankton community in the euphotic zone during the trap deployments, samples were taken for chlorophyll, taxonomically characteristic pigments (analysed with High Pressure Liquid Chromatography, HPLC) and POC (Particulate organic carbon). All of the water samples were filtered on GF/F filters. While chlorophyll a was analysed onboard ship as an acetone extract using a Turner AU 10 fluorometer, POC and HPLC samples were kept frozen until analysis onshore.

Chlorophyll a as indicator of phytoplankton biomass showed the characteristic trend from highest values at the relatively eutrophic station EBC (in the proximity to the upwelling region) towards low values in the olitotrophic gyre regions (LP) (Fig. 5.7.4). All stations exhibited a deep chlorophyll maximum, located in 75 m at EBC and ESTOC, and in 125 m depth at LP.

Figure 5.7.4 Chlorophyll profiles taken at EBC, ESTOC and LP.

To determine phytoplankton growth and microzooplankton grazing rates under close to in-situ conditions, dilution experiments were carried out twice at ESTOC (Stations 264 and 270) and EBC3 (Sta. 286) with water from 25 and 50 m depth in an on-deck incubator.

5.8 Stable nitrogen isotopes, nitrogen and carbon concentration of marine particles

(T. Freudenthal)

Introduction

The origin of organic matter may be characterized by its chemical composition. Especially the stable nitrogen isotopes allow valuable insights into the production and degradation history of organic particles. Low values of the stable nitrogen isotope ratio $\delta^{15} \mathrm{~N}$ and high concentrations of organic nitrogen and carbon are expected of material generated in an upwelling system. Higher $\delta^{15} \mathrm{~N}$ values, on the other hand, are typical of organic matter produced in oligotrophic systems. In addition, degradation of organic matter causes an enrichment of $\delta^{15} \mathrm{~N}$. In this study, the stable nitrogen isotope ratio as well as the organic nitrogen and carbon content of particulate (mainly suspended) material is determined and compared to the organic chemistry of fast sinking material sampled by particle traps, located along the $29^{\circ} \mathrm{N}$ productivity gradient transect.

Methods

Water from selected depths reaching from 10 m to near the sea floor was sampled on three sites along the 29° transect (EBC3, mesotrophic, ESTOC, oligotrophic, and LP, extremely oligotrophic) for the analysis of $\delta^{15} \mathrm{~N}$, total nitrogen (TN), total carbon (TC), organic nitrogen (ON), and organic carbon (OC) content of particles. For the analysis of $\delta^{15} \mathrm{~N}$ of filtered particles, 5 l of seawater were filtered from each depth onto precombusted GFF-filters. For the analysis of TN and TC content, respectively, ON and OC content, two liters of seawater were filtered onto precombusted GFF-filters. Filters were stored at $-20^{\circ} \mathrm{C}$ in the dark until further analysis on shore. $\delta^{15} \mathrm{~N}$ will be measured using a Finigan mass spectrometer. TN and TC will be measured using a carbon, hydrogen, nitrogen (CHN) -analyser. ON and OC will be measured on acidified filters using a CHN -analyser. Assuming that almost all of the nitrogen in suspended material is of organic origin, the comparison of TN and ON may indicate loss of organic material during acidification.

First results

Assuming that the coloration of the filters is an indicator of particle concentration, first results can be seen that are based solely on the optical impression of the filters. Confirming the productivity gradient along $29^{\circ} \mathrm{N}$ the concentration of suspended matter in comparable depths was highest at EBC3, and lowest at LP. The concentration was highest in surface waters, decreased in the upper 500m at EBC3, and in the upper 1500m at EBC and LP. At EBC3, a maximum of suspended matter was observed between 600 and 900 m . This could be explained by lateral particle transport with a high productivity region like Cape Ghir area in the north or Cape Blanc area in the south being the source of the particles. At ESTOC, the concentration increased below 1500 m with a maximum at 2500 m . This observation supports the assumption of lateral particle transport being responsible for higher fluxes observed with the 3000 m particle trap compared to the 700 m and 1000 m particle traps at ESTOC (S.Neuer, personal communication). Concentrations near the sea floor were low at all three sites. Resuspension of sedimental material seems to have a minor influence on the concentration of suspended matter. Elemental analysis has to be done to confirm these primary results.

5.9 The use of stable nitrogen and carbon isotopes to measure primary production

(M. Schroeter)

Introduction

Primary production, the uptake and assimilation of CO_{2} by autotrophic plankton, can be divided into new and regenerated production. New production is based on the uptake of new nutrients (e.g. nitrate) that originate from outside the euphotic zone by processes such as upwelling or mixing. On the other hand, regenerated production is defined as a primary production fuelled by nutrients recycled in the productive euphotic zone, such as ammonia excreted by heterotrophic organisms.
New production eventually has to be exported as sedimenting particles (export production) to maintain a mass balance in the upper productive layers.

The $29^{\circ} \mathrm{N}$ transect covers distinct nutrient regimes, from extremly oligotrophic north of La Palma to eutrophic regions, close to the NW African upwelling system in the EBC region.
The aim of this study was to correlate the uptake and incorporation of ${ }^{15} \mathrm{~N}-\mathrm{NO}_{3}$ and
${ }^{13} \mathrm{C}-\mathrm{HCO}_{3} \nmid$ by phytoplankton to new and total primary production rates, respectively.

Methods

Discrete water samples were collected before dawn from nine optical depths (116, $93,83,53,39,21$ and 8 m), corresponding to $0.1,0.5,1,6,13,34,52,66$ and 100% of surface irradiance, respectively, to achieve a high resolution of the euphotic zone. Samples were incubated in bottles covered with neutral density filters of the corresponding light intensity on board (simulated in-situ incubation). Stable isotopes $\left({ }^{15} \mathrm{NO}_{3},{ }^{15} \mathrm{NH}_{4}\right.$ and $\mathrm{H}^{13} \mathrm{CO}_{3}$) were added in trace concentrations in order to maintain the natural nutrient abundance. After about 12h, the experiments were stopped by filtering the samples onto precombusted GF/F filters. The incorporated isotopes and the particulare nitrogen and carbon contents (PON and POC) will be determined by mass spectrometry and elemental analyses in the laboratory. To normalize the primary production rates to biomass, samples for chlorophyll a and other phytoplankton pigments were taken for fluorometric and liquid chromatograhic analyses.

Also, the impact of nutrient ability on production rates (Michaelis-Menten-kinetics) was investigated by adding different nitrogen concentrations (0.1, 0.3, 0.5, 1.0 and 2.0 $\mathrm{mol} \mathrm{NO}_{3} / \mathrm{l}$) to the incubation experiment.

First results

Profiles of primary production were taken at all main stations (ESTOC, LP and EBC). All stations were characterized by deep chlorophyll maxima and a lack of nutrients in the euphotic zone.
The analysis of the chlorophyll samples before and after the incubation experiments showed no photoinhibition except for one depth (St. 265, 21 m) indicating that the chosen light depths were appropriate for incubation.

5.10 Coccolithophores, diatoms and planktic foraminifera

(J. Bollmann)

Research programme

Sampling for coccolithophores, diatoms and planktic foraminifera during METEOR cruise 42/1 was part of the EC-MASTIII program CANIGO (PL950443) subproject 3: Particle flux and paleoceanography in the Eastern Boundary Current, Task 3.1.2 Flux of organisms. This cruise is the last cruise of several seasonal cruises within this project and represents the summer season.

The goals are (a) to obtain a better understanding of the seasonal and interannual interaction between planktic organisms and the physical environment along a WEtransect north of the Canary Islands and (b) to compare this interaction with the longterm variability of species composition and flux into the sedimentary archives.

During cruise $M 42 / 1$, water casts of 10 litres were taken at 43 stations from the following depth levels: $0,10,25,50,75,100,125,150,200,250,300$ meters. At 24 stations samples were taken along a zonal transect from the African coast to La Palma ($29^{\circ} \mathrm{N}$-section); six stations were sampled along the meridional transect from La Palma to Madeira $\left(18^{\circ} \mathrm{W}\right)$, and 13 stations the zonal transect from Madeira towards the African coast $\left(32^{\circ} N\right)$.

Up to 10 litres of water were transferred the rosette Niskin bottles for each depth level into carboys after rinsing the carboys with tap water. Within one hour the water was filtered onboard through Nucleopore PC filters ($0.8 \mathrm{~m}, 47 \mathrm{~mm}$ diameter) using a lowvacuum filtration device. Filtration was terminated if the filter became clogged and the amount of remaining water was measured. After filtration, the filters were rinsed with 50 ml buffered destilled water $\left(\mathrm{NH}_{4} \mathrm{OH}, \mathrm{PH} 8.5\right)$ in order to eliminate all traces of sea salt. Rinsed filters were transferred to labelled petri-dishes, dried immediately in an oven at $40^{\circ} \mathrm{C}$ for several hours.

Subsequent analyses will use a scanning electron microscope cell density (\#/I) and to determine the taxonomic composition of the coccolithophore populations. In addition morphological features of Gephyrocapsa sp. and Calcidiscus leptoporus will be analysed.

Diatoms

Water samples for diatom analyses were taken at 15 stations along the $29^{\circ} \mathrm{N}$ section (African shelf to La Palma) from the following water depth levels: 0, 10, 25, 50, 75, 100, 125, 150, 200, 250, 300 meters. About 300 ml of sea water were transferred from rosette Niskin bottles into plastic bottles and stained with 30 ml Formol which was buffered to pH 8 with Hexamethyl-Tetramin .

In addition, at 15 stations a plankton net with 63 m mesh size was used to sample diatoms within the upper 100 m water column (integrated sampling; IGM Lisbon). The net was released to 100 m water depth and was pulled with $0.3 \mathrm{~m} / \mathrm{s}$ back to the surface. Subsequently the net was rinsed with sea water and the catch was transferred into a plastic bottle and stained with Glutardialdehyde.

Subsequent analyses will use a light microscope and if necessary a Scanning Electron Microscope (SEM), to determine the diatom standing stock and its assemblage composition.

Planktic foraminifera

Planktic foraminifera were collected with a multi-closing-net (mesh size 64 m) at five depth intervals (500-300, 300-150, 150-50, 50-25, 25-0) at 8 stations along the $29^{\circ}-$ section (African shelf to La Palma) including the three stations close to the moorings at LP1, ESTOC and EBC2. The multinet-samples were preserved on board with a saturated solution of HgCl_{2} and stained with Bengalrosa. In addition, sea water was taken at the base of each net-interval for stable isotope analyses ($\delta^{18} \mathrm{O}$ - and $\delta^{13} \mathrm{C}$). These samples were preserved with HgCl_{2} and the glass bottles were sealed with Paraffin to prevent the oxidation of organic matter. All samples were stored immediately in a refrigerator at $4^{\circ} \mathrm{C}$.

In future analyses the assemblage composition of foraminifera will be determined. Stable isotope analyses of selected foraminifera species as well as the stable isotope composition of sea water will be performed.

5.11 Deep-sea ichthyoplankton abundance and diversity off NW Africa (H.-C. John)

Sampling

During leg M42/1b, fish larvae were sampled along two zonal sections: ca $29^{\circ} \mathrm{N}$ and $32^{\circ} \mathrm{N}$ cross-slope near the African shelf. Vertical hauls were obtained on 28 stations with a Hydro-Bios Multinet MUV (Multinet vertical) with 0.25 m _ mouth opening and 300 mikrometer mesh size. The net was equipped with a CTD-system with real-time display on board. Retrieval speed was $0.7 \mathrm{~m} / \mathrm{s}$. Five net steps were available, and generally sampling was in 200 m depth intervals each, from 1000 m depth to the surface, or with somewhat finer strata near the surface when bottom depths were 800 m or less. Across the continental slope between Morocco and west of Lanzarote, horizontal resolution was relative fine (5-7 nautical miles, stations $310-320$) in order to investigate fish larval patterns in relation to along-slope and crossslope currents. For open ocean ichthyology, station spacing was wider (up to 60 miles, for details see table 5.11.1). At eight of the 28 stations, additionally three 200 m -strata between 1600 - 1000 m depth plus a wider stratum 2000 - 1600 m each were sampled. Net no. 5 , which can not be closed, provided an integrated sample from 1000 m to the surface at each of these stations, too. There were no malfunctionings of the net, and also no losses of samples due to torn nets, resulting in a total of 36 hauls with 5 samples each.

Results

Preserving the samples, fish larvae or juveniles were observed in any of the 36 hauls and generally in all samples down to 600 m depth. Cyclothones (random identifications yielded so far at least 7 species) appeared to be centered in the $400-600 \mathrm{~m}$ layer. However, ichthyoplankton occurred occasionally even deeper and down to 1200 m , whilst below that depth no fish was visible macroscopically.

The ten stations between Morocco and Lanzarote could be sorted already on board for ichthyoplankton, and sorted fish could be identified mikroscopically. Sorting was somewhat cumbersome due to high abundances of foraminifera in the uppermost layer.

Figure 5.11 .1 shows the gross abundance of fish along this transect, and an abbreviated list of the species identified is given in table 5.11.2. Fish larval abundances were high above the upper continental slope with more than 150 fishes per squaremeter (Fig. 5.11.1), but not so above the slope of Lanzarote, nor in the waters in between. It must be emphasized that the sea bottom between Morocco and Lanzarote forms a sill of maximum depths of 1300 m only and is thus not an oceanic habitat, really. The decrease in abundance coincided approximately with the 1000 m isobath. As shown by table 5.11.2, coastal species occupy the rank places 1,2 and 4.

Table 5.11.1: Inventory of ichthyoplankton sampling with the vertical multiple closing net MUV during M42/1b.

MUV \#	Sta. \#	Date	UTC	Lat. ${ }^{\circ}{ }^{\prime}$ N	Long. ${ }^{\circ}$ 'W	Depth max.(m)
1	306	26.06 .1998	21,10	2840.0	1535.4	1000
2	310	27.06 .1998	19,56	2837.0	1249.0	250
3	311	27.06 .2008	22,43	2838.0	1255.1	360
4	312	28.06 .1998	3,08	2839.6	1301.1	600
5	313	28.06 .1998	6,03	2840.0	1306.1	780
6	314	28.06 .1998	9,44	2849.9	1312.1	1000
7	315	28.06 .1998	15,22	2843.1	1317.0	1000
8	316	28.06 .1998	21,26	2844.0	1322.0	1000
9	317	29.06 .1998	2,27	2845.0	1329.0	1000
10	318	29.06 .1998	8,11	2846.0	1334.0	1000
11	319	29.06 .1998	13,00	2848.1	1343.1	836
12	320	29.06 .1998	18,38	2851.0	1356.1	1000
13	322	30.06 .1998	5,31	2853.0	1406.0	1000
14	324	30.06 .1998	17,39	2856.0	1422.0	2000
15	324	30.06 .1998	21,30	2856.0	1422.0	1000
16	327	01.07 .1998	19,18	2910.0	1530.1	1000
17	327	01.07 .1998	23,33	2910.2	1530.2	2000
18	331	03.07 .1998	2,29	2910.0	1634.0	1000
19	331	03.07 .1998	4,32	29910.1	1634.0	2000
20	332	03.07 .1998	13,53	2910.0	1655.1	1000
21	332	03.07 .1998	17,37	2910.0	1655.1	2000
22	333	03.07 .1998	22,53	2910.0	1717.1	1000
23	333	04.07 .1998	1,37	2910.0	1717.0	2000
24	335	04.07 .1998	19,20	2910.0	1800.1	1000
25	335	04.07 .1998	22,27	2910.1	1800.2	2000
26	342	07.07 .1998	12,47	3215.0	1800.0	1000
27	343	07.07 .1998	21,36	3214.9	1725.2	1000
28	344	08.07 .1998	6,52	3215.0	1650.0	1000
29	345	08.07 .1998	16,52	3215.0	1610.1	1000
30	349	09.07 .1998	22,40	3215.0	1410.1	1000
31	351	10.07 .1998	19,05	3215.0	1210.0	1000
32	351	10.07 .1998	21,12	3215.0	1210.1	2000
33	353	11.07 .1998	13,25	3215.0	1050.0	1000
34	353	11.07 .1998	15,34	3214.9	1050.0	2000
35	355	12.07 .1998	6,47	3205.0	1010.0	1000
36	356	12.07 .1998	13,37	3202.9	0955.5	820

Fig. 5.11.1: The gross abundance of fish larvae (number of occurance N per m^{2}) between the shelf edge off Morocco and Lanzarote, plotted by geographical longitude

Table 5.11.2: Abbreviated list of fish species caught between the shelf edge of Morocco and Lanzarote

Rank	Taxon	Common name	Number	
1	Engraulis encrasicholus	Anchovy	151	
2	Gobiidae indet.	Gobies		33
3	Cyclothone (7 spp.)	---------		33
4	Blenniidae indet.	Blennies	19	
5	Ceratoscopelus maderensis	Lanternfish	12	
6	Maurolicus muelleri	Lightfish	12	
7	Sternoptychidae	Hatchetfishes	6	

Besides the species listed in table 5.11.2 above, the following rare taxa contributed 1 to 4 specimens each: Clupeiformes indet., Vinciguerria attenuata, V. poweriae, Pollichthys mauli, Stomiatoidei spp., Benthosema sp., Myctophum nitidulum, Diaphus rafinesquei, Notoscopelus bolini, Scopelarchidae indet., Pagellus acarne, Serranidae indet., Callionymus sp., Trachurus trachurus, Lepidopus caudatus, Arnoglossus sp., Microchirus ocellatus, Heterosomata indet., unidentifyable.

The identification of some presumed Maurolicus muelleri is uncertain. These tiny, completely unpigmented larvae have been tentatively assigned to Maurolicus due to the absence of internal transverse rugae in their intestines. However, they also bear similarities to Ceratoscopelus maderensis, in case its recently hatched larvae are devoid of any pigment. The remaining rank places are occupied by oceanic fish species, which, according to macroscopical investigation as well as sorting of nets 1 to 3 of haul no. 13 , become somewhat more abundant, and more species-rich west of Lanzarote above truly oceanic depths. A quick-look analysis of the integrated sample from 1000 m to the surface at station 353 on the northern transect yielded 8 cyclothones besides one Argyropelecus hemigymnus, Sudis hyalina, Lobianchia dofleini and Serrivomer beani, each.

The species list given above seems to be fairly typical for a Northwest African slope area during quiescent summer conditions. A more intensive summer upwelling situation would have yielded sardine (Sardina pilchardus) on one of the first rank places, but only scant anchovy larvae of larger sizes, originating from earlier spawning. A winter situation would have yielded (besides sardine) many larvae of horse mackerel (Trachurus trachurus), lanternfish Myctophum punctatum, Maurolicus and probably also hake (Merluccius merluccius). The oceanic fauna besides C. maderensis, of which the adults are associated with Mediterranean Outflow Water, includes mostly species of the subtropical-temperate complex, but no distinct tropical species except for one single Cyclothone livida. This latter species, if caught in larger numbers, might serve as a tracer for the intermediate poleward slope current in the passage east of Fuerteventura and Lanzarote, or within the archipelago, respectively, and the teleconnection of this current with the tropical Eastern Atlantic margin.

As shown in figure 5.11.2, the decrease of abundance above the shelf edge coincides with the change from coastal (neritic) species to oceanic ones. The boundary is fairly sharp, with only slight intrusion of single specimens of oceanic taxa onto the upper continental slope, as well as occurrence of single neritic specimens offshore (the questionable Maurolicus larvae were not counted as a separate taxon constructing this figure). The little overlap between neritic and oceanic groups maybe interpreted also as some evidence for little cross-shelf transport, i.e. little or no upwelling during the planktonic phase of most of the larvae caughts. Since weak upwelling was evident in the CTD-data, it must be emphasized that the CTD-data and fish larval data describe different time scales. The larval assemblage is estimated to be generally 1 to 2 weeks old, because among blennies, C. maderensis, gobies and the Lampanyctinae preflexion larvae prevailed, whilst anchovy was generally in or beyond notochord flexion. However, among blennies and flatfishes even some yolk-sac larvae were found of probably $4-5$ days age, and the questionable Maurolicusmust also be only few days old. The M. nitidulum caught above the slope (it is a high-oceanic
species) was in early transformation and thus several weeks old, in which time it may have drifted onshore (and probably also downcurrent meridionally). Measurements for more precise ageing and grouping for cross-slope zonations of stages could not yet be done, neither have vertical distributions been calculated yet.

Fig. 5.11.2: The numbers of species per station, separated for coastal (neritic) and oceanic taxa (otherwise as for Fig. 5.11.1)

6. Ship's Meteorological Station

(H. D. Behr)

Cruise, course and weather

FS "Meteor" sailed from Las Palmas Tuesday, June 16, 1998 at noon, steering on northerly courses. There were light northeasterly winds at the first station ca. 80 nm northwest of Gran Canaria, originating from a high south of the Azores and a low over the western parts of the Saharan desert. The wind turned to North force 4 during the cruise until we reached the position LP north of La Palma. After station work at LP RN Meteor sailed to station EBC east of Lanzarote. The African low had moved to the west in the meantime causing northeasterly winds of force 6 , increasing to 8 for a while. After having finished station work east of Lanzarote R/V Meteor sailed westward again to station ESTOC north of Gran Canaria and after station work there R/V Meteor called in to Las Palmas again 25 June to exchange part of the scientific crew.

After having left Las Palmas on 26 June, the vessel steamed again to the array EBC east of Lanzarote to start the hydrographic work on the box north of the Canary Islands. The high near the Azores and the low over the Saharan desert were nearly stationary during the whole time. However, slight movements in their positions and changes in their intensities usually caused northeasterly wind increasing to force 7 in the afternoon decreasing winds to force 3 to 4 during the nights.

While approaching the easternmost station on the northern section 357, the Saharan low deepened significantly and moved westward towards the high near the Azores. This caused the northeasterly winds to increase to up to force 8 during the last part of this leg. At station 357 the wind was light and variable, but there was a lot of dust caused by Saharan sand in the air reducing the visibility.

After station work at 357 was finished at July 12 R/V METEOR started her transit to the port of Lisbon. On the way, four moorings were to be recovered which was disturbed by rough seas due to the strong winds.

In the morning of July 16, 1998 RV METEOR reached Lisbon.

Activities of the Ship's Weather Watch

On a daily basis, weather reports were compiled and published. Comments heron were presented on a regular basis to the ship's command and the chief scientist. The other participants of the cruise were informed through a bulletin or on special request. Special advice was given in some cases. The necessary data and weather maps were received from wireless stations (Pinneberg and Nairobi), as satellite pictures (METEOSAT 7 and NOAA 12, 14, and 15), and by fax (forecast charts from ECMWF or DWD) or by e-mail from the 'Deutscher Wetterdienst', Hamburg and Offenbach/Main.

The forecasts of weather conditions and height of sea and swell were based essentially on surface analyses charts of the Northern Atlantic Ocean between $60^{\circ} \mathrm{N}$ and $20^{\circ} \mathrm{N}$. Surface observations of West-European and Northwest-African weatherstations and voluntary merchant ships were compiled by hand drawing in these charts and analyzed by hand.

Continously measured meteorological parameter were recorded, transferred to the ship's data collecting system, and on request were distributed to users through computer links or on disks. The sensors and meteorological equipment were maintained on a regular basis, some repairs were made.

Standard weather WMO observations were made every hour by the watch officer. Eight of them were transmitted into the WMO Global Telecommunication System (GTS); these also included additional eye observations done by meteorological staff.

Every day at 12 UTC one radiosonde was launched using the ASAP system by which the vertical profile of pressure, temperature, moisture, and horizontal wind up to an altitude of 20 to 25 km was determined. The prcesseded data of the records (TEMPS) were transmitted to the GTS of the WMO.

Determination of the net total radiation and atmospheric turbidity at sea

Information about the spatial and temporal distribution of the net total radiation and its components at the sea surface as well as atmospheric turbidity are important basic variables in meteorology and oceanography as well. Off Northwest Africa atmospheric dust that origins from the Saharian desert is an imprtant component of atmospheric turbity, and it also plays an important role in sedimentation in the ocean.

In a special research programme, the following radiation components were recorded during M42/1: direct solar radiation, sunshine duration, global solar radiation and UVB global solar radiation as well as longwave thermal radiation of the atmosphere. Additional components that are necessary to establish a radiation balance as reflected solar radiation and ocean surface radiation were computed using numerical models that have been successfully tested earlier on research cruises in the Atlantic (Behr, 1990).

Atmospheric turbidity is expressed by a set of coefficients as follows:

- T_{L} : Linke-turbidity-coefficient, describing all radiative processes in the solar spectrum
- T_{s} : turbidity-coefficient, describing all radiative processes in the short-range part of the solar spectrum which provides information about the dust in the atmosphere
- T_{r} : turbidity-coefficient, describing all radiative processes in the red part of the solar spectrum which provides information about the water-vapor-content in the atmosphere.

Using an exponential decaying law that describes the turbidity effects as the effect of several (clear) Raleigh atmospheres, the coefficients $\mathrm{T}_{\mathrm{L}}, \mathrm{T}_{\mathrm{s}}$, and T_{r} can be computed by from

- the known extraterrestrial solar radiation received from a surface normal to the beam of the sun which depends on the distance sun - earth only
- the direct solar radiation received from a surface normal to the beam of the sun, e.g. measured with a Linke-Feussner-Actinometer
- the optical pathlength that depends on the solar elevation angle
- the optical thickness of the atmosphere

The data set of numerous measurements of direct solar radiation done with a Linke-Feussner-Actinometer revealed the spatial and temporal variation of the atmospheric turbidity during M42/1. As a first result, of the section along ca $29^{\circ} \mathrm{N}$ from EBC to LP (June, 16 to 30) will be shown here. There was clear air during nearly all the time, but a dusty event occurred from June 21 to 25 transporting sand from the Saharan desert. The pathways of the airmasses in 9 different pressure levels is revealed by figures 6.1 and 6.2 by backward trajectories. The trajectories started 108 hours before the day chosen in order to reveal the area the air originated from. From June 21 to 25, dusty air originated from the Saharan desert reached FS "Meteor" in all layers. The Linke-turbidity-factor is correspondingly high: 12 to 18 (see Fig. 6.3). The increasing content of dust can be seen by increasing values of T_{s} from 2 to 4 . During all other days clear air originating from a maritime area was present in all layers of the atmosphere. The turbidity factors were correspondingly low. These findings correspond to former results found by Behr (1990, 1992).

Fig. 6.1: Backward trajectories in different levels starting 108 hours ago and reaching the position of FS "Meteor" on June 21, 1998 00:00 UTC. The pressure levels used are indicated: surface, 950 hPa [0.5 km], 850 hPa [1.5 km], 700 hPa [3.0 km], 500 hPa [5.5 km], and $300 \mathrm{hPa}[\approx 9 \mathrm{~km}$], $140 \mathrm{hPa}[\approx 14 \mathrm{~km}$], $100 \mathrm{hPa}[\approx 16 \mathrm{~km}$], and 50 hPa [\approx 21 km].

Fig. 6.2: Same as Fig. 2, but for June 28, 1998

Fig. 6.3: Daily changes of the atmosheric turbidity coefficients T_{L}, T_{k}, and T_{r} along ca. $29^{\circ} \mathrm{N}$ (EBC to LP), June 16 to 30, 1998.

7. Stationlists

Table 7.1: Station list M42/1
METEOR cruise $42 / 1$ station and sample log
Status: 28.11.1998

List of abbreviations:

St : Station no.
Pr : CTD profile no., monotonically increasing during the cruise
Wd : Waterdepth
WI : maximum length of wire put out
Instr : Type of instrumentation or mooring or equipment
NB4 : Neil Brown CTD, IFMK internal code NB4, with 21×10 I bottle rosette
VXXX : Mooring no XXX
TX.Y : Drifting particle traps: X traps, Yth . deployement
GoFlo: Cast for trace elements with GoFlo bottles on rosette
ISP : Cast for trace elements with in-situ pumps
XBT : XBT profile
OS : Optical sensors with CTD
MN : Multiple closing plankton net, 500 m - surface
MUV : Multiple closing plankton net, fish larvae, $2000 \mathrm{~m}-1000 \mathrm{~m}, 1000 \mathrm{~m}$ - surface
PN : Plankton net, 100 m surface
NOAA : surface drifter
sss : sun at starboard side

Parameter list for CTD/rosette:

A: lowered ADCP (IADCP, IFMK)), 150 KHz , on CTD/rosette
F: Fluorometer attached to CTD
R: General Oceanic rosette, 21x 10 I Niskin bottles
0 : Gelbstoff (ICCM)
1: Dissolved oxygen (ICCM), 300 ml
2: Trace metals (ULPGC) in particular aluminium, 300 ml
3: Dissolved organic carbon (DOC, IBGMH), 300 ml
4: Nutrients (ICCM), 200 ml
5: Chlorophyll (ICCM), 1200 ml
6: Gelbstoff (UO), 1200 ml
7: Salt (IFMK), 500 ml
8: Diatomes (IGM), 300 ml
9: Coccolithophorides (ETH), >= 4000 ml
$\delta \mathrm{d}: \mathrm{d}^{15} \mathrm{~N}$ or $\mathrm{u}:{ }^{15} \mathrm{~N}$ uptake or b: $\mathrm{d}^{15} \mathrm{~N}$-Blank (GeoB)
D Dilution experiment (GeoB)
H High pressure liquid cromatography (HPLC, GeoB)
M Humin (IBGMH)
O TC total carbon (GeoB)
P TOC total organic carbon (GeoB)
Q POC particulate organic carbon (GeoB)
T Total nitrogen (TN, GeoB)
U Total organic nitrogen (TON, GeoB)
X: Dissolved organic matter (DOM, IBGMH)

Table 7.1 (continued)

Table 7.1 (continued)

Table 7.1 (continued)

Table 7.1 (continued)

$07121737357-9 \quad 32 \quad 02.0 \quad 009 \quad 52.0 \quad 116 \quad 106$ OS
$\begin{array}{llllllllllllll}0712 & 1753 & 357 & -9 & 32 & 02.0 & 009 & 52.0 & 121 & 100 & \text { PN }\end{array}$

Table 7.1 (continued)
Comments / Parameter index

Table 7.2: Sampling M42/1, Stat. 260 to 357

Station/cast (water depth)								
Pres (dbar)	$\begin{gathered} \mathbf{2 6 0 / 1} \\ (1000 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 6 1 / 2} \\ (3607 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 6 4 / 3} \\ (3613 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 6 5 / 4} \\ (4228 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 6 6 / 5} \\ (4360 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 6 7 / 6} \\ (4146 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 2688/7 } \\ (3624 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 269/8 } \\ (1060 \mathrm{~m}) \end{gathered}$
8				--u-----		--u-----		
10		-5----Q-						-5------
20				--u-----				
25		-5----Q-	-7------					-5------
39				--u-----				
50		-5----Q-	-7------		37dMOPTU			-5------
53				--u-----				
75		-5----Q-						-5------
83				--u-----		--u-----		
93				--u-----		--u-----		
100		-5----Q-						-5------
116				--u-----		--u-----		
125								
150								-5------
200		-5----Q-	-7d-OPTU		37dMOPTU			-5------
300		--------						
400								
500		------Q-						
600								
700			-7d-OPTU		37dMOPTU			
750								
800								
850								
900								
1000			-7d-OPTU					
1100								
1200					37dMOPTU			
1300								
1500					37-M----			
1800								
2000			-7d-OPTU		37dMOPTU			
2250								
2500					37dMOPTU			
2800								
3000			-7d-OPTU		37dMOPTU			
3300								
3500					37dMOPTU			
4000					37dMOPTU			
Bottom					37dMOPTU			

Table 7.2: Sampling M42/1 (continued)

Station/cast (water depth)								
$\begin{gathered} \text { Pres } \\ \text { (dbar) } \end{gathered}$	$\begin{gathered} \mathbf{2 7 0 / 9} \\ (3605 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 7 1 / 1 0} \\ (3615 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 7 2 / 1 1} \\ (3623 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 7 3 / 1 2} \\ (1017 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 277 / 13 \\ (909 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 7 8 / 1 4} \\ (1196 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 7 9 / 1 5} \\ (1283 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 8 0 / 1 6} \\ (1335 \mathrm{~m}) \end{gathered}$
8				--u-----				
10	-5------		-7------			-7------	-7------	-7------
20				--u-----				
25								
39				--u-----				
50		3-dOPTUX						
53				--u-----				
75	-5------							
83				--u-----				
93				--u-----				
100	-5------							
116				--u-----				
125								
150								
200		3-d----x						
300								
400		3-d----x						
500								
600		3-d----x						
700								
750								
800		3-d----x						
850								
900								
1000			-7------					
1100		3-d----x						
1200		3-dOPTUX						
1300								
1500		3-dOPTUX						
1800								
2000		$3-d---{ }^{\text {d }}$	-7------					
2250		3-doPTUX						
2500		3-doPTUX						
2800								
3000		$3-d---{ }^{\text {d }}$	-7------					
3300		3-dOPTUX						
3500								
4000								
Bottom		3-dOPTUX	-7------			-7------	-7------	-7------

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff	1-oxygen	3-DOC	4-nutrients	5-chlorophyll	7-salinity
	M Humin	$\mathbf{O , P , Q}$ TC,TOC, POC	T,U (TN,TON)	d,u,b ${ }^{15} \mathrm{~N}$		
		(DOM)	H HPLC			

Station/cast (water depth)								
$\begin{gathered} \text { Pres } \\ (\mathrm{dbar}) \end{gathered}$	$\begin{gathered} \mathbf{2 8 1 / 1 7} \\ (1191 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 8 2} / \mathbf{1 8} \\ (1056 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 8 6} / \mathbf{1 9} \\ (816 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 8 7 / 2 0} \\ (629 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 8 8 / 2 1} \\ (102 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 8 9 / 2 2} \\ (106 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 0 / 2 3} \\ (169 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 1 / 2 4} \\ (252 \mathrm{~m}) \end{gathered}$
8	-7u-----							
10		-7------	-7------	-57-----	-7------	-7-----	-7-----	-7------
20								
25				-57-----				
39	-7u-----							
50				-57-----				
53	37u-----							
75				-5-----				
83	-7u-----							
93								
100	37u-----			-5-----				
116								
125								
150				-5-----				
200	3-------							
300	3-------							
400	3-------							
500	3-------							
600								
700	3-------							
750								
800								
850								
900								
1000	3-------							
1100	3------							
1200								
1300								
1500								
1800								
2000								
2250								
2500								
2800								
3000								
3300								
3500								
4000								
Bottom	37------	-7------	-7------	-7------	-7------	-7------	-7------	-7------

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff	1-oxygen	3-DOC	4-nutrients	5-chlorophyll	7-salinity
	M Humin	$\mathbf{O , P , Q}$ TC,TOC, POC	T,U (TN,TON)	$\mathbf{X}($ dOM $)$	H HPLC	

Station/cast (water depth)								
Pres (dbar)	$\begin{gathered} \mathbf{2 9 2} / \mathbf{2 5} \\ (354 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 3} / \mathbf{2 6} \\ (1003 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 4} / \mathbf{2 7} \\ (1274 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 6} / \mathbf{2 8} \\ (1590 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 7 / 2 9} \\ (1054 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 8} / \mathbf{3 0} \\ (2245 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{2 9 9 / 3 1} \\ (3001 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{3 0 0 / 3 2} \\ (3349 \mathrm{~m}) \end{gathered}$
8		--u-----						
10	-7------		-5dOPTUX	-7------	-7------	-7------	-7------	-7------
20		--u-----						
25			-5------					
39		--u-----						
50			-5dOPTUX					
53		--u-----						
75			-5------					
83		--u-----						
93								
100			-5dOPTUX					
116								
125			-5------					
150			-5------					
200			-5dOPTUX					
300			--dOPTUX					
400			--dOPTUX					
500			--dOPTUX					
600			4-dOPTUX					
700			4-dOPTUX					
750			4-------					
800			4-dOPTUX					
850			4-------					
900			4-dOPTUX					
1000			4-dOPTUX					
1100			--dOPTUX					
1200			--dOPTUX					
1300								
1500								
1800								
2000						-7------	-7------	-7------
2250								
2500								
2800								
3000								
3300								
3500								
4000								
Bottom	-7------		--dOPTUX	-7------	-7------			

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff	1-oxygen	3-DOC	4-nutrients	5-chlorophyll	7-salinity
	M Humin	$\mathbf{O , P , Q}$ TC,TOC, POC	T,U (TN,TON)	$\mathbf{X}($ DOM $)$	H HPLC	

Station/cast (water depth)							
Pres (dbar)	$\begin{gathered} \mathbf{3 0 1 / 3 3} \\ (3517 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{3 0 2 / 3 4} \\ (3564 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{3 0 3} / 35 \\ (3625 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{3 0 4 / 3 6} \\ (3613 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{3 0 5} / 37 \\ (3590 \mathrm{~m}) \end{gathered}$		
8							
10	-7------	-7------		01--4--7	-7------		
20							
25				01--4--7			
39							
50				01--4--7			
53							
75				01--4--7			
83							
93							
100				01--4--7			
116							
125							
150				01--4--7			
200				01--4--7			
300				01--4--7			
400				01--4--7			
500							
600				01--4--7			
700							
750							
800				01--4--7			
850							
900							
1000				01--4--7			
1100							
1200				01--4--7			
1300				01--4--7			
1500				01--4--7			
1800				01--4--7			
2000	-7------	-7------		01--4--7	-7------		
2250							
2500				01--4--7			
2800				01--4--7			
3000				01--4--7			
3300							
3500				01--4--7			
4000							
Bottom							

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff	1-oxygen	2-tracers	3-DOC\quad4-nutrients	5-chlorophyll
	6-bio-optics	7-salinity	8-diatoms	9-coccolithophorids	

Station/cast (water depth)								
Pres (dbar)	$\begin{gathered} \hline \mathbf{3 0 7 / 3 9} \\ (102 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{3 0 8 / 4 0} \\ (104 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{3 0 9 / 4 1} \\ (180 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{3 1 0 / 4 2} \\ (252 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 311 / 43 \\ (366 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathbf{3 1 2 / 4 4} \\ (623 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline \mathbf{3 1 3 / 4 5} \\ (800 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & \mathbf{3 1 4 / 4 6 , 4 7} \\ & (1060 \mathrm{~m}) \end{aligned}$
Bucket	89							
10	-123456789	-1234567--	-123456---	-123456789	-1234567-9	-1234567-9	-12-4567--	-1-3456789
20								
25	-123456-89	-123456---	-123456---	-123456-89	-12345---9	-123456--9	-12-456---	-1--45-89
40								
50	-123456-89	-123456---	-123456---	-123456-89	-123456--9	-123456--9	-12-456---	-123456-89
60								
75	-123456-89	-123456--	-123456--	-123456-89	-12345---9	-123456--9	-12-456---	-12-45-89
80								
100			-123456---	-123456-89	-123456--9	-123456--9	-12-456---	-123456-89
125			-123456---	-123456-89	-12-45---9	-12-45---9	-12-45----	-12345-89
150			-123456---	-123456-89	-123456-9	-123456--9	-12-456---	-123456-89
175								
200				-123456-89	-123456--9	-123456--9	-12-456---	-12-45-89
225								
250					-1234-6--9	-12-4-6--9	-12-4-6---	-1234-6-89
275								
300					-1234-6--9	-1234---9	-12-4--	-12-4---89
400						-1234-6---	-12-4-6---	-1234-6---
500						-1234--	-12-4	-12-4-
600						-12-4-6--	${ }^{-12-4-6--}$	-1234-6---
700								-12-4--
800							-12-4-6---	-1234-6---
900								-12-4--
1000								-1234-6---
1150								
1200								
1300								
1500								
1800								
2000								
2250								
2500								
2800								
3000								
3500								
4000								
4250								
Bottom	-123456789	-1234567--	-12345-7--	-1234-6789	-1234-7-7-	-1234-7-7-	-12-4-7-7	-12-4-7-7-

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff 6-bio-optics	1-oxygen 7-salinity	2-tracers 8-diatoms	3-DOC 9-coccolithophorids	4-nutrients
5-chlorophyll					

Station/cast (water depth)								
Pres (dbar)	$\begin{aligned} & \mathbf{3 1 5 / 4 8 , 4 9} \\ & (1019 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 1 6 / 5 0 , 5 1} \\ & (1260 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 1 7 / 5 2 , 5 3} \\ & (1290 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 1 8 / 5 4 , 5 5} \\ & (1192 \mathrm{~m}) \end{aligned}$	$\begin{gathered} \mathbf{3 1 9 / 5 6} \\ (890 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & \mathbf{3 2 0 / 5 7 , 5 8} \\ & (1001 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 2 1 / 5 9 , 6 0} \\ & (1880 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 2 2 / 6 1 , 6 2} \\ & (2100 \mathrm{~m}) \end{aligned}$
Bucket	-89	-9	-9	${ }^{8-}$	-9	-89	-9	-9
10	-123456789	01234567-9	-1234567-9	-123456789	-1234567-9	-12345678-	-1234567-9	-1234567-9
20							-2-	
25	-12-45--89	012-45---9	-12-45---9	-12-45--89	-123456--9	-123456-89	-12-45---9	-12-45---9
40							-2-	
50	-123456-89	0123456--9	-123456--9	-123456-8-	-123456--9	-123456-89	-123456--9	-123456--9
60							-2-	
75	-12-45--89	012-45---9	-12-45---9	-12-45--89	-123456--9	-123456-89	-12-45---9	-12-45---9
80							-2-	
100	-123456-89	0123456--9	-123456--9	-123456-89	-123456--9	-123456-89	-123456--9	-123456--9
125	-12345--89	012-45---9	-12-45---9	-12-45--89	-123456--9	-12-45--89	--9	- 9
150	-123456-89	0123456--9	-123456--9	-123456-89	-123456--9	-123456-89	-123456--9	-123456--9
175							-2-	
200	-12-45--89	012-45---9	-12-45---9	-12-45--89	-12-45---9	-123456-89	-12-45---9	-12-45---9
225							-2-	
250	-1234-6-89	01234-6--9	-1234-6--9	-1234-6-89	-1234-6---		-1234-6--9	-1234-6--9
275							-2-	
300	-12-4--89	012-4---9	-12-4---9	-12-4--89	-12-4---9	-12-4--89	$\longrightarrow 9$	$\square 9$
400	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1234-6---	-1234-6--	-1234-6--	-1234-6--
500	-12-4--	012-4--	-12-4--	-12-4-	-12-4--	-12-4-		
600	-1234-6--	01234-6---	-1234-6--	-1234-6--	-1234-6---	-1234-6--	-1234-6--	-1234-6--
700	-12-4--	012-4--	-12-4--	-12-4-	-12-4--	-12-4--		
800	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1234-6---	-1234-6--	-1234-6--	-1234-6--
900	-12-4--	012-4--	-12-4--	-12-4-		-12-4--		
1000	-1234-6--	01234-6--	-1234-6--	-1234-6--		-1234-6--	-1234-6--	-1234-6--
1150		012-4--	-12-4--	-12-4-			-1234-6--	-1234-6--
1200		01234-6--	-1234-6--					
1300							-12-4--	-12-4--
1500							-1234-6---	-1234-6---
1800							-1234-6--	-12-4-6--
2000								-1234-6--
2250								
2500								
2800								
3000								
3500								
4000								
4250								
Bottom	-12-4--7--	012-4--7--	-12-4--7--	-12-4-7--	-12-4--7-	-12-4-7--	-12-4-7--	-12-4--7--

Table 7.2: Sampling M42/1 (continued)

| Samples: | 0-Gelbstoff | 1-oxygen | 2-tracers | 3-DOC | 4-nutrients |
| :--- | :--- | :--- | :--- | :--- | :--- | 5-chlorophyll

Station/cast (water depth)								
$\begin{gathered} \text { Pres } \\ \text { (dbar) } \end{gathered}$	$\begin{aligned} & \mathbf{3 2 3 / 6 3 , 6 4} \\ & (2967 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 2 4 / 6 5 , 6 6} \\ & (2980 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{3 2 5 / 6 7 , 6 8} \\ & (3525 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 2 6 / 6 9 , 7 0} \\ & (3601 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 2 7 / 7 1 , 7 2} \\ & (3632 \mathrm{~m}) \end{aligned}$	$\begin{gathered} \mathbf{3 2 8} / 73 \\ (3639 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & \mathbf{3 2 9 / 7 4 , 7 5} \\ & (3647 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 0 / 7 6 , 7 7} \\ & (3676 \mathrm{~m}) \end{aligned}$
Bucket	-9	-9	-89	-9	-89		9	9
10	-12-4567-9	-1234567-9	-1-3456789	-1234567-9	0123456789		-1234567-9	-12-4567-9
20					012-4--7--			
25	-12-45-7-9	-12-45-7-9	-12-45--89	-12-456--9	0123456789		-12-456--9	-12-456--9
40					012-4--7--			
50	-12-456--9	-123456--9	-123456-89	-123456--9	0123456789		-123456--9	-12-456--9
60					012-4-7--			
75	-12-45---9	-12-45---9	-12-45--89	-12-456--9	0123456789		-12-456--9	-12-456--9
80					012-45-7--			
100	-12-456--9	-123456--9	-123456-89	-123456--9	0123456789		-123456--9	-12-456--9
125	- -9	-9	-12-45--89	-12-456--9	0123456789		-12-456--9	-12-456--9
150	-12-456--9	-123456--9	-123456-89	-123456--9	0123456789		-123456--9	-12-456--9
175					012-4-7--			
200	-12-45---9	-12-45---9	-12-45--89	-12-45---9	012345-789		-12-45---9	-12-45---9
225					012-4--			
250	-12-4-6--9	-1234-6--9	-1234-6-89	-1234-6--9	01-34-6789		-1234-6--9	-12-4-6--9
275					012-4---			
300	$\longrightarrow 9$	$\longrightarrow 9$	-12-4--89	-12-4--9	01234-789		-12-4--9	-12-4---9
400	-12-4-6--	-1234-6--	-1234-6--	-1234-6--	01234-67--		-1234-6--	-12-4-6--
500								
600	-12-4-6--	-1234-6---	-1234-6---	-1234-6---	01234-67--		-1234-6--	-12-4-6--
700								
800	-12-4-6--	-1234-6---	-1234-6---	-1234-6---	01234-67--		-1234-6--	-12-4-6--
900			-12-4--	-12-4-	open		-12-4-	-12-4-
1000	-12-4-6---	-1234-6---	-1234-6---	-1234-6---	01234-67--		-1234-6--	-12-4-6--
1150	-12-4-6--	-1234-6---	-1234-6--	-1234-6---	01234-67--		-1234-6--	-12-4-6--
1200			-12-4--	-12-4--	012-4-7--		-12-4--	-12-4--
1300	-12-4--	-12-4--	-12-4--	-12-4--	012-4-7--		-12-4-	-12-4-
1500	-12-4-67--	-1234-67--	-1234-67--	-1234-67--	01234-67--		-1234-67--	-12-4-67--
1800	-12-4-	-12-4--	-12-4-	-12-4-	012-4-7--		-12-4-	-12-4-
2000	-12-4-67--	-1234-6--	-1234-67--	-1234-67--	01234-67--		-1234-67--	-12-4-67--
2250	-12-4--	-12-4--	-12-4--	-12-4--	012-4-7--		-12-4-	-12-4--
2500	-12-4-67--	-1234-67--	-1234-67--	-1234-67--	01234-67--		-1234-67--	-12-4-67--
2800			-12-4-	-12-4--	012-4-7--		-12-4--	-12-4--
3000		-1234-67--	-1234-67--	-1234-67--	01234-67--		-1234-7-7	-12-4-7--
3500			-1234-67--	-1234-67--	01234-67--		-1234-7--	-12-4-7--
4000								
4250								
Bottom	-12-4-7--	-12-4-7--	-12-4--7--	-12-4-7--	012-4--7-		-12-4-7--	-12-4-7--

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff 6-bio-optics	1-oxygen 7-salinity	2-tracers 8-diatoms	3-DOC 9-coccolithophorids

Station/cast (water depth)								
Pres (dbar)	$\begin{aligned} & \mathbf{3 3 1 / 7 8 , 7 9} \\ & (3723 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 2 / 8 0 , 8 1} \\ & (3856 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 3 / 8 2 - 8 4} \\ & (3938 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 4 / 8 5 , 8 6} \\ & (3794 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 5 / 8 7 , 8 8} \\ & (3720 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 6 / 8 9 , 9 0} \\ & (4224 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 7 / 9 1 , 9 2} \\ & (4388 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 3 8 / 9 3 , 9 4} \\ & (4517 \mathrm{~m}) \end{aligned}$
Bucket	-89		-9	-9	-9		-89	
10	-123456789	-1234567-9	01234567-9	-1234567-9	-1234567-9	-12-4567--	0123456789	-12-4567-9
20					-12-4--			
25	-12-456-89	-12-456--9	012-456--9	-12-456--9	-12-456--9	-12-45--	012-456-89	-12-456--9
40					-12-4-			
50	-123456-89	-123456--9	0123456--9	-123456--9	-123456--9	-12-456--	0123456-89	-12-456--9
60					-12-4-			
75	-12-456-89	-12-456--9	012-456--9	-12-456--9	-12-456--9	-12-45--	012-456-89	-12-456--9
80					-12-4--			
100	-123456-89	-123456--9	0123456--9	-123456--9	-123456--9	-12-456--	0123456-89	-12-456--9
125	-12-456-89	-12-456--9	012-456--9	-12-456--9	-12-456--9	-12-45--	012-456-89	-12-456--9
150	-123456-89	-123456--9	0123456--9	-123456--9	-123456--9	-12-456--	0123456-89	-12-456--9
175					-12-4--			
200	-12-45--89	-12-45---9	012-45---9	-12-45---9	-12-45---9	-12-45---	-12-45--89	-12-45---9
225					-12-4-			
250	-1234-6-89	-1234-6--9	01234-6--9	-1234-6--9	-1234-6--9	-12-4-6--	01234-6-89	-12-4-6--9
275					-12-4-			
300	-12-4--89	-12-4---9	012-4---9	-12-4-- 9	-12-4---9	-12-4-	012-4--89	-12-4---9
400	-1234-6--	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1-4-6--	01234-6--	-12-4-6--
500								
600	-1234-6--	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1-4-6--	01234-6--	-12-4-6--
700								
800	-1234-6--	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1--4-6--	01234-6--	-12-4-6--
900	-12-4--	-12-4--	012-4-	-12-4-	-12-4	-1-4--	012-4--	-12-4-
1000	-1234-6--	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1--4-6--	01234-6--	-12-4-6--
1150	-1234-6--	-1234-6--	01234-6--	-1234-6--	-1234-6--	-1--4-6--	012-4-6--	-12-4-6--
1200	-12-4--	-12-4--	012-4---	-12-4--	-12-4--	-1-4--	01234----	-12-4-
1300	-12-4---	-12-4---	012-4---	-12-4--	-12-4--	-1-4--	012-4---	-12-4-
1500	-1234-67--	-1234-67--	01234-67--	-1234-67--	-1234-67--	-1--4-67--	01234-67--	-12-4-67--
1800	-12-4-	-12-4-	012-4-	-12-4-	-12-4-	-1-4-	012-4-	-12-4-
2000	-1234-67--	-1234-67--	01234-67--	-1234-67--	-1234-67--	-1-4-7--	01234-67--	-12-4-67-
2250	-12-4--	-12-4--	012-4---	-12-4-	-12-4--	-1-4-	012-4---	-12-4
2500	-1234-67--	-1234-67--	01234-67--	-1234-7--	-1234-67--	-1--4-7--	01234-67--	-12-4-67--
2800	-12-4--	-12-4--	012-4---	-12-4-	-12-4-	-1-4-	012-4---	-12-4
3000	-1234-67--	-1234-67--	01234-67--	-1234-7--	open	-1-4-	01234-67--	-12-4-67--
3500	-1234-67--	-1234-67--	01234-67--	-1234-7--	-1234-67--	-1-4-7--	01234-67--	-12-4-67--
4000						-1--4-7-7	01234-67--	-12-4-67-
4250							012-4----	-12-4--
Bottom	-12-4-7--	-1234--7--	01234--7--	-12-4-7--	-12-4-	-1--4-7--	01234--7--	-12-4--7--

Table 7.2: Sampling M42/1 (continued)

| Samples: | 0-Gelbstoff | 1-oxygen | 2-tracers | 3-DOC | 4-nutrients |
| :--- | :--- | :--- | :--- | :--- | :--- | 5-chlorophyll

Station/cast (water depth)								
Pres (dbar)	$\begin{aligned} & \hline 339 / 95,96 \\ & (4568 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 340 / 97,98 \\ & (4594 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 341 / 99,10 \\ 0 \end{gathered}$	$\begin{aligned} & \mathbf{3 4 2 / 1 0 1 , - 2} \\ & (4438 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { 343/103,-4 } \\ & (4236 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 4 4 / 1 0 5 , - 6} \\ & (3597 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{3 4 5 / 1 0 7 , - 8} \\ & (4320 \mathrm{~m}) \end{aligned}$	$\begin{gathered} \mathbf{3 4 6} / \mathbf{1 0 9} \\ (4353 \mathrm{~m}) \end{gathered}$
Bucket	-9	- ${ }^{9}$	$\longrightarrow{ }^{-}$	$\longrightarrow 9$	$\longrightarrow 9$	- ${ }^{9}$	$\longrightarrow 9$	
10	-12-4567-9	-12-4567-9	012-4567-9	-1234567-9	-12-4567-9	01234567-9	-1234567-9	-1--4567--
20								
25	-12-456--9	-12-456--9	012-456--9	-12-456--9	-12-456--9	012-456--9	-12-456--9	-1-45--
40								
50	-12-456--9	-12-456--9	012-456--9	-123456--9	-12-456--9	0123456--9	-123456--9	-1-456--
60								
75	-12-456--9	-12-456--9	012-456--9	-12-456--9	-12-456--9	012-456--9	-12-456--9	-1-45--
80								
100	-12-456--9	-12-456--9	012-456--9	-123456--9	-12-456--9	0123456--9	-123456--9	-1-456--
125	-12-456--9	-12-456--9	012-456--9	-12-456--9	-12-456--9	012-456--9	-12-456--9	
150	-12-456--9	-12-456--9	012-456--9	-123456--9	-12-456--9	0123456--9	-123456--9	-1--456--
175								
200	-12-45---9	-12-45---9	012-45---9	-12-45---9	-12-45---9	012-45---9	-12-45---9	-1--456--
225								
250	-12-4-6--9	-12-4-6--9	012-4-6--9	-1234-6--9	-12-4-6--9	01234-6--9	-1234-6--9	
275								
300	-12-4---9	-12-4---9	012-4--	-12-4--9	-12-4---9	012-4---9	-12-4--9	
400	-12-4-6--	-12-4-6--	012-4-6--	-1234-6--	-12-4-6--	01234-6--	-1234-6--	-1-4-6--
500								
600	-12-4-6--	-12-4-6--	012-4-6--	-1234-6--	-12-4-6--	01234-6--	-1234-6--	-1-4-6--
700								
800	-12-4-6--	-12-4-6--	012-4-6--	-1234-6--	-12-4-6--	01234-6--	-1234-6--	-1-4-6--
900	-12-4-	-12-4-	012-4---	-12-4-	-12-4-	012-4-	-12-4-	
1000	-12-4-6--	-12-4-6--	012-4-6--	-1234-6---	-12-4-6--	01234-6--	-1234-6--	-1-4-6--
1150	-12-4-6--	open	012-4-6--	-1234-6---	-12-4-6--	01234-6--	-1234-6--	-1-4-6--
1200	-12-4--	-12-4--	012-4---	-12-4-	-12-4--	012-4-	-12-4-	
1300	-12-4-	-12-4-	012-4---	-12-4-	-12-4-	012-4-	-12-4-	-1-4
1500	-12-4-67--	-12-4-67--	012-4-67--	-1234-67--	-12-4-67--	01234-67--	-1234-67--	-1--4-67-
1800	-12-4-	-12-4-	012-4--	-12-4-	-12-4--	012-4-	-12-4-	
2000	-12-4-67--	-12-4-67--	012-4-67--	-1234-67--	-12-4-67--	01234-67--	-1234-67--	-1--4-67--
2250	-12-4--	-12-4--	012-4---	-12-4--	-12-4--	012-4--	-12-4--	-1-4--
2500	-12-4-67--	-12-4-67--	012-4-67--	-1234-67--	-12-4-67--	01234-67--	-1234-67--	-1-4-7--
2800	-12-4--	-12-4--	012-4--	-12-4-	-12-4-	012-4-	-12-4-	
3000	-12-4-67--	-12-4-67--	012-4-67--	-1234-67--	-12-4-67--	01234-67--	-1234-67--	-1-4-7--
3500	-12-4-67--	-12-4-67--	012-4-67--	-1234-67--	-12-4-67--	01234-67--	-1234-67--	-1-4-7-7
4000	-12-4-67--	-12-4-67--	012-4-67--	-1234-67--	-12-4-67--		-1234-67--	-1-4-7-7
4250	open	-12-4--	012-4--7--	-12-4--			-12-4-	
Bottom	open	-12-4-7--	open	-1234--7--	-12-4--7-	open	-12-4-7--	open

Table 7.2: Sampling M42/1 (continued)

Samples:	0-Gelbstoff 6-bio-optics	1-oxygen 7-salinity	2-tracers 8-diatoms	3-DOC 9-coccolithophorids

Station/cast (water depth)								
$\begin{gathered} \text { Pres } \\ \text { (dbar) } \end{gathered}$	$\begin{array}{\|c} \hline 347 / 110,1 \\ 1 \end{array}$	$\begin{gathered} \hline \mathbf{3 4 8 / 1 1 2} \\ (4362 \mathrm{~m}) \end{gathered}$	$\begin{array}{\|c} \hline 349 / 113,1 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 350 / 115,1 \\ 6 \end{array}$	$\begin{array}{\|c} \hline 351 / 117,1 \\ 8 \end{array}$	$\begin{array}{\|c} \hline 352 / 119,2 \\ 0 \end{array}$	$\begin{gathered} \hline 353 / 121,2 \\ 2 \end{gathered}$	$\begin{gathered} \hline \mathbf{3 5 4 / 1 2 4} \\ (2791 \mathrm{~m}) \end{gathered}$
Bucket								
10	01234567-9	-1--4567--	-1234567-9	-1234567-9	-1234567-9	01234567-9	-123456789	-123456789
20								
25	012-456--9	-1-45--	-12-456--9	-12-456--9	-12-456--9	0123456--9	-123456-89	-12345--89
40								
50	0123456--9	-1-456--	-123456--9	-123456--9	-123456--9	0123456--9	-123456-89	-123456-89
60								
75	012-456--9	-1-45---	-12-456--9	-12-456--9	-12-456--9	0123456--9	-123456-89	-12345-89
80								
100	0123456--9	-1-456--	-123456--9	-123456--9	-123456--9	0123456--9	-123456-89	-123456-89
125	012-456--9		-12-456--9	-12-456--9	-12-456--9	0123456--9	-123456-89	-12345-89
150	0123456--9	-1-456--	-123456--9	-123456--9	-123456--9	0123456--9	-123456-89	-123456-89
175								
200	012-45---9	-1-456--	-12-45---9	-12-45---9	-12-45---9	012345---9	-12345--89	-12345-89
225								
250	01234-6--9		-1234-6--9	-1234-6--9	-1234-6--9	01234-6--9	-1234-6789	-1234-6-89
275								
300	012-4---9		-12-4---9	-12-4-39	-12-4---9	01234---9	-1234--789	
400	01234-6---	-1-4-6--	-1234-6--	-1234-6---	-1234-6---	01234-6---	-1234-6---	-1234-6--
500								
600	01234-6---	-1-4-6--	-1234-6--	-1234-6---	-1234-6---	01234-6---	-1234-6---	-1234-6--
700								
800	01234-6---	-1-4-6--	-1234-6---	-1234-6---	-1234-6---	01234-6---	-1234-6---	
900	012-4--		-12-4--	-12-4-	-12-4--	012-4-	-12-4-	-12-4--
1000	01234-6---	-1-4-6--	-1234-6---	-1234-6---	-1234-6---	01234-6---	-1234-6---	-1234-6--
1150	01234-6---	-1-4-6--	-1234-6--	-1234-6---	-1234-6---	01234-6---	-1234-6---	-1234--
1200	012-4----		-12-4--	-12-4--	-12-4---	012-4-	-12-4--	-12-4-
1300	012-4----	-1-4--	-12-4--	${ }^{-12-4}$	-12-4--	012-4--	${ }^{-12-4}$	-12-4-
1500	01234-67--	-1-4-67--	-1234-67--	-1234-67--	-1234-67--	01234-67--	-1234-67--	-1234-67--
1800	012-4---		-12-4-	-12-4-	-12-4--	012-4-	-12-4	-12-4
2000	01234-67--	-1-4-67--	-1234-67--	-1234-67--	-1234-67--	01234-67--	-1234-67--	-1234-67--
2250	012-4----	-1-4--	-12-4--	-12-4--	-12-4---	012-4--	-12-4--	
2500	01234-67--	-1--4-67--	-1234-67--	-1234-67--	-1234-67--	01234-67--	-1234-67--	-1234-67--
2800	012-4----		-12-4--	-12-4--	-12-4---	012-4--	-12-4--	
3000	01234-67--	-1-4-7--	-1234-67--	-1234-67--	-1234-67--	01234-67--	-1234-67--	
3500	01234-67--	-1--4-7--	-1234-67--	-1234-67--				
4000	01234-67--	-1--4-7--	-1234-67--	-1234-67--				
4250	open		-12-4--					
Bottom	012-4-7--	-1--4-7--	-1234--7-	-12-4--7--	-1234--7--	012-4--7--	open	-12-4-7--

Table 7.2: Sampling M42/1 (continued)

| Samples: | 0-Gelbstoff
 6-bio-optics | 1-oxygen
 7-salinity | 2-tracers
 8-diatoms | 3-DOC
 9-coccolithophorids | 4-nutrients |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad 5-chlorophyll

Table 7.3 GeoB Station List METEOR M42/1a

GeoB \#	Meteor \#	Date	Equipment	Time	Latitude	Longitud	Water	Comments	
							e		depth

5412-1	274		EBC2-2	05:10	$28^{\circ} 41,9$	$13^{\circ} 10,2$		particle trap recovered
		6						
5413-1	281	$\begin{aligned} & 22.0 \\ & 6 \end{aligned}$	KWS/CTD	05:03	$\begin{aligned} & 28^{\circ} 43,7 \\ & 5 \end{aligned}$	$13^{\circ} 21,07$	1191	$\begin{aligned} & 83,53,39,8 \mathrm{~m}{ }^{13} \mathrm{C} \text { - and }{ }^{15} \mathrm{~N}- \\ & \text { uptake } \end{aligned}$
5414-1	284	$\begin{aligned} & 22.0 \\ & 6 \end{aligned}$	EBC3-2	11:20				particle trap recovered, trap did not rotate
5415-1	286	$\begin{aligned} & 22.0 \\ & 6 \end{aligned}$	KWS/CTD	17:22	$\begin{aligned} & 28^{\circ} 40,9 \\ & 7 \end{aligned}$	$13^{\circ} 06,02$	816	$\begin{aligned} & \text { Dilution -experiment } \\ & 150,100,75,50,25,10 \mathrm{~m} \\ & \text { Chl } \\ & \mathrm{d}^{15} \mathrm{~N} \text {-Blank } \end{aligned}$
5416-1	293	$\begin{aligned} & 23.0 \\ & 6 \end{aligned}$	KWS/CTD	05:17	$\begin{aligned} & 28^{\circ} 43,0 \\ & 4 \end{aligned}$	$13^{\circ} 17,07$	1093	$83,53,39,21,8 \mathrm{~m}{ }^{15} \mathrm{~N}-$ uptake
5417-1	294	$\begin{aligned} & 23.0 \\ & 6 \end{aligned}$	EBC3-3	07:30	$28^{\circ} 44,0$	$13^{\circ} 19,1$	1310	$500,700 \mathrm{~m}$ particle traps deployed
5417-2	294	$\begin{aligned} & 23.0 \\ & 6 \end{aligned}$	KWS		$\begin{aligned} & 28^{\circ} 45,1 \\ & 9 \end{aligned}$	$13^{\circ} 19,1$	1274	$\begin{aligned} & 1250,1200,1100,1000, \\ & 900,800,700,600,500 \\ & 400,300,200,95,50,10 \mathrm{~m} \\ & \mathrm{~d}^{15} \mathrm{~N}, \mathrm{TN}, \mathrm{TC}, \mathrm{TON}, \mathrm{TOC} \\ & 200,150,125,95,75,50, \\ & 25,10 \mathrm{~m} \text { Chl } \end{aligned}$
5418-1	300	$\begin{aligned} & 24.0 \\ & 6 \end{aligned}$	KWS/CTD	02:02	$\begin{aligned} & 28^{\circ} 58,0 \\ & 4 \end{aligned}$	$14^{\circ} 33,00$	3349	${ }^{15} \mathrm{~N}$-uptake
5419-1	303	$\begin{aligned} & 24.0 \\ & 6 \end{aligned}$	Trap III-2	12:45	$29^{\circ} 17,0$	$15^{\circ} 40,9$	3604	Trap III-2 recovered
5419-2	303	$\begin{aligned} & 24.0 \\ & 6 \end{aligned}$	KWS/CTD		$\begin{aligned} & 29^{\circ} 17,9 \\ & 1 \end{aligned}$	$15^{\circ} 40,96$	3625	$\begin{aligned} & 500,300,200,150,100,75, \\ & 50,25,10 \mathrm{~m} \text { POC } \\ & 200,150,100,75,50,25, \\ & 10 \mathrm{~m} \mathrm{Chl} \end{aligned}$
5420-1	304	24.0 6	KWS/CTD	19:06	$\begin{aligned} & 29^{\circ} 10,0 \\ & 3 \end{aligned}$	$15^{\circ} 30,07$	3613	ESTOC-Station June 1998 O2, nutrients, Gelbstoff, metals, salinity Chl<200m

8. Concluding Remarks

Thanks go to the crew for their skillful and friendly support onbord. The financial support for the CANIGO project by the European Union (contract number MAS3-CT96-0060) is greatfully acknowledged..

9. References

H. BARTH, R. HEUERMANN, K.-D. LOQUAY, R. REUTER and U. STUTE (1997): Long-term Stable Sensors For Bio-Optical Measurements. In: J.H. STEL, H.W.A. BEHRENS, J.C. BORST, L.J. DROPPERT and J.v.d. MEULEN (eds): Operational Oceanography: The Challenge for European Cooperation. Elsevier Science.
H. BARTH, K. GRISARD, K. HOLTSCH, R. REUTER and U. STUTE (1997): A polychromatic transmissometer for in situ measurements of suspended particles and gelbstoff in water. Applied Optics, 36, 7919-7928

BEHR, H. D. (1990): Radiation Balance at the Sea Surface in the Atlantic Ocean Region between $40^{\circ} \mathrm{S}$ and 40° N. J. Geophy. Res., D95, 20633-20640.

BEHR, H. D. (1992): Net total and UV-B Radiation at the Sea Surface, J. Atmosph. Chem., 15, 299-314.
CHANG, C.H. and L.A. YOUNG (1974): Seawater temperature measurement from Raman spectra. Research Note 960, Contract No. N62269-73-C-0073, AVCO Everett Research Laboratory, Inc., Everett, MA, 82 pp .

DETERMAN, S., R. REUTER, P. WAGNER and R. WILLKOMM (1994): Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution. Deep-Dea Research I, 41(4), 659-675.

DETERMAN, S., R. REUTER and R. WILLKOMM (1996): Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses. Deep-Dea Research I, 43(3), 345-360.

EISMA, D. (1993): Suspended Matter in the Aquatic Environment. Springer-Verlag.
GELADO-CABALLERO M.D., J.J. HERNÁNDEZ-BRITO, M.E. TORRES-PADRÓN, J.A. HERRERAMELIAN and J. PÉREZ-PEÑA (1996): Aluminium distributions in Central East Atlantic Waters (Canary Islands). Mar. Chem, 51(4), 359-372.

HEDGES, J. I. and C. LEE (eds.) (1993): Measurement of dissolved organic carbon and nitrogen in natural waters. Proceedings of NSF/NOAA/DOE Workshop, Seattle, WA, USA. 290 pp.

HERNÁNDEZ-BRITO J.J., M.D. GELADO-CABALLERO, J. PÉREZ-PEÑA and J.A. HERRERAMELIÁN (1994). Fast Determination of Aluminum Reactive to 1,2-Dihydroxyanthra-quinone-3-sulfonic Acid in Sea-water. Analyst, 119, 1593-1597.

HERNÁNDEZ-BRITO, J.J., P. CARDONA-CASTELLANO, V. SIRUELA-MATOS and J. PÉREZ-PEÑ A (1994): A High-Speed Computerized Polarographic System for Cathodic Stripping Voltammetry in Seawater. Electroanalysis, 6, 1141-1146.

HEUERMANN, R., K.D. LOQUAY and R. REUTER (1995): A multi-wavelength in situ fluorometer for hydrographic measurements, EARSeL Advances in Remote Sensing 3(3): 71-77.

KNOLL; M., T.J. MÜLLER and G. SIEDLER (in press): ESTOC/CANIGO cruises with FS POSEIDON. Cruises no. 202/1, 212, 233, 237/3. Ber. Inst. Meereskd. a.d. Univ. Kiel, No. 302., 83 pp.

KOROLEFF, F. (1983b): Determination of dissolved inorganic silicate. In: Methods of Seawater Analysis. K. Grasshoff, A. EHRHARDT and K. KREMLING (eds), Verlag Chemie, 175-180.

KREMLING, K. and A. WENCK (1986): On the storage of dissolved inorganic phosphate, nitrate and reactive silicate in Atlantic Ocean water samples. Meeresforsch, 31, 69-74.

MCDONALD, R.W. and F.A. MCLAUGHLIN (1982): The effect of starege by freeging of disolute inorganic phosphate, nitrate and reactive silicate for samples from coastal and internal water. Water Research, 16, 95-104.

MOBLEY, C.D. (1994): Light and Water Radiative Transfer in Natural Waters. Academic Press.
MURPHY, J. and J.P. RILEY (1962): A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27, 31-36.

NIEKE, B., R. REUTER, R. HEUERMANN, H. WANG, M. BABIN and J.C. THERRIAULT (1997): Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (Case 2 waters). Cont. S. Res., 17(3); 235-252.

NYQUIST, G. (1979): Investigation of some optical properties of seawater with special reference to linin sulfonates and humic substances. Department of Analytical and Marine Chemistry, Göteborg.

RILEY, J.P. and J.P. SKIRROW (1975): The Micronutrient Element. Chem. Oceanogr., 2, 245-297.
SUGIMURA, Y. and Y. SUZUKI (1988): A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem. 24. 105-131.

SUZUKI, Y. (1993): On the measurement of DOC and DON in seawater. Mar. Chem. 41. 287-288.

STRICKLAND, J.D.H and PARSONS (1972): A practical handbook of seawater analysis. Fish. Res. B. of Can., 167 pp.

UNESCO (1984): La escala de salinidades practicas de 1978 y la ecuacion internacional de estado del agua de mar de 1980. Documentos tecnicos de la Unesco sobre Ciencias del Mar, no. 36.

WEFER, G. and T.J. MÜLLER (1998): Canary Islands 1996/1997, Cruise No. 37, 4 December 1996-22 January 1997, METEOR-Berichte, Universität Hamburg, 98-1,134 pp.

WELSCHMEYER, N.A. (1994): Fluorimetric Analysis of Chlorophyll a in presence of Chlorophyll b and Phaeopigments. Limnol. Oceanog. 39(8), 1985-1992.

WOCE OPERATIONS MANUAL (1994): WHP office report. WHP 91.1. WOCE report no. 68/91, Woods Hole, Ma, U.S.A.

WOODS, E.D., F.A.J. ARMSTRONG and F.A. RICHARDS (1967): Determination of nitrate in seawater by cadmium-cooper reduction to nitrate. J. Mar. Biol. Ass. U.K., 47, 31-43.

[^0]: After a test station late in the evening on the same day, station work started on 27 June east of Lanzarote and Fuerteventura on the shelf at 100 m water depth with a station spacing of 7 nm that was increased to 20 nm towards the ESTOC position. Each station consisted of a bottom deep CTD/rosette cast with sampling for dissolved oxygen, nutrients and chlorophyll. Attached to the CTD/rosette was an ADCP to measure the absolute current profile in the whole water column. Also on each station, another CTD with optical sensors attached took casts down to 1600 m . Samples for

