Supporting Information

Denaturing gradient gel electrophoresis (DGGE)

The amplification of the bacterial 16S rRNA genes for DGGE was performed with the primer set GM5F (GC-clamp at the 5'-end) (Muyzer et al. 1993) and 907 RM (Muyzer et al. 1998) using a touchdown protocol (Muyzer et al., 1995). The reaction mixture of 100 μ l included 10-100 ng DNA, 1 μ M of each primer, 100 mM of dNTPs, 1 x buffer (Eppendorf, Hamburg, Germany), 1 x enhancer (Eppendorf) and 1.25 U of the Taq DNA Polymerase (Eppendorf). DGGE was carried out using a Bio-Rad D-Code system (Bio-Rad Laboratories). The following conditions were applied: 1 mm thick, 6% (w/v) polyacrylamide gels, 1x TAE electrophoresis buffer (pH 8.3), 20-80% denaturant. The gels were run at 60°C and a constant voltage of 200 V for 3.5 h. DGGE gels were stained with ethidiumbromide and bands were visualized under UV light.

Statistical sequence analysis

The software Distance-Based OTU and Richness (DOTUR) was applied to ARB distance matrices generated with the Jukes-Cantor correction to estimate operational taxonomic units (Schloss and Handelsman, 2005).

ior an rour seaments.							
Site	Cell counts [cell/g]	CARD-FISH [%]		No. of 16S rRNA gene sequences analyzed ^b		Richness estimator Chao1 [°]	
		EUB338 I-III ^a	ARCH 915	Bacteria	Archaea	Bacteria	Archaea
Anya's Garden	2.9×10^{9}	78	2	137 84 F/53 P	13 13 F/0 P	107 (88, 147)	10 (8, 20)
Site F	4.2×10^{9}	75	6	111 74 F/37 P	52 46 F/6 P	173 (115, 301)	64 (35, 165)
Quest	3.6×10^{8}	69	4	93 62 F/31 P	84 56 F/28 P	102 (74, 170)	13 (11,27)
Oceanic sediment	6.8×10^{7}	70	8	154 78 F/76 P	81 55 F/26 P	139 (117, 181)	14 (13, 21)

Table S1: Cell and CARD-FISH counts, number of 16S rRNA gene sequences, and estimated Chao1 richness for all four sediments.

^a equimolar mixture of probes EUB338, EUB338-II, and EUB338–III covering about 90% of all members of *Bacteria* (Amann and Fuchs, 2008)
^b total numbers of sequences as well as number of full-length (F) and partial (P) sequences
^c Chao1 richness with lower and upper bound of 95% confidence interval

Target group	Probe	Sequence (5' to 3')	Label	FA [%] ^a	Hybridization Temp (°C)	Reference
Most Archaea	ARCH915	GTGCTCCCCCGCCAATTCCT	HRP, Cy3	35	46	Stahl and Amann, 1991
Most Bacteria	EUB338	GCTGCCTCCCGTAGGAGT	HRP, Cy3	35	46	Amann et al., 1990
	EUB338-II	GCAGCCACCCGTAGGTGT	HRP, Cy3	35	46	Daims et al., 1999
	EUB338-III	GCTGCCACCCGTAGGTGT	HRP, Cy3	35	46	Daims et al., 1999
control probe complementary to EUB338	NON338	ACTCCTACGGGAGGCAGC	HRP, Cy3	35	46	Wallner et al., 1993
Epsilonproteobacteria	EPSY549	CAGTGATTCCGAGTAACG	HRP, Cy3	35	46	Lin et al., 2006
Epsilonproteobacteria	EP404	AAAKGYGTCATCCTCCAA	Cy3	30	46	Macalady et al., 2006
Arcobacter spp.	Arc1430	TTAGCATCCCCGCTTCGA	HRP, Cy3	20	46	Snaidr et al., 1997
Arcobacter spp.	Arc94	TGCGCCACTTAGCTGACA	HPR	20	46	Snaidr et al., 1997
Most Deltaproteobacteria and Gemmatimonadetes	Delta495a ^b	AGTTAGCCGGTGCTTCCT	HRP	35	46	Loy et al., 2002
Competitor for Delta495a	cDelta495a	AGTTAGCCGGTGCTTCTT	-	-	-	Macalady et al., 2006
Some Deltaproteobacteria	Delta495b ^b	AGTTAGCCGGCGCTTCCT	HRP	35	46	Loy et al., 2002
Competitor for Delta495b	cDelta495b	AGTTAGCCGGCGCTTC(T/G)T	-	-	-	Lücker et al., 2007
Some Deltaproteobacteria	Delta495c ^b	AATTAGCCGGTGCTTCCT	HRP	35	46	Loy et al., 2002
Competitor for Delta495c	cDelta495c	AATTAGCCGGTGCTTCTT	-	-	-	Lücker et al., 2007
Desulfosarcina-related bacteria	DSS658	TCCACTTCCCTCTCCCAT	HRP, Cy3	60	46	Manz et al., 1998
Most Desulfovibrio spp.	DSV698	GTTCCTCCAGATATCTACGG	HRP	40	46	Manz et al., 1998
Gammaproteobacteria	GAM42a ^b	GCCTTCCCACATCGTTT	HRP, Cy3	35	46	Manz et al., 1992
Competitor for GAM42a	BET42a	GCCTTCCCACTTCGTTT	-	-	-	Manz et al., 1992
Potential sulfur-oxidizing Gammaproteobacteria	GAM660	TCCACTTCCCTCTAC	HRP	35	46	Ravenschlag et al., 2001
most Flavobacteria, some Bacteroidetes, some Sphingobacteria, some Epsilon-	CF319a	TGGTCCGTGTCTCAGTAC	HRP, Cy3	35	46	Manz et al., 1996

Table S2: Oligonucleotide probes and hybridization conditions used in this study.

proteobacteria ^a Formamide (FA) concentration in hybridization buffer.
^b Competitor probes are required.

Table S3: Accession numbers of 16S rRNA gene sequences at	ffiliated to
the uncultivated Gammaproteobacteria JTB255/BD3-6.	

16S rRNA sequences	ACC
Logatchev sediment clone Quest_014	FN 553598
Logatchev sediment clone Quest _015	FN 553599
Logatchev sediment clone Quest _028	FN 553611
Logatchev sediment clone Quest _030	FN 553613
Logatchev sediment clone Quest _031	FN 553614
Logatchev sediment clone Quest _036	FN 553618
Logatchev sediment clone Quest _037	FN 553619
Logatchev sediment clone Quest _043	FN 553623
Logatchev sediment clone Quest _054	FN 553629
Logatchev sediment clone Quest _055	FN 553630
Logatchev sediment clone Quest _071	FN 553644
Logatchev sediment clone Quest 074	FN 553646
Logatchev sediment clone Quest 020	FN 553666
Logatchev sediment clone OC_004	FN 553444
Logatchev sediment clone OC _014	FN 553454
Logatchev sediment clone OC 017	FN 553457
Logatchev sediment clone OC 025	FN 553465
Logatchev sediment clone OC _026	FN 553466
Logatchev sediment clone OC _041	FN 553480
Logatchev sediment clone OC _043	FN 553482
Logatchev sediment clone OC _047	FN 553486
Logatchev sediment clone OC _048	FN 553487
Logatchev sediment clone OC _050	FN 553489
Logatchev sediment clone OC _055	FN 553494
Logatchev sediment clone OC _069	FN 553508
Logatchev sediment clone OC _070	FN 553509
Logatchev sediment clone OC _p006	FN 553767
Logatchev sediment clone OC _p012	FN 553772
Logatchev sediment clone OC _p014	FN 553774
Logatchev sediment clone OC _p031	FN 553790
Logatchev sediment clone OC _p036	FN 553794
Logatchev sediment clone OC _p037	FN 553795
Logatchev sediment clone OC _p056	FN 553814
Logatchev sediment clone OC _p060	FN 553817
Logatchev sediment clone OC _p062	FN 553819
Logatchev sediment clone OC _p063	FN 553820
Logatchev sediment clone OC _p064	FN 553821
Logatchev sediment clone OC _p067	FN 553823
Logatchev sediment clone OC _p073	FN 553828
Logatchev sediment clone OC _p079	FN 553833
Logatchev sediment clone OC _p080	FN 553834
Logatchev sediment clone OC _p082	FN 553836
Logatchev sediment clone OC _p083	FN 553837

Figure S1: Active black smoker and diffuse venting sites at the Logatchev hydrothermal vent field (modified after Petersen et al., 2009). Sampling sites are indicated by blue coloured squares.

Figure S2: DGGE fingerprints of PCR-amplified bacterial 16S rRNA sequences from the surface sediments (0-1 cm) of site F, Anya's Garden and Quest sampled in 2005 and 2007 (A) and depth profiles of site F sediment to a depth of 10 cm sampled in 2007 (B).

Figure S3: Depth profiles of porewater sulfate determined for sediment cores from Anya's Garden (AG), site F and Quest and of dissolved methane concentrations in AG and Quest sediment cores.

В

References

Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. *Appl Environ Microbiol* **56**: 1919-1925.

Amann, R., and Fuchs, B.M. (2008) Single-cell identification in microbial communities by improved fluorescence *in situ* hybridization techniques. *Nature Rev Microbiol* **6**: 339-348.

Daims H., Brühl A., Amann R., Schleifer K.-H. and Wagner M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. *Syst Appl Microbiol* **22**: 434-444.

Lin X., Wakeham S.G., Putnam I.F., Astor Y.M., Scranton M.I., Chistoserdov A.Y. and Taylor G.T. (2006) Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence *in situ* hybridization. *Appl Environ Microbiol* **72**: 2679-90.

Loy A., Lehner A., Lee N., Adamczyk J., Meier H., Ernst J., Schleifer K.-H. and Wagner M. (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. *Appl Environ Microbiol* **68**: 5064-5081.

Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. *Appl Environ Microbiol* **72**: 5596-5609.

Manz W., Amann R., Ludwig W., Wagner M. and Schleifer K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. *Syst Appl Microbiol* **15**: 593 - 600.

Manz W., Amann R., Ludwig W., Vancanneyt M. and Schleifer K.-H. (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum *Cytophaga-Flavobacter-Bacteroidetes* in the natural environment. *Microbiol* **142**: 1097-1106.

Manz W., Eisenbrecher M., Neu T. R. and Szewzyk U. (1998) Abundance and spatial organization of gram-negative sulfate-reducing bacteria in activated sludge investigated by *in situ* probing with specific 16S rRNA targeted oligonucleotides. *FEMS Microbiol Ecol* **25**: 43-61.

Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. (1995) Phylogenetic-relationships of *Thiomicrospira* species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel-electrophoresis of 16S rDNA Fragments. *Arch Microbiol* **164**: 165-172.

Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Appl Environ Microbiol* 59:695–700.

Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H., and Wawer, C. (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In *Molecular Microbial Ecology Manual*. Akkermans, A.D.L., Van Elsas, J.D., and De Bruijn, F.J. (eds). Dordrecht, Boston, London,: Kluwer Academic Publishers, pp. 1-27.

Petersen, S., Kuhn, K., Kuhn, T., Augustin, N., Hekinian, R., Franz, L., and Borowski, C. (2009) The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14 degrees 45 ' N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. *Lithos* **112**: 40-56.

Ravenschlag, K., Sahm, K., and Amann, R. (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). *Appl Environ Microbiol* **67:** 387-395.

Schloss, P.D., and Handelsman, J. (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. *Appl Environ Microbiol* **71**: 1501-1506.

Snaidr J., Amann R., Huber I., Ludwig W. and Schleifer, K.-H. (1997) Phylogenetic analysis and *in situ* identification of bacteria in activated sludge. *Appl Environ Microbiol* **63**: 2884-2896.

Stahl, D. A. and Amann, R. (1991). Development and application of nucleic acid probes. In: *Nucleic acid techniques in bacterial systematics*. Stackebrandt, E. and Goodfellow, M. (eds). Chichester, England, John Wiley & Sons Ltd., pp. 205-248.

Teske, A., Wawer, C., Muyzer, G., and Ramsing, N.B. (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. *Appl Environ Microbiol* **62**: 1405-1415.

Wallner, G., Amann, R. and Beisker, W. (1993) Optimizing fluorescent *in situ* hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. *Cytometry* **14**: 136-143.