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1. ZUSAMMENFASSUNG UND FAHRTVERLAUF 

V. Smetacek1, S.W.A. Naqvi2  1)AWI 
2)NIO 

 

Wissenschaftliche Fragestellung 

Fahrtabschnitt ANT-XXV/3 war ein gemeinsames indisch-deutsches Eisendüngungs-
Experiment, dessen Kosten von beiden Seiten zu etwa gleichen Teilen getragen 
wurden. LOHAFEX (Loha ist das Hindi-Wort für Eisen) war das dritte derartige 
Experiment, das von der Polarstern durchgeführt wurde und den Aufbau und 
Niedergang einer Phytoplankton-Blüte untersuchte. Die Blüte wurde durch 
Eisensulphat-Düngung im Kern eines mesoskaligen Wirbels entlang der Polarfront 
hervorgerufen. Im Gegensatz zu vorherigen Experimenten wurde LOHAFEX im 
produktiven südwestlichen Atlantik-Sektor des Antarktischen Zirkumpolarstroms 
(ACC) durchgeführt. Dieses Gebiet liegt näher an Landmassen als andere Teile des 
ACC und wird deshalb von Eisen aus natürlichen Quellen gedüngt. Diese natürlichen 
Quellen stammen in erster Linie aus dem Kontakt mit der Antarktischen Halbinsel 
und ihren angrenzenden Inseln, insbesondere Südgeorgien, aber auch von Staub 
aus Patagonien und schmelzenden Eisbergen aus dem Weddellmeer. Das Phyto-
plankton dieser Region umfasst mehr schnell wachsende Küstenarten, von denen 
erwartet wird, dass sie stärker auf die Eisenzufuhr reagieren als die langsamer 
wachsenden, dickwandigeren ozeanischen Diatomeenarten, die in vorherigen 
Düngungsexperimenten untersucht wurden. Untersuchungen der Sedimente aus 
dieser Region haben gezeigt, dass Diatomeenarten, die typisch für diese produktiven 
Küstenregionen sind – Sporen bildende Chaetoceros Arten – bis Südgeorgien 
vorherrschen. Weiter östlich werden sie von Diatomeenschlamm ersetzt, in dem die 
stark verkieselten Arten Fragilariopsis kerguelensis und Thalassiothrix antarctica – 
beide charakteristisch für den Antarktischen Zirkumpolarstrom – dominieren. 
 
Während des letzten eiszeitlichen Maximums breiteten sich hingegen Sedimente, die 
von Chaetoceros Sporen beherrscht wurden, über den gesamten südatlantischen 
Sektor des ACC aus. Dies deutet darauf hin, dass sich die gegenwärtige hoch-
produktive Zone unter dem Einfluss von Küstenplankton-Arten ostwärts bis südlich 
von Afrika ausgebreitet hat. Dies war durch die höhere Eisenzufuhr während der 
kalten, trockenen Eiszeiten bedingt, als viel mehr eisenreicher Staub in den 
Südlichen Ozean transportiert wurde, im Vergleich zu den warmen, nassen Warm-
zeiten. Die Schwankungen in der Eisenzufuhr spiegeln sich in ozeanischen 
Sedimentkernen, aber auch in den kontinentalen Eiskernen wider. Daher ist 
anzunehmen, dass diese Region damals viel mehr atmosphärisches CO2 
gespeichert hat als heute und damit eine der großen Senken von eiszeitlichem CO2 
war, nach denen noch immer gesucht wird. 
 
Eisendüngungs-Experimente sind das Äquivalent zu Störungs-Experimenten, die von 
allen wissenschaftlichen Disziplinen durchgeführt werden, um Struktur und Funktion 
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von Systemen zu untersuchen, die zu komplex sind, um sie durch die bloße 
Beobachtung zu entschlüsseln. Das übergeordnete Ziel dieser interdisziplinären 
Fahrt war also, unser Verständnis darüber zu fördern, wie Ökosysteme im offenen 
Ozean funktionieren und wie sich die Organismen des Planktons untereinander und 
ihre Umgebung beeinflussen und dadurch biogeochemische Kreisläufe und das 
Absinken von partikulärem Material in die Tiefsee antreiben. Künstliche Eisen-
düngung simuliert natürliche Prozesse, durch die Eisen in eisenlimitierte, landferne 
Meeresgebiete eingebracht wird. Das Phytoplankton reagiert darauf mit einer 
Erhöhung der Wachstumsraten. Die Anhäufung von Biomasse ist jedoch von einer 
Reihe physikalischer, chemischer und biologischer Faktoren abhängig, die 
zusammen die Eigenschaften der Wachstumsumgebung bestimmen. Die 
Akkumulationsrate der Biomasse ist die Differenz zwischen Wachstums- und 
Verlustraten. Letztere sind durch die Mortalität der Algenzellen und schließlich den 
Abbau von organischer Materie durch pelagische Konsumenten bedingt: Bakterien, 
Protozoo- und Metazooplankton auf der einen Seite, und dem Absinken der Partikel 
in die Tiefsee auf der anderen Seite. Wir beabsichtigten, das Verhältnis zwischen 
dem Wachstum des Phytoplanktons und den Effekten durch Wegfraß und Absinken 
auf die Bestände der biogenen Elemente zu untersuchen. Gleichzeitig wird der 
Vertikalfluss durch das Aussetzen von freischwimmenden Sedimentfallen und mit 
einem Unterwasser-Videogerät – einem optischen Instrument, das Partikel bis in 
3.000 m Tiefe fotografiert - verfolgt. 
 
Ein Hauptziel der Fahrt war es, das Schicksal der Eisen gedüngten Blüten-Biomasse 
in einem produktiven Gebiet des ACC zu untersuchen: wird deren Biomasse in der 
Oberflächenschicht von Bakterien und Zooplankton in CO2 zurückverwandelt, oder 
sinkt zumindest ein Teil davon ab, und entfernt damit CO2 aus der Atmosphäre und 
lagert es in die Tiefsee ein. Die Antwort auf diese Frage ist für das Verständnis der 
vergangenen Klimakreisläufe von Bedeutung, aber auch für die Umsetzbarkeit der 
Anwendung von künstlicher Eisendüngung des ACC als Technik die globale 
Erwärmung abzuschwächen. 
 
Reiseverlauf 
Die Polarstern verließ Kapstadt pünktlich um 20:00 Uhr am 7. Januar 2009 mit allen 
49 Teilnehmern und Ausrüstung an Bord – dank der exzellenten Logistik des AWI. 
Das interdisziplinäre internationale Wissenschaftler-Team der physikalischen, 
chemischen und biologischen Ozeanographen umfasste 29 Teilnehmer aus Indien, 
10 aus Deutschland, 3 aus Italien, je 2 aus Spanien und Großbritannien und jeweils 
einen Teilnehmer aus Chile und Frankreich. 
 
Die Erfahrung aus der Vergangenheit hat gezeigt, dass ein geschlossener Kern 
eines mesoskaligen Wirbels entlang einer ozeanischen Front, die besten 
Bedingungen bietet, um ein solches Experiment durchzuführen, weil der gedüngte 
Fleck innerhalb der Lebenszeit des Wirbels – im allgemeinen mehrere Monate - 
bewahrt wird. Folglich kann die Entscheidung, welcher Wirbel ausgesucht wird, erst 
kurz vor dem Experiment getroffen werden. Wir hatten das Wirbelfeld nördlich von 
Südgeorgien angepeilt, da in vorherigen Jahren dort mesoskalige, beständige Wirbel 
auf den Altimeter-Aufnahmen der Meeresoberfläche beobachtet wurden und weil die 
Region in der Mitte der hochproduktiven Zone liegt. Kurz nachdem wir Kapstadt 
verlassen hatten, wurde das Experiment von einer nichtstaatlichen Organisation 
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(ETC Group) angefochten. Das Bundesministerium für Bildung und Forschung legte 
die Fahrt auf Eis, um zu klären, ob das Experiment die Bedingungen für legitime 
wissenschaftliche Forschung, die von der UN Konvention für Biologische Vielfalt und 
der London Convention über Meeresverschmutzung im Mai bzw. Nov. 2008 
unterzeichnet wurden, erfüllt. 
 
Die Zeit während der ersten 3 Wochen der Fahrt wurde mit der Untersuchung 
mehrerer Wirbel verbracht, die während der vergangenen Monate auf ihre 
Tauglichkeit für das Experiment überwacht wurden. Der erste war ein 
vielversprechender, sich im Uhrzeigersinn drehender Wirbel mit kaltem Kern auf 
48°S, 15°W an der Flanke des Mittelatlantischen Rückens. Derselbe frontale Strom 
formte einen benachbarten Wirbel mit warmem Kern. Der Schiffskurs wurde nur 
leicht verändert, um den Kern des kalten Wirbels zu überqueren, wo am 16. Januar 
eine Versuchsstation durchgeführt wurde. Wie von den Satellitenbildern angedeutet, 
waren die Chlorophyll-Konzentrationen innerhalb des Wirbels mäßig erhöht (0,7 mg 
Chl m-3) und deutlich höher als Werte weiter im Osten und Norden. Das Schiff fuhr 
dann weiter nach Westen und Süden, um einen von mehreren großen in den 
Satellitenbildern sichtbaren Eisbergen, zu besuchen. Es stellte sich heraus, dass er 
aus einem ausgedehnten Feld aus Eisgeröll bestand, das mehrere mittelgroße 
Eisberge umgab, die offensichtlich aus dem Zusammenbruch eines einzigen großen 
Eisbergs von mehreren Kilometern Länge entstanden waren. Im Verlaufe eines 
Tages (19. Januar) wurden mehrere Stationen innerhalb und außerhalb des 
Eisfeldes genommen, um die vertikale Ausdehnung des Schmelzwassers und seinen 
Einfluss auf das Plankton zu berechnen. Grund für die Eisbergbegutachtung war es, 
herauszufinden, ob die Durchführung einer Prozess-Studie an einem solchen Ort 
möglich war - falls die Erlaubnis zur Fortführung des Experiments nicht erteilt würde. 
Die genommenen Profile deuteten auf kleinskalige Heterogenität hin, die die 
Bewertung der Prozesse schwierig gemacht hätte. Außerdem war der Einfluss auf 
die Chlorophyll-Konzentrationen, die nur wenig höher als in der Umgebung waren, 
unzureichend für die Zwecke eines Störungs-Experiments. So wurde dieser „Plan B“ 
nicht als geeignete Alternative zum Düngungs-Experiment in Betracht gezogen. 
 
Nach der Untersuchung eines Wirbels weiter südlich, der jedoch als zu nah an der 
Ausschließlichen Wirtschaftszone des Süd-Sandwichinselbogens lag, steuerte 
Polarstern die Wirbel nördlich von Süd-Georgien an. Modellstudien, die auf Altimeter-
Bildern basierten, deuteten an, dass diese Wirbel nicht stabil waren, was ADCP-
Profile von zwei dieser Wirbel bestätigten. Es zeigte sich, dass ein geschlossener 
Kern fehlte und der Fleck deshalb „ausgelaufen“ wäre, wenn wir das Experiment in 
einem dieser Wirbel durchgeführt hätten. Daher entschlossen wir uns, zurück zum 
ersten Wirbel auf 48°S 15°W zu fahren, der eindeutig der geeignetste Wirbel in der 
gesamten Region war, und zwar aus folgenden Gründen: 1) er hatte einen 
geschlossenen Kern, 2) die darunterliegenden Sedimente enthielten Chaetoceros 
Sporen, die anzeigten, dass er noch unter dem Einfluss von Küstenplankton stand 
und damit innerhalb der produktiven Zone lag, jedoch an deren östlicher Grenze, 3) 
das pelagische System im Wirbel war repräsentativ für die gesamte Gebiet im 
südwestlichen Atlantik-Sektor, das wir durchquert hatten. Die Merkmale dieser 
Region umfassten: a) sehr niedrige Kieselsäure-Konzentrationen, b) mäßige 
Chlorophyll-Konzentrationen, c) Phytoplankton, das von kleineren Formen - nicht 
Diatomeen - beherrscht wurde, d) Zooplankton, repräsentiert von einer großen 
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Copepoden-Population, die hauptsächlich aus späten Larven-Stadien einer einzigen 
Art (Calanus simillimus) bestand, e) der Amphipoden-Art Themisto gaudichaudii als 
Haupt-Räuber, f) Salpen und andere große Zooplankton-Arten waren kaum 
vorhanden.  
 
Wir erreichten den Wirbel am 25. Januar, setzten eine Driftboje, die in 30 m Tiefe im 
Zentrum des Kerns verankert wurde, aus und nahmen die erste lange Station, um die 
Ausgangsbedingungen in Wirbelnähe zu bestimmen. Am 26. Januar, als wir noch mit 
der Station beschäftigt waren, erhielten wir vom Ministerium grünes Licht, mit dem 
Experiment fortzufahren. Nachdem wir die Tanks mit Eisensulphat und Seewasser 
gefüllt hatten, wurde eine zweite Boje näher am Zentrum ausgesetzt (festgelegt nach 
der Umlaufbahn der ersten Boje, aber nur 2 km von ihr entfernt). Um sie herum 
wurde ein 300 km2 großer kreisförmiger Fleck mit 2 Tonnen gelöstem Eisen (10 
Tonnen granuliertes FeSO4) gedüngt. Der Fleck kreiste während der ersten 3 
Wochen zweimal innerhalb des Wirbels und bewegte sich dann südwärts, als er 
während der letzten 2 Wochen des Experiments aus dem zusammenbrechenden 
Wirbel herausgedrückt wurde. Leider drifteten die Bojen aus dem Fleck, so dass 
neue Bojen ausgesetzt werden mussten, um das Fleckzentrum zu markieren. Nach 
18 Tagen wurde der Fleck erneut mit zusätzlichen 2 Tonnen gelöstem Eisen 
gedüngt. 
 
Die Prozesse, die im Fleck abliefen, wurden mit Messungen der physikalischen, 
chemischen und biologischen Parameter in regelmäßigen Abständen (die Innen-
Stationen) verfolgt und mit der Situation des Wassers außerhalb des Flecks 
verglichen (Außen-Stationen). Frei schwimmende Sedimentfallen, die zu 
vorprogrammierten Zeiten an der Oberfläche auftauchen und geborgen werden, 
wurden in regelmäßigen Abständen ausgesetzt, um die absinkenden Partikel in 200 
m und 400 m Tiefe innerhalb und außerhalb des Flecks einzufangen. Die meisten 
der 39 Tage des Experiments wurden in der Nähe des Flecks verbracht, entweder 
um Innen- und Außen-Stationen zu nehmen oder Profile durch den Fleck zu fahren. 
Das Schiff musste den Wirbel zweimal verlassen, um Stürmen auszuweichen und ein 
Profil wurde über den benachbarten warmkernigen Wirbel gefahren, um ihn mit dem 
LOHAFEX-Wirbel zu vergleichen. Das Schiff verließ den Fleck nach der letzten 
Innen-Station am 6. März und kam pünktlich am 17. März in Punta Arenas an. 
 
Zusammenfassung der Ergebnisse 
Innerhalb der ersten 2 Wochen verdoppelte sich die Chlorophyll-Konzentration auf 
1,5 mg m-3, aber im Gegensatz zu früheren Experimenten war Kieselsäure in 
limitierenden Konzentrationen vorhanden und hinderte so die Diatomeen daran, 
Biomasse aufzubauen. Kleine Flagellaten (< 10 m) trugen am meisten zur 
Phytoplankton-Biomasse bei, die während des 39-Tage-Experimentes ungefähr auf 
gleichem Niveau blieb. Die zweite Düngung hatte keinen erkennbaren Einfluss auf 
Wachstumsraten oder Biomasse des Phyto- oder Bakterioplanktons. Offensichtlich 
war der Hauptgrund, dass keine Biomasse in größerem Umfang aufgebaut wurde, 
der starke Fraßdruck der großen Copepoden-Population. Inkubations-Experimente 
deuteten an, dass die Copepoden ihre Fraß- und Kotballenproduktionsraten 
innerhalb des Flecks erhöhten. Die Kotballen wurden innerhalb der 
Oberflächenschicht wiederverwertet und trugen nicht maßgeblich zum Vertikalfluss 
bei, wie die Fallenfänge andeuteten. Nichtsdestotrotz waren die täglichen Sink-
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Verluste, die aus Thorium-Messungen abgeschätzt wurden, innerhalb des Wirbels 
relativ hoch, aber im Wesentlichen innerhalb und außerhalb des Flecks gleich. 
Folglich hatte die Düngung dieser Planktongesellschaft wenig Einfluss auf den 
Vertikalfluss. Eine unerwartete Erkenntnis, die durch das horizontale Schleppen des 
RMT-Netzes (Rectangular Midwater Trawls) geliefert wurde, waren die viel höheren 
Dichten der räuberischen Amphipoden-Art Themisto gaudichaudii, die sich von 
Salpen und Copepoden ernährt, innerhalb des Flecks. Da wenig über die Ökologie 
dieser Art bekannt ist, die die Hauptnahrung der Kalmare im nördlichen ACC ist und 
deshalb „Krill des Nordens“ genannt wird, ist dieser Fund von besonderem Interesse. 
Es wurden keine negativen Auswirkungen der Eisendüngung auf die Umwelt in Form 
von Spurengasen oder toxischen Algen beobachtet. 
 
 

 

 

Abb. 1.1: Fahrtverlauf von Polarstern zwischen Kapstadt und Punta Arenas 

Fig 1.1: Cruise track of Polarstern between Cape Town and Punta Arenas 
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Abb. 1.2: Fahrtverlauf von Polarstern innerhalb des Wirbels 

Fig. 1.2: Cruise track of Polarstern within the eddy 
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SUMMARY AND ITINERARY 

Rationale 

Cruise ANT-XXV/3 was a joint Indo-German iron fertilisation experiment the costs of 
which were equally shared by both countries. LOHAFEX (loha is the Hindi word for 
iron) was the third such experiment carried out from Polarstern that studied the 
growth and demise of a phytoplankton bloom induced by fertilising an area in the 
core of a mesoscale eddy along the Polar Front with iron sulphate. In contrast to 
previous experiments LOHAFEX was carried out in the productive south-western 
Atlantic of the Antarctic Circumpolar Current (ACC). This region is closer to land 
masses than other parts of the ACC hence fertilised by iron from natural sources 
supplied by contact with the Antarctic Peninsula and its various islands, in particular 
South Georgia, as well as dust from Patagonia and melting icebergs emanating from 
the Weddell Sea. Phytoplankton of this region comprise more fast-growing coastal 
species that are expected to respond more vigorously to iron input than the slower-
growing, thicker-shelled oceanic diatom species studied in previous fertilization 
experiments. Studies of the sediments underlying this region have shown that 
diatoms typical of productive coastal regions – spore-forming Chaetoceros species – 
dominate the microfossil assemblage and extend downstream well to the East of 
South Georgia where they are eventually replaced by diatom ooze dominated by the 
heavily silicified species Fragilariopsis kerguelensis and Thalassiothrix antarctica that 
are both characteristic of the ACC.  
 
During the last glacial maximum, however, sediments dominated by Chaetoceros 

spores extended across the entire South Atlantic Sector of the ACC indicating that 
the current high-productive zone under the influence of coastal plankton species 
extended eastward to South of Africa. This was due to the greater iron supply during 
the cold, dry glacials when much more iron-rich dust was transported to the Southern 
Ocean than during the warm, wet interglacials, reflected both in the cores of ocean 
sediments but also in continental ice cores. Hence this region will have sequestered 
much more atmospheric CO2 than today and could well be one of the major sinks of 
glacial CO2 that are still being looked. 
 
Iron fertilization experiments are the equivalent of perturbation experiments carried 
out by all disciplines of science to study the structure and functioning of systems too 
complex to be analysed by observation alone. Hence the overarching goal of this 
interdisciplinary cruise was to further our understanding of how open ocean 
ecosystems function and how the organisms of the plankton interact with one another 
and with the environment to drive biogeochemical cycles and sinking of particulate 
matter to the deep sea. Artificial iron fertilisation simulates natural processes that 
introduce iron to iron-limited, land-remote ocean waters. The phytoplankton respond 
by increasing growth rates but accumulation of biomass is dependent on a range of 
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physical, chemical and biological factors that together determine the characteristics 
of the growth environment. However, accumulation rate of biomass is the balance 
between growth and loss rates due to mortality of algal cells and eventual breakdown 
of organic matter by pelagic heterotrophs: bacteria, protozoo- and metazooplankton 
on the one hand, and sinking out of particles to the deep sea on the other. We 
intended studying the relationship between growth of the phytoplankton and the 
concomitant effects of grazing and breakdown on the inventories of biogenic 
elements and monitoring vertical flux by deploying neutrally buoyant sediment traps 
and an Underwater Video Profiler (UVP), an optical instrument that photographs 
particles in-situ down to 3,000 m depth. 
 
A major aim of the cruise was to investigate the fate of iron fertilised bloom biomass 
in a productive region of the ACC: is their biomass retained in the surface layer and 
converted back into CO2 by bacteria and zooplankton or does at least a part of it sink 
out, thereby removing significant amounts of CO2 from the atmosphere and storing it 
in the deep ocean. The answer to this question is of relevance to understanding past 
climate cycles but also to the feasibility of using artificial iron fertilisation of the ACC 
as a technique to mitigate global warming caused by anthropogenic accumulation of 
atmospheric CO2.  
 

Itinerary 

Polarstern left Cape Town punctually at 20.00 on 7 January 2009 with all 49 
participants and equipment on board, thanks to the excellent logistics of the AWI. 
The interdisciplinary, international scientific crew of physical, chemical and biological 
oceanographers comprised 29 participants from India, 10 from Germany, 3 from Italy, 
2 each from Spain and the UK and 1 each from Chile and France. 
 
Past experience has shown that the closed core of a mesoscale eddy formed by a 
frontal jet provides the best conditions to carry out such an experiment because the 
fertilized patch is retained within it for the lifetime of the eddy which is generally 
several months. Hence the decision on which eddy to select can only be taken 
shortly before the experiment. We had targeted the eddy field north of South Georgia, 
where meso-scale, persistent eddies had appeared in altimeter images of sea 
surface height in previous years and because the region is well inside the high 
productive zone. Shortly after leaving Cape Town the experiment was challenged by 
an organisation known as the ETC Group and put on hold by the German Ministry for 
Education and Research in order to clarify whether it met the conditions for legitimate 
scientific research outlined by the UN Convention on Biological Diversity and the 
London Convention on Ocean Dumping drawn up in May and November of 2008, 
respectively. 
 
The time during the first 3 weeks of the cruise was spent in inspecting several eddies 
that had been under surveillance over the past months for their suitability for the 
experiment. The first was a promising clock-wise, hence cold-core eddy located at 
48°S 15°W on the flank of the Mid-Atlantic Ridge. The same frontal jet formed an 
adjacent warm-core eddy. The ship s track was deviated only slightly to cross the 
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core of the cold-core eddy where the trial station was carried out on 16 January. As 
indicated by satellite images, chlorophyll concentrations were moderately high within 
the eddy (0.7 mg Chl m-3) and distinctly higher than values further to the East and 
North. The ship then proceeded westward and southward to visit one of several large 
icebergs visible in satellite images. It was found to consist of an extensive field of ice 
rubble surrounding several medium-sized icebergs that were evidently formed by the 
collapse of a single, large iceberg of a few km length. Several stations were taken 
within and around the ice field over the course of a day (19 January) in order to 
assess the vertical extent of melt-water and its effect on the plankton. The reason for 
the iceberg survey was to ascertain the feasibility of carrying out a process study in 
such a site in case permission was not granted to go ahead with the experiment. The 
profiles taken indicated small-scale heterogeneity which would have rendered 
quantification of the processes difficult; besides, the impact on chlorophyll 
concentrations, which were only slightly higher than in the surroundings, was 
insufficient for the purposes of a perturbation experiment. So this “Plan B” was not 
considered a good option to the fertilization experiment. 
 
After inspecting an eddy further to the South, which was found to be too close to the 
EEZ of the South Sandwich Island arc, Polarstern headed for the eddies north of 
South Georgia. Modelling studies based on the altimeter images indicated that these 
eddies were not stable, which was confirmed by ADCP transects across 2 of them 
that showed that they lacked closed cores and would have “leaked” the patch out in 
the form of a streak had we conducted the experiment in one of them. We therefore 
decided to go back to the first eddy at 48°S 15°W which was clearly the most suitable 
eddy in the entire region for the following reasons: 1) it had a closed core, 2) the 
underlying sediments contained Chaetoceros spores indicating that it was still under 
the influence of coastal plankton and within the productive zone, albeit at its eastern 
border, 3) the pelagic system in it was representative of the entire region we had 
traversed. The plankton characteristics of the region included a) very low silicic acid 
concentrations, b) moderate chlorophyll concentrations c) phytoplankton dominated 
by non-diatomaceous, small forms, d) zooplankton represented by a large population 
of copepods consisting mainly of late larval stages of a single species (Calanus 

simillimus), e) the amphipod Themisto gaudichaudii as the main predator with salps 
and other large zooplankton conspicuous by their relative absence. 
 
We reached the eddy on 25 January and deployed a drifting buoy tethered at 30 m 
depth in the centre of its core and took the first long station to determine the initial 
conditions close to it. On 26 January the green light to proceed with the experiment 
was received from the Ministry while we were still occupied with the station. After 
filling the tanks with iron sulphate and sea water, another buoy was deployed closer 
to the centre (determined from the trajectory of the first buoy but only 2 km from it) 
around which a 300 km2 circular patch was fertilized with 2 tonnes of dissolved iron 
(10 tonnes of granular FeSO4) the next day. The patch circled within the eddy twice 
during the first 3 weeks and then moved southward as it was squeezed out of the 
collapsing eddy during the last 2 1/2 weeks of the experiment. Unfortunately the 
buoys did not keep track of the patch so new buoys had to be deployed to mark its 
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centre. After 18 days the patch was re-fertilized with an additional 2 tonnes of 
dissolved iron.  
 
The processes occurring in the patch were followed with measurements of physical, 
chemical and biological parameters at regular intervals (the in-stations) and 
compared with the situation in outside waters (out-stations). Neutrally buoyant 
sediment traps that surface and can be retrieved at pre-programmed times, were 
deployed at regular intervals to intercept sinking particles at 200 and 400 m depths 
inside and outside the patch. Most of the 39 days of the experiment were spent in the 
proximity of the patch either taking in- or out-stations or transects through the patch. 
The ship had to leave the eddy twice to avoid storms and one transect was taken 
across the neighbouring warm-core eddy for comparison with the LOHAFEX eddy. 
The ship left the patch after the last in-station on 6 March and arrived punctually on 
the 17 March in Punta Arenas. 
 

Summary of the results 

Within the first 2 weeks, chlorophyll concentrations doubled to 1.5 mg m-3, but, unlike 
previous experiments, silicic acid was present at limiting concentrations hence 
prevented diatoms from accumulating biomass. Small flagellates (<10 μm) 
contributed most of the phytoplankton biomass, which was maintained at about the 
same level throughout the 39-day experiment. The second fertilization had no 
noticeable effect on growth rates or biomass of phyto- or bacterioplankton. 
Apparently, the main reason why biomass did not build up to higher levels was due to 
heavy grazing of the large copepod population. Incubation experiments indicated that 
the copepods increased their feeding and faecal production rates inside the patch. 
Faecal pellets were recycled within the surface layer and did not contribute 
significantly to vertical flux as indicated by trap catches. However, daily sinking 
losses estimated from Thorium isotope measurements were quite high within the 
eddy but essentially the same inside and outside the patch. Thus, fertilization of this 
type of community had little effect on vertical flux. An unexpected finding, revealed by 
horizontal tows of the Rectangular Midwater Trawl, were the much higher densities 
inside the patch of the predatory amphipod Themisto gaudichaudii, which preys on 
salps and copepods. As little is known of the ecology of this amphipod, which is the 
main food of squid in the northern ACC and has been called the “krill of the north”, 
this finding is of particular interest. No adverse environmental effects in terms of trace 
gases and toxic algae were observed due to iron fertilization.  

 

 



 

13 

2. WEATHER CONDITIONS 

 
R. Hartig  Deutscher Wetterdienst 

 

Polarstern left Cape Town on January 7, 2009 sailing southwest bound for the 
southern Atlantic Ocean. During the first days weather was dominated by a low 
pressure system giving westerly s of 6 to 7 Bft and up to 4 m sea swell. Two days 
later conditions improved. Cold fronts alternating with high pressure ridges produced 
winds about force 5 from west and 3 - 4 m swell for some days. On 15 January 
scientific work started with the survey of a first eddy (vertical column of rotating 
water) at 47°S 16°E. High pressure influence caused moderate easterly winds and 
light to moderate swell. 
 
After survey was finished in this area Polarstern headed for 57°S 25°W. This region 
was covered by lots of growlers, bergy bits as well as some big icebergs. On January 
18 and 19 dense fog dominated the weather down here, due to northerly winds of 
about 4 Bft generating a flow of warm air (+7°C) over cold water (+4°C). 
 
On January 20 Polarstern sailed towards a position north of South Georgia in order to 
survey another eddy in the southern ocean. Wind from northwest to southwest of 
force 7 to 8, occasional rain combined with poor visibility and rough sea caused 
uncomfortable weather conditions. As this eddy did not suit the scientific needs 
Polarstern returned, to the previous one on January 22. Westerly s between 5 and 
8 Bft, occasional rainfall with poor visibility and swell between 3 and 5 m were 
observed enroute. 
 
From January 26 to March 06 Polarstern worked in the LOHAFEX area between 
47°-49°S 14°-16°W. Highly unstable weather conditions characterize these weeks. 
Depressions and high pressure ridges changed periodically. Westerly winds 
outnumbered other wind directions and wind force varied from force 5 to 7 Bft. Swell 
of 2.5 to 5 m was observed in this period. Winds veering to northwest produced poor 
visibility (advection of warm air over colder water). Vice versa visibility improved 
when winds were backing to southwest.  
 
On February 2/3 and February 12/13 Polarstern sailed some 200 nm northeast to 
avoid any kind of damage due to upcoming severe storms. Even in the less stormy 
region we registered north-westerly winds force 9 and a swell up to 6 m.  
 
The atmosphere became more turbulent by the end of February when a number of 
severe storms hit the LOHAFEX area. Winds of force 10 Bft (10 min mean) as well as 
short periods of hurricane-force 11 Bft with gusts of 12 Bft were registered (Fig. 2.1).  
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Wind speed registered and significant sea state observed during the LOHAFEX 
experiment is shown in Fig. 2.2 and Fig. 2.3. A second graph shows the observation 
data of the EIFEX experiment in 2004. It clearly can be seen that the wind speed was 
higher during the LOHAFEX period than during EIFEX while sea state appeared to 
be higher during the EIFEX experiment. A possible reason for this could be the fact 
that the sea state combines the locally produced waves and the swell running in from 
afar.  
 
Scientific work ended in the afternoon of March 06. Polarstern then headed for Punta 
Arenas, Chile. Within in the first hours of our way back gale from west to northwest 
and rough sea were observed. However, wind and swell were already decreasing 
during the night from March, 7 to 8 the vessel still had to encounter rogue waves 
which caused remarkable heeling. As soon as the next day the wind abated and sea 
decreased to 2 m. From March 10 on the strong west drift dominated again with 
varying weather conditions and moderate to rough sea.  
 
On March 17 Polarstern arrived in Punta Arenas where this expedition ended.  
 

 

Fig. 2.1: Registration of wind speed during severe storm from February 27 to 28, 2009 
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Fig. 2.2: Distribution of wind force during Lohafex and EIFEX experiment 

 

 
Fig. 2.3: Distribution of sea state during Lohafex and EIFEX experiment 

 
 



 

16 

3. PHYSICAL OCEANOGRAPHY 

V.S.N. Murty1, A. Almeida1, P. Narvekar1, 
A. Methar1, A. Kankonkar1, I. Borrione2, 
P. Vandrommes3, F. d Ovidio4, M. Ribera 
d'Alcalà5, D. Wolf-Gladrow2  
 

1) NIO 
2) AWI 
3) UPCM-CNRS 
4) ISC-Paris 
5) SZN 

Introduction and objectives 

The iron fertilization experiment LOHAFEX was planned to carry out in a meso-scale 
cold core eddy in the western Atlantic sector of the Southern Ocean. The selection of 
the suitable eddy was one of the main objectives of the Physics group (Objective 1). 
First of all it had to be stable for at least 2 months. Further selection criteria included 
its chemical (nutrients) and biological (plankton assemblage) nature and location 
(north of 50°S). The stability of eddy candidates was investigated before and during 
the cruise by Francesco d Ovidio (ISC, Paris) who applied a numerical model using 
data from satellite altimeter observations. He exploited methods from the chaos 
theory toolbox including Lyapunov exponents for application to the study of eddies 
appearing and dispersing in altimeter images. 
 
After selecting a suitable eddy, its centre had to be located (Objective 2). The main 
methods were satellite images of sea surface height (SSH), ADCP (Acoustic Doppler 
Current Profiler) sections, and underway temperature and salinity measurements. 
The fertilized patch had to be followed during the course of the experiment (Objective 

3). For this objective a whole suite of methods and instruments were used, including 
drifter buoys, ADCP, CTD, SCANFISH. In order to understand the time development 
of the fertilized patch the eddy and its environment had to be examined (Objective 4). 
This could be done with larger scale CTD and ADCP sections and deployments of 
several buoys. 
 

Work at sea 

3.1 Satellite altimeter derived sea surface height anomaly 

The prior requirement was examining the satellite derived altimeter Sea Surface 
Height Anomaly (SSHA) images for a longer period. Accordingly, the SSHA maps 
generated at Colorado Center for Astrodynamics Research (CCAR) website 
(http://argo.colorado.edu/~realtime/gsfc_global-real-time_ssh/) were downloaded 
onboard and examined in detail; SSHA maps were composites over a period of 2 
days. The SSHA images were examined in detail starting from November 2008 to 
understand the history and evolution of eddies found in the region of interest. For 
various scientific reasons, the suitable cold core eddy (with an adjacent warm core 
eddy) was selected at 16°W and 48°S in the central South Atlantic. An examination of 
the SSHA maps from November 2008 onwards revealed that this cold core eddy was 
persistent and consistent in its location (together with its nearby counterpart, the 
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warm core eddy). Fig. 3.1 shows the snap shot of SSHA on 7 January 2009 from the 
western Atlantic to the central Atlantic; the red rectangle box highlights the area in 
which the chosen cold core eddy is located for the Iron Fertilization.  

 
 

 
 

Fig. 3.1: Real-Time Meso-scale Altimetry image as on 7 January 2009. The red rectangle 

highlights the area where the selected cyclonic eddy was located. 

 
The SSHA maps were downloaded on day-to-day basis to look into the variability in 
the eddy characteristics and the possible shift in its centre. The SSHA maps were 
monitored and the ADCP currents were superimposed to see whether the observed 
currents agreed with the expected geostrophic flow pattern. Similarly, the drifter 
trajectories were superimposed on the eddy structure. Drifters showed inertial 
oscillations (of period T=2 /f, where f is the Coriolis parameter = 16.1 h at 48°S) 
which are generated by the prevailing stronger winds over the LOHAFEX area. On 
the other hand, the SSHA maps represent the water characteristics of the entire 
water column and particularly reflect the thermocline variability. Composite SSHA 
images/drifter tracks were regularly observed till the end of experiment, showing a 
clear waning of the cold core eddy with weaker gradients in the sea surface heights 
around its center (for example, Fig. 3.2 a-c) 
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a)

 

b)

 

c) 

 
Fig. 3.2: SSHA images of the selected area on (a) 25 January 2009, (b) 13 February 2009 and (c) 3 

March 2009. The comparison of the three images indicates a clear weakening of the cyclonic eddy 

(blue colour) centered approximately at 16°W 48°S. 

 
3.2 Hydrographic station work with conductivity-temperature-depth 

(CTD) measurements and water bottle sampling 

 
During LOHAFEX, the SBE 911 plus CTD (SeaBird Electronics, USA) was used 
extensively to measure temperature and conductivity (salinity) profiles of the water 
column at depths ranging between 100 m and 4000 m. The CTD system was 
mounted onto a SBE32 bottle carousel with 24 12 litre bottles. A UVP (Underwater 
Video Profiler, compare Section 16) to obtain the images of living organisms was also 
fitted to the CTD rosette thus reducing by one number of total bottles. The CTD 
sensor system was fitted with two sets of temperature (Sr. No. 1373 & 2929) and 
conductivity (Sr. No. 3290 & 2490) sensors. A SBE 43 Dissolved Oxygen (Sr. No. 
0743) sensor, a Wetlabs C-star light transmissometer and Dr. Haardt's fluorometer 
(Sr. No. 8060) along with a bottom altimeter with a range of 100 m were also 
attached. The temperature and conductivity sensors were pre-calibrated at the 
Seabird, USA with an arrangement to have these re-calibrated after the cruise for any 
possible drift during the LOHAFEX observational period. During the cruise, the sets 
of temperature and salinity sensors showed only small deviations and these 
deviations were consistent for the entire cruise period in the observed depth range. 
The water sampling was done for core chemical parameters and various other 
biological and bacterial studies and other experimental purposes. A sampling 
protocol was followed for all the sampling stations. Water samples from deeper 
depths (below 800 m) were also collected at several stations for salinity analysis 
using onboard AUTOSAL (Model No. 8400B, Guildline, Canada). A total of 153 CTD 
casts were carried out. Water sampling was done at 128 casts. There were 26 deep 
CTD casts below 1,000 m depth. CTD casts were made along shorter transects 
within the cold core eddy and also in the warm core eddy.  
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3.3  Underway measurements of currents with the vessel-mounted 

Acoustic Doppler Current Profiler (ADCP) 

 
The vessel-mounted ADCP (153.7 kHz, RD Instruments, USA) was operated 
continuously throughout the cruise to collect underway current profiles. The bin size 
was selected at 4 m and the first bin value started from 18.96 m. The data acquisition 
was done using RDI VMDAS software with continuous pinging and the ensemble 
interval was fixed at 1 minute for Short-Time Average (*.STA file) and at 5 minutes for 
Long-Time Average (*.LTA). The data acquisition was done in Navigational Mode 
and data quality appeared to be good. The data has been stored on the PC s hard 
disk and from time to time, the acquired data were copied to another PC for 
preliminary processing and analysis. The WINADCP software programme was used 
to store the data during acquisition and also to export the data from the *.LTA files. 
The VM-ADCP had been calibrated during the ANT-XXV/2 cruise, just prior to 
LOHAFEX (ANT-XXV/3) and hence no special calibration survey was done during 
LOHAFEX. A glance of the acquired currents data during LOHAFEX across the 
shorter transects showed consistency in the currents pattern. The ship s navigational 
data was fed to the ADCP PC so that the data transformation from beam coordinates 
into Earth coordinates (East, North, Up directions) was done internally through the 
VMDAS software. The size of the data file was fixed at 1.0 MB for each STA and LTA 
file. The VM-ADCP was operated since the vessel left Cape Town on 7 January 
2009. Longer ADCP transects were obtained from Cape Town to the LOHAFEX cold 
core eddy, and also from the cold core eddy to the far western longitudes in the 
Western Atlantic. Longer ADCP transects were also obtained during the return sailing 
of the vessel towards Punta Arenas. The ADCP currents data were used to identify 
the flow pattern of the cold core eddy along 16°W longitude and its centre. The eddy 
centre was identified with the zone of weaker currents over a stretch of 10 km. 
Occasionally, larger currents were noticed whenever the vessel took sharp turns and 
when the sea was rough with large swells and the vessel was tossing up and down. 
Also, whenever the GPS string was not available, the measured currents showed 
larger magnitudes equivalent to ship s speed. The *.LTA files were used to carry out 
preliminary processing and to present quick results. MATLAB routines were written 
onboard and current vector plots were prepared. The current vector plots at different 
depths (eg., 20 m, 40 m, … 100 m etc.) and also the vector plots for mean layers (eg. 
20 - 40 m layer, 40 - 60 m layer, 40 - 100 m layer) were prepared. Consistency in the 
flow pattern was seen at each depth and in each layer. For example, Fig. 3.3 shows 
the ADCP current vectors at 100 m depth along the longitudinal cross-section of cold 
core eddy and along a section to the west of the cold core eddy.  
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Fig. 3.3: ADCP current vectors at 100 m depth along the longitudinal cross-section of the cold core 

eddy and along a section on the southwestern side of the cold core eddy. 

 
 
3.4  Drifter buoys 

The drifters employed were of the WOCE SVP type with 16 inch surface floats with 
sensors for SST, battery voltage and submergence. The drogue consisted of a 7 
meter by 36 inch Holey sock made of cordura material and centered at 30 m below 
surface. The buoy had a GPS receiver for its position tracking. It transmitted its 
position to the server in the USA every 10 minutes using the IRIDIUM telemetry. This 
signal was also received by the base station mounted onboard Polarstern. The base 
station in turn had a GPS receiver and received its position update ever 10 seconds 
along with the position from the drifter every 10 minutes. The base station had a 
problem in that every day it had to be power cycled to re-initialize its data reception 
from the server. Further, in rough weather it was noticed that the GPS position of the 
drifters were degraded and sometimes it was not possible to obtain the drifters  
positions for a couple of hours at a stretch. The drifter position was also downloaded 
from the company s web site using internet onboard.  
 
Initially only one drifter (#1) was deployed and later another drifter (#2) was deployed 
next to it at the cold core eddy centre. Both drifters traced each other very well 
through most of the time, which gave confidence that both the drifters were being 
subject to the same forcing. During the LOHAFEX cruise, iron fertilization was done 
twice. In order to track the movement of the fertilized patch, surface drifters were 
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deployed. 4 drifters were deployed in the LOHAFEX cold core eddy and one drifter 
was deployed in the warm core eddy to understand the nature of flow pattern in it. 
The drifters exhibited inertial oscillations within the centre of the cold core eddy and 
moved with the flow to the periphery of the eddy. After a couple of weeks as it was 
felt that drifter #1 had detached itself from the patch, it was recovered and 
redeployed in the patch (from then on called #1A).  
 
The deployment details of the drifters are provided in Table 3.1. Drifter #3 provided 
excellent structure of inertial oscillation around the centre of the warm-core eddy (Fig. 
3.4) but stopped communication after 6 days of its deployment. Near the end of 
LOHAFEX, two drifters left the cold core eddy and were lost to the large-scale flow 
pattern of the ACC beyond the warm-core eddy. These drifters (#1a and #4) gave 
interesting trajectories, which are being analyzed further to understand the dynamics 
of the warm core eddy, together with the dynamics of the LOHAFEX cold core eddy. 
One drifter (#5) was making perfect inertial oscillations on the southernmost 
boundary of the warm core eddy and was drifting to southern latitudes. Later this was 
also recovered and redeployed closer to the patch. At the end of the experiment, the 
drifters were not recovered and left for drifting further.  
 
Tab. 3.1: Details of deployment drifter buoys during LOHAFEX 
 

Drifter Date 
deployed 

Time  
UTC 

Lat Long 

NIO #1 25.01.09 19:08  47° 59.70' S 15° 48.21' W 

NIO #2 27.01.09 11:20  47° 56.01' S 15° 48.83' W 
 

NIO #3 04.02.09 16:48  48° 13.78' S 12° 58.70' W 
 

NIO #4 09.02.09 20:57  47° 54.26' S 15° 07.84' W 
 

NIO #1A 20.02.09 10:55  47° 20.53' S 14° 44.57' W 
 

NIO #5 27.02.09 16:44  48° 48.12' S 15° 14.04' W 
 

NIO #5A 04.03.09 19:08 48° 58.61' S 15° 12.67' W 
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Fig. 3.4: Trajectory of drifter #3 deployed in the warm eddy 

 
3.5 Measurements with the towed undulating vehicle SCANFISH   

The SCANFISH (MK II, EIVA, Denmark) was purchased for the LOHAFEX cruise in 
order to track the water properties in the upper water column within the fertilized 
patch. It is a wing-shaped body weighing around 120 kg (with instrumentation) and 
attached by means to a double armored conductive cable (approx. 10.5 mm) to a 
winch and towed behind the steaming ship. It has 2 electrically adjustable flaps at its 
rear. With the help of an active winch (KC, Denmark) it is made to undulate vertically 
through the upper water column. With a vessel speed of 4 knots it can undulate from 
250 m to the surface with the undulation depths increasing or decreasing inversely to 
the vessel's speed. The SCANFISH was deployed with a dive rate of 1 m s-1 and was 
towed at ship speeds of 5 knots to give an undulation depth of 200 m. The 
SCANFISH has its own sensors for pressure, attitude and altimeter to provide 
feedback on its movement through the water column. The movement of the 
SCANFISH is controlled using the EIVA Flight software by feeding the relevant 
parameters into the software. The ship heading, GPS position and echo sounder data 
were fed from the ship s LAN to the Flight software through an Ethernet to Serial Port 
converter. Along with the data from the winch, the SCANFISH is able to calculate its 
position with respect to the vessel.  
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The SCANFISH is fitted with the following instrumentation 
1. A SBE49 FastCat CTD with temperature, conductivity and pressure sensor. 
2. SBE43 DO sensor for oxygen  
3. C-star transmissometer sensor for light attenuation 
4. Wetlabs FLNTU fluorometer and turbidity sensor for chlorophyll a 
5. and the Fast Repetition Rate Fluorometer FRRF II from Chelsea  

  
The data obtained from these sensors were logged in the NaviPac software from 
EIVA. This module was installed only after the ship left Cape Town.  
 
The SCANFISH was deployed on three occasions and two surveys were conducted. 
On the first occasion when the SCANFISH was deployed, it was noticed that it was 
frequently getting towed upside down. Several attempts were made to correct its 
attitude, but after an hour of operation it was decided to bring it up to the deck to 
inspect it for its erratic behaviour. It was noticed that the cable was twisted and 
entangled. It was thought that this twist in the cable could have come about when the 
cable was removed from the winch drum by the manufacturers at the Cape Town 
warehouse for repairing the drum after the ANT-XXV/1 cruise. When the SCANFISH 
was brought on deck, several checks were done and finally it was found that one of 
the pins securing the flaps to the motor had fallen out. This was replaced and the 
cable cut and re-terminated once again by the ships technician on board. The 
SCANFISH was then tested and it responded well. Later during the cruise the 
SCANFISH was deployed twice successfully and it collected data for more that 30 
hours each time. In the first attempt the Fv/Fm values from the FRRF were not 
logged as the driver for this was not ready by EIVA, however, all other sensors were 
logged. (The Fv/Fm ratio provides an estimate of the maximum efficiency of photo-
system II (also termed photosynthetic efficiency) within dark-adapted phytoplankton 
cells, where Fv is the variable fluorescence and Fm the maximum fluorescence 
signal of dark-adapted cells). In the second deployment of SCANFISH, the new driver 
was installed and the complete data set for all the above sensors were logged. 
However as the number of parameters being logged in this SCANFISH configuration 
is very large, the software needs further modification to accommodate all the 
parameters being logged. 
 
Initial comparison of the SCANFISH data logged along with other underway 
instruments showed a good relationship with other underway instrumentation. In the 
laboratory, the value of Fv/Fm was consistently lower (0.32) than another FRRF 
instrument (0.42) drawing seawater from the ship's moon pool. However this could be 
attributed to the source of water drawn; as one was fresh from the moon pool, 
whereas the other was from the ships pumped seawater supply. Once the 
SCANFISH was deployed, it was found that the Fv/Fm values ranged from 0.5 to 0.1 
for surface to deeper depths. It was also noticed that the Chlorophyll-a data from the 
fluorometer showed consistently higher values (1.2 mg Chl-a m-3) than the values 
obtained by extraction (0.5 mg Chl-a m-3). However it was assumed that the relative 
values were consistent and the values did not change from one undulation profile to 
another. The temperature, conductivity, pressure, and oxygen data quality was 
assumed to be good as the respective sensors were calibrated prior to the cruise.  
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Preliminary results 

Preliminary processing of the CTD data was done onboard. The analysis showed 
that the waters of the cold core eddy in which LOHAFEX was conducted, are 
characterized with three distinct water masses. The top 200 m layer showed 
variability in both temperature and salinity during the cruise period. The intermediate 
layer between 200 m and 1500 m (and at some stations up to 1850 m to 2000 m) has 
relatively constant low temperature (< 2°C) and slightly increasing salinity with depth. 
The deep layer (> 1500 m) is cold and less saline, with decreasing values of 
temperature and salinity with depth nearer to seabed. The mixed layer depth (MLD) 
is varied between 50 m to 75 m. The watermass structure of the cold core eddy was 
persistent through the cruise period. At the southern edge of the cold core eddy, the 
MLD was deep up to 100 m on the last days of the observations. Fig. 3.5 shows the 
typical vertical profiles of temperature, salinity, density and chlorophyll a at a station 
(#114) in the vicinity cold core eddy. The water characteristics of the nearby warm 
core eddy has distinct water mass structure with deeper MLD up to 100 m and warm 
and low saline waters at the eddy centre.  
 
The access to on-line available satellite information (SSHA and ocean colour) turned 
out to be extremely useful and led, for example, to a very fast identification of the 
eddy centre.  
 
Another new feature compared to former iron fertilization experiments as, for 
example, EIFEX (2004) is the near real-time numerical simulation of flows using 
satellite information. The prediction of the stability of various eddies was crucial for 
the choice of a suitable eddy for the fertilization experiment. 
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Fig. 3.5: Vertical profiles of CTD temperature, salinity, density (Sigma-theta) and chlorophyll a at a 

station in the vicinity of cold core eddy. 

 
The deployment and re-deployment of several drifter buoys has been extremely 
useful to elucidate the time development of the fertilized patch and the eddy as a 
whole. Although the deep-rooted eddy was a relatively stable feature during 
LOHAFEX, the surface flow was quite complicated due to strong and variable wind 
forcing causing inertial oscillations, Ekman transport, vertical shear, and loss of eddy 
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water  to the strong currents of the adjacent Polar Front. In order to better 
characterize the vertical shear in the upper 100 m it might be useful to apply buoys 
with different drogue depths.  
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4. SULPHUR HEXAFLUORIDE 

V. Desai, R. Roy, S.W.A. Naqvi  NIO 

 

Objective 

To map the iron-fertilized patch and to determine the degree of dilution of fertilized 
water through horizontal and vertical mixing.  
 

Work at sea 

We used a SF6 saturation system fabricated and kindly made available to us by Dr. 
Phil Nightingale of Plymouth Marine Lab. This system consists of a stainless steel 
equilibrium chamber in which a shower of seawater comes in contact with a 
headspace of pure SF6. The SF6-saturated water was then mixed with seawater 
spiked with FeSO4 and released to the propeller wash of the vessel. The 
pumping/mixing rate was adjusted to release about 500 g of SF6 over 300 km2 area. 
SF6 saturation was monitored in the outflowing water using a gas chromatograph 
equipped with a thermal conductivity detector (TCD). A Porapak-Q column was used 
for separation of gas mixtures. The variability of SF6 concentration in the outflowing 
water was generally within <20 % of the saturation value. Because of the equipment 
malfunction, SF6 could not be added during the second half of the refertilization 
carried out after about three weeks of the first one. 
 
Mapping of the fertilized patch: Discrete samples were collected both from the ship s 
underway water supply (300 samples) as well as at several stations located inside 
the patch (200 samples from casts to 100 m depth). Glass-stopped flasks with an 
outlet at the bottom were used for sub-sampling, and the samples were introduced 
into a stripping chamber avoiding any contact with air. SF6 was purged using a 
stream of nitrogen and trapped for 10 minutes in a stainless steel column dipped in 
liquid nitrogen. The trap-column was then inserted in hot water and the desorbed SF6 

was separated over a MS 5A column and analyzed using a gas chromatograph 
equipped with an electron capture detector (ECD). Measurements were calibrated 
against SF6 gas standards diluted in oxygen-free nitrogen.  
 

Preliminary results 

Due to the variability of SF6, in saturated water the data could only be used in a semi-
quantitative way. Nevertheless, these measurements along with other data (surface 
chlorophyll and photosynthetic efficiency (fv/fm)) were very useful for marking the 
fertilized patch. As expected, SF6 concentrations within the fertilized patch decreased 
with time, but remained above background at the last in-patch station (Fig. 4.1). The 
decrease in SF6 toward the surface is presumably due to air-sea gas exchange. Out-
patch station values were close to background.  
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Fig. 4.1: Vertical profiles of SF6 just after the first fertilization (station 73 - 122) and toward the end of 

the experiment (station 73 - 204). 
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5. MACRO NUTRIENTS 

A.K. Pratihary, D. Baraniya, S.W.A. Naqvi  NIO 

Objective 

To investigate variations in macronutrients in the water column as a result of iron 
fertilization. 
 

Work at sea 

Nutrient samples were collected from standard depths to 3000 m at all major stations 
located inside as well as outside the fertilized patch. In addition, sampling was also 
performed to 200 m depth at the stations forming an east-west and another north- 
south sections across/along the fertilized patch. The samples were stored in plastic 
bottles for no more than 2 hours before analysis using a SKALAR segmented flow 
autoanalyzer using standard procedures. The precision of measurement was 

±0.05 μM for NO3
-
, ±0.004 μM for NO2

-
, ±0.005 μM for NH4

+
, ±0.003 μM for PO4

3-
 and 

±0.5 μM for SiO4
4-

. In addition to these depth profiles, a number of nutrient 
measurements were also made on discrete samples collected from the ship s 

underway system that drew water from 10 m depth. Samples were also collected and 

frozen for the analyses of Total N and Total P in the shore laboratory (at NIO). 
 

Preliminary results 

The eddy selected for fertilization had low SiO4
4-

 concentrations (0.5 - 2 μM) in 

surface waters; by contrast, concentrations of NO3
-
 (19 - 20 μM) and PO4

3-
 (1.2 - 1.3 

μM) were quite high. We assume that observed SiO4
4-

 depletion was due to 
production (by diatoms) in spring/early summer (i.e. during the period preceding our 

experiment). The most important consequence of low SiO4
4-

 concentration was that 
diatoms did not grow to the extent observed in previous OIF experiments (including 

the SOFEX north patch that was located within the Subantarctic zone). Nitrate 

concentrations within the fertilized patch decrease substantially (by about 2.5 μM) 
after the first fertilization; such was also the case with PO4

3- (Fig. 5.1). Chlorophyll 

concentrations increased at the same time indicating algal uptake of nutrients 
stimulated by iron enrichment. Similar decreases in NO3

-
 and PO4

3-
 were not 

observed after the second fertilization carried out three weeks after the first one. The 
overall decrease in NO3

-
 is comparable to that observed during EIFEX even though 

the EIFEX bloom was dominated by diatoms. A striking aspect of nutrient 

distributions was the frequent appearance of maxima in NO2
-
 and NH4

+
 profiles 

between 80 and 100 m depths. The ammonium maximum was presumably due to its 
excretion by zooplankton (largely copepods and amphipods) which were abundantly 

present around these depths. The NO2
-
 maximum could arise due to oxidation of this 

NH4
+
 (nitrification) as well as incomplete assimilatory reduction of NO3

-
 in the algal 
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cells. Nitrite concentration at 80 - 100 m increased after fertilisation, peaked around 9 
- 12 days, and decreased thereafter perhaps due to both Fe saturation in surface 

waters and also oxidation to NO2
-
 by the nitrifiers. Ammonium concentration at 80 - 

100 m increased after the first fertilisation as the grazers proliferated with time. It 
reached a maximum of 3.5 μM at the end of the experiment. These results 
demonstrate that much of the nutrients taken up by the phytoplankton were recycled 
in the upper water column. 
 
The integrated NO3

-
+ NO2

-
 inventory to 200 m decreased from 4.61 mol m-2 at PS73-

114 to 4.03 mol m-2 at PS73 - 192 (Fig. 5.2), corresponding to the production of 1.4 
gC m-2 d-1. Assuming that wintertime NO3

-
 concentration at the surface was ~25 μM 

(corresponding to the concentrations observed at ~150 m at the two stations), 
comparable production should have occurred before our observations.  

 
 

Fig. 5.1: Changes in surface nutrient concentrations with time inside the patch 
 

 

 

 
 
 

 

Fig. 5.2: Vertical profiles of 

nitrate+nitrite at two 

stations showing depletion 

in the upper layer due to 

phytoplankton uptake 
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6. CARBON DIOXIDE  

G. Narvenkar  NIO 
 

Introduction and objectives 

Ocean iron fertilization (OIF) experiments are essentially designed to test their 
potential for sequestration of atmospheric carbon dioxide and to determine the fate of 
photosynthesized organic matter associated with enhanced phytoplankton growth. All 
previous OIF experiments conduced in the Southern Ocean have demonstrated 
substantial drawdown of pCO2 in surface waters. However, whether the organic 
carbon produced is largely recycled in near-surface waters or is exported to the deep 
sea is still being debated. Measurements made on LOHAFEX expedition included 
three observables to constrain the inorganic carbon system: total alkalinity (TA), total 
carbon dioxide (TCO2), and partial pressure of carbon dioxide (pCO2) in the surface 
layer.  
 

Work at sea and methodology  

Total alkalinity was measured in discrete samples collected from standard depths at 
major stations located within as well as outside the fertilized patch. An automated 
potentiometric titration system (VINDTA 3S) was used for TA measurements; 80 mL 
of the sample was titrated with 0.1 M hydrochloric acid following the procedure 
outlined in the operating manual. Calibrations were achieved with SIO s CRMs Batch 
90 with a TA value of 2216.00 ± 0.52 μeqt/kg. 
 
TCO2 in discrete samples was determined using an automated coulometric titration 
system (VINDTA 3D); 20 mL of sea water sample was used for each titration. The 
system was calibrated with CRMs Batch 90 with a TCO2 of 1985.61 ± 0.89 μmol/kg. 
Two automated systems (General Oceanics, USA) were used for underway pCO2 
measurements during the expedition. One of them is permanently installed on the 
vessel and belongs to the Royal Netherlands Institute for Sea Research (NIOZ); the 
other was installed by NIO especially for the expedition. Seawater was drawn 
continuously from a depth of 11 m while the air was pumped from the crow s nest. 
The two enter an equilibrator and the mole fraction of CO2 in the equilibrated air is 
measured by a LiCor to compute pCO2 (Dickson et. al., 2007). The system was 
regularly (3 hr) calibrated using calibration gases (CO2-in-air mixtures of 310 ppm 
from MED Gas Agency India and 352.9 and 451.6 ppm CO2 from Air Liquide). 
 
The two underway pCO2 systems used different calibration gas mixtures. 
Accordingly, there was a constant offset in the pCO2 data with the values from the 
NIO analyzer being lower by about 7 μatm than those from the NIOZ unit. 
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Preliminary results 

Surface TCO2 concentrations in the fertilized patch were lower than in surrounding 
waters - the difference in concentrations was generally small but significant 
(<10 μmol/kg).  

 
Similarly pCO2 was also consistently lower (by 7 - 15 μatm) inside the patch than in 

surrounding waters. The underway data are shown in Fig. 6.1 for a 19 day long 
period during which the fertilized patch was repeatedly criss-crossed. The lowest 
values corresponded to the centre of the fertilized patch. The pCO2 showed a good 
correlation with chlorophyll as exemplified in Fig. 6.2 based on sampling in and 
around the fertilized patch on 17 February. These observations clearly show a 
significant drawdown of pCO2 in the surface layer. However, the magnitude of the 
decrease was relatively modest with the refertilization not leading to much further 
depression of the pCO2 and the values rising with time after about a month. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.1: Underway pCO2 record from 16 February 2009 (about 3 weeks after the first fertilization and 

just before the refertilization till the end of the observations). 
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Fig.6.2: High resolution pCO2 and chlorophyll variability in the surface layer (ship s underway water 

sampling at 11 m depth) on 17 February 2009 corresponding to early part of the pCO2 record shown in 

Fig.6.1. 
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7. DISSOLVED GASES OTHER THAN CO2 

P.V. Narvekar, R. Roy, K.B. Sujith, 
B.R. Thorat, S.W.A. Naqvi  

NIO 

 

Introduction 

There is a possibility that ocean iron fertilization (OIF) may affect production of 
certain biogenic gases that contribute to the maintenance of earth s radiation balance 
and/or destruction of ozone in the stratosphere. The most important of such gases 
are nitrous oxide, methane, dimethyl sulphide and halocarbons. Therefore, one of the 
main objectives of LOHAFEX was to investigate changes in concentrations of these 
gases before and after fertilization. Except for methane, analyses for all gases were 
performed on board ship, and the salient results are presented below. For methane, 
samples were preserved for measurements in the shore laboratory. 
 
7.1  Dissolved oxygen 

Objective 

To investigate changes in oxygen production/consumption triggered by iron 

fertilization.  

Work at sea 

Dissolved oxygen (DO) samples were routinely collected from all CTD casts taken for 
other chemical measurements. These samples came from standard depths 
(maximum 3000 m) from 29 stations within the fertilized patch and 16 stations 
outside the patch. DO distribution within the patch was also studied in the upper 200 
m water column along two short (30 - 40 km) sections oriented in the north-south and 
east-west directions. 
 
DO in water samples was fixed immediately and analyzed within a few hours of 
collection at a high precision (±0.003 μM) using the SIO (Scripps Institution of 

Oceanography) automated titration system.  
 

Preliminary results 

The DO concentration decreased from ~325 μM (7.3 ml/l) in the surface layer to ~175 
μM (3.9 ml/l) at 800 m depth. Below this depth, a steady increase in the DO 
concentration occurred with depth to values exceeding 220 μM (4.9 ml/l). Variations 
in DO at the same density level from one location to another were quite small, except 
in the surface layer (Fig. 7.1.1).  
 
In the two sections (N-S and E-W) across the fertilized patch, significantly higher DO 
levels were observed in the surface waters relative to waters just outside the patch 
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(Fig. 7.1.2). The concentrations 
were above saturation with 
reference to atmospheric oxygen 
resulting in negative values for 
apparent oxygen utilisation (AOU). 
This provides evidence of 
enhanced photosynthesis and net 
oxygen production oxygen 
production in the fertilised patch.  
 

 
 
 

 

 

 

 

 

  
 

  
 
 

c 

a b 

d 

Fig. 7.1.1: Dissolved Oxygen profiles at various 

stations during the Lohafex cruise 

Fig. 7.1.2: Dissolved Oxygen (a, c) and AOU (b, d) in two sections 

across the fertilised patch 
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7.2  Halocarbons 

Introduction and objectives 

The study of volatile halogenated organics has been of interest due to their potential 
to create halogen loading in the atmosphere, thus producing significant changes in 
climate. They are now known to play an important role in chemistry of marine 
boundary layer (Pechtl et al., 2006). Among these gases, methyl iodide (CH3I), 
dibromomethane (CH2Br2) and bromoform (CHBr3) are produced by both 
macrophytes and microplankton giving rise to typical open ocean depth profiles – 
high concentrations in surface waters especially in coastal areas. Some investigators 
have suggested that photochemical production could also be important in surface 
waters (Jones and Carpenter, 2005). Some of these gases have been studied during 
the previous OIFs in the Southern Ocean (Liss et al., 2005). Here we provide a brief 
account of their distribution in the fertilized patch and just outside it during LOHAFEX. 
 

Work at sea and methodology  

Water samples in duplicate were collected in 25-ml Hamilton gas-tight syringes and 
kept in running seawater until they were analyzed (within a few hours of collection) 
following the method of Moore and Tokarczyk (1993). Briefly, 5 ml of water the 
sample was injected into a glass vessel of Tekmar purge-and-trap system and 
purged with helium at a flow rate of 40 ml/min for 5 minutes at 40˚C. Halocarbons 
were trapped in Vocarb 3000 trap under ambient conditions. The trap was then 
heated to 180˚C and the desorbed gases were injected into a Varian GC-ECD system 
(carrier flow 5 ml/min). Separation was achieved over a 60 m long DB624 column 
and the detector temperature was 290˚C. The GC column oven was programmed to 
get optimum separation with an initial temperature of 40˚C for 1 min that was raised 
to 140̊ C @ 4˚C/min and maintained thereafter for 10 min. Linear 5 point external standard 
calibration was made by using synthetic standards procured from Sigma Aldrich. 
Working standards were made by serial dilution of these standards in nitrogen-
purged distilled water to remove any background contamination. Working standards 
were used daily to perform calibration checks and average calibration factor was 
used to calculate the concentration in the sample. Under these analytical conditions, 
the detection limits were around 0.01 ng/L for most of the compounds studied. 
Suitable blank run was performed after each analysis to check for any carryover in 
between each run. 
 

Preliminary results 

Typical vertical profiles of these gases at an in-patch station are shown in Fig. 7.2.1. 
CH3I concentrations ranged from 0.1 to 1.47 ng/L and showed a subsurface maximum 
at ~40 m with a mean value of 1.07 ng/L. CH2Br2 occurred in low concentrations that 
varied from 0.03 to 0.08 ng/L, averaging 0.05 ng/L. CHBr3 showed a maximum just below 
40 m and its mean concentration was 3.96 ng/L with a range of 0.63 - 11.8 ng/L. The observed 
concentrations are very similar to those previously measured in the Southern Ocean 
with the CH3I levels observed by us being marginally higher by 0.2 - 0.4 ng/L. 
Concentrations below the mixed layer are also comparable to those observed during 
the EisenEx (Liss et al., 2005). Temporal trends at both the in-patch and out-patch 
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stations (not shown) were generally similar with the in patch values being generally 
higher .  
 

 

Fig. 7.2.1: Depth profiles of the halogenated trace gases measured in an in patch station (PS73-192) 
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7.3  Dimethyl sulphide 

Introduction and objectives 

Dimethylsulphide (DMS) is one of the most important natural sources of atmospheric 
sulphur. It plays an important role in the global sulphur cycle and in climate regulation 
(Lovelock et al. 1972). DMS production is dependent on the activity of DMSPlyase, 
which has been found in bacteria and algae. Dimethylsulphoniopropionate (DMSP) is 
a metabolite found in marine phytoplankton, seaweeds and some terrestrial and 
aquatic vascular plants. DMSP serves as a principal osmolyte in many marine algal 
species. DMSP and its breakdown products also appear to have several other 
metabolic functions including active grazing defence. DMS is oxidized into 
dimethylsulphoxide (DMSO) in the upper ocean, the size of sink is still not well 
known. Inter-cellular production of DMSO also occurs in phytoplankton in addition to 
DMSP. Once produced, DMS is lost from seawater by three major pathways - sea-air 
exchange, biological consumption and photochemical transformation, with the latter 
two processes leading to formation of DMSO.  
 
Earlier studies of OIF in the Pacific and Southern oceans have shown an 
approximately three fold increase in DMSP over a few days. This was because of the 
quick response of DMSP-producing phytoplankton to the new iron. We carried out a 
similar study during LOHAFEX with the twin objectives of (a) to evaluate the 
variations of climatically important organic sulphur species, and (b) to understand the 
role of bacteria in the production of DMSO, and the role of DMSO in the global 
sulphur budget.  
 

Work at sea and methodology 

Subsamples taken from Niskin bottles in 60 ml amber coloured glass bottles were 
kept in 4°C until analysis that was performed within a few hours of collection. A 
Shimadzu-2010A series gas chromatograph equipped with a flame photometric 
detector (FPD) was used for the analysis of organic sulphur compounds after pre-
concentration by the purge and trap method as described in detail by Shenoy et al. 
(2002). In brief, 20 ml of sample was purged with nitrogen. After removing moisture 
the sulphur gases were cryogenically trapped in a teflon column using liquid nitrogen. 
The teflon column was then heated in a water bath maintained at >80°C and the 
trapped gases were injected into the GC-FPD. Separation was achieved over a teflon 
Chromosil 330 column. Carrier gas flow was 35 ml per minute, and the hydrogen and 
air flows were adjusted to 80 and 120 ml/min, respectively. The oven and detector 
temperatures were 40 and 200°C, respectively. DMS retention time was 1.86 minute 
under these conditions. For measuring DMSPt (total DMSP), 1 ml of cold 10 M NaOH 
was added to the sample, after the analysis of DMS. Alkali hydrolysis resulted in the 
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cleavage of DMSP into DMS and acrylic acid. DMSO was measured by treating the 
sample with 2 ml of 50 % HCl, and 0.4 g sodium borohydrate and purged for 20 
minutes. Both DMSP and DMSO were quantified using DMS calibration. DMSO 
calibration was carried out onboard and the calibration curve was compared with 
DMS calibration curve to determine the conversion rate and to ensure the efficiency 
of the method. 
 

Preliminary results 

Typical inpatch and outpatch profiles for DMS, DMSPt and DMSO are shown in Fig. 
7.3.1. The values were generally higher inside the patch than outside it. There were 
two significant peaks in DMS values inside the patch, the first on the 12 day after the 
first fertilization, and the second a few days after second fertilization. DMSPt in both 
in patch and out patch, showed covariance with the Chl a concentration. The highest 
value of DMSPt was observed on the day when the phaeocystis colony counts were 
at maximum. DMSO showed some elevated values (up to 11 nM) at the inpatch 
stations, whereas the out patch maximum was about 5 nM. 
 

 
Fig. 7.3.1: Vertical profiles of DMS, DMSPt and DMSO at an in-patch station (PS73-195, left 

panel) and an out-patch station (PS73-185, right panel) 
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7.4  Nitrous oxide 

Introduction and objectives 

Nitrous oxide (N2O) is not only an important greenhouse gas, over 300 times more 
potent than CO2 on a per molecule basis, but it also contributes to the stratospheric 
ozone destruction. Attention has been focussed on this gas because of widespread 
concerns that degradation of organic matter produced as a result of large-scale OIF 
could result in a substantial decrease in subsurface oxygen levels, thereby promoting 
its production that might in part offset the gains due to CO2 sequestration (Jin and 
Gruber, 2003). Of the OIFs conducted in the Southern Ocean, N2O was measured on 
SOIREE (Law and Ling, 2001) and EIFEX (Walter et al., 2005). A significant 
decrease in N2O was recorded in the thermocline during SOIREE, but not during 
EIFEX in spite of its longer duration. Additional measurements are therefore needed 
to reconcile these differences.  
 

Work at sea and methodology 

Samples for N2O were routinely collected from all CTD casts taken for other chemical 
measurements. These samples were taken from standard depths to a maximum of 
3,000 m at stations located both within and outside the fertilized patch. N2O 
distribution within the patch was also studied in the upper 200 m water column along 
two short (30 - 40 km) sections oriented in the north-south and east-west directions.  
 
Estimation of N2O was carried out by multiple phase analysis (McAuliff, 1971). 
Briefly, after equilibriating the sample (25 mL) with an equal volume of He, the latter 
was dried by passing over a moisture trap and introduced into a HP 5890 Series II 
Gas Chromatograph (via a 6-port valve). After separation over a stainless steel 
column packed with Chromosorb 102 (80/100 mesh) and maintained at 80ºC, N2O 
was detected using an electron capture detector (ECD; 10 mCi 63Ni foil conditioned 
at 300ºC). Calibration was achieved with a gas standard (510 ppb N2O in nitrogen 
procured from Alltech Assoc. Inc, IL., USA). Air samples were run frequently to check 
the drift.  
 

Preliminary results 

Nitrous oxide profiles were similar to those reported previously from the Southern 
Ocean (e. g. Walter et al., 2004). Surface values were close to saturation, and the 
N2O and O2 profiles were mirror images of each other (Fig. 7.4.1). Iron fertilization 
had no consistent and significant effect on N2O distribution as revealed by a 
comparison of vertical profiles taken a day before fertilization (Sta. PS73-114) and 
toward the end of the experiment (Sta. PS73-204). Concentrations in the upper 
500 m at these stations were virtually indistinguishable (Fig. 7.4.1). Although there 
was substantial divergence below this depth to about 1,500 m, the change was in the 
opposite sense (a decrease) of what one would expect from the degradation of 
organic matter sinking from the surface. This was most likely related to a change in 
water mass as the patch had moved out of the eddy and the intermediate water 
characteristics had obviously changed.  
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Fig. 7.4.1: Vertical profiles of nitrous oxide just before fertilization (red symbols) and toward the end of 

the experiment (blue symbols) 
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8. IRON CYCLING 

 
L. Laglera1, R. Martinez 1, H. Naik 2, 
A. Bansiwal 3 

1)CSIC-IMEDEA  
2)NIO 
3)NEERI 

Objectives  

It is a well know fact that iron is a limiting factor in controlling primary production in 
the nutrient-rich surface waters of the Southern Ocean and this has been proved by 
several experiments previously carried out in these waters. 
 
Fertilization experiments are based on the dumping of high concentrations of 
acidified ferrous salts. Iron(II) is a thermodynamically unstable species that oxidizes 
to Fe(III) in the time frame of minutes to hours depending on other factors such as 
temperature, the concentration of electron receptors (oxygen, superoxide, hydrogen 
superoxide, etc), light intensity and so on. It is also well studied that iron is bound to 
precipitate eventually due to the low solubility of Fe(III) at natural seawater conditions 
and the rapid formation of colloidal iron (Boye et al., 2005). However, the slow 
development of phytoplankton blooms after fertilization in the frame of days implies 
that some poorly understood mechanism must be present to hold this extra iron in 
surface waters in a form readily available for the phytoplankton. During LOHAFEX 
cruise we made an attempt to address the above issue via the assessment of the 
dissolved and particulate iron concentration in the water column. The study of the 
particulate fraction is a hard task usually not conducted in oceanographic studies and 
no data are available from previous fertilizations. This is because of the risk of poor 
reproducibility and to the assumption that this fraction is either already assimilated by 
cells or strongly refractory in the case of big oxyhydroxide particles.  
 

Work at sea 

Sampling 

Water samples were collected by using 5L Niskin samplers mounted on epoxy paint 
coated Aluminium rosette that was held at the end of a kevlar line. Once on deck 
after collection these were immediately covered by plastic bags and brought to a 
clean air plastic "bubble". The "bubble" had two laminar flow systems running 
continuously that maintained positive pressure ultimately leading to ultraclean air of 
class100. A pressure line carrying high purity nitrogen was plugged to the sampling 
bottles to allow filtration by overpressure. Samples were stored in acid clean teflon 
[for Fe(II)] or LDPE (for total iron) containers. 
 
Iron partition 

The initial design included the determination of the iron partition from the ultrafiltered 
(or truly solved) fraction (< 0.05 μm) to particulate. However, the filtration unit brought 
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onboard presented persistent contamination problems probably due to a wrong 
selection of the material used for the o-ring that seals the filter holder. Therefore, the 
study was more focused at estimating the particulate fraction. The determination of 
the absolute concentration should lead to a better description of the overall iron 
budget. 
 
Samples from key stations, both raw and filtered (online by passing through a 
0.22 μm polycarbonate filter), were analyzed onboard after 24 hours acidification by 
cathodic stripping voltammetry (CSV) (Obata and van den Berg, 2001). This 
treatment has revealed to be enough for total recovery of dissolved species (Johnson 
et al., 2007). The estimation of the absolute iron concentration (dissolved plus 
particulate) is essential, despite of the analytical difficulties, to estimate the whole iron 
budget remaining in the surface waters during the experimental development. In 
order to verify onboard measurements, raw and filtered samples from several 
stations were preserved frozen for lab-based ICP-MS analyses. 
 
Fe(II) 

The reduced form of iron is highly soluble and it is known to be the most rapidly 
bioavailable form. Fe(II) measurements were carried out by using the flow injection 
system FeLume (Waterville Analytical). The chemiluminescence (CL) is obtained by 
the quick oxidation of Fe(II) at high pH in the presence of luminol. In previous iron 
fertilization experiments, Fe(II) concentrations reported were much higher than 
expected (Croot et al., 2005). In this cruise we measured Fe(II) concentrations in 
unfiltered samples in addition to those in the dissolved fraction of the water column. 
We have also monitored the continous flow measurements from the underway 
system while moving though the fertilized patch.  
 
Iron Speciation 

In seawater the speciation of iron is dominated by the presence of binding ligands at 
concentrations higher than the dissolved iron concentrations (Boye et al., 2005; Rue 
and Bruland, 1995). The analytical method consists on the titration of the sample with 
iron and the determination of the labile fraction by CSV. The concentration of these 
ligands changed dramatically during the EISENEX experiment (Boye et al., 2005). 
During LOHAFEX, samples were taken to determine the concentration of iron ligands 
but due to the long time these analysis require, samples were forzen for their analysis 
back in lab.  
 
Iron in excretion products 
One of the important roles of zooplankton in ocean biogeochemistry is that they are 
found to take part in trace metal cycling in the Southern Ocean waters (Tovar-
Sanchez et al., 2007). During LOHAFEX we tried to understand how much of the iron 
is excreted by zooplankton in the non-fertilized and fertilized areas. This included the 
development of clean protocols for handling of those samples. 
 
Growth induced by slow iron release matrices (NEERI) 

The impact of slow iron release in opposition to massive single event fertilizations 
was assessed by onboard incubations in the presence of several iron-enriched 
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matrixes: chitin, chitosan, bentonite and zeolite-A. Phytoplankton growth was 
monitored through the measurements of Chlorophyll a and nutrients consumption 
over time. Bacteria growth was monitored by bacterial secondary production and 
cytommetry. 
 
Effect of zooplankton metabolites on phytoplankton performance 

As complementary experiments the effect of zooplankton excretion products on algae 
growth and primary production was monitored in ondeck incubations. Both 
amphipodes and copepods were collected and their excretion products collected, 
filtered and inoculated in water samples. 
 

Preliminary results 

Sampling during the first few days of the experiment was scarce due to problems with 
the software that control the bottle closure mechanism of the clean rosette. Once 
those problems were solved, 85 stations were sampled down to 150 m depth from in- 
and outside the fertilized patch. 
 
The analyses of raw samples required method development because raw sample are 
not barely analyzed in oceanographic studies and for not being clear that the whole 
iron budget is labile after acidification. The microscopic observation of intact cells 
after 24 hours of incubation at pH 2 suggests that the acidification of raw samples do 
not include intracellular iron. This was supported by the analysis of unicellular culture 
suspension, where leachable iron concentrations barely varied in samples from 
different species and cell concentrations. So herein after we will denominate the 
concentration obtained as leachable iron. This preliminary observation will be 
confirmed by ICP-MS analysis after digestion of raw ocean and culture samples 
where absolute concentration will be obtained.  
 
Preliminary onboard results showed leachable iron concentrations consistently higher 
than total dissolved. The data scattering of replicates from the same unfiltered 
sample was low for deep waters and higher in surface waters. However, the high 
similarity of results when different casts are compared suggests the validity of the 
approach. The increase in concentration in the leachable fraction was about two fold 
with respect to the dissolved fraction but with a slight different pattern. The decrease 
of dissolved iron concentrations is constant with depth from surface (as found in 
EISENEX) while leachable iron profiles show a perfect mixing in the first 40 meters. 
This can be important in order to describe export mechanisms and rates. 
 
The analyses of Fe(II) concentrations in underway and depth profile samples showed 
a very interesting feature. The CL signal was consistently higher in the unfiltered 
fraction. Fe(II) is usually understood to be present as a transient species in its free 
ionic form due to its high solubility and the preference of natural ligands for the Fe(III) 
species. Just recently, the possible presence of natural Fe(II) ligands was suggested 
due to the lower than expected oxidation rates found in natural waters after Fe(II) 
additions but not concentrations in the particulate fraction were reported before. 
Moreover, the CL technique is prone to suffer from chemical interferences. The 
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puzzling higher CL signal found due to the presence of particulate matter required 
experimental testing due to the high risk of interfering species other than Fe(II) 
leading to the unexpected CL signal. For this purpose, high Fe(II) concentrations 
were added to filtered and unfiltered surface waters and while the response falls to a 
significant and constant value in the first case, filtered waters loose completely the 
response after 2 - 3 hours. The experiment also brings light into the mechanism that 
prevents the rapid export of the added iron from surface waters after the fertilization. 
The response in cell cultures thoroughly washed with clean filtered water to remove 
adsrobed species was also tested and the results showed agreement with the 
presence of adsorbed Fe(II). The CL signal of aged seawater (free of Fe(II)) did not 
increase after cells addition and the signal held nicely to a significant value after the 
addition of Fe(II). Additional work will be conducted in lab to definetely confirm or 
discard the presence of significant concentrations of adsorbed Fe(II) onto particulate 
matter.  
 
With respect to the excretion products of zooplankton, we could not study the effect 
of krill according to the pre-cruise plan due to its poor presence in the LOHAFEX 
study area. Preliminary experiments with amphipods and copepods showed no 
significant iron changes in the dissolved fraction after accumulation and incubation 
for hours. Therefore all the attention subsequently was diverted on the iron contained 
by faecal pellets. Samples from the WP2 nets were concentrated and their faecal 
pellets were accumulated using clean techniques in collaboration with the 
zooplankton group. Equilibrium for 24 hours at pH 2 showed that copepod pellets 
leach out important amounts of iron. The concentrations of intra pellet leachable iron 
were in the order of units to tens of millimolar. Depending on the comparison with the 
local production rates of faecal pellets, our finding points in the direction that pellets 
can be a major reservoir of iron in the ocean and their sinking and degradation rates 
are essential to understand the cycling of iron in oceanic waters.  
 
In the slow release incubations conducting by NEERI, the phytoplankton growth was 
strongly incremented by the presence of the slow released matrices with respect to 
the incubations in the presence of FeSO4 and the control. 
  
Incubations of surface seawater in the presence of zooplankton metabolites showed 
clear differences with respect to the control suggesting the importance of zooplankton 
on the recycling of nutrients. 
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Fig. 8.1: Profiles of leachable 

and dissolved total iron and of 

unfiltered and filtered Fe(II) at 

station 139. The profile shows 

all the common features found 

after fertilization: different 

dissolved and leachable 

patterns, subsurface maximum 

unfiltered Fe(II). Preliminary 

results as the sensitivity of the 

Fe(II) measurements has to be 

corrected. 

 

 

 

 
 
 

 

 
 
 
 

Fig. 8.2: Concentration of 

leachable iron found in 

copepod faecal pellets 

extracted from 6 different 

stations. Station are 

plotted in temporal order 

and divided in in and out 

stations. Concentration 

are in the millimolar range. 
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9. NATURAL RADIONUCLIDES AND RADIUM 

ISOTOPES 

R. Rengarajan1, M. Soares2, M. 
Rutgers van der Loeff3 
 

1) PRL 
2) NIO 
3) AWI 

 

9.1  234Th as tracer of export production of POC 

 

Objectives 

An essential parameter of the progress of the induced plankton bloom is the rate at 
which particulate matter, and especially POC is exported from the surface mixed 
layer to greater depths. Apart from the measurements by carbon budgets and 
sediment traps, we planned to quantify this flux by the measurement of the depletion 
of 234Th in the surface waters. Repeated measurements of the integrated 234Th 
depletion allow quantifying the downward flux of particulate 234Th out of the surface 
water. In order to convert this flux to a carbon flux we have determined the 
POC/234Th ratio of large suspended and of sinking particles. 
 

Work at sea 
234Th profiles 

Profiles of total 234Th were measured according to the method of Cai et al. (2006) at 
21 stations: 2 in the eddy before iron fertilization, 10 in-stations, 5 out-stations and 4 
stations outside the eddy.  
 
An aliquot of 4 - L of seawater was collected at depths of 7 m (ship s seawater 
intake), 25, 50, 75, 100, 150, 200 and 300 m. Thorium was collected by 
coprecipitation with MnO2 and counted for beta activity to determine the 234Th 
content. Chemical yield was monitored with a 230Th spike.  
 

POC/234Th ratios 

In order to determine the POC flux from the surface water to greater depth, we 
collected particulate material on precombusted quartz fiber (QMA, nominal pore size 
1μm) filters for analysis of the POC/234Th ratio. In determining the depth of export 
production we considered that (1) the 234Th depletion was largely confined to the 
upper 100 m, (2) the mixed layer was between 65 m and 100 m deep, (3) the 
chlorophyll and light distribution showed that phytoplankton activity was limited to the 
upper approx. 200 m and (4) the neutrally buoyant traps could be deployed from 
about 150 m. We selected 200 m as the depth of export but included some additional 
analyses at 100 m depth as alternative export depth. 
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Total suspended particulate was obtained at 200 m at 19 stations by filtering 8 L of 
seawater. Size-fractionated suspended particulate matter was obtained at 100 m and 
200 m with in-situ pumps. These pumps, deployed at 12 stations, filtered 150 - 680 L 
of seawater consecutively through 50 μm and 10 μm nylon screens and QMA 
(142 mm diameter). The material collected on the screens was ultrasonically 
removed and filtered over QMA. At three stations (137, 139, 146) no 50 μm fraction 
was collected at 200 m. 
 
Sinking material was obtained from splits of the neutrally buoyant sediment traps.  
 
234Th in surface water 

In parallel to the profiles at stations, 234Th was measured every 4 hours in the surface 
water from the ship s seawater intake at 7 m depth with an automated system 
operated over the entire experimental period. 
 

Preliminary results 

1. Scenario at the Start of the Experiment 

At the start of the experiment 234Th was depleted in the surface 50 - 75 m by 25 -
 30 % with respect to its parent 238U. The automatic analyses yielded a depletion of 
about 20 % in the surface water, indistinguishable from the value observed during our 
first visit to this eddy, 10 days earlier. This implies that within the past approx. 2 
months (just over 2 half lives of 234Th) an export of particles from the surface water 
had occurred. This means that, as we had expected from the low nutrient data, our 
experiment took place in a region where an algal bloom had already taken place and 
resulted in a downward particle flux. In this respect our experiment was similar to 
EIFEX but different from EISENEX which started earlier in the season. At the start of 
EISENEX, 234Th was in near equilibrium with its parent 238U, i.e. the 234Th/238U ratio 
was close to equilibrium value of 1 at all depths.  
 
2. Development of the 234Th distribution 

As a highly particle-reactive element, thorium binds to all available particles. The 
increase of particulate 234Th over the course of the experiment by a factor of 2 is a 
clear indication of an increase in particle load (Fig. 9.1). Remarkably, there is no 
difference between in and out patch stations: the increase was observed throughout 
the eddy, irrespective to our location with respect to the fertilised patch. The increase 
in particulate 234Th is more than compensated by a decrease in dissolved activity. 
The resulting small decrease of total 234Th that we see in the results of the semi-
automated analysis would suggest a small increase in export, but again without any 
difference between in and out patch.  
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Fig. 9.1: Distribution of particulate (blue) and total (red) 

234
Th in surface water over time before and 

after iron fertilisation. In-patch (closed symbols) and out-patch samples (open symbols) were 

distinguished based on the distance (within and above 10 nm, respectively) to the active buoy. Two 

samples with distinctly different yellow-brown colour presumably due to Phaeocystis had abnormally 

high percentage of 
234

Th in the particulate phase. 

 
 
3. Development of the export flux 

A more precise result for the 234Th export will be obtained from the profiles, especially 
after the correction for chemical yield, which can only be performed after the analysis 
of the 230Th spike in the home laboratory. The preliminary, uncorrected, on-board 
results do not show any net change in the 234Th depletion over time and no difference 
between in and outstations (Fig. 9.2). The depletion in the upper 100 m remains at 
about 5.7 dpm.cm-2 (Fig. 9.3) corresponding to a steady state (SS) 234Th export flux 
of 1,600 dpm m-2 d-1. With a POC/234Th ratio of order 5 μmol dpm-1 (results obtained 
by Cai during ANT-XXIV/3) this amounts to carbon export of 100 mg m-2 d-1. The time 
series observations also allow the calculation of a non-steady state export flux. The 
result is merely a wide range of fluxes around the SS value, which we interpret to be 
due to the variability in the fertilised patch rather than to real temporal differences in 
the flux. This contrasts with the results of EIFEX, where a clear change in export was 
found in the last phase of the experiment.  
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Fig. 9.2: Seawater total 
234

Th (dissolved + particulate) profiles from the In and Out stations from the 

patch location after iron fertilisation. The vertical dashed line represents 
234

Th:
238

U radioactive 

equilibrium. In-stations 137, 162 and 192 are not included as they have outliers suspected to be due to 

low chemical yield. 

 

 
Fig. 9.3: Measured 

234
Th deficit in the water column (0 - 100 m) from the stations in and out of the 

fertilized patch in the South Atlantic Ocean. The days indicated above are the elapsed days from the 

first iron fertilisation. Values from station numbers 137, 162 and 192 are not included in this plot as 

they have unusually low values at one of the depths suspected to be due to a low chemical yield. 
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4. Distribution of 234Th over Size Fractions 

The larger part of particulate 234Th is in the fraction 1 - 10 μm, but the contribution of 
the larger size fractions is more at 200 m than at 100 m (Fig. 9.4). The increase in 
particle load over time, which was observed in the surface water (Fig. 9.1) is seen at 
100 m, but is no longer perceptible at 200 m. 
 

 
 
Fig. 9.4: Particulate 

234
Th in the fractions 1 - 10 μm, 10 - 50 μm, and >50 μm at 100 m (left) and 200 m 

(right). At 200 m, the 10 - 50 μm and >50 μm fractions have been combined at stations 137, 139 and 

146. 

 
 
9.2  Radium isotopes  

Objectives 

Four radium isotopes are supplied to the ocean by contact with the continent or 
(deep-sea)-sediments: 223Ra (half-life 11.4 d); 224Ra (3.7 d), 226Ra (1620 y) and 228Ra 
(5.8 y). The distribution of these isotopes in seawater has been shown to be most 
helpful to evaluate shelf-basin exchange and water residence times. They can 
therefore help us to determine whether the water masses have been influenced by 
natural iron enrichments by contact with shelf sediments in preceding months (228Ra), 
weeks (223Ra) or days (224Ra).  
 

Work at sea 

The original plan was to use radium isotopes as tracers of terrestrial sources on the 
shelf of South Georgia. As we did not visit that island, this part of the study could not 
be executed. Radium isotopes can also trace terrestrial inputs from icebergs (Smith 
et al., 2008). We have measured 224Ra in the vicinity of iceberg at station 102. 224Ra 
activities were very low and we could not detect an excess, which would have implied 
a terrestrial source. During these measurements, it turned out that the ship s 
seawater supply could not be used for 224Ra measurements. The activities in water 
collected through the ship s seawater system in the fish lab was 10 times as high as 
in water obtained with a membrane pump aspiring seawater through a snorkel 
mounted in the moon pool. Apparently, the seawater tubing has been coated with 
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228Th (1.9 y half-life parent of 224Ra) during the long expeditions to the central Arctic 
in the past two years (see cruise report ARK-XXII/2, Schauer, 2008). 
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10. Primary production, new and regenerated 

production, size-fractionated production 

M. Gauns1, C. Klaas2, S. Mochemadkar1, G. 
Mahadik1, S. Patil1, R. Roy1, S.W.A. Naqvi 1 

1) NIO 
2) AWI 

 

Photosynthesis by phytoplankton, the unicellular algae responsible for the primary 
production in world s ocean, are about half of the total net photosynthesis on earth. 
The Southern Ocean, one of the High-Nutrient, Low-Chlorophyll (HNLC) areas, is 
known to have the necessary amounts of macronutrients (nitrate and phosphate) for 
production at the surface. However, the region remains relatively unproductive due to 
the lack of iron. During this study, a small area of the Southern ACC was manipulated 
by adding iron to assess the effect of iron addition on carbon uptake by the 
phytoplankton, the transfer of carbon to the food chain and to the deep sea. Our 
objectives were to i) follow the increase and spatial distribution of total and size-
fractionated (>20 μm and <20 μm) phytoplankton biomass based on chlorophyll a 
measurements and to estimate ii) rates of primary production in and out of the 
fertilized patch, iii) variations in photosynthetic efficiency of cell, and iv) the stable 
isotope content in mesozooplanktons of in- and outpatch stations. 
 
10.1  Primary productivity (PP) 14C-based 

Objectives 

One of the objective of primary productivity measurements was to provide 14C uptake 
rates for normalizing other nutrient uptake and/or growth rates measured during the 
experiment. And, secondly to understand the response of different phytoplankton size 
fractions (>20 and <20 μm) during the fertilization experiment. 
 

Work at sea 

All samples were collected and processed based on JGOFS protocol (UNESCO, 
1994). CTD rosette sampler fitted with Niskin bottles (12L capacity) were used to 
collect samples from different depths basically covering the euphotic zone. Samples 
from both in-patch and out-patch stations were collected during early morning hours 
well before sunrise. Clean technique was used to transfer known volume of samples 
into polycarbonate bottles (3 light and 1 dark at each depth) to minimize trace metal 
contamination. Care was taken to avoid exposure of deeper samples to surface light 
intensity. All samples were inoculated with 14C tracer and incubated for 13 - 14 h 
(capturing whole daylight period) in on-deck incubators shaded with blue sheet filters 
and neutral density screening to simulate 7 in-situ light levels in upper 100 m. 
Flowing surface seawater was used to maintain sea-surface temperature during 
incubation. Samples were filtered onto GF/F filters (nominal pore size ~0.7 m) to 
give “total” primary productivity. At few stations sample were fractionated (>20 m 
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and < 20 m) to give size-fractioned primary productivity. Total and size fractionated 
production was carried out at 14 stations (10 in- and 4 out-patch stations). Due to the 
lack of time, size fractionated primary productivity data could not be processed 
onboard. 
 
Preliminary results 

Roughly, thirteen-fourteen days after the Fe-release significant increases in algal 
photosynthetic competence was observed, followed by elevated algal biomass (Fig. 
10.1). Integrated primary production ranged between 600 & 900 mg C m-2 d-1 (in 
upper 100 m) outside the fertilized patch. Inside the fertilized patch productivity 
values increased to 1,642 mg C m-2 d-1 (1.5 to 2 fold increase within the patch) and 
remained high (1,314 mg C m-2 d-1) after the 2nd fertilisation but did not increase 
further.  
 
10.2  Fluorometric chlorophyll a measurements  

Work at sea 

Fluorometric chlorophyll a was measured to provide concentrations of plant biomass. 
Roughly 2,600 chl a samples were run during LOHAFEX. Vertical distribution of chl a 

in upper 200 m was monitored almost at all the station besides routine surface 
measurements within the patch and also during surveys in and out of the patch. At 
stations, water samples were taken at 10 discrete depths from each cast and from 
the surface down to 200 m (occasionally 250 m depth). Samples (1 L) were filtered 
onto GF/F filters (nominal pore size ~0.7 m). At major stations, where primary 
productivity was measured, chlorophyll biomass was fractionated into two major size 
classes (>20 m and <20 m size fraction) using nylon filters and following gravity 
filtration. Chlorophyll was then extracted following standard procedure. Sample 
processing was done at low temperature with utmost care.  
 

Preliminary results 

Chlorophyll a followed primary productivity trend and increased markedly after 13 - 
14 days of fertilization during both the stages of fertilisation. Integrated biomass in 
upper 150 m (in some cases 200 m) was ca. 37 mg m-2 at the beginning of the 
experiment (time zero), lower than that of maximum values recorded during first (93 
mg m-2; see Fig. 11.1b) and second (78 mg m-2) fertilization. This suggests that both 
experiments produced notable increases in biomass. Maximum surface chlorophyll a 
biomass recorded inside the patch during this experiment was 1.6 mg m-3. Size 
fractionated biomass showed that 60 - 90 % of phytoplankton biomass was in the 
<20 μm fractions in upper 150 m water column. Hence during the whole duration of 
LOHAFEX phytoplankton community was dominated largely by pico- and nano-
fraction. Stations that covered both day and night sampling showed higher values 
during the day.  
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Fig.10.1. Depth profiles of (a) primary productivity (
14

C- based; mg C m
-3

 d
-1

) and (b) chlorophyll a 

(fluorometric; mg m
-3

) at the beginning and on day 13 after fertilization when both biomass and 

production rates were at the maximum recorded during LOHAFEX. Day 
-1

 indicate one day prior to Fe-

fertilization. 

 
10.3  Photochemical efficiency: Fast Repetition Rate Fluorometer 

(FRRF)  

Photosynthetic physiology of phytoplankton in the water column was also 
investigated at most major stations during the experiment using FRRF (Chelsea 
Technology Group; UK).  
 
Preliminary results 

The photochemical quantum efficiency (Fv/Fm) of photosystem II for the 
phytoplankton community prior to Fe enrichment was ca. 0.25 that gradually 
increased by ~ 45 % inside the Fe-enriched patch. Vertical profiles also depicted 
subsurface maxima (80 - 100 mts), roughly occurring at the base of the photic zone. 
Fv/Fm values at these sub-surface maxima were ~25 - 50 % larger than that at the 
surface.  
 
10.4  Stable isotope analysis of zooplankton 

Objectives 

The stable isotope composition of organic carbon (13C:12C) and nitrogen (15N:14N) 
can be used to provide detailed description of aquatic food web structure and 
understand the fish and zooplankton diet. The stable carbon isotope signature ( 13C) 

(a) (b) 
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of a consumer reflects its source of dietary carbon, whereas the stable nitrogen value 
( 15N) reflects the trophic position of an organism. Therefore, the combined 

measurements of 13C and 15N can provide insights into flow of biomass into the 

food web as it is successively transferred to higher trophic levels. 
 

Work at sea 

Samples were collected in vertical net hauls (0 - 200 m) with the help of a specially 
designed combination of three different superimposed nets with cod-end buckets 
attached to the same frame. The mesh size of the nets were 200 μm (first internal 
net), 100 μm (middle net) and 60 μm (outer net). Samples retained by each net were 
split into two parts. One part was immediately filtered onto a precombusted 
Whatmann GF/F filter and dried overnight (60°C) for isotopic analyses in the shore 
laboratory. The second fraction was fixed with 5 % formalin (buffered with hexamine) 
for microscopic examination back home. 
 
10.5  Phytoplankton pigments (HPLC based) 

Objectives 

To overcome some of the inadequacies of microscopy, high performance liquid 
chromatography (HPLC) pigment method has been used in recent years to obtain 
accurate chlorophyll a data as well as detailed information about the composition of 
phytoplankton communities. This method is based on the premise that different algal 
classes have specific signature, or marker pigments. For example, fucoxanthin, 
zeaxanthin, and chlorophyll b have been selected as taxonomical pigments for 
Bacillariophyta (diatoms), Cyanobacteria (blue-green algae), and Chlorophyta (green 
algae), respectively.  
 
For HPLC analysis 1 - 1.5 l of samples were filtered through GF/F (25 mm) filter 
paper and stored at -80°C. An HPLC system was carried onboard but due to increase 
in baseline noise presumably due to ship s vibration it was decided to analyses the 
samples back at lab in NIO, Goa. However, a measurement was carried out onboard 
for station PS/73-148. At this station the following marker pigments were present: 
peridinin, fucoxanthin, neoxanthin, prasinoxanthin, 19  hexanoyloxyfucoxanthin, 19 
butanoyloxyfucoxanthin and chlorophyll b belonging to groups like (Diatoms, 
dinoflagellates, prymnesiophytes and chlorophytes). Our result from this station 
indicated that much of the biomass during LOHAFEX was contributed by the smaller 
fractions of the phytoplankton community with groups like chlorophytes and 
haptophytes being the dominant phytoplankton within the water column however 
minor contribution could also be seen from diatoms and dinoflagellates. Interestingly, 
two prasinoxanthin-like pigments were also identified during this cruise. These 
pigments showed similar spectra as prasinoxanthin but eluted at different retention 
times. 
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11. PHYTOPLANKTON PIGMENTS, DILUTION 

EXPERIMENTS 

S. Patil1, B. Fuchs2, J. Wulf2, G. 
Mahadik1, C. Klaas3  
 

1) NIO 
2) MPI 
3) AWI 

Objectives 

The smaller heterotrophs (nano- and microzooplankton) have been shown to be the 
main grazers of phytoplankton in surface waters of the world s oceans (Landry and 
Calbet, 2004). Plankton communities in HNLC waters of the Southern Ocean tend to 
be dominated by nanophyto- and nanozooplankton as well as microprotozoan 
grazers (Klaas, 1997; Smetacek et al., 2004) while transient blooms tend to be 
dominated by the large diatoms. Some nanophytoplankton (Phaeocystis species and 
coccolithophore species), however, can make large blooms in areas were nutrients 
are available but diatom growth is limited by silicic acid availability. LOHAFEX 
presented a unique opportunity to study the development of the plankton community 
under such conditions. In this study, we followed the development of the 
nanoplankton community and micro- and nanozooplankton grazing in order to 
understand factors affecting community dynamics in iron replete and low silicic acid 
conditions in the Antarctic Circumpolar Current. 
 

Work at sea 

Nanoplankton assemblage biomass and distribution 

Water samples for nanoplankton counts were collected at 9 discrete depths (from 10 
to 200 m depth) with Niskin bottles mounted on a CTD rosette. 125 mL subsamples 
were fixed with glutaraldehyde (0.3 % final concentration) and stored at 40°C. Forty 
to 100 mL of water samples were filtered onto 25 mm, 0.8 m, black polycarbonate 
filters. Before the end of the filtration, samples were stained for 5 minutes with 4 - 6-
diamidino-2-phenyl indole (DAPI, 5 g mL-1 final concentration) and for one minute 
with proflavin (5 g mL-1 final concentration). After this staining procedure and upon 
filtration of the remaining sample filters were immediately transferred onto glass 
slides, mounted in low fluorescing immersion oil and stored at -80°C until further 
analysis. 
 
Micro- and nanozooplankton grazing 

The dilution method of Landry and Hassett [1982] was used in order to estimate 
Micro- and nanozooplankton grazing rates. Nine in-patch and three out-patch grazing 
experiments were carried out during the expedition.  
 
Before starting the experiments all the bottles were thoroughly cleaned with 1N HCl 
and rinsed with Milli Q water. 50 liters of seawater collected from the 20 m depth was 
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prescreened with 1 mm mesh to exclude larger copepods. 25 liters seawater was 
filtered through 0.2 μm capsule filters and used to prepare different dilutions of 
prescreened seawater. Typical concentrations used in dilution series were 100 %, 75 
%, 50 %, 25 % and 10 % of the ambient concentration. Each dilution series was 
incubated in duplicates, in 2L acid cleaned polycarbonate bottles. In some 
experiments, dark bottles with undiluted and 50 % diluted pre-screened seawater 
were also incubated. In addition, screened seawater (200 μm mesh size) was 
incubated in order to compare with experiments carried out using larger zooplankton 
(Mazzochi et al., this volume) as well as determine potential trophic-cascade effects 
within the community. T0 and T24 samples were collected for measurements of 
chlorophyll a concentrations (Chla) as well as for microscopy determination of 
microplankton and nanoplankton biomass and assemblage composition. In addition 
samples for flow cytometry analysis were collected from day 23 after fertilization 
onwards. Chla and flow cytometry analyses for pico- and nano-eukaryotes and 
bacterioplankton abundance were carried out on board. 
 
Microscopy counts of microplankton and nanoplankton will be carried out in the 
laboratory ashore. 
 

Preliminary results 

Grazing based on Chla measurements 

Apparent growth rates based on Chla measurements ranged between  
-0.16 to 0.35 d-1 for the highest dilution (10 % unfiltered seawater) and -0.27 to 
0.19 d-1 for undiluted incubations, with highest values at the end of the experiment. 
These results indicate that grazers consumed at least 50 % of phytoplankton 
production. However, regression curves between T24 and T0 differences in apparent 
growth rates and dilution factor were not significant as overall variability of Chla 
values exceeded differences between T0 and T24. These results are due partly to 
due to the low net phytoplankton growth rates during the experiment combined with 
the variability of measurements (±4 % average analytical errors and similar values for 
the variability from replicate incubation bottles). In addition, Phaeopigments 
concentrations (Phaeop) in surface waters during LOHAFEX where high reaching 
maximum values of over 40 % of Chla + Phaeop. This is more than twice the 
phaeopigments contribution found in a previous iron fertilization experiment (EIFEX) 
resulting in a bloom dominated by diatoms (Klaas et al., unpublished data). The high 
phaeopigments concentrations might have further contributed to the variability in Chla 
measurements and are an additional indication of high grazing rates by zooplankton 
during LOHAFEX. 
 
Grazing based on flow cytometry counts 

Flow cytometry analyses of dilution experiments carried out at the end of the iron 
fertilization experiment are shown in Figs. 11.1 and 11.2. Apparent growth and 
grazing-mediated mortality rates of picoheterotrophs (mainly bacteria) showed no 
difference inside and outside the fertilized patch (Fig. 11.1). In both areas, grazing 
and growth rates where similar (0.3 to 0.5 d-1). 
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Fig. 11.1: Apparent growth rates (μ) and grazing-mediated mortality rates (g) for the picoheterotrophs. 

The resulting net growth rates (μ-g) are also given in the figure. Station 160 was carried-out outside 

the fertilized patch, all others stations where in-patch stations. Stations 160, 162, 170, 192 and 204 

took place on day 23, 24, 27, 33 and 36 after fertilization, respectively. Error bars correspond to one 

standard deviation. 

  
Growth and grazing-mediated mortality rates of pico- and nanophytoplankton showed 
strong variability both inside and outside the fertilized patch (Fig. 11.2). Apparent 
growth rates reached higher values inside the fertilized patch (maximum of 1 d-1). 
Overall grazing rates were similar to growth rates both inside and outside the 
fertilized patch.  
 

 

Fig. 11.2: Apparent growth rates (μ) and grazing-mediated mortality rates (g) for the pico- and 

nanophytoplankton. The resulting net growth rates (μ-g) are also given in the figure. Station 160 and 

199 were carried-out outside the fertilized patch, all others stations where in-patch stations. Stations 

160, 162, 170, 192, 199 and 204 took place on day 23, 24, 27, 33, 35 and 36 after fertilization, 

respectively. Error bars correspond to one standard deviation. 
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Our results indicate that nano- and microzooplankton grazers consumed most of the 
production of pico- and nanoplankton both inside and outside the fertilized patch 
during LOHAFEX.  
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12. DOC, DTN, POC, PON, 13C, 15N  

M. Gauns, M. Muthirenthy, R. Kanta, 
S. Karapurkar, S. Kurian, A.K. 
Pratihary, A. Sarkar, S.W.A. Naqvi  
 

NIO 

 

12.1  Dissolved organic carbon (DOC) and dissolved total nitrogen 
(DTN) 

Muthirenthy M. 

Objective  

To investigate the variability of DOC and DTN in surface waters caused by the 
iron-induced phytoplankton bloom for quantifying the conversion of new 
biomass produced to dissolved organic fractions. 
 

Work at sea 

Seawater samples at the in-patch and out-patch stations were collected for 
DOC and DTN in pre-combusted EPA glass vials having silicone septa. 
Samples were filtered avoiding any contamination using a glass syringe 
through GF/F 0.45 M acrodisc syringe filters and immediately frozen at -4°C. 
These samples were carried to National Institute of Oceanography, Goa, for 
analysis. DOC and DTN were measured simultaneously using the TOC-V-CSH 
analyzer by high temperature catalytic oxidation method and DTN was 
analyzed using the chemiluminscence detector. Prior to analysis the column 
was conditioned with multiple injections of Mili-Q water and calibration was 
performed every analytical day using potassium hydrogen phthalate and 
potassium nitrate standards for DOC and DTN, respectively. The instrument 
performance was checked each time after calibration by running three 
consensus reference samples (CRM) which had deep sea DOC of 44 - 46 M 
and DTN of 32.8 M. These CRMs were kindly provided by Prof. D.A. Hansell, 
University of Miami. Standard deviations of triplicate measurements were 
found to be about 0.2 %. 

 

Preliminary results 

The DOC and DTN changes in the surface water (10 m depth) are shown in 
Figs. 12.1 and 12.2, respectively, for in-patch stations, and in Figs. 12.3 and 
12.4, respectively, for out-patch stations. The initial concentration of DOC in 
surface water was 71±5 M. As the bloom progressed from day 0 to day 13, 
DOC in the surface layer gradually increased by 13 M and remained roughly 
constant up to day 23. Subsequent re-fertilization did not have any significant 
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effect on DOC levels showing a net gain of only 4 M from day 23 to day 37 
(note that values of both DOC and DTN on Day 28 were anomalously low). 
Surface DTN however showed a patchy distribution within the patch and an 
overall decrease of 5 M was observed from day 0 to day 37. Average surface 
DOC concentration at the OUTPATCH stations was 68 M, while DTN showed 
an average of 22.3 M.  

 
 

 

 

 

 

Fig. 12.1.1: Variation of DOC 

at the in-patch stations during 

LOHAFEX 

 

 

 

 

 

 

 
 

Fig. 12.1.2: Variation of DTN 

at the in-patch stations during 

LOHAFEX 

 

 

 
 

 

 

 
Fig. 12.1.3: Variation of DOC 

at the out-patch stations 

during LOHAFEX 
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Fig. 12.1.4: Variation of DTN at 

the out-patch stations during 

LOHAFEX 

 

 

 

 

12.2  Natural isotope abundance in dissolved nitrate 

A. Sarkar, M. Muthirenthy, S.W.A. 
Naqvi and S. Karapurkar 

NIO 

Objectives 

To investigates nitrogen uptake and regeneration through analysis of isotopic 
composition of nitrate following iron enrichment. 

Work at sea 

Sea water samples were collected during the expedition at 27 stations. One of these 
stations was sampled before fertilization and four stations were located outside the 
Fe-fertilized patch. The remaining stations sampled the fertilized patch. Samples 
were collected from 9 standard depths down to 200 m. Samples were immediately 
filtered through GF/F filters and the filtrates were poured into acid-washed 500-ml 
Tarson bottles and acidified with 2 ml of 50 % hydrochloric acid. The acidified 
samples were stored at room temperature for analysis in the shore laboratory. 
 
 
12.3  POC, PON, 13C, and 15N of particulate matter  

A. Sarkar, M. Muthurenthy, S. 
Kurian, S.W.A.Naqvi 
 

NIO 

Objectives 

To estimate various organic fractions of carbon and nitrogen and their isotopic 
composition for constraining the budgets of these elements and to investigate 
changes caused by iron fertilization. 
 

Materials and Method 

Sea water samples were collected at 27 stations. One of these stations was sampled 
before fertilization and four stations were located outside the Fe-fertilized patch. The 
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remaining stations sampled the fertilized patch. Samples were collected from 
9 standard depths down to 200 m. 2 L of the sample was filtered immediately through 
pre-combusted GF/F filters (25 mm diameter, 0.7 μm pore size) under vacuum 
(~100 mm Hg). The filters were preserved frozen (-20°C) for analysis in NIO using an 
elemental analyzer coupled to an isotope ratio mass spectrometer. 
 
  
12. 4  13C- and 15N-based primary, new and regenerated production 

A. Sarkar, M. Gauns, A. K. Pratihary, 
S.W.A. Naqvi, S. Kurian, S. 
Karapurkar 
 

NIO 

Objectives 

To estimate primary production including its new  and regenerated  components 
using 13C- and 15N-labelled tracers to quantify carbon fixation and its export flux. This 
would also lead to better understanding of relevant biogeochemical processes that 
control the distributions and fluxes of carbon and nutrients in the surface ocean.  

Work at sea 

Carbon, nitrate, ammonia and urea uptake rates were measured during LOHAFEX. 
Sea water was sampled using Niskin bottles at thirteen stations including one before 
fertilization and three out-patch sites from five depths down to 100 m. Samples were 
collected late at night or early dawn. The background nutrient concentrations, except 
for urea, were measured immediately using an auto analyser. Aliquots of the samples 
were poured in pre-cleaned transparent polycarbonate bottles. Each aliquot was 
spiked with 0.2 μM, 0.05 μM and 0.05 μM of 15N labelled nitrate, ammonia and urea, 
respectively, along with 20 μM of 13C-labelled HCO3

-. After the addition of tracers the 
bottles were covered by appropriate neutral density light filters in order to simulate 
the natural light conditions. The bottles were incubated in deck incubators and the 
incubation temperature was maintained by continuous sea water flow. The incubation 
time was 12 - 14 hours, from dawn to dusk. After the incubation the samples were 
filtered through pre-combusted GF/F filter papers under vacuum (<100 mm Hg). The 
filters were preserved frozen (-20°C) for mass spectrometric analysis at NIO. 
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13. PHYTOPLANKTON PHOTOPHYSIOLOGY AND BIO-

OPTICS 

M. Ribera d'Alcalá1, C. Klaas2  
 

1) SZN 
2) AWI 

Objectives 

It is well established from the first pioneering fertilization experiment that 
phytoplankton relieved from iron limitation displays a measurable increase in the 
Fv/Fm ratio which can be easily tracked by a FRRF or similar sensors. Because of 
such evident response different equipments capable to measure variable 
fluorescence and the related parameters, e.g., the functional cross section of PSII 
(PSII, have always been used to track the location of the fertilized patch to be 
distinguished from the areas or the water parcels not affected by iron addition. Also 
during LOHAFEX and despite the relatively low amplitude of the Fv/Fm ratio in many 
circumstances the FRRF measurements confirmed to be the most reliable sign of 
being inside or outside the patch. 

Work at sea 

A recently calibrated Chelsea Fastracka was immersed in a plastic tank with moon 
pool water continuously pumped through the dark cell of the instrument. To prevent 
air bubbles flowing through the cell a T bypass was mounted before the cell entrance 
with the pump sucking on the exit side of the cell to avoid sample contamination. The 
immersion of the Fastracka in the tank full of water allowed also thermal stability of 
the measurements with the temperature continuously monitored by the instrument 
sensor. 
 
The setup profited of the acquisition procedure set up by Rüdiger Röttgers and his 
group in the previous EIFEX experiment. Briefly, the procedure was the following: 
-  the instrument was running all the time, except when downloading data, 

preferably during stations; 
-  to warrant both internal storage of data and their visualization in real time for 

ship operation, Fastracka was set in verbose mode with the interface 
transmitting to a modem the readings pertaining to each excitation curve; 

-  a dedicated script in Matlab, using the proper constants stored in a file, was 
continuously converting readings in photosynthetic parameters which could be 
plotted in real time on the PC screen; 

-  to display the data to the other participants a VNC server was activated on the 
PC for a display mirror of the PC interfaced with the instrument; 

-  a remote connection was also activated to have a remote control of the 
software when needed. 

-  The original protocol developed by Röttgers group included also an empirical 
compensation for non-photochemical quenching during the day. It was active 
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also during LOHAFEX but, likely because the different amplitude of variable 
fluorescence response as compared to EIFEX and the poor results of various 
attempts to recalibrate the empirical relation, the corrections produced by the 
routine were never robust. Therefore only the relative signals were considered. 

- Also the real time synchronization with the ship position was not active 
because of the change in the software for ship location and the difficulty to 
interface the PC with the source of location information. However this lack of 
information was easily handled with an effective link with the bridge. In some 
cases, profiting of the remote VNC link, a PC was set to run on the bridge for 
real time decisions. 

-  Every 24 - 36 hours, when not in a crucial phase and generally at stations, the 
instrument was stopped to download the binary data, while carefully cleaning 
the cuvette; 

-  binary data were afterwards processed by a routine written by Sam Laney 
(WHOI, MA, USA) to convert the data in the proper format to be processed by 
the FRS code by Chelsea Instruments; 

-  thus two parallel data sets where generated which correspond to two different 
fitting routines for the excitation curves; 

-  finally the data where merged, using time as the common unit, with 
atmospheric and hydrographic data plus, obviously, ship location. 

 
The overall procedure, besides providing real time information of the phytoplankton 
physiology as a proxy of iron stimulation, allowed a daily representation of the spatial 
distribution of the response, with the intrinsic limitation of measurements taken in 
daylight. 
 
A typical map produced with an ad hoc MATLAB script is reported in Fig. 13.1. 
 

 

 

 

Fig. 13.1: Map of Fv/Fm during the first fertilization 
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A comparison with chlorophyll a concentration and other data showed that 
measurements carried out during daylight were very seldom indicative of being in the 
patch. The values of Fv/Fm in daylight were generally very low (0.1 - 0.2 Fv/Fm 
relative units), even when inside the patch, as testified by night measurements and 
complementary data. Part of the problem may arise because of the low chlorophyll 
concentrations with correspondent low values of both F0 and Fm, with a very noisy 
ratio. Another part might be due to a weaker, than in previous experiments, photo-
physiological response of phytoplankton. Both hypotheses have to be analyzed in 
more detail during post-cruise phase. During all the experiment the value of 0.5 was 
very seldom reached, with most of the values inside the patch being in the range of 
0.3 - 0.4. In some occasions other fluorescence based parameters, namely 
connectivity p, were positively correlated with a community exposed to iron 
enrichment. 
 
Another interesting feature was the recurrent increase of Fv/Fm at the time of 
sunrise, which suggests either an internal rhythm of the algae or an acute response 
to the dawn light. 
 
Maps of the FRRF were overlapped with independent dynamical measurements, 
e.g., drifters, and the few satellite images available for the whole duration of the 
cruise. Those corroborated the real time evaluation of being inside or outside the 
patch. Two examples are reported in Figs. 13.2 and 13.3. 
 

Fig. 13.2: The Fv/Fm track is overlapped on the February 14 MODIS image of the patch. 

Correspondence between high chlorophyll values due to iron addition and stronger photo-

physiological activity (red shifted dots) by phytoplankton is clearly visible. 
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During the whole cruise variable data were used mostly as a diagnostic tool to follow 
the patch. Especially after the second fertilization, because of the very weak 
response to the second iron addition, the spread of the values of Fv/Fm, also due to 
changes in the illumination over the day-night cycle, made more difficult to use the 
parameter as a robust indicator of the patch in real time. In the last phase, before 
leaving the area, Fv/Fm values tended to be always lower than during the starting 
and the mid-phase of the experiment. Integrated data analysis, e.g., a merge of 
variable fluorescence, chlorophyll a and dynamical reconstruction could be carried 
out only using graphic representations, since no numerical circulation model was 
running on the ship. 
 
Despite this, the whole data series of Fv/Fm maps, merged with the few satellite 
images and the altimeters derived flow fields, showed that all the operations aimed at 
sampling the patch, have been conducted within the patch. 
 
 

 

Fig. 13.3: Fv/Fm map is overlapped on the Finite Size Lyapunov Exponent distribution and the 

reconstructed flow field, based on the altimeter data. 

 
 
 
Far from the daily urgency of sampling, post-cruise processing will better clarify the 
dynamics of the patch and allow for a better assessment of which part of the patch 
have been sampled at each moment of the experiment.  
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14. MICROBIOLOGY  

B. Fuchs1, J. Wulf1, N. Ramaiah2, S. 
K. Singh2, V.R. Sundareswaran3, 
G.S.N. Reddy3 

1) MPI Bremen 
2) NIO 
3) CCMB 

 
14.1  Bacterioplankton composition 

B. Fuchs1, J. Wulf1 1) MPI Bremen 

Objectives 

Iron-fertilization experiments are well suited to follow induced shifts in community 
composition under controlled conditions and to reveal the links between the different 
trophic levels. Recently it has been shown, that within a naturally fertilized area at the 
Kerguelen upwelling plateau the bacterioplankton community was qualitatively and 
quantitatively different from the community outside (West et al. 2008). We 
hypothesized that in an artificially fertilized patch similar a community shift in 
bacterioplankton will be observed.  
 

Work at sea 

On board, we closely followed the picoplankton community by flow cytometric 
counting. Both, heterotrophic Bacterioplankton and autotrophic Picoplankton 
populations were recorded from most of the stations and depths sampled.  
 
To determine the bacterioplankton community composition, samples for fluorescence 
in-situ hybridisation (FISH) were taken. For some representative stations and depths 
the samples were analysed already on board by epifluorescence microscopy. 
Fluorescently labelled oligonucleotide probes specific for chosen key groups of the 
bacterioplankton community have been used to follow the community composition 
during the experiment.  
 
At every major station during the experiment large volumes of water (60 - 90 l) was 
sampled for the later analysis of the metagenomes. The water was pre-screened 
through filters of 5.0 μm and 3.0 μm pore size, respectively, in order to separate the 
majority of the eukaryotic plankton from the smaller bacterioplankton, which was 
filtered onto filters of 0.2 μm pore-size. These biomasses will serve as the basis for a 
metagenomic approach to reveal the metabolic potential of the pico- and 
bacterioplankton community present at a certain time point during the experiment. 
The large pore size filters will be processed later on at the AWI Bremerhaven in 
collaboration with Klaus Valentin and Claudia Metfies. 
 
The metabolic activity of specific groups of bacterioplankton was assessed by pilot 
experiments with isotopically labelled substrates. As substrates 15N labelled nitrate 
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and 13C labelled bicarbonate were used. The amount of uptake of substrates and the 
simultaneous identification by FISH will be determined back home at the institute by a 
technique called Nano-SIMS – a next generation mass spectrometer with submicron 
spatial resolution.  
 

Preliminary results 

The bacterioplankton abundance fluctuated during the experiment between 360.000 
cells ml-1 and 670.000 cells ml-1 inside the fertilised patch at 20 m depth (Fig. 14.1.1). 
Cell numbers increased slightly after fertilisation to 550.000 cells ml-1, but decreased 
dramatically to almost half of the initial numbers on day 12 after fertilisation. 
Afterwards, they increased again to the highest level measured (670.000 cells ml-1) at 
days 30 - 32 after fertilisation. At the end of the experiment, the bacterioplankton cell 
numbers was around 450.000 cells ml-1.  
 
Surprisingly, the bacterioplankton cell numbers were in the same range outside and 
inside the patch in the mixed surface layer (Fig. 14.1.1.). Only in the beginning of the 
experiment at one station on day 8 the cell numbers were significantly lower outside 
(250.000 cells ml-1) than inside the patch (450.000 cells ml-1).  
 
The bacterioplankton cell counts inside the patch varied up to 20 % as measured on 
three transects through the patch. However at each station, the cell counts within the 
surface mixed layer was more constant and varied often less than 5 %, pointing to 
spatial patchiness of the bacterioplankton abundance rather than an experimental 
variation. 
 

 
 

Fig. 14.1.1: Bacterioplankton abundance during the course of the experiment at 20 m water depth. 

Note: On days 29 to 32 several transects with multiple stations were recorded. 
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In contrast to the bacterioplankton community, the autotrophic pico- and 
nanoplankton responded to the fertilisation and doubled in numbers until day 22 of 
the experiment (Fig. 14.1.2). With one exception on day 8 and 9, there were regularly 
higher cell counts inside the patch compared to stations outside the patch. The 
picture blurred after day 24, when there were similar autotrophic pico- and 
nanoplankton counts measured inside and outside the fertilised patch and the 
variance inside the patch was high. Also there is no clear effect of the second 
fertilisation on the autotrophic pico- and nanoplankton discernable. 

 
 

Fig. 14.1.2: Autotrophic pico- and nanoplankton abundance during the course of the experiment  

at 20 m water depth. 

 
 
The bacterioplankton composition as determined by fluorescence in-situ hybridisation 
pointed to a rather stable community dominated by the alpha subgroup of 
Proteobacteria, whereas the gamma Proteobacteria and Bacteroidetes made up only 
a minor fraction of the community. However the data gained on board needs to be 
verified by additional experiments back home in the lab. 
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14.2  Bacterial productivity and other measurements 

N. Ramaiah N., S. K. Singh    NIO 
 

Objectives 

In most pelagic ecosystems, bacterioplankton biomass is a substantial fraction of the 
total biomass and, bacterial carbon can often exceed that of phytoplankton carbon 
especially in the regions of low chlorophyll concentrations. It is realized that primary 
production and, consequent availability of easy-to-assimilate dissolved organic 
matter (DOM) facilitate heterotrophic bacterial growth and abundance. Since much of 
the primary production is grazed upon by larger, herbivorous zooplankton 
communities, proliferation of bacteria is essential for nourishing a plentitude of 
microzoans: ciliates (eg., tintinnids) and heterotrophic flagellates particularly in 
regions - and seasons - of low chlorophyll production and, concentrations. Thus, 
proliferation of bacteria by their unique ability of assimilating DOM, helps nourishing 
particulate-ingesting phagotrophic micro-, meso-zooplankton and/or other fauna. 
Further, their role is important in the biogeochemical cycling of biologically essential 
elements in any ecosystem. Measurements of bacterioplankton abundance, 
community composition and productivity processes are useful indicators of biological 
response to iron-fertilization. Thus, we aimed at following fertilization induced shifts in 
bacterial production. 
 

Work at sea 

As a part of the LOHAFEX the following measurements were carried out.  
 
1. Total counts of DAPI stained bacteria were made to follow as to how bacteria 

respond to iron fertilization.  
2. Direct viable counts were made to estimate the metabolically active fraction of 

heterotrophic bacteria. 
3. Bacterial growth rate measurements were made to assess the change in their 

growth rates in response to fertilization.  
 
In addition as planned, water samples from in and out patches were collected from 
discrete depths and, microbes therein have been strained on Sterivex filters for 
DGGE profiling and other molecular analyses of in- & out- patch bacterial community 
later in the Institute (Goa).  
 
Sampling 

Water sampling was carried out from 5 out patch (St No: PS73-112, 114, 146, 160 
and 199) and 10 in-patch (PS 73-114 [d-1]; 132 [day 4]; 135[d 9];137 [d 12]; 139 [d 
13]; 148 [d 18]; 162 [d 24]; 170 [d 28]; 192 [d 33] and 204 [d 36]) stations. From all 
these stations water samples were collected from 5, 10, 20/chl max, 50, 100, 200, 
300, 500 and 1,000 m.  
 
 



14.2 Bacterial productivity and other measurements 

 

74 

Total counts  

For estimating bacterioplankton abundance standard epifluorescence microscopic 
method was followed. From these stations, water samples from all depths were fixed 
with 0.22 μm prefiltered buffered formaldehyde (2 % final concentration) and stored 
at 4ºC in the dark until slide preparation, usually within 3 - 5 hrs of sample collection. 
Subsample volumes of 5 ml were stained with DAPI (final concentration 0.01 %) for 5 
mins, filtered (0.22 μm black Nucleopore filters) and slides prepared, epifluorescence 
microscopic counts from 10 - 15 fields made and total bacterial abundance 
estimated. Similarly, for estimating direct viable counts, 10 ml samples from each 
sampling depths were amended with 150 μl 2 % (wt/vol) yeast extract and 10 μl 
nalidixic acid (0.1 μgml-1) and, incubated for 8 - 10 hrs in dark at 4ºC. Following 
incubation, the contents were stained with DAPI (final concentration 0.01 %) for 5 
mins, filtered (0.22 μm black Nucleopore filters) and slides prepared as described 
above. Enlarged cells discernible as bacteria were counted from atleast 15 fields for 
obtaining the direct viable counts and their percent fraction in each sample was 
calculated. 
 
Bacterial production rate (BPR): The BPR was estimated from the measurements of 
methyl-3H-thymidine and leucine incorporation rates by following the standard 
procedures. The zero-time blanks were run for all the samples in order to obtain 
correction for abiotic/filter adsorption.  
 

Preliminary results 

In the in-patch stations, the total counts in the top 50 - 100 m showed increases by 
day 5. Ranging narrowly between ~450,000 and 650,000 cell counts in the top 50 m, 
the profile to profile variations in these counts was imminent and, fertilization did not 
enhance the bacterial abundance drastically. In comparison with out-patch stations or 
with the day -1, the highest increase in surface to 100 m column integrated bacterial 
counts was ~160 % in the in-patch. Fig. 14.2.1 depicts the vertical profiles of total 
and direct viable counts of bacteria from a few locations in-patch. 
 
The fractions of direct viable counts ranged between 10 and 15 % in the top 50 m 
and were lower between 2 and 5 % in the deeper depths. As an example, Fig. 14.2.2 
denotes the percentage of DVC in the total counts at different depths at two in-patch 
locations. A cursory look at the DVC data from all the stations suggests that the 
percent fractions of DVC remained more or less similar both in patch and out patch 
indicating that the general proportion of metabolically active fractions is around 10 % 
in the top 100 m and ~ 3 % between 200 and 500 m. 
 
Between thymidine (Fig. 14.2.3) and leucine (Fig. 14.2.4), the latter appears to be 
preferentially taken up by bacteria in the LOHAFEX region. In comparison with the 
EISENEX results, it is apparent that the rates of incorporation of both thymidine and 
leucine are twice as fast as were observed during the EISENEX. Detailed analyses of 
the bacterial growth rates from different regions in the Southern Ocean will be made 
to elucidate the mechanisms leading to such increased uptake potential. Further data 
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on bacterivores, phytoplankton composition and zooplankton details will be made use 
of to present a detailed analyses/interpretation of these data. 
 
  
 
 
 
 

 
 

Fig. 14.2.1: Total counts and direct viable counts of bacteria in the in-patch stations during 

LOHAFEX 
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Fig. 14.2.2: Percent fractions of direct viable counts at two in-patch stations, PS73-114 [d-1] and 

PS73-135 [d 13] during LOHAFEX. Sampling depth denoted in both panels are, 1for 5 m; 2 - 10 m; 3 - 

20 m; 4 - 50 m; 5 - 100 m; 6 - 200 m;7 - 300 m; 8 - 500 m and 9 for 1,000 m. 
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Fig. 14.2.3: Thymidine Incorporation Rates (pML

-1
h

-1
) measured from 5 different depths (from top to 

bottom: 100 m, 50 m, 20 m/chl max, 10 m and 5 m) during LOHAFEX. Average values for in-patch 

and out-patch stations are represented by red and light blue bars, respectively. 
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Fig. 14.2.4: Leucine Incorporation Rates (pML
-1

h
-1

) measured from 5 different depths (from top to 

bottom:100 m, 50 m, 20 m/chl max, 10 m and 5 m) during LOHAFEX. Average values for in-patch 

and out-patch stations are represented by red and light blue bars, respectively. 

 
 
 
 



14. Microbiology 

79 

14.3  Bacterial biodiversity 

V.R. Sundareswaran, G.S.N. Reddy 
CCMB 

Objectives 

The objective of the present cruise was to study (i) the variation in prokaryotic 
community before and after fertilization and (ii) to determine the plate count and 
isolate novel prokaryotes. In order to fulfill the above objectives, approximately 5 lit of 
water was collected, before and after iron fertilization, from fourteen stations (Tab. 
14.3.1) from 12 different depths (surface to 1,000 meters) and filtered through 
0.22 μm millipore filters, in duplicates. DNA would be isolated from these filters and 
prokaryotic community fingerprinting would be done, on the on-shore laboratory, 
using various molecular tools such as DGGE, tRFLP and cloning of 16S rRNA gene. 
These studies would result in understanding the prokaryotic community composition 
and also their ecological relevance.  
 

Tab. 14.3.1: Samples collected from various stations from LOHAFEX cruise 
 
S. No. Date Stations Latitude Longitude Remarks 

1 22-1-09 PS73/112 48° 39.95' S 34° 44.83' W Out patch 
2 26-1-09 PS73/114* 47° 59.63  S 15° 50.54  W In patch 
3 31-1-09 PS73/132 47° 37.40  S 15° 42.98  W In patch 
4 5-2-09 PS73/135 47° 43.61' S 15° 07.56' W In patch 
5 8-2-09 PS73/137 47° 52.33' S 15° 16.04' W Out patch 
6 9-2-09 PS73/139 47° 54.52' S 15° 07.98' W In patch 
7 12-2-09 PS73/146 47° 30.31' S 15° 26.51' W In patch 
8 14-2-09 PS73/148 47° 54.69' S 15° 18.83' W In patch 
9 19-2-09 PS73/160 47° 18.25' S 15° 38.97' W Out patch 

10 20-2-09 PS73/162 47° 23.49' S 14° 36.90' W In patch 
11 24-2-09 PS73/170 48° 06.07' S 14° 27.73' W In patch 
12 27-2-09 PS73/191 48° 47.71' S 15° 14.94' W In patch 
13 3-3-09 PS73/199 48° 02.27' S 15° 14.43' W Out patch 
14 5-3-09 PS73/204 48° 58.10' S 15° 11.12' W In patch 

*Station before fertilization 
 

 
To fulfill the second objective, 4 representative samples, one before fertilization 
(PS73/114) and three after fertilization (PS73/139, PS73/162 and PS73/191), were 
plated on Zobell marine agar and incubated at 4°C for 15 days. Different colonies 
were observed to have appeared after 10 to 12 days of incubation from samples 
spread from stations PS73/114 an PS73/139, but no growth was observed on plates 
from stations PS73/162 and PS73/191. The colony count for samples from station 
PS73/114 ranged from 0.72 X 103 to 2.0 X 104 ml-1 for different depths, where as for 
samples from station PS73/139, the colony count ranged from 0.1 X 102 to 0.26 X 103 
ml-1 (Tab. 14.3.2). Though the colony counts were drastically lower for the station 
no.139 (day 14 after fertilization) as compared to station no. 114 (before fertilisation), 
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nothing definite could be deduced from these results, as there was no growth seen at 
all in either of the remaining sampling stations. The fact that the samples were plated 
only on zobell medium, which may not be conducive to growth of all the bacteria, also 
has to be borne in mind. Close to seventy morphotypes were picked up from the 
bacteria grown at different depths from both stations (st.114 and 139) and were 
clonally purified. All these bacteria would be subjected to polyphasic characterisation 
and identified upto the species level. Further, bio-prospecting of these bacteria would 
also be evaluated out in the on-shore laboratory.  
 
 
Tab. 14.3.2: Bacterial colony counts from representative stations 

Stations 

PS73/114 PS73/139 PS73/162 PS73/191 

 

S. No. 

 

Depths 

Colony counts (ml-1) 
1 5  0.1 X 102 
2 10 5.0 X 103 1.9 X 102 
3 25 7.2 X 103 0.4 X 102 
4 50 2.8 X 103 NC 
5 100 2.5 X 103 0.4 X 102 
6 200 4.6 X 103 0.9 X 102 
7 300 9.3 X 103 0.1 X 102 
8 400 NC 2.2 X 102 
9 500 NC 0.3 X 102 
10 600 2.1 X 103 2.6 X 102 
11 800 0.72 X 103 0.2 X 102 
12 1000 20 X 103 1.1 X 102 

No growth No growth 

NC, samples not collected 
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15. PHYTO- AND PROTOZOOPLANKTON 

P. Assmy1, F. Ebersbach1, N. 
Fuchs1, C. Klaas1, M. Montresor2, V. 
Smetacek1  

1) AWI 
2) SZN 
 

Objectives 

The main objective of the phytoplankton group during LOHAFEX was to study the 
composition of the phyto- and microzooplankton assemblage and its quantitative and 
qualitative response to iron addition. Both the quality and quantity of the organic 
matter produced by iron addition as well as its fade along the water column will 
ultimately be determined by the properties of the species dominating the iron-induced 
bloom. Species-specific studies are therefore highly warranted because they not only 
provide a deeper understanding of pelagic ecosystem functioning but also link 
plankton ecology with biogeochemical fluxes. In previous experiments, the addition of 
iron induced a rapid growth response of different diatom species and during EIFEX – 
the longest fertilization experiment carried out up to now – it has been possible to 
follow the sinking of selected diatom species along the deep water column to the 
seafloor. The EIFEX plankton community was characterised by typical oceanic 
diatom species that have a strong impact on the silica flux but relatively little on the 
carbon flux. During LOHAFEX we aimed at fertilizing a coastal plankton assemblage 
to study whether it had a different bearing on the fate of the organic matter produced 
and the effect on higher trophic levels. Besides following the plankton composition 
over time we used fluorescent dyes to study the mechanisms associated with the 
wax and wane of individual diatom species populations. 
 

Work at sea 

Water samples for estimating phyto- and microzooplankton abundance and biomass 
were collected at all IN- and OUT-patch stations (sampling depths: 10, 20, 40, 50, 60, 
80,100,150, 200 m). Duplicate samples were collected and fixed with hexamine-
buffered formaldehyde and Lugol, respectively. Lugol fixation allows a better 
preservation of ciliates and small phytoflagellates, while neutralized formaldehyde is 
better for the identification of diatoms and coccolithophores. At the same stations, 
large volumes of water were gently concentrated over 20 m mesh-sized gauze for 
estimating the concentration of larger phyto- (e.g. large diatoms of the genera 
Rhizosolenia, Proboscia and Corethron; autotrophic dinoflagellates such as 
Ceratium) and protozooplankton (heterotrophic dinoflagellates of the genus 
Protoperidinium, tintinnid ciliates, Foraminifera, Acantharia and Radiolaria) as well as 
copepod nauplii and mesozooplankton faecal pellets. Twelve litres of seawater were 
concentrated at 10, 20, 40, 60, 80, 100 and 150 m, while 24 litres of seawater were 
concentrated at 200, 250, 300, 350, 400, 450 and 500 m depth. At all IN- and OUT-
patch stations water samples were also collected for estimating the concentration of 
Transparent Exopolimeric Particles (TEP). 
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Additional seawater and concentrated samples were collected over a reduced 
number of depths at 16 biological stations  sampled along two transects through the 
patch (from 24 to 27 February).  
 
Phytoplankton hand net samples were collected from the surface layer of all stations 
(0 - 10 m); an aliquot of these samples was examined on board to gain insights of the 
species characterizing the plankton community and/or to isolate phytoplankton 
species to bring in culture; the remaining material was preserved for further 
taxonomic investigations. In total about 200 unialgal cultures of different diatom 
species as well as the haptophyte alga Phaeocystis antarctica were successfully 
grown and maintained on board. 
 
On two occasions – prior to fertilization and towards the end of the experiment (day 
28), 24 - 36 litres of sea water were collected along the deeper portion of the water 
column (depths 200 – 3,000 m) and filtered over a 10 m mesh size net. Next to the 
deep water column surface sediments collected at five stations with the multicorer 
were sampled for phytodetritus (see contribution by Fuchs et al.). Sub-samples for 
the estimation of the contribution of phyto- and microzooplankton as well as TEP to 
the vertical particle flux were gained from the sediment traps deployed both in and 
outside the fertilized patch (see contribution by Martin and Saw). Additionally 
polyacrylamide gel cups were deployed on the sediment traps on various occasions 
along the experiment to collect undisturbed particles as they gently sink into the gel 
matrix.  
 
In order to obtain a preliminary estimate of the composition of the phyto- and 
microzooplankton assemblage over the course of the experiment, 5 L seawater 
samples were collected from the online seawater supply system (water intake at 11 
m) at all IN- and OUT-patch stations and concentrated over 10 m mesh size gauze. 
Plankton organisms were enumerated on 3 ml aliquots of the sample at the inverted 
microscope (Axiovert 135 and 200, Zeiss, Oberkochen), if possible at the species 
level. In order to estimate the cell abundance of flagellates and coccoid cells < 2 μm 
10 or 25 ml of Lugol-fixed samples were settled in an Utermöhl chamber and 
enumerated at the inverted light microscope (Axiovert 200, Zeiss, Oberkochen). A 
rough preliminary estimate of the carbon content of the different components of the 
phyto- and protozooplankton assemblage was derived using carbon concentrations 
cell-1 obtained during previous cruises or from the literature. 
 
At selected stations along the experiment, phytoplankton samples were stained with 
SYTOX Green - in order to test cell viability - and incubated under natural light and 
temperature conditions after staining with the fluorochrome PDMPO that binds to the 
newly deposited silica to infer in-situ division rates of selected diatom species.  
 
At regular depth intervals within the upper 200 m 1 - 2 liter of seawater were collected 
for the quantification of biogenic silica (BSi). Samples were gently filtered onto 
0.8 μm-pore-size polycarbonate filters, dried at 60°C and stored at room temperature 
until further analysis in the home laboratory. Filters will be analysed following the wet 
alkaline digestion method by Müller and Schneider (1993). 
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Preliminary results  

The plankton community of the eddy chosen as the experimental container was 
characteristic of the late stage of the seasonal cycle. This was evidenced by the very 
low silicic acid concentrations (< 2 μM) down to 100 m depth used up by the spring-
summer diatom blooms prior to our arrival in the area.  
 
LOHAFEX was characterised by a flagellate dominated phytoplankton community 

Small flagellates accounted for about 70 - 80 % of the phytoplankton biomass all over 
the experiment at both the IN- and OUT-patch stations (Fig. 15.1 & Fig. 15.3 b, c, d). 
The flagellate assemblage included solitary cells of the prymnesiophyceans 
Phaeocystis antarctica, other haptophytes (distinguishable by the presence of the 
haptonema and two prominent chloroplasts), prasinophytes (as indicated by the 
relatively high concentration of chlorophyll b), coccoid cells, choanoflagellates and 
cryptophytes. Unfortunately, the identification of these flagellates at the genus or 
even class level is impossible in fixed water samples. An integrated approach – in 
collaboration with other groups and including metagenomics – will be applied in order 
to obtain an estimate of the diversity, abundance and trophic status (autotrophic 
versus heterotrophic) of this important component of the phytoplankton assemblage. 
Coccolithophores, almost exclusively represented by Emiliania huxleyi, were present 
in the eddy at our arrival. The cells of coccolithophores are covered with calcareous 
platelets (coccoliths) and form massive blooms both in the open ocean and in coastal 
areas and therefore have a great bearing for the global carbon cycle. However, cell 
numbers of E. huxleyi started declining after iron addition indicating that factors other 
than iron are controlling its population.  
 
Rapid diatom growth despite low silicic acid concentrations but high grazing mortality 

Diatoms usually dominate phytoplankton biomass throughout the Southern Ocean, 
but they only contributed to a minor percentage the total autotrophic phytoplankton 
biomass (Fig. 15.2). Nevertheless we could observe a slight increase in cell numbers 
of some species following fertilization. Species diversity of the diatom community was 
comparably low; Fragilariopsis kerguelensis and Corethron pennatum – species 
characterizing the Antarctic phytoplankton assemblage – were relatively abundant 
and responded to the iron fertilization inside the patch (Fig. 15.3 e). They were 
accompanied by Thalassionema nitzschioides, and species of the genera 
Thalassiosira and Pseudo-nitzschia. However, diatom abundances rapidly declined 
within 2 - 3 weeks after fertilization. The decline could have been due to the depletion 
of silicic acid to limiting concentrations and/or heavy copepod grazing pressure. High 
in-situ division rates derived from the silica staining method indicate that the 
dominant diatom species were growing at near maximum rates despite the low silicic 
acid concentrations and the fact that these high division rates were not reflected in 
the accumulation of cells in the field samples emphasises the strong grazing 
pressure exerted by the zooplankton community. Natural cell death and 
protozooplankton grazing could not have been responsible for the lack in biomass 
build-up since the number of empty cells as well as full but dead cells (stained by 
SYTOX Green) only had a minor contribution to the total cell numbers of the diatom 
species investigated. Thus it can be concluded that crustacean grazers, in particular 
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copepods, were the major grazers on diatoms. This is further supported by the 
abundant occurrence of both broken as well as intact diatom cells and chains in 
copepod fecal pellets. Interestingly a large percentage of diatoms were still viable 
within the fecal pellets and could even be brought in culture after incubation of fecal 
pellets (Fig. 15.3 a). 
 
 
Phaeocystis antarctica solitary cells represented a considerable fraction of the 
phytoflagellate biomass. This prymnesiophycean – responsible for extensive blooms 
in the Ross Sea - has a heteromorphic life cycle including solitary flagellate cells, 
coccoid stages as well as large colonies surrounded by a though and elastic skin. In 
the second week after fertilization, we observed many small compact colonies 
attached to diatoms spines (Corethron pennatum) and chitin threads (Thalassiosira) 
inside the fertilized patch. This was the first stage in the transformation of solitary 
flagellates to large colonies; small free floating colonies were in fact recorded in water 
samples at the end of the second week, but they suddenly disappeared, most 
probably because they represent a highly valuable food source for the copepod 
population.  
 
Ceratium: slow growing but persistent 

Dinoflagellates were the second most abundant group and included a considerable 
fraction of heterotrophic species (Protoperidinium and unarmoured species) spanning 
in size from 5 to 50 - 60 m (Fig. 15.2). Ceratium pentagonum dominated the 
biomass of phototrophic species both at the IN- and OUT-patch stations as well as in 
many of the net samples collected over the first weeks of our cruise, when we cruised 
further south in the iceberg fields. This conspicuous species has rarely been reported 
in the Southern Ocean at the abundances we recorded and likely accumulated as 
compared to other larger phytoplankton species because it is less preferred by the 
prominent copepod grazers. Nevertheless we observed whole cells of C. 

pentagonum in copepod fecal pellets indicating that the preferred food of copepods 
was not in sufficient supply so they referred to less preferred food items like C. 

pentagonum.  
 
Microzooplankton: a possible link from flagellates to larger zooplankton 

The microzooplankton biomass was equally divided between heterotrophic 
dinoflagellates and ciliates, dominated by tintinnids (Fig. 15.3 f). The presence of 
many empty and crushed tintinnid loricae in the water samples and in copepod fecal 
pellets indicated a high grazing pressure exerted on these organisms which, in turn, 
graze upon the small sized flagellates. This link in the pelagic food web most likely 
channelled a considerable fraction of the flagellate biomass not readily accessible by 
the larger mesozooplankton to higher trophic levels.  
 
Work on cultures 

About 200 monoclonal strains of various phytoplankton species (mainly belonging to 
the diatom genera Fragilariopsis, Pseudo-nitzschia, Chaetoceros and the haptophyte 
Phaeocystis) were brought in culture. These cultures will be used for phylogenetic 
and life cycle investigations in the home laboratories. A number of serial dilution 
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cultures were also established with the aim of obtaining strains of phytoflagellate 
species. 
 
Conclusions 

The initially anticipated phytoplankton bloom dominated by coastal diatom species 
could not develop due to the low silica concentrations and instead a flagellate 
dominated plankton community responded to the iron addition. The first preliminary 
conclusions that can be derived from the above findings indicate a rapid turn-over of 
a flagellate dominated phytoplankton community via protistan grazers to copepods 
and ultimately amphipods (see report by Mazzocchi et al.). From our preliminary 
results no significant differences in both abundance and biomass of the phyto- and 
microzooplankton community could be observed between IN- and OUT-patch 
stations. However, both chlorophyll and primary productivity data show a substantial 
increase inside the patch as compared to outside indicating that more in depth 
analysis of the phytoplankton community will likely result in a refined picture of the 
processes within the autotrophic community. Nevertheless the rapid turn-over of 
organic matter within the system is consistent with findings from other groups and 
iron addition likely boosted the turn-over as compared to the outside situation. Thus 
most of the organic matter produced was passed to higher trophic levels and the bulk 
of fecal material produced by the zooplankton was recycled within the mixed surface 
layer. These findings have interesting implications for the understanding of the 
pelagic ecosystem of the northern, silicic acid limited ACC, its role for the carbon flux 
and cast doubt on the suitability of this vast oceanic area for iron-induced carbon 
sequestration. 
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Fig. 15.1: Flagellate abundance (in cells*10
6
 l

-1
) inside and outside the fertilized patch. Cell numbers 

were derived from samples collected from 20 m depth with the CTD. 
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Fig. 15.2: Biomass (in μg C l
-1

) of phyto- and microzooplankton >10 μm inside and outside the 

fertilized patch. Samples were collected from the seawater underway system at 11 m depth and 

concentrated over 10 μm gauze. 

 
 
 

 
 
 

Fig. 15.3: Lightmicrographs taken on board during LOHAFEX. a) copepod fecal pellet under 

epifluorescence showing viable chains of the diatom Pseudo-nitzschia, b) flagellates < 5 μm, c) 

flagellates > 5 μm, d) cryptophyte flagellate, e) recently divided cells of Corethron pennatum stained 

with the silica stain PDMPO and f) tintinnid ciliate of the genus Codonellopsis. 

 
 

a) b) c) d) 

e) f) 
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16. MESO- AND MACRO-ZOOPLANKTON 

M.G.Mazzocchi1, H.E. González 2, I. 
Borrione3, P. Vandromme4, M. 
Ribera d Alcalà1 
  
 

1) SZN 
2) UACH-COPAS 
3) AWI 
4) UPMC-CNRS 
 

Objective 

The general objectives of the zooplankton studies during LOHAFEX were 1) to 
evaluate the structural and functional responses of primary and secondary 
consumers to food availability (both quantity and quality), and 2) to estimate the 
impact of zooplankton activities on the carbon flux during the evolution of the 
phytoplankton dynamics induced by the iron fertilization. 
 

Work at sea 

Sampling activities  

Meso-zooplankton samples for species composition and abundance were collected 
at 18 stations, in 5 discrete depth layers (500 - 300 m, 300 - 200 m, 200 - 100 m, 
100 - 50 m, 50 - 0 m), twice a day during both day and night. Vertical tows were 
performed by using, in succession, two MultiNets (MN) equipped with 200 μm and 55 

μm mesh nets, respectively. Integrated samples in the 0 - 200 m water column were 
collected with the 200 μm MN at further 19 stations along SN and WE transects. The 

samples were fixed and preserved in a sea water-buffered formaldehyde solution 
(4 % final concentration).  
 
Samples for acquiring functional parameters (lab experiments) were collected by 
gentle vertical tows with a WP2 200 μm mesh net equipped with a non-filtering 10 L 

bucket as codend.  
 
Macro-zooplankton samples for species and/or major groups composition and 
abundance were collected at 18 stations. Oblique tows were performed by using a 
Rectangular Midwater Trawl (RMT net), towed at 2.5 knots within the upper 100 m 
water column.  
 
Structural parameters 

Species identification and abundance (ind. m-3) were preliminarily assessed onboard 
in 62 selected samples of the 149 collected with the MN 200 μm. Aliquots of the 

original samples were counted under a dissecting microscope by using an Utermöhl 
chamber. Macro-zooplankton species were identified and counted in 18 samples 
collected with RMT and their abundance was expressed as ind. 100 m-3. 
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For later measurements of biomass as dry mass and C/N content at CHN, specimens 
of the most abundant meso- and macro-zooplankton species were dried in the oven 
(24 hours at 60°C). 
 
For later analyses of lipid content, individuals of Calanus simillimus and Oithona 

frigida were sorted and preserved at -80°C. 
 
For later DNA extraction, individuals of target copepod species were sorted and 
preserved in ethanol 96 % at 4°C and will be analysed in association with Census of 
Marine Zooplankton. 
 
Functional parameters 

Copepod grazing rates were estimated (mostly for C. simillimus) in six incubation 
experiments conducted with the food removal method. From the control and 
experimental bottles, chlorophyll concentrations were measured onboard (by M. 
Gauns group) while phyto- and microzoo-plankton will be counted later in samples 
preserved in formaldehyde and in Lugol solution (2 %). 
 
Faecal pellet production rates were estimated for C. simillimus. Four individuals (C4-
C5) were incubated immediately after collection in 2 L polycarbonate bottles for 
periods between 1 and 2 hours. The bottles were placed on a plankton wheel at in-

situ water temperature (5 - 7 ºC). 
 
Copepod egg production rates were estimated (mainly in Oithona similis due to the 
rare occurrence of C. simillimus females) by incubating individual adult females in 70 
ml flask filled with water containing natural particle assemblages collected from the 
moon pool (~ 11 m depth).  
 
Ingestion rates were also estimated in the amphipod Themisto gaudichaudi. One 
control (4 T. gaudichaudi) and three treatments (4 T. gaudichaudi and 40 C. 

simillimus) were incubated for 24 hrs in 20 L polycarbonate bottles, at in-situ 
temperature. The numbers of copepods were counted at the beginning and at the 
end of the experiment.  
 
The vertical flux of faecal pellets (i. e. copepod, amphipod, krill and salp faecal 
material) will be later estimated through the analysis of sediment trap samples 
collected in neutrally-buoyant, free floating sediment traps (Mod. Pelagra). The traps 
were deployed inside and outside the iron fertilized patch in 7 and 3 occasions, 
respectively, for periods between 3 and 6 days (see Report by P. Martin). This 
information will be used to estimate the impact of the zooplankton on both the carbon 
flux and the possible fate of the photoautotrophic generated POM both inside and 
outside the patch. 
 
Underwater Vision Profiler v5 (UVP5) 

The quantitative and qualitative distribution of particles in the water column from the 
surface to 3000 m depth was recorded with the UVP5, an underwater camera system 
mounted on the Rosette. The camera takes pictures at a full rate of 5 per second, 
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one image being referred to 1 L water volume. The pixel size of the camera is 
170 μm, but because of the reflectance of light, object as small as 60 μm are 
recorded, while the maximum size appears to be around 2 - 3 cm Equivalent 
Spherical Diameter (ESD). Each object of more than 30 pixel (equivalent to 600 μm 
ESD) is stocked as a single thumbnail. All thumbnails are then visually classified in 
few groups. The UVP5 is both a tool for studying the inert particles (with their size 
spectra we can have an approximation of the flux of matter) and the major groups of 
the zooplankton community (depth and size distribution with a high definition). During 
the LOHAFEX cruise a total of 57 UVP casts were made. The maximum depth of 
these cast vary from 200 to 3,000 m depth with a mean of 1,050 m, representing 
> 70,000 thumbnails.  

 

Preliminary results 

Meso-zooplankton 

The communities in the upper 200 m water column were characterized by low 
diversity and the dominance of three copepod species: Calanus simillimus CIV-CV 
(as biomass), Oithona similis adults and juveniles (as numbers), and Ctenocalanus 

citer adults and juveniles. In the integrated 0 - 100 m water column, the highest 
abundances estimated, from preliminary counts conducted onboard, ranged from 199 
ind. m-2 x 103 for Oithona spp. to 90 ind. m-2 x 103 for C. simillimus, and 31 ind. m-2 x 
103 for C. citer, all recorded at in- stations within the 20 day after fertilization. 
However, the three species showed different distributions inside and outside the-
patch, indicating species-specific responses to the environmental conditions induced 
by the iron fertilization experiment. On average, C. simillimus was more abundant at 
the out-stations, while O. similis and C. citer were more abundant at the in-stations. 
However, high spatial variability was observed in the distribution of the most 
abundant copepods and only C. citer showed consistent patterns with marked 
preference for the in-stations and a gradual decrease from the beginning to the end 
of the experiment. A general feature of mesozooplankton at all stations was the 
remarkable difference in the vertical distribution during day and night hours, due to 
nocturnal upward migration of various species (mainly C. simillimus, Pleuromamma, 

Euchaeta). 
 
The faecal pellet production rate in C. simillimus (given as volume of faecal pellets) 
was ca. two times higher inside than outside the fertilized patch (37 and 59 x 106 m3 
ind.-1 d-1, respectively).  
 
Macro-zooplankton 

The integrated average abundance of T. gaudichaudi in the upper 100 m water 
column was two-fold higher inside (24 ind. 100 m-3) than outside the patch (12 ind 
100 m-3). The relative abundance of amphipods to total number of animals collected 
in the RMT fluctuated from 6 to 98 %, denoting its highly patchy distribution, vertical 
migration and swarm-forming behaviour, i. e. at St. 170, a total of 150 ind. m-2 were 
collected, being the largest catch during the cruise (Fig. 16.1). 
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UVP 

All UVP casts have been processed day by day during the cruise (Fig. 16.2) and a 
visually validated classification of the thumbnails in 21 groups (9 for the different 
kinds of detritus and 11 for the zooplankton) (Fig. 16.3) was also made during the 
experiment. This first classification will be checked, corrected and detailed afterward 
on land.  
 
 

 

 

 

 
 
 
 
 
 
 
 

 

  
 

 

 
 
 

 

 
 

  

 
 

 
 

150 

Second 
fertilizati

Themisto gaudichaudi 

Calanus simillimus 
 

Fig. 16.1: Absolute (ind. m
-2 

upper 100 m water column) and relative abundance  

(percentage in number of total animals) of: 

Upper panel: C. simillimus in MN samples collected inside (A)  

and outside (B) during LOHAFEX 

Lower panel: T. gaudichaudi in RMT-net samples collected inside (A) and  
outside (B) during LOHAFEX. 
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Fig. 16.2: Profiles limited to 500 m depth of biovolume (in ppm) measure for particles from 0.07 to 

9.97 mm ESD both IN (top) and OUT (down) patch 
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Fig. 16.3: Example of thumbnails obtained with the UVP5 
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17. SEDIMENTS 

B. Fuchs1, J. Wulf1, M. van der 
Loeff2, P. Assmy2 

1) MPI 
2) AWI 

 

Objectives 

In previous the iron fertilisation experiment EIFEX (European Iron Fertilization 
EXperiment) signs of export of organic material originating from the iron-induced 
phytoplankton bloom were detected in the underlying sediment (Sachs et al., ms; 
Sauter et al. in Smetacek et al., 2005). We hypothesised that during the LOHAFEX 
experiment bloom-produced organic material fluff should accumulate as fluff on the 
surface of the underlying sediment. Within the framework of ongoing analyses the 
sediment core material will yield valuable insights into the distribution of 
sedimentation in the Southern Ocean.  
 

Work at sea 

The sediment was sampled with a multicorer (MUC) at different locations within the 
studied eddy (Tab. 17.1). The seafloor was characterised by sometimes steep slopes 
rendering the site selection (using hydrosweep bottom topography) of a suitable 
sampling location within the experimental area difficult. The first MUC (st. 120 - 7) 
was taken on a hill top and yielded a carbonaceous sediment that was clearly 
affected by winnowing. As we hoped to find a corresponding area of sediment 
focusing, we selected the second location in a deep valley. The first cast (127 - 2) 
yielded only a few Mn-covered stones from the side of the valley. Therefore a second 
cast (127 - 7) was taken that recovered intact cores, however still with embedded 
stones. We decided to try to sample a wider deep valley on the third MUC 
deployment, but the sediment was unsuitable for studying the sediment surface, 
because during processing the sediment was perturbed and mixed, again as a result 
of abundant stones. The last two MUC stations were aimed at plateaus, from which 
we could retrieve compact cores with variable amount of organic material on top of 
the sediment. 
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Tab. 17.1: List of MUC-stations taken during LOHAFEX with date, location, relation 
to the fertilized patch (in or out), days of experiment, water depth and brief 
description of the sediment characteristics 
 
Station-

cast 

Date 

(2009) 

Time 

(UTC) 

Latitude 

(°S) 

Longitude 

(°W) 

in / 

out 

Depth 

(lot) 

Appearence 

120-7 29.01. 05:00 47 51.89 15 48.70 in +1 3340 whitish, oxic, some stones, 
rich in carbonate and course 

127-7 31.01. 04:51 47 59.54 16 0.24 out 
+4 

4113 whitish, stones on top, some 
of them brittle, maybe 
metaloxide nodules ?, biofilm 
with fluff on the surface; less 
carbonate, rich in diatoms. 

140-1 10.02. 13:13 47 54.47 15 23.98 out 
+14 

4183 only 3 intact cores retrieved, 
whitish, very coarse, sandy, 
stones within the sediment, 
stones and metaloxides, 
could not be sliced due to 
leaking, no fluff layer,  

171-1 24.02. 12:56 47 54.10 14 30.05 + 28 3444 8 intact cores retrieved, grey, 
compact, with thick fluff layer 

195-1 02.03. 04:18 48 39.61 15 5.65 in 
+34 

3758 5 intact cores retrieved, grey 
compact, thin fluff layer; rich 
in carbonate. 

 

Apparently undisturbed sediment cores were sampled for phytoplankton composition, 
pigment analysis, particulate organic carbon (POC) and nitrogen (PON) and biogenic 
silica (BSi). Only the overlaying water and the fluff layer, if present, were sampled for 
the above parameters. For phytoplankton composition the fluff was carefully pipetted 
off the sediment surface and preserved in hexamine-buffered formaldehyde solution 
at a final concentration of 2 % and stored dark at 4°C. An additional sample of the 
fluff was shock frozen and stored at –80°C. Overlaying water and fluff was carefully 
siphoned off of the sediment surface for pigments, POC, PON, 234Th and BSi 
analysis and pooled in a rinsed PE-bottle. Subsequently the sample was distributed 
into four even splits by a sample splitter. Pigment and POC/PON samples were 
filtered on pre-combusted GF/F filters and immediately frozen at –80°C in case of the 
former and dried at 60°C in case of the latter. Samples for BSi were filtered on 
cellulose-acetate filters and dried at 60°C. Furthermore samples of the bulk sediment 
were taken from the upper 1 - 2 cm of the core. One sample was stored at –80°C 
whereas the other one was dried at 60°C. 
 
Preliminary microscopic analysis showed a strong contribution of both siliceous 
(mainly diatoms) and calcareous (mainly foraminifera but also single coccoliths) 
particles to the uppermost layer of the cores. Diatoms were mainly composed of 
heavily silicified species characteristic for sediments in this area (e.g. Fragilariopsis 

kerguelensis, Thalassiosira lentiginosa, Eucampia antarctica). Foraminifera 
comprised both pelagic and benthic species whereas coccoliths were mainly of 
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Emiliania huxleyi. However, the relative contribution of siliceous to calcareous 
components varied considerably between sampling locations.  
 
For molecular biological analyses of the microbial community, samples from the 
overlaying water layer, the fluff interface and the top 1 cm of the sediment cores were 
sampled, respectively. Sediment samples were preserved in 1 % formaldehyde for 
12 h at 4°C, transferred into PBS/ethanol (1:1 v/v) after settling of the sample and 
frozen at -20°C. Water samples were fixed in 1 % formaldehyde for 12 h at 4°C, 
filtered onto polycarbonate filter (0.2 μm pore size) and frozen at -80°C. Untreated 
samples for DNA extraction were frozen directly at -80°C.  
 
Samples of surface sediment were collected for microfossil and geochemical 
analysis. 
 

Expected Results 

We will analyse the 230Th content of the surface sediment in order to derive local 
sediment rain rates. Comparison of rain rates obtained for the plateau and valley 
cores will be used to judge the validity of 230Th as tracer to correct for winnowing and 
focusing. 
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A.1  TEILNEHMENDE INSTITUTE / PARTICIPATING 

INSTITUTIONS 

Adresse /Address 

AWI Alfred-Wegener-Institut für Polar- und 
Meeresforschung 
in der Helmholtz-Gemeinschaft 
Postfach 12 01 61 
27515 Bremerhaven  
Germany 

CCMB Centre for Cellular and Molecular Biology 
Uppal Road, Hyderabad 500007 
India 

CSIC-IMEDEA Mediterranean Institute for Advanced Studies 
(IMEDEA) 
C/ Miquel Marquès, 21 
07190 Esporles, Mallorca 
Illes Balears 
Spain 

DWD Deutscher Wetterdienst Hamburg 
Abteilung Seeschifffahrt 
Bernhard-Nocht Str. 76 
20359 Hamburg 
Germany 
 

GLOMAR Bremen International Graduate School for 
Marine Science "Global Change in the Marine 
Realm" 
MARUM - University of Bremen 
Leobener Strasse 
28359 Bremen 
Germany 
 

LAEISZ Reederei F. Laeisz GmbH 
Brückenstr. 25 
27568 Bremerhaven  
Germany 

MPI Bremen Max Planck Institute for Marine Microbiology 
Celsiusstrasse 1 
D-28359 Bremen 
Germany 

NEERI National Engineering Research Institute 
Nehru Marg, Nagpur 440020 
India 
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Adresse /Address 

NIO National Institute of Oceanography 
Dona Paula - 403 004, Goa 
India 

NOCS National Oceanography Centre, Southampton 
(NOCS) 
University of Southampton Waterfront 
Campus, European Way, 
Southampton SO14 3ZH 
UK 

PRL Physical Research Laboratory 
Navrangpura 
380 009, Ahmedabad 
India 

SZN Stazione Zoologica Anton Dohrn 
Villa Comunale 
80121 - Napoli 
Italy 

UACh-COPAS Universidad Austral de Chile 
Independencia 641 
Valdivia 
Chile 

UPMC-CNRS Laboratoire d'Oceanologie de Villefranche 
Université Pierre et Marie Curie, Paris 
Station Zoologique,  
Chemin du Lazaret,  
06234 Villefranche sur mer 
France 
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A.2  FAHRTTEILNEHMER / CRUISE PARTICIPANTS 

 

Name Vorname/   

First Name 

Institut/ 

Institute 

Beruf/  

Profession 

Almeida  Anselm NIO Physics technician 
Assmy  Philipp AWI/GLOMAR Biologist 
Bansiwal  Amit NEERI Chemical engineer  
Baraniya  Divyashree NIO Student, biochemistry  
Borrione Ines AWI Student, oceanography  
Bresinsky Thomas Caligari Film Camera man 
Buldt Klaus DWD Technician 
Dalvi  Hanamant NIO Chemist  
Desai  Vineet NIO Chemist  
Ebersbach  Friederike AWI/GLOMAR Student, biology f 
Fuchs  Bernhard MPI, Bremen Microbiologist 
Fuchs Nicole AWI Student, biology 
Gauns  Mangesh NIO Biologist 
González  Humberto UACh –COPAS Biologist 
Gundlapally Sathya Reddy CCMB Microbiologist 

Hartig Rüdiger DWD Meteorologist 

Kalarikkal Sujith NIO Chemist 
Kankonkar  Ashok NIO Electronics engineer 
Kanth  Reshma NIO Student, chemistry f 
Klaas  Christine AWI Biologist  
Laglera Baquer Luis CSIC-IMEDEA Chemist 
Mahadik  Gauri NIO Student, biology 
Martin  Patrick NOCS Student, biogeochemistry 
Martinez Castillo Regino CSIC-IMEDEA Chemist 
Mazzocchi  Maria Grazia SZN Biologist 
Methar  Anand NIO Electronics technician  
Mochemadkar  Sunita NIO Student, biology  
Montresor  Marina SZN Biologist  
Muthirenthy  Maya NIO Chemist  
Nagappa Ramaiah NIO Microbiologist 
Naik  Hema NIO Chemist 
Naqvi Syed Wajih A. NIO Chemist, co-Chief scientist 
Narvekar  Pradip NIO Chemist 
Narvenkar  Gayatree NIO Chemist 
Simoes Leao  Indian cook 
Patil  Shrikant NIO Student, biology  
Pratihary  Anil NIO Chemist 
Rengarajan  Ramab. PRL Geochemist  
Ribera d Alcalà  Maurizio SZN Biologist 
Roy  Rajdeep NIO Student, biogeochemistry  
Rutgers van der Loeff  Michiel AWI Geochemist 
Sarkar  Amit NIO Student, chemistry  
Saw  Kevin NOCS Engineer 
Singh  Sanjay NIO Microbiology Student,  
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Name Vorname/   

First Name 

Institut/ 

Institute 

Beruf/  

Profession 

Smetacek Victor AWI Biologist, Chief scientist 
Soares  Melena NIO Chemist  
Thorat  Babasaheb NIO Student, chemistry  
Vadlamani Murty NIO Physicist 
Vetaikorumagan Sundareswaran CCMB Microbiologist 
Vandromme Pieter Villefranche Student, biology 
Wolf-Gladrow  Dieter AWI Physicist 
Wulf  Joerg MPI, Bremen Microbiologist 
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A.3  SCHIFFSBESATZUNG / SHIP'S CREW 

 
No. Name Rank 

1.  Schwarze, Stefan Master 
2.  Grundmann, Uwe 1.Offc. 
3.  Krohn, Günter  Ch. Eng. 
4.  Peine Lutz 2. Offc. 
5.  Fallei, Holger 2. Offc. 
6.  Ettlin, Margrith 2.Offc. 
7.  Rudde-Teufel, Claus Doctor 
8.  Hecht, Andreas R.Offc. 
9.  Minzlaff, Hans-Ulrich 2.Eng. 
10.  Sümnicht, Stefan 2.Eng. 
11.  Schaefer, Marc 3.Eng. 
12.  Scholz, Manfred Elec.Tech. 
13.  Fröb, Martin Electron. 
14.  Himmel,Frank  Electron. 
15.  Muhle, Helmut Electron. 
16.  Nasis, Ilias Electron 
17.  Loidl, Reiner Boatsw. 
18.  Reise, Lutz Carpenter 
19.  Bäcker, Andreas A.B. 
20.  Guse, Hartmut A.B. 
21.  Hagemann, Manfred A.B. 
22.  Kreis, Reinhard A.B. 
23.  Rhau, Lars-Peter A.B. 
24.  Scheel, Sebastian A.B. 
25.  Schmidt, Uwe A.B. 
26.  Wende, Uwe A.B. 
27.  Winkler, Michael A.B. 
28.  Preußner, Jörg Storek. 
29.  Elsner, Klaus Mot-man 
30.  Pinske, Lutz Mot-man 
31.  Teichert, Uwe Mot-man 
32.  Voy, Bernd Mot-man 
33.  Müller-Homburg, Ralf-Dieter Cook 
34.  Silinski, Frank Cooksmate 
35.  Martens, Michael Cooksmate 
36.  Jürgens, Monika 1.Stwdess 
37.  Wöckener, Martina Stwdss/KS 
38.  Czyborra, Bärbel 2.Stwdess 
39.  Silinski, Carmen 2.Stwdess 
40.  Gaude, Hans-Jürgen 2.Steward 
41.  Möller, Wolfgang 2.Steward 
42.  Huang, Wu-Mei 2.Steward 
43.  Yu, Kwok Yuen  Laundrym. 
44.  Simoes, Leao Asst. Cook 
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A.4  STATIONSLISTE / STATION LIST PS73 - 

  ANT-XXV/3-LOHAFEX 
 
Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

098-01 16/1/09 5:29 6:30 48
o
 00.35  S 15

o 
59.44

 
W 3662.5 CTD/rosette 1 

098-02 16/1/09 6:44 6:48 48
o
 00.36  S 15

o 
59.21

 
W 3673.2 Hand net 2 

098-03 16/1/09 6:50 7:48 48
o
 00.42  S 15

o 
59.09

 
W 3661.2 Multiple net 3 

098-06 16/1/09 9:49 9:54 47
o
 59.89  S 15

o 
57.61

 
W 4179.7 CTD/rosette 4 

099-01 16/1/09 12:12 12:26 48
o
 19.95  S 15

o 
59.68

 
W 3970 CTD/rosette 5 

099-01 16/1/09 13:15 13:38 48
o
 19.56  S 15

o 
59.99

 
W 3948 CTD/rosette 6 

100-01 16/1/09 16:14 17:15 48
o
 39.89  S 16

o 
00.23

 
W 3758 CTD/rosette 7 

101-01 16/1/09 22:41 23:32 47
o
 59.94  S 16

o 
16.17

 
W 3871 CTD/rosette 8 

101-02 17/1/09 0:49 1:21 47
o
 59.97  S 16

o 
15.99

 
W 3866 CTD/rosette 9 

102-01 18/1/09 20:08 20:45 49
o
 32.76  S 25

o 
16.51

 
W 4541 CTD/rosette 10 

102-02 18/1/09 21:20 21:24 49
o
 33.19  S 25

o 
15.44

 
W 4583.7 Hand net 11 

102-04 18/1/09 22:00 23:24 49
o
 33.09  S 25

o 
14.33

 
W 4589.2 Clean 

Rosette 
12 

103-02 19/1/09 0:55 1:22 49
o
 32.85  S 25

o 
09.50

 
W 4563.2 CTD/rosette 13 

104-01 19/1/09 2:09 2:33 49
o
 30.43  S 25

o 
12.68

 
W 4520.7 CTD/rosette 14 

105-01 19/1/09 3:23 3:46 49
o
 29.61  S 25

o 
17.04

 
W 4448.7 CTD/rosette 15 

106-01 19/1/09 4:43 5:08 49
o
 32.13  S 25

o 
20.63

 
W 4451.5 CTD/rosette 16 

107-01 19/1/09 6:07 6:29 49
o
 35.50  S 25

o 
20.74

 
W 4594.7 CTD/rosette 17 

108-01 19/1/09 7:24 7:55 49
o
 35.99  S 25

o 
15.78

 
W 4636.2 CTD/rosette 18 

109-01 19/1/09 8:43 9:13 49
o
 35.18  S 25

o 
10.95

 
W 4623.5 CTD/rosette 19 

110-01 19/1/09 9:58 10:29 49
o
 33.14  S 25

o 
09.90

 
W 4574.7 CTD/rosette 20 

111-01 19/1/09 12:32 13:05 49
o
 36.39  S 25

o 
24.80

 
W 4477.7 CTD/rosette 21 

111-02 19/1/09 13:24 14:18 49
o
 35.99  S 25

o 
24.72

 
W 4481.5 Multiple net 22 

111-03 19/1/09 14:19 14:24 49
o
 35.99  S 25

o 
24.72

 
W 4481.5 Hand net 23 

111-04 19/1/09 14:32 15:24 49
o
 35.63  S 25

o 
24.55

 
W 4493.7 Multiple net 24 

111-05 19/1/09 15:38 15:59 49
o
 35.26  S 25

o 
24.44

 
W 4501.7 FRRF 25 

112-01 22/1/09 3:15 4:05 48
o
 39.96  S 34

o 
44.97

 
W 5201.5 CTD/rosette 26 

112-02 22/1/09 4:08 4:22 48
o
 39.96  S 34

o 
44.85

 
W 5211.5 Hand net 27 

112-03 22/1/09 4:31 4:58 48
o
 39.83  S 34

o 
44.25

 
W 5215 Clean 

Rosette 
28 

112-04 22/1/09 5:49 5:49 48
o
 39.68  S 34

o 
43.01

 
W 5206.5 FRRF 29 

112-05 22/1/09 6:01 6:27 48
o
 39.58  S 34

o 
42.37

 
W 5267 Clean 

Rosette 
30 

112-06 22/1/09 6:41 7:31 48
o
 39.20  S 34

o 
41.74

 
W 5235.2 Multiple net 31 

112-07 22/1/09 7:41 8:30 48
o
 38.55  S 34

o 
40.73

 
W 5263.7 Multiple net 32 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

112-08 22/1/09 8:39 9:08 48
o
 38.21  S 34

o 
40.00

 
W 5301.5 Clean 

Rosette 
33 

112-09 22/1/09 9:20 9:48 48
o
 37.91  S 34

o 
39.17

 
W 5188.7 CTD/rosette 34 

112-10 22/1/09 9:55 10:14 48
o
 37.84  S 34

o 
39.03

 
W 5167 Clean 

Rosette 
35 

114-01 26/1/09 5:48 6:07 48
o
 00.11  S 15

o 
48.50

 
W 3698 CTD/rosette 36 

114-02 26/1/09 6:15 6:47 48
o
 00.35  S 15

o 
48.61

 
W 3796 Clean 

Rosette 
37 

114-03 26/1/09 7:15 7:23 48
o
 00.00  S 15

o 
48.31

 
W 3676 Hand net 38 

114-04 26/1/09 7:27 9:17 47
o
 59.88  S 15

o 
48.20

 
W 3706 CTD/rosette 39 

114-05 26/1/09 9:53 10:48 47
o
 59.72  S 15

o 
47.83

 
W 3678 Multiple net 40 

114-06 26/1/09 12:48 13:21 47
o
 59.99  S 15

o 
48.41

 
W 3669 CTD/rosette 41 

114-07 26/1/09 13:30 14:25 47
o
 59.72  S 15

o 
49.22

 
W 3765 Multiple net 42 

114-09 26/1/09 15:25 16:02 47
o
 59.68  S 15

o 
50.06

 
W 3641 Clean 

Rosette 
43 

114-11 26/1/09 16:45 18:39 47
o
 59.88  S 15

o 
50.65

 
W 3639 CTD/rosette 44 

114-14 26/1/09 19:44 20:29 48
o
 00.58  S 15

o 
50.18

 
W 3983 Clean 

Rosette 
45 

114-15 26/1/09 20:37 21:11 48
o
 00.68  S 15

o 
50.14

 
W 3989 CTD/rosette 46 

114-16 26/1/09 21:39 22:04 48
o
 01.04  S 15

o 
49.61

 
W 3934 FRRF 47 

114-18 26/1/09 23:09 23:24 48
o
 01.98  S 15

o 
47.13

 
W 3680 CTD/rosette 48 

115-01 27/1/09 1:33 2:33 47
o
 54.70  S 15

o 
47.79

 
W 3661 CTD/rosette 49 

116-01 27/1/09 3:48 4:45 47
o
 59.72  S 15

o 
55.80

 
W 3966 CTD/rosette 50 

117-01 27/1/09 6:03 7:00 48
o
 05.10  S 15

o 
48.47

 
W 3701 CTD/rosette 51 

118-01 27/1/09 8:13 9:11 48
o
 00.12  S 15

o 
41.52

 
W 3642 CTD/rosette 52 

120-01 28/1/09 20:56 23:11 47
o
 52.18  S 15

o 
48.15

 
W 3411 CTD/rosette 53 

120-02 28/1/09 23:17 23:31 47
o
 52.12  S 15

o 
48.23

 
W 3405 Hand net 54 

120-04 29/1/09 0:17 1:04 47
o
 51.74  S 15

o 
47.78

 
W 3387 Clean 

Rosette 
55 

120-05 29/1/09 1:15 1:31 47
o
 51.67  S 15

o 
47.74

 
W 3383 CTD/rosette 56 

120-07 29/1/09 2:20 4:18 47
o
 51.29  S 15

o 
48.06

 
W 3360 Multi corer 57 

120-08 29/1/09 4:33 6:45 47
o
 51.37  S 15

o 
49.52

 
W 3372 In situ 

pump 
58 

120-09 29/1/09 7:18 8:41 47
o
 54.02  S 15

o 
52.56

 
W 3585 RMT 59 

120-10 29/1/09 10:05 11:29 47
o
 43.88  S 15

o 
47.26

 
W 3372 Scan-Fish 60 

121-01 29/1/09 13:26 14:08 47
o
 50.23  S 15

o 
47.56

 
W 3313 GoFlo 

bottles 
61 

121-02 29/1/09 14:15 14:24 47
o
 50.17  S 15

o 
47.49

 
W 3308 GoFlo 

bottles 
62 

121-03 29/1/09 14:28 14:53 47
o
 49.95  S 15

o 
47.29

 
W 3354 GoFlo 

bottles 
63 

121-04 29/1/09 14:58 15:24 47
o
 49.70  S 15

o 
47.02

 
W 3388 GoFlo 

bottles 
64 

121-05 29/1/09 15:32 15:46 47
o
 49.50  S 15

o 
46.69

 
W 3306 CTD/rosette 65 

122-01 29/1/09 20:12 20:23 47
o
 49.42  S 15

o 
34.94

 
W 3581 CTD/rosette 66 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

123-01 29/1/09 21:05 21:18 47
o
 49.68  S 15

o 
40.84

 
W 3175 CTD/rosette 67 

123-02 29/1/09 21:24 21:36 47
o
 49.79  S 15

o 
40.90

 
W 3187 Clean 

Rosette 
68 

124-01 29/1/09 22:42 22:54 47
o
 49.55  S 15

o 
52.52

 
W 3536 CTD/rosette 69 

125-01 29/1/09 23:31 23:45 47
o
 49.69  S 15

o 
58.48

 
W 2882 CTD/rosette 70 

126-01 30/1/09 9:35 9:35 47
o
 49.16  S 15

o 
46.91

 
W 3310 Trap, 

sediment 
71 

126-02 30/1/09 10:31 10:31 47
o
 50.69  S 15

o 
45.86

 
W 3354 Trap, 

sediment 
72 

126-03 30/1/09 10:57 10:57 47
o
 50.80  S 15

o 
46.23

 
W 3372 Trap, 

sediment 
73 

126-04 30/1/09 11:13 11:53 47
o
 50.55  S 15

o 
46.30

 
W 3379 Clean 

Rosette 
74 

127-01 30/1/09 16:52 19:52 47
o
 59.83  S 16

o 
00.03

 
W 4112 CTD/rosette 75 

127-02 30/1/09 20:00 22:36 48
o
 00.05  S 16

o 
00.10

 
W 3982 Multi corer 76 

127-03 30/1/09 22:56 23:01 47
o
 59.75  S 16

o 
00.00

 
W 4165 CTD/rosette 77 

127-04 31/1/09 23:34 0:23 47
o
 58.79  S 15

o 
59.75

 
W 3978 Multiple net 78 

127-05 31/1/09 0:39 1:30 47
o
 58.68  S 15

o 
59.78

 
W 3962 Multiple net 79 

127-06 31/1/09 1:41 2:05 47
o
 58.53  S 15

o 
59.83

 
W 3946 CTD/rosette 80 

127-07 31/1/09 2:28 5:08 47
o
 59.55  S 16

o 
00.29

 
W 4096 Multi corer 81 

128-01 31/1/09 7:29 7:49 47
o
 51.50  S 15

o 
46.98

 
W 3384 CTD/rosette 82 

129-01 31/1/09 8:58 9:15 47
o
 44.53  S 15

o 
46.13

 
W 3406 CTD/rosette 83 

129-02 31/1/09 9:24 9:41 47
o
 44.65  S 15

o 
46.02

 
W 3408 Clean 

Rosette 
84 

130-01 31/1/09 10:42 11:07 47
o
 36.73  S 15

o 
45.91

 
W 3620 CTD/rosette 85 

130-02 31/1/09 11:23 11:39 47
o
 36.77  S 15

o 
45.89

 
W 3617 Clean 

Rosette 
86 

131-01 31/1/09 12:22 12:43 47
o
 32.41  S 15

o 
44.44

 
W 3554 CTD/rosette 87 

132-01 31/1/09 13:41 14:19 47
o
 39.39  S 15

o 
43.91

 
W 3514 CTD/rosette 88 

132-01 31/1/09 14:25 16:29 47
o
 38.84  S 15

o 
43.50

 
W 3357 CTD/rosette 89 

132-03 31/1/09 17:09 17:19 47
o
 38.67  S 15

o 
43.45

 
W 3395 Hand net 90 

132-04 31/1/09 17:28 17:48 47
o
 38.59  S 15

o 
43.36

 
W 3440 FRRF 91 

132-06 31/1/09 18:21 18:42 47
o
 38.60  S 15

o 
43.53

 
W 3496 CTD/rosette 92 

132-07 31/1/09 19:53 20:19 47
o
 38.58  S 15

o 
43.51

 
W 3447 CTD/rosette 93 

132-08 31/1/09 20:29 20:53 47
o
 38.68  S 15

o 
43.76

 
W 3564 Clean 

Rosette 
94 

132-09 31/1/09 21:22 21:40 47
o
 39.12  S 15

o 
43.82

 
W 3533 CTD/rosette 95 

132-10 31/1/09 22:26 23:21 47
o
 36.96  S 15

o 
44.81

 
W 3606 Multiple net 96 

132-11 1/2/09 23:29 0:01 47
o
 37.21  S 15

o 
44.59

 
W 3606 CTD/rosette 97 

132-12 1/2/09 0:13 1:00 47
o
 37.50  S 15

o 
44.26

 
W 3641 Multiple net 98 

132-14 1/2/09 1:32 1:54 47
o
 37.52  S 15

o 
43.52

 
W 3535 FRRF 99 

132-15 1/2/09 2:00 2:55 47
o
 37.36  S 15

o 
42.87

 
W 3692 CTD/rosette 100 



 

105 

Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

132-16 1/2/09 3:26 3:58 47
o
 36.93  S 15

o 
43.25

 
W 3680 RMT 101 

132-17 1/2/09 4:13 5:00 47
o
 36.27  S 15

o 
44.27

 
W 3653 RMT 102 

132-18 1/2/09 8:26 9:32 47
o
 35.00  S 15

o 
39.50

 
W 3530 Scan-Fish 103 

133-02 2/2/09 11:22 11:42 47
o
 33.18  S 15

o 
33.84

 
W 3546.3 Scan-Fish 104 

134-02 4/2/09 15:27 16:33 48
o
 13.74  S 12

o 
58.78

 
W 2872.9 Hand net 105 

134-01 4/2/09 16:15 16:26 48
o
 13.74  S 12

o 
58.78

 
W 2872.9 CTD/rosette 106 

135-01 5/2/09 9:18 11:08 47
o
 41.65  S 15

o 
05.87

 
W 2808.9 CTD/rosette 107 

135-02 5/2/09 11:34 11:42 47
o
 41.79  S 15

o 
06.08

 
W 2826 Hand net 108 

135-03 5/2/09 11:46 11:50 47
o
 41.83  S 15

o 
06.14

 
W 2840.3 Hand net 109 

135-04 5/2/09 11:54 12:12 47
o
 41.89  S 15

o 
06.33

 
W NaN FRRF 110 

135-06 5/2/09 13:05 13:31 47
o
 42.01  S 15

o 
06.89

 
W 3072.5 CTD/rosette 111 

135-07 5/2/09 13:42 14:09 47
o
 42.09  S 15

o 
06.99

 
W 3085.3 Clean 

Rosette 
112 

135-08 5/2/09 14:20 14:35 47
o
 42.14  S 15

o 
07.09

 
W 3132.8 CTD/rosette 113 

135-09 5/2/09 14:44 15:35 47
o
 42.33  S 15

o 
07.04

 
W 3116.2 Multiple net 114 

135-10 5/2/09 15:43 16:34 47
o
 42.58  S 15

o 
06.74

 
W 3208.5 Multiple net 115 

135-11 5/2/09 16:45 17:16 47
o
 42.83  S 15

o 
06.44

 
W 3213.9 CTD/rosette 116 

135-12 5/2/09 17:18 19:31 47
o
 43.42  S 15

o 
07.13

 
W 3157.2 In situ 

pump 
117 

135-13 5/2/09 19:42 20:34 47
o
 43.67  S 15

o 
07.60

 
W 3124 CTD/rosette 118 

135-16 5/2/09 21:56 22:21 47
o
 43.88  S 15

o 
07.43

 
W 3108.5 RMT 119 

135-17 5/2/09 22:44 23:38 47
o
 43.94  S 15

o 
07.35

 
W 3109.5 Multiple net 120 

135-18 6/2/09 23:46 0:24 47
o
 44.00  S 15

o 
07.40

 
W 3114.7 Multiple net 121 

135-18 6/2/09 1:05 1:57 47
o
 44.23  S 15

o 
07.20

 
W 3113.1 Multiple net 122 

135-19 6/2/09 2:07 2:25 47
o
 44.23  S 15

o 
07.25

 
W 3127.4 FRRF 123 

136-01 6/2/09 20:37 20:37 47
o
 31.20  S 15

o 
06.95

 
W 2928 Trap, 

sediment 
124 

137-01 8/2/09 9:46 11:42 47
o
 51.27  S 15

o 
14.63

 
W NaN CTD/rosette 125 

137-02 8/2/09 11:58 12:11 47
o
 51.27  S 15

o 
14.82

 
W 4028.3 Hand net 126 

137-03 8/2/09 12:13 12:15 47
o
 51.27  S 15

o 
14.82

 
W 4028.3 Hand net 127 

137-04 8/2/09 12:25 12:43 47
o
 51.26  S 15

o 
15.00

 
W 4024.1 FRRF 128 

137-06 8/2/09 13:40 14:07 47
o
 51.41  S 15

o 
15.26

 
W 4031.5 CTD/rosette 129 

137-07 8/2/09 14:13 14:37 47
o
 51.51  S 15

o 
15.37

 
W 4041.3 Clean 

Rosette 
130 

137-08 8/2/09 14:46 15:00 47
o
 51.62  S 15

o 
15.51

 
W 4039.2 CTD/rosette 131 

137-09 8/2/09 15:09 16:04 47
o
 51.85  S 15

o 
15.66

 
W 4059.6 Multiple net 132 

137-10 8/2/09 16:15 17:04 47
o
 52.11  S 15

o 
15.87

 
W 4082.8 Multiple net 133 

137-11 8/2/09 17:15 17:44 47
o
 52.33  S 15

o 
16.04

 
W 4092.8 CTD/rosette 134 

137-12 8/2/09 17:52 20:04 47
o
 53.08  S 15

o 
16.18

 
W 4101.4 In situ 

pump 
135 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

137-13 8/2/09 20:11 21:02 47
o
 53.48  S 15

o 
16.31

 
W 4097.7 CTD/rosette 136 

137-16 8/2/09 22:32 22:53 47
o
 53.07  S 15

o 
15.83

 
W 4102.7 RMT 137 

137-17 9/2/09 23:19 0:09 47
o
 52.00  S 15

o 
16.99

 
W 4046.2 Multiple net 138 

137-18 9/2/09 0:18 1:11 47
o
 52.04  S 15

o 
17.29

 
W NaN Multiple net 139 

137-19 9/2/09 1:19 1:39 47
o
 52.10  S 15

o 
17.28

 
W NaN FRRF 140 

137-20 9/2/09 1:50 2:14 47
o
 52.21  S 15

o 
17.52

 
W 4058.6 Bongo net 141 

138-01 9/2/09 17:08 17:12 47
o
 53.60  S 15

o 
07.06

 
W 3520.3 Hand net 142 

138-02 9/2/09 17:49 17:59 47
o
 54.34  S 15

o 
07.24

 
W 3511.9 CTD/rosette 143 

139-02 9/2/09 21:15 22:05 47
o
 54.49  S 15

o 
07.78

 
W 3593.6 CTD/rosette 144 

139-03 9/2/09 22:11 22:30 47
o
 54.48  S 15

o 
07.80

 
W 3579.2 FRRF 145 

139-04 9/2/09 22:49 23:01 47
o
 54.48  S 15

o 
07.83

 
W 3584.9 Hand net 146 

139-05 9/2/09 23:07 23:44 47
o
 54.51  S 15

o 
07.89

 
W 3591.7 Clean 

Rosette 
147 

139-06 10/2/09 23:54 0:46 47
o
 54.55  S 15

o 
08.06

 
W 3584.9 CTD/rosette 148 

139-07 10/2/09 0:55 1:46 47
o
 54.65  S 15

o 
08.16

 
W 3592.2 Multiple net 149 

139-08 10/2/09 1:55 2:46 47
o
 54.98  S 15

o 
08.52

 
W 3611.5 Multiple net 150 

139-09 10/2/09 2:53 4:44 47
o
 55.33  S 15

o 
08.97

 
W 3625.1 CTD/rosette 151 

139-10 10/2/09 4:51 7:14 47
o
 56.54  S 15

o 
08.81

 
W 3622.1 In situ 

pump 
152 

139-11 10/2/09 7:26 7:32 47
o
 56.57  S 15

o 
08.81

 
W 3650.2 CTD/rosette 153 

139-12 10/2/09 7:59 8:04 47
o
 56.77  S 15

o 
08.86

 
W 3665.5 Hand net 154 

139-13 10/2/09 8:08 8:42 47
o
 57.20  S 15

o 
08.62

 
W 3574.4 CTD/rosette 155 

140-01 10/2/09 11:49 14:29 47
o
 54.48  S 15

o 
23.98

 
W 4182 Multi corer 156 

141-01 11/2/09 23:58 0:40 47
o
 58.37  S 15

o 
08.07

 
W 3602.3 CTD/rosette 157 

142-01 11/2/09 13:37 13:47 47
o
 37.13  S 16

o 
00.17

 
W 3810.5 CTD/rosette 158 

143-01 11/2/09 16:08 16:21 47
o
 41.30  S 15

o 
29.41

 
W 3166.7 CTD/rosette 159 

143-01 11/2/09 21:44 21:44 48
o
 01.26  S 15

o 
09.97

 
W 3586.9 Trap, 

sediment 
160 

144-01 11/2/09 23:40 23:40 47
o
 49.23  S 15

o 
25.44

 
W 3396.2 Trap, 

sediment 
161 

145-01 12/2/09 0:29 0:29 47
o
 45.30  S 15

o 
27.54

 
W 3276.9 Trap, 

sediment 
162 

146-01 12/2/09 2:36 3:43 47
o
 29.41  S 15

o 
26.27

 
W 3250.2 Multiple net 163 

146-02 12/2/09 3:51 5:00 47
o
 29.23  S 15

o 
25.88

 
W 3255.9 Multiple net 164 

146-03 12/2/09 5:11 5:29 47
o
 29.19  S 15

o 
25.51

 
W 3347 FRRF 165 

146-04 12/2/09 5:38 7:27 47
o
 29.45  S 15

o 
25.20

 
W 3402.6 CTD/rosette 166 

146-06 12/2/09 8:06 8:27 47
o
 29.79  S 15

o 
26.17

 
W 3244.8 RMT 167 

146-07 12/2/09 8:36 8:42 47
o
 29.81  S 15

o 
26.40

 
W 3384.4 Hand net 168 

146-08 12/2/09 8:46 9:09 47
o
 29.90  S 15

o 
26.26

 
W NaN Hand net 169 

146-09 12/2/09 9:28 9:53 47
o
 29.92  S 15

o 
25.95

 
W 3271.6 CTD/rosette 170 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

146-10 12/2/09 10:02 10:24 47
o
 29.96  S 15

o 
25.72

 
W 3290.1 Clean 

Rosette 
171 

146-11 12/2/09 10:39 11:17 47
o
 30.05  S 15

o 
25.57

 
W 3306.7 CTD/rosette 172 

146-12 12/2/09 11:23 13:22 47
o
 30.27  S 15

o 
26.27

 
W NaN In situ 

pump 
173 

146-13 12/2/09 13:27 13:43 47
o
 30.30  S 15

o 
26.49

 
W 3259.7 CTD/rosette 174 

146-14 12/2/09 13:50 14:46 47
o
 30.25  S 15

o 
26.60

 
W NaN Multiple net 175 

146-15 12/2/09 14:53 15:48 47
o
 30.09  S 15

o 
26.70

 
W 3252.9 Multiple net 176 

146-16 12/2/09 15:56 16:47 47
o
 30.03  S 15

o 
26.61

 
W 3242.1 CTD/rosette 177 

147-01 14/2/09 9:32 9:54 48
o
 02.48  S 15

o 
14.79

 
W 3684.9 CTD/rosette 178 

147-02 14/2/09 9:58 10:07 48
o
 02.43  S 15

o 
14.94

 
W NaN Hand net 179 

148-01 14/2/09 12:52 14:54 47
o
 56.55  S 15

o 
17.57

 
W NaN CTD/rosette 180 

148-02 14/2/09 15:05 15:55 47
o
 56.39  S 15

o 
17.29

 
W 3733.6 Multiple net 181 

148-03 14/2/09 16:03 16:52 47
o
 56.18  S 15

o 
17.10

 
W 3730.3 Multiple net 182 

148-04 14/2/09 16:59 17:14 47
o
 56.15  S 15

o 
16.89

 
W 3736.5 FRRF 183 

148-05 14/2/09 17:26 17:50 47
o
 56.09  S 15

o 
16.79

 
W 3744 CTD/rosette 184 

148-07 14/2/09 18:13 18:20 47
o
 56.04  S 15

o 
16.79

 
W 3745.8 Hand net 185 

148-08 14/2/09 18:26 18:49 47
o
 56.03  S 15

o 
16.50

 
W 3772 Hand net 186 

148-10 14/2/09 19:35 19:47 47
o
 55.54  S 15

o 
17.04

 
W 3870.8 CTD/rosette 187 

148-11 14/2/09 19:54 20:17 47
o
 55.39  S 15

o 
17.26

 
W 3817.1 Clean 

Rosette 
188 

148-12 14/2/09 20:35 21:12 47
o
 55.03  S 15

o 
17.40

 
W NaN CTD/rosette 189 

148-13 14/2/09 21:25 21:51 47
o
 54.40  S 15

o 
18.44

 
W 4040.8 RMT 190 

148-14 14/2/09 22:21 22:35 47
o
 54.83  S 15

o 
18.60

 
W 4022.7 FRRF 191 

148-15 15/2/09 22:44 0:06 47
o
 54.66  S 15

o 
18.93

 
W 4051.2 CTD/rosette 192 

148-16 15/2/09 0:13 2:21 47
o
 54.85  S 15

o 
19.69

 
W NaN In situ 

pump 
193 

148-17 15/2/09 2:31 3:23 47
o
 54.91  S 15

o 
20.11

 
W 4108.5 Multiple net 194 

148-18 15/2/09 3:32 4:25 47
o
 54.82  S 15

o 
20.40

 
W NaN Multiple net 195 

149-01 15/2/09 11:48 12:18 47
o
 35.86  S 15

o 
45.08

 
W 3634.6 CTD/rosette 196 

149-02 15/2/09 12:21 12:28 47
o
 35.77  S 15

o 
45.06

 
W 3589.2 Hand net 197 

150-01 15/2/09 13:20 13:44 47
o
 35.30  S 15

o 
45.96

 
W 3502.4 CTD/rosette 198 

151-01 15/2/09 14:19 14:43 47
o
 33.23  S 15

o 
45.62

 
W 3528.8 CTD/rosette 199 

152-01 15/2/09 15:07 15:39 47
o
 31.98  S 15

o 
44.00

 
W 3541.8 CTD/rosette 200 

153-01 15/2/09 17:28 17:53 47
o
 39.09  S 15

o 
35.83

 
W 3386.8 CTD/rosette 201 

156-01 18/2/09 6:57 6:57 47
o
 22.54  S 15

o 
24.87

 
W 3224 Trap, 

sediment 
202 

157-01 18/2/09 9:36 9:36 47
o
 31.98  S 14

o 
42.78

 
W 2893.6 Trap, 

sediment 
203 

158-01 18/2/09 11:01 11:01 47
o
 38.55  S 14

o 
59.55

 
W 2675.5 Trap, 

sediment 
204 

159-01 18/2/09 14:09 14:41 47
o
 21.17  S 15

o 
24.93

 
W 3369.2 CTD/rosette 205 
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Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 
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159-02 18/2/09 14:43 14:49 47
o
 21.13  S 15

o 
24.97

 
W 3353.6 Hand net 206 

160-01 18/2/09 18:39 20:52 47
o
 20.58  S 15

o 
39.77

 
W 3240.7 CTD/rosette 207 

160-03 18/2/09 21:22 21:33 47
o
 20.24  S 15

o 
39.14

 
W 3374.6 Hand net 208 

160-04 18/2/09 21:35 21:43 47
o
 20.07  S 15

o 
39.10

 
W NaN Hand net 209 

160-05 18/2/09 22:07 22:29 47
o
 19.91  S 15

o 
39.08

 
W 3342.5 RMT 210 

160-06 18/2/09 22:53 23:19 47
o
 19.82  S 15

o 
39.02

 
W 3358.6 CTD/rosette 211 

160-07 18/2/09 23:30 23:43 47
o
 19.73  S 15

o 
38.90

 
W 3474.2 FRRF 212 

160-08 19/2/09 23:47 0:11 47
o
 19.35  S 15

o 
38.68

 
W 3494.3 Clean 

Rosette 
213 

160-09 19/2/09 0:22 0:35 47
o
 19.06  S 15

o 
38.74

 
W 3488.7 CTD/rosette 214 

160-10 19/2/09 0:42 1:33 47
o
 18.43  S 15

o 
38.60

 
W 3241.6 Multiple net 215 

160-11 19/2/09 1:45 2:34 47
o
 18.21  S 15

o 
38.89

 
W NaN Multiple net 216 

160-13 19/2/09 3:13 4:04 47
o
 18.30  S 15

o 
38.93

 
W 3368.5 CTD/rosette 217 

160-14 19/2/09 4:12 6:13 47
o
 18.60  S 15

o 
38.37

 
W 3206.2 In situ 

pump 
218 

160-15 19/2/09 6:25 6:43 47
o
 18.72  S 15

o 
37.76

 
W 3163.1 FRRF 219 

160-16 19/2/09 6:53 7:27 47
o
 18.84  S 15

o 
36.99

 
W 3131.7 CTD/rosette 220 

160-17 19/2/09 7:35 8:23 47
o
 18.82  S 15

o 
36.07

 
W 3064.9 Multiple net 221 

160-18 19/2/09 8:34 9:22 47
o
 18.53  S 15

o 
34.93

 
W 3047.7 Multiple net 222 

160-19 19/2/09 9:34 9:38 47
o
 18.37  S 15

o 
34.47

 
W 3377.7 CTD/rosette 223 

161-01 19/2/09 10:03 23:50 47
o
 16.42  S 14

o 
53.94

 
W 3295.8 Trap, 

sediment 
224 

162-02 20/2/09 11:15 13:17 47
o
 21.33  S 14

o 
42.94

 
W 3141.6 CTD/rosette 225 

162-03 20/2/09 13:27 14:18 47
o
 21.62  S 14

o 
41.72

 
W 2974.1 Multiple net 226 

162-04 20/2/09 14:25 15:15 47
o
 21.83  S 14

o 
40.74

 
W 3170.8 Multiple net 227 

162-06 20/2/09 15:57 16:25 47
o
 22.24  S 14

o 
39.62

 
W 2812.4 CTD/rosette 228 

162-07 20/2/09 16:35 16:52 47
o
 22.36  S 14

o 
39.08

 
W 2836.6 FRRF 229 

162-08 20/2/09 16:55 17:09 47
o
 22.57  S 14

o 
38.74

 
W 2952.2 Hand net 230 

162-09 20/2/09 17:10 17:33 47
o
 22.67  S 14

o 
38.41

 
W 3003.8 Hand net 231 

162-10 20/2/09 17:42 17:55 47
o
 22.86  S 14

o 
38.12

 
W 3168.6 CTD/rosette 232 

162-11 20/2/09 18:03 18:26 47
o
 23.11  S 14

o 
37.45

 
W 3324.6 Clean 

Rosette 
233 

162-12 20/2/09 18:48 19:19 47
o
 23.55  S 14

o 
36.94

 
W 3297.7 CTD/rosette 234 

162-13 20/2/09 19:28 21:34 47
o
 24.43  S 14

o 
34.95

 
W 3019.2 In situ 

pump 
235 

162-14 20/2/09 21:53 22:12 47
o
 24.74  S 14

o 
34.55

 
W 2969.9 RMT 236 

162-15 20/2/09 22:32 22:47 47
o
 25.00  S 14

o 
33.80

 
W 3036.7 FRRF 237 

162-16 20/2/09 22:53 23:48 47
o
 25.54  S 14

o 
33.02

 
W 2977.2 CTD/rosette 238 

162-17 21/2/09 23:56 0:43 47
o
 25.99  S 14

o 
32.32

 
W 2855.5 Multiple net 239 

162-18 21/2/09 1:00 1:50 47
o
 26.66  S 14

o 
31.60

 
W 2979.1 Multiple net 240 
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PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

163-01 21/2/09 15:08 15:34 48
o
 00.04  S 14

o 
00.07

 
W 3248.6 CTD/rosette 241 

163-02 21/2/09 18:43 19:49 48
o
 03.46  S 14

o 
03.14

 
W 3405.2 CTD/rosette 242 

164-01 21/2/09 22:51 23:12 47
o
 59.80  S 13

o 
29.71

 
W 3504.8 RMT 243 

164-02 22/2/09 23:35 0:00 47
o
 59.85  S 13

o 
29.91

 
W 3382.9 Clean 

Rosette 
244 

164-03 22/2/09 0:10 1:02 48
o
 00.06  S 13

o 
30.04

 
W 3333.8 Multiple net 245 

164-04 22/2/09 1:14 2:20 48
o
 00.18  S 13

o 
30.23

 
W 3265.8 CTD/rosette 246 

165-01 22/2/09 3:27 4:33 48
o
 00.15  S 13

o 
20.42

 
W 3067.2 CTD/rosette 247 

166-01 22/2/09 5:36 6:27 48
o
 00.14  S 13

o 
12.08

 
W 3191.8 CTD/rosette 248 

167-01 22/2/09 7:28 8:22 48
o
 00.10  S 13

o 
03.85

 
W 3189.7 CTD/rosette 249 

168-01 22/2/09 9:34 10:32 48
o
 00.16  S 12

o 
52.97

 
W 3157.1 CTD/rosette 250 

169-01 22/2/09 21:18 21:18 47
o
 35.83  S 14

o 
32.79

 
W 2902 Trap, 

sediment 
251 

170-01 23/2/09 15:00 16:58 48
o
 01.00  S 14

o 
28.09

 
W 3332.2 CTD/rosette 252 

170-02 23/2/09 17:09 17:30 48
o
 01.42  S 14

o 
28.35

 
W 3330.8 FRRF 253 

170-03 23/2/09 17:36 18:28 48
o
 02.26  S 14

o 
28.55

 
W 3354.2 Multiple net 254 

170-04 23/2/09 18:38 19:29 48
o
 02.91  S 14

o 
28.78

 
W 3365.5 Multiple net 255 

170-05 23/2/09 19:42 20:05 48
o
 03.46  S 14

o 
28.51

 
W NaN CTD/rosette 256 

170-06 23/2/09 20:14 20:36 48
o
 03.89  S 14

o 
28.47

 
W 3430.4 Clean 

Rosette 
257 

170-07 23/2/09 20:43 20:49 48
o
 03.95  S 14

o 
28.51

 
W 3435.2 Hand net 258 

170-08 23/2/09 21:03 21:14 48
o
 04.22  S 14

o 
28.34

 
W 3460.9 Hand net 259 

170-09 23/2/09 21:20 21:37 48
o
 04.49  S 14

o 
28.28

 
W NaN CTD/rosette 260 

170-12 23/2/09 23:04 23:22 48
o
 05.01  S 14

o 
28.67

 
W 3439 RMT 261 

170-13 24/2/09 23:45 0:21 48
o
 05.58  S 14

o 
28.26

 
W 3382.8 CTD/rosette 262 

170-15 24/2/09 1:08 1:27 48
o
 06.06  S 14

o 
27.64

 
W 3507.7 FRRF 263 

170-16 24/2/09 1:38 2:30 48
o
 06.06  S 14

o 
27.95

 
W 3442.5 CTD/rosette 264 

170-17 24/2/09 2:35 4:39 48
o
 06.41  S 14

o 
28.81

 
W 3434 In situ 

pump 
265 

170-19 24/2/09 5:15 6:07 48
o
 07.25  S 14

o 
29.37

 
W 3480.3 Multiple net 266 

170-20 24/2/09 6:19 7:14 48
o
 08.21  S 14

o 
30.52

 
W 3458.1 Multiple net 267 

170-21 24/2/09 7:27 9:10 48
o
 09.97  S 14

o 
31.92

 
W 3440.2 CTD/rosette 268 

171-01 24/2/09 11:50 14:02 47
o
 54.11  S 14

o 
30.04

 
W 3427 Multi corer 269 

172-01 24/2/09 15:36 15:56 47
o
 53.94  S 14

o 
44.68

 
W 3566 CTD/rosette 270 

172-02 25/2/09 16:20 10:58 48
o
 28.65  S 14

o 
39.66

 
W 3788 Scan-Fish 271 

173-01 25/2/09 11:51 11:51 48
o
 29.35  S 14

o 
44.64

 
W 3729.4 Trap, 

sediment 
272 

174-01 25/2/09 12:37 12:58 48
o
 26.58  S 14

o 
44.01

 
W 3787.8 CTD/rosette 273 

174-02 25/2/09 13:06 13:29 48
o
 26.76  S 14

o 
44.30

 
W 3805.9 Multiple net 274 

174-03 25/2/09 13:29 13:41 48
o
 26.84  S 14

o 
44.41

 
W 3798.7 Hand net 275 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

175-01 25/2/09 14:25 14:46 48
o
 24.47  S 14

o 
44.75

 
W 3730.8 Multiple net 276 

175-02 25/2/09 14:57 15:24 48
o
 24.81  S 14

o 
45.10

 
W 3784.2 Multiple net 277 

175-03 25/2/09 15:26 15:49 48
o
 25.13  S 14

o 
45.48

 
W 3754.2 CTD/rosette 278 

175-04 25/2/09 15:55 16:06 48
o
 25.38  S 14

o 
45.60

 
W 3752.1 Hand net 279 

176-01 25/2/09 16:59 17:16 48
o
 21.73  S 14

o 
45.89

 
W 3669.1 CTD/rosette 280 

176-02 25/2/09 17:24 17:47 48
o
 22.00  S 14

o 
46.06

 
W 3619.4 Multiple net 281 

176-03 25/2/09 17:51 18:05 48
o
 22.09  S 14

o 
46.00

 
W 3611.3 Hand net 282 

177-01 25/2/09 18:48 19:08 48
o
 18.44  S 14

o 
46.63

 
W 3783.1 Multiple net 283 

177-02 25/2/09 19:17 19:34 48
o
 18.54  S 14

o 
46.71

 
W 3799.1 CTD/rosette 284 

177-03 25/2/09 19:38 19:48 48
o
 18.68  S 14

o 
46.84

 
W 3841.3 Hand net 285 

178-01 25/2/09 20:29 20:47 48
o
 16.12  S 14

o 
46.62

 
W 3724 CTD/rosette 286 

178-02 25/2/09 20:54 21:17 48
o
 16.20  S 14

o 
46.62

 
W 3725.6 Multiple net 287 

178-03 25/2/09 21:20 21:38 48
o
 16.21  S 14

o 
46.52

 
W 3723.7 Hand net 288 

178-04 25/2/09 21:42 22:05 48
o
 16.15  S 14

o 
46.94

 
W 3724.6 RMT 289 

179-01 25/2/09 22:42 23:00 48
o
 12.87  S 14

o 
46.26

 
W 3627.6 CTD/rosette 290 

179-02 25/2/09 23:06 23:28 48
o
 12.99  S 14

o 
46.15

 
W 3626.3 Multiple net 291 

179-03 25/2/09 23:33 23:42 48
o
 13.04  S 14

o 
46.11

 
W 3668.9 Hand net 292 

180-01 26/2/09 0:21 0:45 48
o
 09.05  S 14

o 
45.95

 
W 3496.4 Multiple net 293 

180-02 26/2/09 0:54 1:16 48
o
 08.95  S 14

o 
45.93

 
W 3407.6 CTD/rosette 294 

180-03 26/2/09 1:21 1:27 48
o
 08.88  S 14

o 
46.01

 
W 3493.8 Hand net 295 

181-01 26/2/09 2:20 2:42 48
o
 05.31  S 14

o 
45.72

 
W 3518.1 CTD/rosette 296 

181-02 26/2/09 2:51 3:14 48
o
 05.22  S 14

o 
45.88

 
W 3534 Multiple net 297 

181-03 26/2/09 3:15 3:20 48
o
 05.25  S 14

o 
45.97

 
W 3506.7 Hand net 298 

182-01 26/2/09 15:52 16:23 47
o
 47.54  S 15

o 
00.54

 
W 3624.5 CTD/rosette 299 

182-02 26/2/09 16:28 16:53 47
o
 47.51  S 15

o 
00.60

 
W 3616.5 Multiple net 300 

182-03 26/2/09 16:55 17:08 47
o
 47.49  S 15

o 
00.59

 
W 3615.1 Hand net 301 

183-01 26/2/09 17:31 21:31 48
o
 13.44  S 14

o 
23.23

 
W 3417.4 Trap, 

sediment 
302 

183-02 26/2/09 21:49 22:13 48
o
 13.59  S 14

o 
23.46

 
W 3439.1 Clean 

Rosette 
303 

184-01 27/2/09 0:49 0:49 48
o
 36.00  S 14

o 
32.13

 
W 3595.6 Trap, 

sediment 
304 

185-01 27/2/09 10:05 10:25 48
o
 46.00  S 15

o 
28.03

 
W 4001.9 CTD/rosette 305 

185-02 27/2/09 10:33 10:58 48
o
 46.28  S 15

o 
28.22

 
W 4008.7 Multiple net 306 

185-03 27/2/09 11:00 11:06 48
o
 46.32  S 15

o 
28.19

 
W 3999.5 Hand net 307 

186-01 27/2/09 11:39 11:58 48
o
 46.10  S 15

o 
22.86

 
W 4130.7 CTD/rosette 308 

186-02 27/2/09 12:06 12:27 48
o
 46.10  S 15

o 
22.70

 
W 3957.7 Multiple net 309 

186-03 27/2/09 12:31 12:41 48
o
 46.10  S 15

o 
22.70

 
W 3958.1 Hand net 310 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

187-01 27/2/09 13:44 14:06 48
o
 48.09  S 15

o 
16.40

 
W 3850.6 Multiple net 311 

187-02 27/2/09 14:15 14:33 48
o
 48.18  S 15

o 
16.49

 
W 3871.9 CTD/rosette 312 

187-03 27/2/09 14:37 14:49 48
o
 48.26  S 15

o 
16.57

 
W 3879.3 Hand net 313 

188-01 27/2/09 15:34 15:52 48
o
 48.00  S 15

o 
14.01

 
W 3839.7 CTD/rosette 314 

188-02 27/2/09 16:00 16:23 48
o
 48.02  S 15

o 
14.08

 
W 3779.7 Multiple net 315 

188-03 27/2/09 16:26 16:42 48
o
 48.09  S 15

o 
14.08

 
W 3845.6 Hand net 316 

189-01 27/2/09 17:23 17:45 48
o
 48.92  S 15

o 
09.49

 
W 3842.9 Multiple net 317 

189-02 27/2/09 17:56 18:14 48
o
 49.00  S 15

o 
09.38

 
W 3844 CTD/rosette 318 

189-03 27/2/09 18:22 18:25 48
o
 49.03  S 15

o 
09.29

 
W 3848 Hand net 319 

190-01 27/2/09 19:20 19:39 48
o
 49.08  S 15

o 
05.10

 
W 3954.2 CTD/rosette 320 

190-02 27/2/09 19:45 20:08 48
o
 49.19  S 15

o 
05.04

 
W 3984 Multiple net 321 

190-03 27/2/09 20:16 20:20 48
o
 49.24  S 15

o 
05.00

 
W 3982.7 Hand net 322 

191-01 27/2/09 21:24 21:44 48
o
 48.06  S 15

o 
14.03

 
W 3843 RMT 323 

191-02 27/2/09 22:15 23:02 48
o
 48.44  S 15

o 
14.06

 
W 3851.8 CTD/rosette 324 

192-01 28/2/09 20:09 20:12 48
o
 48.55  S 15

o 
14.89

 
W NaN Hand net 325 

192-02 28/2/09 22:43 23:18 48
o
 47.75  S 15

o 
14.80

 
W 3822.6 CTD/rosette 326 

192-05 1/3/09 0:39 2:35 48
o
 48.25  S 15

o 
12.23

 
W 3843 CTD/rosette 327 

192-07 1/3/09 3:41 4:33 48
o
 49.14  S 15

o 
13.56

 
W 3910.1 Multiple net 328 

192-08 1/3/09 4:50 5:00 48
o
 49.01  S 15

o 
13.66

 
W 3897.7 CTD/rosette 329 

192-09 1/3/09 5:06 5:56 48
o
 48.90  S 15

o 
13.86

 
W 3887.1 Multiple net 330 

192-10 1/3/09 6:06 6:21 48
o
 48.86  S 15

o 
13.94

 
W 3884.9 CTD/rosette 331 

192-11 1/3/09 6:33 8:30 48
o
 49.14  S 15

o 
14.79

 
W 3909.7 In situ 

pump 
332 

192-12 1/3/09 8:43 9:15 48
o
 49.28  S 15

o 
15.42

 
W 3922.9 CTD/rosette 333 

193-01 1/3/09 18:11 18:31 48
o
 38.72  S 15

o 
08.40

 
W 3721.6 CTD/rosette 334 

193-02 1/3/09 18:38 18:42 48
o
 38.64  S 15

o 
08.53

 
W 3727.3 Hand net 335 

194-01 1/3/09 22:57 22:57 48
o
 56.22  S 15

o 
12.71

 
W 3860.7 Trap, 

sediment 
336 

195-01 2/3/09 1:49 4:18 48
o
 39.52  S 15

o 
05.63

 
W 3800.9 Multi corer 337 

195-02 2/3/09 4:38 5:43 48
o
 40.03  S 15

o 
04.40

 
W NaN CTD/rosette 338 

196-01 2/3/09 9:22 9:40 48
o
 24.84  S 14

o 
56.87

 
W 3525.2 CTD/rosette 339 

196-02 2/3/09 9:48 10:11 48
o
 24.60  S 14

o 
56.79

 
W 3535.2 Multiple net 340 

196-03 2/3/09 10:13 10:34 48
o
 24.43  S 14

o 
56.75

 
W 3527.1 Hand net 341 

196-04 2/3/09 10:41 11:05 48
o
 24.07  S 14

o 
56.66

 
W 3519.3 Clean 

Rosette 
342 

197-01 2/3/09 13:36 15:43 48
o
 25.36  S 15

o 
15.65

 
W 3696.2 CTD/rosette 343 

197-02 2/3/09 15:51 16:16 48
o
 25.69  S 15

o 
15.74

 
W 3671.3 Multiple net 344 

197-03 2/3/09 16:19 16:27 48
o
 25.83  S 15

o 
15.96

 
W 3656.2 Hand net 345 
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Station 
PS73 

Date Time 
(start) 

Time 
(end) 

Position 
(Lat.) 

Position 
(Lon.) 

Depth 
(m) 

Gear srno 

198-01 2/3/09 18:17 19:21 48
o
 15.02  S 15

o 
14.59

 
W NaN CTD/rosette 346 

199-01 2/3/09 21:22 21:41 48
o
 03.63  S 15

o 
15.54

 
W 3714.6 RMT 347 

199-02 3/3/09 22:01 0:04 48
o
 03.68  S 15

o 
13.92

 
W 3695.9 CTD/rosette 348 

199-03 3/3/09 0:08 0:17 48
o
 03.51  S 15

o 
13.88

 
W 3698 Hand net 349 

199-04 3/3/09 0:28 0:41 48
o
 03.27  S 15

o 
13.59

 
W 3721.1 Hand net 350 

199-06 3/3/09 1:34 2:07 48
o
 02.72  S 15

o 
14.99

 
W 3691.4 CTD/rosette 351 

199-07 3/3/09 2:14 2:32 48
o
 02.62  S 15

o 
14.89

 
W 3687 FRRF 352 

199-08 3/3/09 2:46 2:59 48
o
 02.32  S 15

o 
14.44

 
W 3791.3 CTD/rosette 353 

199-09 3/3/09 3:21 4:12 48
o
 02.77  S 15

o 
15.01

 
W NaN Multiple net 354 

199-10 3/3/09 4:21 5:10 48
o
 02.54  S 15

o 
14.99

 
W NaN Multiple net 355 

199-11 3/3/09 5:22 6:14 48
o
 02.11  S 15

o 
15.33

 
W 3707.1 CTD/rosette 356 

199-12 3/3/09 6:22 6:46 48
o
 02.06  S 15

o 
15.75

 
W 3738.7 Clean 

Rosette 
357 

199-13 3/3/09 6:53 7:10 48
o
 02.16  S 15

o 
15.94

 
W NaN FRRF 358 

199-14 3/3/09 7:22 7:53 48
o
 02.57  S 15

o 
16.46

 
W 3798.9 CTD/rosette 359 

200-01 3/3/09 9:36 10:38 47
o
 52.31  S 15

o 
15.38

 
W 4095.8 CTD/rosette 360 

201-01 3/3/09 12:43 13:46 47
o
 41.00  S 15

o 
14.15

 
W 3774.7 CTD/rosette 361 

202-01 3/3/09 15:42 16:48 47
o
 29.83  S 15

o 
14.05

 
W NaN CTD/rosette 362 

203-01 3/3/09 22:37 22:37 47
o
 32.54  S 14

o 
01.28

 
W 3297.3 Trap, 

sediment 
363 

204-01 4/3/09 11:31 13:30 48
o
 58.49  S 15

o 
14.05

 
W 3871.9 CTD/rosette 364 

204-02 4/3/09 13:50 14:45 48
o
 58.29  S 15

o 
15.59

 
W 3778.7 Multiple net 365 

204-03 4/3/09 14:58 15:50 48
o
 58.50  S 15

o 
17.23

 
W 3822.3 Multiple net 366 

204-04 4/3/09 15:58 16:17 48
o
 58.91  S 15

o 
17.92

 
W 3863.3 FRRF 367 

204-05 4/3/09 16:25 16:59 48
o
 59.41  S 15

o 
18.56

 
W 3918.4 CTD/rosette 368 

204-06 4/3/09 17:03 17:10 48
o
 59.53  S 15

o 
18.60

 
W 3925.9 Hand net 369 

204-07 4/3/09 17:14 17:33 48
o
 59.73  S 15

o 
18.64

 
W 3931.3 Hand net 370 

204-08 4/3/09 17:38 17:58 49
o
 00.05  S 15

o 
18.63

 
W 3931.2 Hand net 371 

204-10 4/3/09 18:25 18:58 49
o
 01.07  S 15

o 
18.96

 
W 3926 CTD/rosette 372 

204-11 4/3/09 19:07 21:06 49
o
 02.21  S 15

o 
18.47

 
W 3863.6 In situ 

pump 
373 

204-12 4/3/09 21:14 21:37 49
o
 02.49  S 15

o 
18.17

 
W 3866.7 Clean 

Rosette 
374 

204-13 4/3/09 21:52 22:11 49
o
 02.47  S 15

o 
17.74

 
W 3809.6 RMT 375 

204-14 5/3/09 23:47 0:07 48
o
 58.12  S 15

o 
11.28

 
W 3846.9 FRRF 376 

204-15 5/3/09 0:09 0:25 48
o
 58.12  S 15

o 
11.19

 
W 3850.6 CTD/rosette 377 

204-16 5/3/09 0:33 1:22 48
o
 57.93  S 15

o 
10.96

 
W 3831.6 Multiple net 378 

204-17 5/3/09 1:31 2:22 48
o
 57.71  S 15

o 
11.41

 
W 3848.5 Multiple net 379 

204-19 5/3/09 4:25 6:13 48
o
 54.48  S 15

o 
11.35

 
W 4250.7 CTD/rosette 380 
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PS73 
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Time 
(end) 
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(Lat.) 

Position 
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204-20 5/3/09 6:37 6:58 48
o
 54.77  S 15

o 
11.89

 
W 4073.5 Multiple net 381 

204-20 5/3/09 7:00 10:44 48
o
 55.70  S 15

o 
11.84

 
W 3918 Multiple net 382 

205-01 5/3/09 14:55 14:55 49
o
 05.40  S 15

o 
15.81

 
W 3698.7 Trap, 

sediment 
383 

206-01 5/3/09 15:55 15:55 49
o
 08.59  S 15

o 
13.46

 
W 3958.2 Trap, 

sediment 
384 

207-01 5/3/09 19:49 21:51 49
o
 00.46  S 15

o 
30.91

 
W 3737.2 In situ 

pump 
385 

207-02 5/3/09 22:21 22:39 49
o
 02.06  S 15

o 
31.56

 
W 3699.5 RMT 386 

208-01 6/3/09 0:05 0:19 49
o
 02.32  S 15

o 
24.08

 
W 3984.7 RMT 387 

209-01 6/3/09 1:37 1:55 48
o
 57.84  S 15

o 
20.86

 
W 4037.5 RMT 388 

210-01 6/3/09 4:19 4:36 48
o
 56.34  S 15

o 
12.90

 
W 3827.7 RMT 389 

211-01 6/3/09 12:23 12:40 48
o
 57.90  S 15

o 
22.48

 
W 4028 CTD/rosette 390 

211-02 6/3/09 13:01 13:23 48
o
 58.12  S 15

o 
22.62

 
W 4037 Multiple net 391 

211-04 6/3/09 13:46 13:49 48
o
 58.21  S 15

o 
22.70

 
W 3980.5 Hand net 392 

211-06 6/3/09 14:16 14:38 48
o
 58.50  S 15

o 
22.91

 
W 3963.2 Clean 

Rosette 
393 

212-01 6/3/09 17:20 17:40 49
o
 02.09  S 15

o 
30.81

 
W 3721 CTD/rosette 394 

212-02 6/3/09 17:52 18:01 49
o
 02.24  S 15

o 
30.67

 
W 3731.7 Multiple net 395 
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