
While the coast between South Australia and Victoria is easily
accessible, and abundant sedimentary strata are preserved both
onshore and on a broad continental shelf, only a few outcrops
are exposed at the juxtaposed coast between Terre Adélie and
northern Victoria Land, and the shelf there is not accessible.
The basement of Terre Adélie and northern Victoria Land
consists of the Precambrian East Antarctic Craton onto which
three major tectono-metamorphic terranes (Wilson, Bowers,
and Robertson Bay) were accreted during the Early Paleozoic
Ross Orogeny (Fig. 2). It comprises Neoproterozoic to early
Paleozoic gneisses and low-grade metasedimentary rocks
intruded by the ~500 Ma Granite Harbour and the ~350 Ma
Admiralty Intrusive suites (e.g., BORG et al. 1987). This base-
ment is overlain only locally by remnants of a so-called Gond-
wana terrestrial sequence made of Permian to Early Jurassic
clastic deposits (Beacon Supergoup), and mafic Ferrar
volcanic rocks and dykes that emplaced at ~180 Ma (e.g.,
COLLINSON et al. 1986, BARRETT 1991, HEIMANN et al. 1994).
Neogene volcanic rocks and sediments are merely preserved
as patches in the immediate vicinity of the Ross Sea margin. 

Due to these limitations, early correlations of Antarctica and
SE Australia largely depended on proxies for properties of
crustal units, such as paleomagnetics, geochronology,
magmatic and metamorphic petrology, structural geology
(e.g., STUMP et al. 1986, MILLER et al. 2002), whereas sedi-
mentary and stratigraphic information is restricted to the
Australian side (e.g., MUTTER et al. 1985, WILLCOX & STAGG

1990, STAGG & WILLCOX 1992, BRYAN et al. 1997). 

In this situation, the Antarctic Ross Sea region became one of
the first areas where an alternative dating technique, apatite
fission track (AFT) analysis, was applied to solve this
dilemma. AFT thermochronology is a radiometric method
based on the accumulation of damage trails in the mineral
apatite due to spontaneous nuclear fission of 238U. Fission
tracks are produced at a constant rate through time, and so the
number (density) of tracks can be used to estimate the time
since track accumulation began, i.e. the AFT age. Fission
tracks remain preserved in apatites below a temperature of
110-125 °C. They experience some length reduction (annea-
ling) within the temperature range of 60-110 °C (“Partial
Annealing Zone”, e.g., WAGNER & VAN DEN HAUTE 1992).
AFT analysis produces two parameters: an AFT age (resulting
from the track density), and information about the style of
cooling and the maximum paleotemperature (from mean track
length and standard deviation). Moreover, etch pit diameters
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Abstract: This paper presents the overview of the apatite fission track (AFT)
data set of northern Victoria Land and juxtaposed SE Australia, and the under-
lying geological and geomorphological processes since late Paleozoic times. It
focuses on thermochronological data produced during the last two decades,
new interpretation strategies, and the combined use of thermochronological
data and complementary geological information. The regional AFT pattern
and stratigraphic age information require the existence of a late Paleozoic -
Mesozoic sedimentary basin between northern Victoria Land and SE
Australia. Basin formation resulted from long-lasting N–S oblique extension
that also triggered the ~180 Ma Ferrar magmatism, the rifting of the Ross Sea,
and eventually continental breakup between Antarctica and Australia. The
locus of breakup is probably controlled by basin geometry and depth.

Zusammenfassung: Dieser Artikel präsentiert einen Überblick über den
Datensatz von Apatitspaltspurenaltern (AFT) von Nordviktorialand und dem
gegenüberliegenden Südosten Australiens sowie über die zu Grunde liegenden
geologischen und geomorphologischen Prozesse seit dem Paläozoikum. Er
fokussiert auf thermochronologische Daten der letzten beiden Jahrzehnte,
neue Interpretationsstrategien sowie die Kombination thermochronologischer
Daten mit komplementären geologischen Informationen. Der Vergleich regio-
naler AFT-Alter und stratigraphischer Alter erfordert die Existenz eines spät-
paläozoisch-mesozoischen Beckens zwischen Nordviktorialand und SE-
Australien. Dessen Bildung ist das Ergebnis lang anhaltender schräger N–S-
Extension, die auch für den ~180 Ma Ferrar-Magmatismus, das Rossmeer-
Rifting und schließlich den Kontinentalzerfall zwischen der Antarktis und
Australien verantwortlich ist. Die Anlage der entsprechenden Bruchstelle ist
vermutlich durch Beckengeometrie  und Beckentiefe kontrolliert.

INTRODUCTION

Compared to former supercontinents, modern Gondwana
reconstructions tend to be reasonably well constrained. They
mainly rely on fits of isobaths, positions of palaeomagnetic
poles or comparisons of structure and age of the metamorphic
basement and Palaeozoic to Mesozoic sedimentary strata
including fossil content, respectively, of the juxtaposed Gond-
wana fragments. Nevertheless, the resolution of the pre-break-
up architecture of some regions within Gondwana remains
poor, especially of Antarctic regions now covered by ice and
/or lacking any attributable sedimentary record. A typical
example for this dilemma is the correlation of the sheared
margins of the Ross Sea sector of Antarctica and SE Australia
(Fig. 1).
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are measured as a proxy for the chemical composition of the
apatites (BURTNER et al. 1994).

Qualitative interpretation and thermal history modelling of
AFT data are then applied to derive constraints on timing and
amount of cooling. Cooling of rocks to the temperatures of the
AFT system usually refers to exhumation or postmagmatic
thermal relaxation. At present, AFT thermochronology is the
most commonly used tool to delineate exhumation processes
and long-term landscape evolution of a wide field of geolo-
gical environments, ranging from contractional to extensional
settings and “stable” cratonic interiors. For detailed overviews
on apatite thermochronology and its application to geological

101

Fig. 1: Sketch map showing the juxtaposed coastal segments between Terre
Adélie and northern Victoria Land of Antarctica and southeastern Australia.
Basins: BB = Bass Basin; EB = Eucla Basin; DB = Duntroon Basin; GABB =
Great Australian Bight Basin, GB = Gippsland Basin, OB = Otway Basin.
RBT = Robertson Bay Terrane; TNB = Terra Nova Bay. The star marks the lo-
cation of the Eisenhower and Deep Freeze ranges, the frame indicates the con-
tour of Figure 2. 

Abb. 1: Übersichtskarte mit den gegenüberliegenden Küstenabschnitten zwi-
schen Terre Adélie und Nordviktorialand der Antarktis und dem südöstlichen
Australien. Becken: BB = Bass-Becken, EB = Eucla-Becken, DB = Duntroon-
Becken, GABB = Great Australian Bight-Becken, GB = Gippsland-Becken,
OB = Otway-Becken. RBT = Robertson Bay Terrane; TNB = Terra Nova Bay.
Der Stern markiert die Lage der Eisenhower Range und der Deep Freeze 
Range, der Rahmen zeigt den Umriss der Abbildung 2.

Fig. 2: Geological sketch of northern Victoria Land showing sample locations of the apatite fission track studies of FITZGERALD & GLEADOW (1988), BALESTRIE-
RI et al. (1994b, 1997, 1999), LISKER (1996 unpubl. data), SCHÄFER (1998), BALESTRIERI & BIGAZZI (2001), ROSSETTI et al. (2003), and LISKER et al. (2006).

Abb. 2: Geologische Übersichtskarte von Nordviktorialand mit den Probennahmepunkten für die Spaltspuruntersuchungen von FITZGERALD & GLEADOW (1988),
BALESTRIERI et al. (1994b, 1997, 1999), LISKER (1996 unpubl. Daten), SCHÄFER (1998), BALESTRIERI & BIGAZZI (2001), ROSSETTI et al. (2003) und LISKER et al.
(2006).
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problems we refer to WAGNER & VAN DEN HAUTE (1992),
GALLAGHER et al. (1998), GLEADOW et al. (2002a), REINERS &
EHLERS (2005), and LISKER et al. (2009).

EARLY THERMOCHRONOLOGICAL STUDIES IN ANT-
ARCTICA AND AUSTRALIA

Southeastern Australia and the formerly linked portion of
Pacific Antarctica belonged to the first regions where ther-
mochronological techniques were applied and represent key
areas for the develoment of the AFT method and basic princi-
ples of the interpretation of thermochronological data. The
first geological applications in Australia dated cooling
processes of rocks from coastal Victoria and were related to
rifting and passive margin evolution (GLEADOW & LOVERING

1978a,b, GLEADOW & DUDDY 1981, MOORE et al. 1986).
Methodological aspects of these studies referred to the impor-
tance of fission track length distributions for estimating paleo-
temperatures, and to the applicability of the method to basin
research and hydrocarbon exploration. Early studies in Antarc-
tica concentrated on the Transantarctic Mountains (GLEADOW

et al. 1984, FITZGERALD 1986, GLEADOW & FITZGERALD 1987,
FITZGERALD & GLEADOW 1988, FITZGERALD & STUMP 1991,
FITZGERALD 1992, 1994, cf. reviews of BALESTRIERI et al.
1994a and FITZGERALD 2002) and developed diagnostic tools
to determine timing and amount of "uplift"/ exhumation (e.g.,
the “break in slope” representing a fossil Partial Annealing
Zone: GLEADOW & FITZGERALD 1987, FITZGERALD &
GLEADOW 1990). The AFT data set of the Ross Sea region was
interpreted in terms of three episodes of “uplift” – in modern
terminology: exhumation stages – related to regional tectonic
events (e.g., FITZGERALD 2002): 
(1) the initial breakup between Australia and Antarctica in the
Early Cretaceous, 
(2) the main phase of extension between East and West Antarc-
tica in the Late Cretaceous, and 
(3) the propagation southward of seafloor spreading from the
Adare Trough into continental crust underlying the western
Ross Sea in the early Cenozoic. 
This latter event likely acted as the trigger for the flexural
uplift of East Antarctic lithosphere to form the Transantarctic
Mountains.

The AFT data also provide a main base for various uplift
scenarios that can be divided into four general groups: ther-
mally driven uplift, mechanically driven uplift (crustal exten-
sion and flexure, a combination of these two (e.g.,), or
topographic reversal due to the collapse of a West Antarctic
plateau (SMITH & DREWRY 1984, FITZGERALD et al. 1986,
SALVINI et al. 1997, ten BRINK et al. 1997, LAWRENCE et al.
2006, FACCENA et al. 2008, BIALAS et al. 2007, VAN WIJK et al.
2008). Much less attention has been given to the Pacific conti-
nental margin that evolved perpendicular to the West Antarctic
Rift System. Early age data from this margin were not
obtained from independent research projects but collected
within studies focusing on the northern segments of the Trans-
antarctic Mountains.

FISSION TRACK COMPILATIONS OF THE ANTARCTIC 
- AUSTRALIAN MARGIN

The first reviews of AFT data in the context of the passive
margin evolution of Antarctica and Australia were published
by STUMP et al. (1990) and FOSTER & GLEADOW (1992, 1993).
These studies derived the regional “uplift” history of this part
of Gondwana from AFT data produced by GLEADOW &
LOVERING (1978a, b), MOORE et al. (1986), and DUMITRU et al.
(1991; all Victoria), and by GLEADOW & FITZGERALD (1987)
and FITZGERALD & GLEADOW (1988; both Victoria Land). Both
juxtaposed margin segments show a consistent pattern of old
AFT ages (up to ~400 Ma) in their western terranes (Delame-
rian Fold Belt/Australia, Wilson Terrane/ northern Victoria
Land) while the ages of the eastern terranes (Lachlan Fold
Belt, Robertson Bay Terrane) are usually <100 Ma. This age
pattern confirms the match of the Gondwana terranes as
proposed earlier by STUMP et al. (1986) on the base of strati-
graphic and lithological similarities, and highlights the impor-
tance of a regional tectonic lineament consisting of Woorn-
doo-Sorrel Fault Zone – Tasman Fracture Zone – Leap Year
Fault (Rennick Graben) (FOSTER & GLEADOW 1992) (Fig. 1).

The compilations also propose a common thermal history of
all terranes from the Devonian through to the end of the Meso-
zoic that comprised very little burial or exhumation. A thermal
reset was recognized for the ~180 Ma Ferrar magmatism in
northern Victoria Land, but neither the SE Australia nor north-
ern Victoria Land data show any clear influence of rifting and
breakup in the late Cretaceous. Subsequent to the breakup of
Australia and Antarctica, the thermal and tectonic histories of
both margins evolved independently along differing paths.
With respect to present-day geomorphic differences, STUMP et
al. (1990) suggested that during extension northern Victoria
Land was flanked by two upper plate margins, whereas
southeastern Australia was flanked by an upper plate and a
lower plate margin. FOSTER & GLEADOW (1992, 1993) particu-
larly focused on the lithospheric boundaries across the
margins that were supposedly reactivated as transfer faults
during Mesozoic rifting and Gondwana fragmentation. They
now divide crustal segments of different rheological behav-
iour, and with varying amounts of uplift.

A review of LISKER (2002) based on a much larger body of
published AFT data from the Transantarctic Mountains
(STUMP & FITZGERALD 1992, BALESTRIERI et al. 1994b, 1997,
FITZGERALD et al. 1996, FITZGERALD & STUMP 1997) including
three comprehensive data sets from PhD theses (LISKER 1996,
MILLER 1997, SCHÄFER 1998). It provided a better resolution
of thermal histories, and extended the Antarctic AFT data
coverage further East towards Oates Land. All AFT compila-
tions of the juxtaposed Antarctic and Australian margins stress
the similarity of the AFT data pattern on both continents, and
agree in the correlation of terranes and tectonic lineaments as
well as structural control of exhumation. In addition, LISKER

(2002) refers to the influence of plate rotation on exhumation
and uplift. 

The review papers and all underlying studies consider the
heterogeneous passive/ transform margins of northern Victoria
Land and SE Australia as the result of long-lasting rotation,
extension and rifting that started in the Jurassic, with sea floor
production commencing in the Early Cretaceous. They suggest
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that a change in stress pattern triggered a discrete sequence of
two events comprising late Mesozoic continental rifting and
separation, and Cenozoic West Antarctic Rifting. In addition,
all authors explicitly or implicitly consider the Transantarctic
Mountains as a long-lasting, stable mountain chain/highland
that might have brought into existence as early as ~180 Ma
during the Ferrar event. It was argued to then have been
uplifted stepwisely at least since Early Cretaceous times.
However, this concept produces a number of problems and
open questions concerning data interpretation and the relation-
ship between AFT data and other geological and geomorpho-
logical evidence.

Firstly, the postulated landscape evolution model comprising
three episodes of rapid uplift/exhumation based on qualitative
interpretation cannot be verified by thermal history modelling
of the AFT data because the track lengths are too short in most
samples. These models further conflict with the rather homo-
genous distribution of a series of reference horizons, such as
erosion surfaces, sedimentary and volcanoclastic strata,
volcanic flows, and with various thermal indicators (cf. LISKER

& LÄUFER 2007). 

Secondly, uplift of the different segments of the Transantarctic
Mountains was not recorded simultaneously and according to
a regular trend along the mountain chain, but instead appears
diachronous and without a recognizable spatial pattern (cf.
FITZGERALD 2002). Northern Victoria Land, constituting the
northernmost segment of the Transantarctic Mountains in the
Ross Sea region lacks any consistent interference of breakup-
related exhumation and exhumation induced by rifting of the
West Antarctic Rift System. Moreover, combined thermochro-
nological and structural data indicate a repeated swap of the
regional stress field into perpendicular directions between
Jurassic and Paleogene.

Of particular importance with respect to Gondwana breakup
and subsequent transform/passive margin evolution is the
contrast between Cretaceous deposition on the Australian
margin including a thick shelf sequence and supposed contem-
poraneous exhumation of the Antarctic margin in spite
common AFT patterns across both margins.

These inconsistencies between AFT data and complementary
geological information requires a state of the art reconstruc-
tion of the breakup processes between Antarctica and Australia
that has to rely on four parallel avenues: new AFT data, new
techniques, a focus on isotherm patterns, and the intimate link
to various geoscience disciplines.

AFT WORK OF THE LAST DECADE
(i) New AFT data

Since the publication of the main reviews of AFT data from
the Australian and Antarctic margin in the late 1990’s, a
decade of further study has significantly expanded the AFT
dataset. AFT studies between northern Victoria Land and Terre
Adélie (Antarctica) were conducted by BALESTRIERI &
FIORETTI (1998), BALESTRIERI et al. (1999), BALESTRIERI &
BIGAZZI (2001), FITZGERALD (2001), ROSSETTI et al. (2003),
LISKER & OLESCH (2003, 2004), LISKER et al. (2006), STORTI et
al. (2008), MILLER et al. (2010), and ZATTIN et al. (2010).

When added to the existing data, these studies have contri-
buted to form an overall data set of more than 500 AFT ages
and associated proxies.

The vast AFT data base from the Australian continent
comprises more than 3000 records, with the majority of them
obtained from SE Australia (Victoria, New South Wales, and
Tasmania) (GLEADOW et al. 2002b, KOHN et al. 2002). Many of
these data originated during hydrocarbon exploration in the
onshore and offshore basins (HILL et al. 1995, O'SULLIVAN et
al. 1995, 1996, 1999, 2000a, b,c, MITCHELL 1997, KOHN et al.
1999, GIBSON & STÜWE 2000, MITCHELL et al. 2002, TINGATE

& DUDDY 2002, GREEN et al. 2004, and WEBER et al. 2004). 

More important than the addition of new apatite ages are the
extension of the study areas away from the dominant
rift/margin structures in the east where thermal history recon-
struction is superimposed and “blurred” by younger tectonic
processes, as well as an improved thermal resolution due to the
addition of a large quantity of annealing proxies (AFT length
data, etch pit diameters/Dpar). Some key target areas containing
high-resolution vertical AFT profiles (e.g, from escarpments
or boreholes) and/or horizontal transects do not only provide
excellent temperature constraints at various time intervals but
also allow the calculation of paleogeothermal gradients at the
time of maximum burial (e.g., O'SULLIVAN et al. 2000a,
MITCHELL et al. 2002, GREEN et al. 2004, WEBER et al. 2004,
LISKER et al. 2006).

Age spectra and regional distribution of the AFT data gener-
ated during the last decade very much resemble the ones of the
former studies, and constrain a systematic bimodal pattern
consisting of predominantly Late Cretaceous to early Ceno-
zoic AFT ages coupled with relatively long track lengths and a
broad range of older ages linked with usually short track
lengths. The majority of samples, including those with AFT
ages of ~50 Ma have mean track lengths shortened to below 14
µm (Fig. 3). In general, the Cenozoic ages dominate the
eastern coastal regions of both continental fragments, and
increase towards west (Fig. 4). In northern Victoria Land, this
trend usually correlates with the geomorphological contrast
between Alpine topography at the Ross Sea and the plateau
bound by steep escarpments towards the west, whereas the
youngest AFT ages in SE Australia are confined to the Great
Escarpment (e.g., GLEADOW et al. 2002b, KOHN et al. 2002; see
below). LISKER (2002) identified the line Rennick Graben –
Tasman Fracture Zone – Woorndoo-Sorrel Fault Zone as a key
structure dividing the age pattern (Fig. 4).

In contrast, there is no distinctive N–S trend perpendicular to
the Antarctic coast as typical for passive margin settings.  This
contrasts with a trend of young ages/large amounts of exhuma-
tion at the coast and increasing ages/decreasing exhumation
towards the interior in the southeast of Australia (e.g., KOHN et
al. 2002). 

(ii) (U-Th)/He thermochronology: a new, supplementary
method

The AFT technique represents a unique tool to investigate the
thermal history of rocks within the temperature range of 60 -
110 °C, usually referring to exhumation processes within
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crustal depths of 2-5 km. However, the restriction to these
temperatures does not provide access to the youngest
cooling/exhumation phases of the uppermost crust, especially
for areas with old ages lacking clear signatures. Additional
data of higher thermal sensitivity can be acquired using (U-
Th)/He thermochronology. This methodology relies on the
radioactive decay of U and Th to 4He to determine the time
since an apatite crystal cooled through the temperature
interval 40-85 °C (e.g., WOLF et al. 1998). It is applied to inves-
tigate the vertical throws along faults, the rates of continental
erosion, the formation of topographic relief and climate varia-
tion (e.g., EHLERS & FARLEY 2003). The first (U-Th)/He data
from the Transantarctic Mountains were published by FITZGE-
RALD et al. (2006). This study dated apatite aliquots from
vertical sample profiles in southern Victoria Land that were
analyzed previously for fission track data. The (U-Th)/He ages
were usually 10-20 Ma younger than corresponding AFT ages
(43-92 Ma). Similarly, HOUSE et al. (1999, 2002) produced
apatite (U-Th)/He ages of surface samples from the Otway
Basin (SE Australia; ~70 Ma) that are substantially younger
than corresponding AFT ages (~110 Ma). PERSANO et al.
(2002, 2006) obtained similar relationships from geomorpho-
logical and exhumation studies at the Great Escarpment.

(iii) Isotherm patterns and recognition of nonlinear cooling

Unlike many geochronological ages, AFT ages usually cannot
be used as direct time constraints for immediate dating of
discrete geological events. Accordingly, the sole compilation
of AFT age data is only of limited use for reconstructing exhu-
mation patterns and tectonic processes. Instead, the advantage
of thermochronological methods is the potential to qualita-
tively estimate and quantitatively model temperature
constraints at various times. This potential has been demon-
strated by GLEADOW et al. (2002b) and KOHN et al. (2002) for
Australia. Moreover, O’SULLIVAN et al. (1995, 1996, 2000a,
b,c) applied the concept of nonlinear cooling to the Lachland
Fold Belt, the Bathhurst region, and the Bassian Rise.

(iv) Link to complementary disciplines

A reliable interpretation of thermochronological data funda-
mentally depends on quality and substance of supplementary
information from various associated geoscience disciplines.

104

Fig. 3: Plots showing the relationship between apatite fission track age and
elevation (top) and the distance to the “transantarctic” Ross Sea margin (bot-
tom), respectively. Circles = data from northern Victoria Land (Fig. 2) and the
Terra Nova Bay; squares = data of the central and southern Transantarctic Mo-
untains. Note the uniform trend of both data sets.

Abb. 3: Grafik mit dem Verhältnis zwischen Apatit-Spaltspuralter und Höhe
(oben) und der Entfernung zum “transantarktischen” Rossmeerrand (unten).
Kreise = Daten aus Nordviktorialand (Abb. 2) und der Terra Nova Bay; Qua-
drate = Daten aus dem zentralen und südlichen Transantarktischen Gebirge.
Man beachte den einheitlichen Trend beider Datensätze.

Fig. 4: Diagram showing the trend of apatite fissi-
on track (AFT) ages along the coast of northern
Victoria Land. Note the sudden shift of the AFT
ages across the western master fault of the Ren-
nick Graben at 163°–164°E. Ages from the crato-
nic interior west of the Morozumi Range are
exclusively >100 Ma while the majority of the ter-
rane sample ages near the Ross Sea are <100 Ma.

Abb. 4: Diagramm zur Verdeutlichung des Trends
der Apatit-Spaltspur (AFT)-Alter entlang der Kü-
ste Nordviktorialands. Man beachte den plötzli-
chen Sprung der AFT-Alter über die westliche
Hauptrandstörung des Rennick-Grabens bei
163–164 °E. Alter aus dem Kratonbereich westlich
der Morozumi Range sind ausschließlich älter als
100 Ma, während die Mehrheit der Alter der aus
den Terranes nahe des Rossmeeres stammenden
Proben jünger als 100 Ma sind.
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This includes both a compilation of common features and the
definition of critical differences. Beyond thermochronological
data, valuable information is available both from academic
research and hydrocarbon exploration on the Australian shelf
in various disciplines, such as reference horizons, paleotemper-
atures, stratigraphic patterns, kinematic indicators, geophy-
sical data, geochronological ages, landsat TM analysis, and
others. The more pertinent observational and analytical data-
sets are reference horizons.

Reference horizons  

The potential of such horizons was recognized in the early
review papers (e.g., STUMP et al. 1990) both as an independent
indicator for burial and exhumation ("uplift") as well as link
between southeastern Australia with northern Victoria Land.
Very useful are paleosurface markers, most notably disconfor-
mities or unconformities, as key indications for the application
of simple linear or non-linear cooling/exhumation scenarios.
The crucial Antarctic marker horizons comprise: 
(1) The Paleozoic pre-Beacon (“Kukri”) Surface on which the
strata of the Beacon Supergroup were deposited between the
Devonian (central Transantarctic Mountains) to Permian (north-
ern Victoria Land) and the Early Jurassic (e.g., BARRETT 1991,
ISBELL 1999). 
(2) the ~350 Ma rhyolitic equivalents of the Admiralty Group
which were extruded directly over the deformed pre-Ordovi-
cian basement (e.g., FIORETTI et al. 1997).
(3) The ~180 Ma Ferrar volcanic rocks that conformably
overly, or intrude at shallow depths the Beacon Supergroup.
(4) The various small-scale Cenozoic volcanics and shallow
intrusions (for example, Meander, Malta, Hallett magmatics;
e.g., ROCCHI et al. 2002). 

Some of these features are only preserved as relics and/or their
age is poorly resolved or diachronous (Kukri surface, Carboni-
ferous rhyolites, the lower Beacon strata), while others are
widely distributed and provide well-defined time constraints
(Ferrar volcanics). 

Of these palaeosurface markers, the mafic Ferrar Dolerite
suite is potentially the most controversial. It is often consi-
dered to consist of sills intruded at various depths with only a
minor effusive component called Kirkpatrick basalt (e.g.,
ELLIOT 2000). However, systematic research during the last
decade established the predominantly subaerial or very
shallow nature of the Ferrar rocks. This is based on: 
(1) syn-Ferrar pyroclastic and partially fossil-bearing silicicla-
stic sedimentary sequences (e.g., ELLIOT 1996, 2000, SCHÖNER

et al. 2007, 2011 this vol.), 
(2) the presence of pillow lavas, 
(3) phreatomagmatic structures and diatremes of local hydro-
magmatic explosive events, 
(4) by the content of vesicles and the chilled contacts of sedi-
ment suspensions in sills, and 
(5) by the plastic deformation of Jurassic sediments by Ferrar
apophyses (e.g., VIERECK-GÖTTE et al. 2007, ELLIOT &
FLEMING 2008). 
Equivalent marker horizons are available from the Australian
side, with the Tasmanian Jurassic dolerites and the Cretaceous
Whitsunday volcanics (e.g., BRYAN et al. 1997) being the most
relevant ones.

PALEOTEMPERATURE COMPILATION

Paleotemperature constraints for northern Victoria Land were
derived from the Gondwana terrestrial sequence and basement
rocks. These include for example diagenetic features in
Beacon Supergroup, remagnitisation within low-grade meta-
morphic rocks, the disturbance of Rb-Sr, K-Ar and Ar/Ar
systems of Ferrar rocks, secondary mineral paragenesis within
Ferrar rocks, and epidote on brittle fault planes in Ross and
post-Ross rocks (e.g., KREUZER et al. 1981, DELISLE & FROMM

1984, 1989, SCHMIERER & BURMESTER 1986, FLEMING et al.
1992, 1993, 1999, FAURE & MENSING 1993, HORNIG 1993,
MENSING & FAURE 1996, MOLZAHN et al. 1999, BALLANCE &
WATTERS 2002, BERNET & GAUPP 2005). These palaeotemper-
ature constraints refer to maximum post-Jurassic temperatures
between <60 and ~350 °C for the now exposed surface rocks.
MOLZAHN et al. (1999) relate most of these temperatures to
two thermal pulses during the Early and Late Cretaceous.
Post-orogenic paleotemperatures of similar magnitude, but
unconstrained timing, are also derived from Paleozoic low-
grade metamorphic rocks from northern Victoria Land. They
include mineral assemblage and metamorphic zonation of
low-pressure pelite and calc-silicate rocks, fluid inclusions
within Granite Harbour Intrusives, Admiralty Intrusives and
metamorphic rocks, quartz recovery, illite crystallinity, and
conodont colour alteration (BUGGISCH & KLEINSCHMIDT 1991,
CRAW et al. 1992, FADDA et al. 1994, CRAW & COOK 1995,
FREZZOTTI et al. 1997, ROSSETTI et al. 2006).

Various studies from SE Australia similarly report predomi-
nantly Late Cretaceous maximum paleotemperatures between
110 and 250 °C. Thermal constraints were derived from
zeolite assemblages, vitrinite relectance, fluid inclusion, and
geomagnetic data (e.g., SUTHERLAND 1977, MIDDLETON &
SCHMIDT 1982, KENNARD et al. 1999, GEORGE et al 2004).

STRATIGRAPHY

The terrestrial Gondwana sequence preserved near the Antarc-
tic coast consists of limited and relatively thin (≤300 m) 
exposures of clastic and volcanoclastic sediments of Permian
to Early Jurassic age. These crop out in the vicinity of the
Rennick Graben (e.g., COLLINSON et al. 1986).

In contrast, SE Australia still contains a whole series of late
Mesozoic basins aligned along the southern coast (Fig. 1). Of
these, the Eucla/Great Australian Bight, Duntroon, Otway,
Bass, and Gippsland basins were directly linked with the now
juxtaposed coast between northern Victoria Land and Terre
Adélie (cf., MUTTER et al. 1985). The thickness of the predo-
minantly Cretaceous sedimentary sequences within these
coastal basins regularly exceeds 5 km, while the adjacent shelf
is overlain by up to 15 km sedimentary strata of mainly
Jurassic and Early Cretaceous age. These shelf sediments form
a 4-5 km thick blanket on continental basement still 120 km
offshore. 

STRUCTURAL DATA

Brittle kinematic indications in basement and cover rocks of
Victoria Land have been studied intensely during the last
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decade (e.g., ROSSETTI et al. 2002, 2003, 2006, LÄUFER et al.
2003, STORTI et al. 2006, KLEINSCHMIDT & LÄUFER 2006,
LÄUFER et al. 2011 this vol.). These data constrain the Ceno-
zoic tectonic evolution and suggest this region experienced
dextral shear and extensional to transtensional tectonics during
the formation of the Ross Sea (e.g., SALVINI et al. 1997). The
strike-slip faults cutting through the continental crust of north-
ern Victoria Land are interpreted to be the direct prolonga-
tion of the intra-oceanic fracture zone arrays between
Australia and Antarctica (e.g., the Tasman Fracture Zone).
Thermochronological data provide absolute time constraints to
this deformation. For example, the oblique rifting of the West
Antarctic Rift System since ~50 Ma was triggered by the
transfer of lithospheric stress and right-lateral shear from the
Southern Pacific Ocean into the Antarctic crust of northern
Victoria Land (e.g, ROSSETTI et al. 2006, STORTI et al. 2008). 

Similar transtensional tectonics are argued to have occurred in
Australia. MILLER et al. (2002) for example report the develop-
ment of Cretaceous extensional to transtensional faults conti-
nuing offshore to define the oceanic transform faults between
Australia and Antarctica. The positioning of these was largely
controlled by pre-existing structural lineaments, which date to
the Delamerian and Lachlan orogenic events (MILLER et al.
2002). Diverging extension along the main Delamerian-
Lachlan tectonic boundary eventually triggered the formation
of the Tasman Fracture Zone after the first oceanic crust was
formed between Australia and Antarctica in the Mid-/Late
Eocene.

GONDWANA BREAKUP AND TRANSFORM/ PASSIVE
MARGIN EVOLUTION

Prior to the rifting between Antarctic and Australia, the Ross
Sea region and SE Australia were located in the hinterland of
the Panthalassan margin of Gondwana (e.g., COLLINSON et al.
1994). Compressional tectonism across this continental
margin was related to subduction and terrane accretion to the
east of the present location of northern Victoria Land. Behind
the Panthalassan margin developed a large basin system
comprising the Transantarctic and Wilkes basins in Antarctica,
and numerous basins that covered almost the whole Australian
continent (e.g., VEEVERS 2006). Of the Australian basins the
Eucla/Great Australian Bight, Duntroon, Otway, Bass, and
Gippsland depositional centres (cf. MUTTER et al. 1985) may
have been directly linked with the Antarctic Wilkes and Trans-
antarctic basins (Fig. 1). Much of these massive sedimentary
sequences are still preserved in Australia (cf. VEEVERS 2006
cum lit.) while remnants of late Paleozoic to Mesozoic deposi-
tion along the Pacific Antarctic margin are limited to the
Beacon Group and confined to the vicinity of the Rennick
Graben. 

Nevertheless, this basin was once more extensive, and esti-
mates of the minimum size of this basin extension as well as
burial depths in northern Victoria Land rely on the correlation
of the Kukri Surface with AFT data. A minimum time
constraint for basin initiation can be derived from the extru-
sion of the ~350 Ma Gallipoli and Black Prince rhyolites. AFT
ages from these superficial rocks and all outcrops east of the
Rennick Graben are of Late Cretaceous to Paleogene time
equivalent, and therefore indicate post-Carboniferous heating

of the Kukri Surface to temperatures >110 °C. Three of four
zircon fission track ages from ~350 Ma Admiralty Granites
from the boundary area between northern Victoria Land and
Terra Nova Bay were reset to 220-250 Ma whereas seven of
eight titanite fission track ages from samples of the same
lithology, approximate altitude, and region give effective intru-
sion ages (FITZGERALD & GLEADOW 1988). These data suggest
maximum paleotemperatures in the order of 200-250 °C for
the Kukri Surface in northern Victoria Land. Substantially
older AFT ages up to ~350 Ma of Kukri samples from the
Eisenhower and Deep Freeze Ranges (BALESTRIERI et al. 1994,
1999) indicate that maximum paleotemperatures decreased
towards the Terra Nova Bay region to <110 °C. When applying
a Late Cretaceous/Paleogene paleogeothermal gradient of 25
°C km-1 as assumed by FITZGERALD & GLEADOW (1988) and
calculated by LISKER et al. (2006), such paleotemperatures
refer to basin depths between 3 km (Terra Nova Bay) and up to
8 km (northern Victoria Land). Hence, the locus of the subse-
quent continental breakup underlies the region that links up to
15 km of Jurassic to Cretaceous sediments on the SE Austra-
lian shelf with up to 8 km of coeval overburden in northern
Victoria Land. This approximate paleo-depocentre likely
controlled the degree of crustal weakening and thus the focus-
ing of extensional strain. Given a thickness of substantially
less than 1000 m of Beacon strata below Ferrar rocks, only a
minor section of this sedimentary column was deposited
during the Permo-Triassic. Instead, the deposition rate must
have increased subsequent to Ferrar emplacement, and
maximum burial was likely reached near the present Antarctic
/ Australian margin in the Cretaceous, prior to the onset of
Paleogene exhumation. 

The AFT pattern changes towards west across the Rennick
Graben where AFT ages of samples taken between Oates Land
and Terre Adélie vary between ~100 and ~300 Ma (LISKER &
OLESCH 2003, LISKER et al. 2006). This region was obviously
not part of the Transantarctic Basin and its successsor (George
V Land, Terre Adélie), or buried substantially less (USARP
Mountains/ Oates Land). 

Neither of the two Pacific Antarctic margin sections divided
by the Rennick Graben exhibits a distinct thermal signature
related to the onset of Late Cretaceous Gondwana breakup.
Instead, the timing of exhumation of northern Victoria Land,
which was in the order of 4-8 km, coincides with the Eocene
formation of the West Antarctic Rift System and the opening
of the Tasman gateway (e.g., PFUHL & MCCAVE 2005). A later
cooling/exhumation “event” is not recognized. In general, the
long-term regional exhumation pattern suggest long-lasting
E–W crustal extension and sediment deposition in a basin
overlying both southeastern Australia and the northern
Victoria Land region of Antarctica. A sudden increase of
extension rates culminated in the Ferrar magmatic episode at
~180 Ma, and in the Cenozoic rifting of the Ross Sea. The
latter was associated substantial faulting along parallel struc-
tures as the Rennick Graben. The Rennick Graben master
faults and their continuation into Australia probably represent
major lineaments that juxtapose crustal blocks of different
rheological properties. In this context, Eocene exhumation
results from uplift due to flexure and isostasy, followed and
superimposed by thermal effects across the newly formed new
margin (cf. LISKER 2002). We suggest initial margin formation
between Antarctica and Australia as the result of shearing due
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to the clockwise rotation of Gondwana, with different move-
ment rates of both supercontinent fragments. 

CONCLUSIONS

AFT thermochronology represents the most important tool to
unravel the exhumation history and long-term landscape
evolution of northern Victoria Land and to conclude on Gond-
wana breakup and passive/transform margin evolution
between Antarctica and Australia.

Paleo-isotherms derived from thermochronological data
during the last two decades indicate the existence of a late
Paleozoic-Mesozoic basin in northern Victoria Land and
Australia. Intra-Gondwanan oblique extension and basin
evolution lasted much longer than anticipated earlier, with
sudden increase of extension being responsible for tectono-
magmatic events within the basin, such as the ~180 Ma Ferrar
event or Cenozoic West Antarctic rifting.

Thermal histories also reveal a characteristic pattern of
increased exhumation and uplift since the Eocene for the
region east of the regional lineament Rennick Graben –
Tasman Fracture Zone – Woorndoo-Sorrel Fault Zone while
substantially less exhumation occurred west of it. Increased
exhumation associated with Early Cretaceous initial oblique
rifting and Gondwana breakup between Antarctica and
Australia is not observed. Instead, Eocene exhumation is likely
linked with the rifting of the West Antarctic Rift System and/
or the onset of sea floor spreading and the opening of the
Tasman gateway. 
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