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Abstract16

Numerical convergence properties of a recently developed Jacobian-free17

Newton-Krylov (JFNK) solver are compared to the ones of the widely used18

EVP model when solving the sea ice momentum equation with a Viscous-19

Plastic (VP) formulation. To do so, very accurate reference solutions are20

produced with an independent Picard solver with an advective time step of21

10 s and a tight nonlinear convergence criterion on 10, 20, 40, and 80-km22

grids. Approximate solutions with the JFNK and EVP solvers are obtained23

for advective time steps of 10, 20 and 30 min. Because of an artificial elas-24

tic term, the EVP model permits an explicit time-stepping scheme with a25

relatively large subcycling time step. The elastic waves excited during the26

subcycling are intended to damp out and almost entirely disappear such that27

the approximate solution should be close to the VP solution. Results show28

that residual elastic waves cause the EVP approximate solution to have no-29

table differences with the reference solution and that these differences get30

more important as the grid is refined. Compared to the reference solution,31

additional shear lines and zones of strong convergence/divergence are seen in32
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the EVP approximate solution. The approximate solution obtained with the33

JFNK solver is very close to the reference solution for all spatial resolutions34

tested.35

36

Keywords: sea ice, viscous-plastic rheology, Newton-Krylov method,37

numerical convergence, numerical stability38

1. Introduction1

Sea ice dynamics plays an important role in shaping the ice cover in polar2

regions. Indeed, it strongly affects the sea ice thickness distribution which3

then influences the exchange of heat, moisture and momentum between the4

atmosphere and the underlying ocean.5

6

To properly represent sea ice dynamics, it is crucial that rheology, i.e.,7

the relationship between applied stresses and the resulting deformations, is8

correctly formulated. The very sporadic behavior of sea ice deformations sug-9

gests that critical stresses must be reached before the ice can fail in shear,10

compression or tension [1]. This lead modelers to consider sea ice as a plastic11

material (e.g., [1, 2]). Over the years, the constitutive law introduced by Hi-12

bler [2] has become the most widely used approach for the representation of13

the ice-ice interactions in sea ice models. When the ice is rigid, it is treated14

as a very viscous fluid 1. However, once internal stresses reach critical values15

defined by a yield curve, the ice flows as a plastic material and can exhibit16

large deformations. This Viscous-Plastic (VP) constitutive law proposed by17

Hibler [2] is based on an elliptical yield curve and a normal flow rule (referred18

to as the standard VP rheology in this paper).19

20

When using the elliptical yield curve with the parameters proposed by21

Hibler [2], sea ice can resist large stresses in compression, significant shear22

stresses, and has very limited tensile strength. The standard VP rheology im-23

plies a large change in the internal stresses when going from a non-divergent24

1This viscous regime originates from a mathematical regularization for small deforma-
tions. This regularization has nevertheless a certain physical validity as the average (in
space or in time) of many small plastic deformations has been shown to exhibit a viscous
behavior [3].
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velocity field to a slightly converging one (same idea in shear). This explains25

why a VP formulation leads to a very nonlinear problem that requires an ef-26

ficient and robust numerical solver. The fact that the ice is treated as a very27

viscous fluid in zones of small deformations further complicates the problem.28

Indeed, a stability analysis shows that the time step required for an explicit29

time-stepping scheme is on the order of a second for a 100-km resolution grid30

[4] and a 100th of a second for a resolution of 10 km, a typical spatial resolu-31

tion for current regional models. Because of this stringent stability condition,32

Hibler [2] initially proposed to solve the momentum equation implicitly.33

34

The numerical scheme introduced by Hibler [2] for solving the momentum35

equation is based on an implicit solution of a linearized system of equations36

and an outer loop (OL) iteration 2. Hibler [2] initially proposed to perform 237

OL iterations at each time level. As the nonlinearities are not converged with38

only 2 OL iterations, the approximate solution responds slowly to changes39

in the wind forcing unless a small time step is used [2, 7]. However, as the40

number of OL increases, the approximate solution converges toward the non-41

linear solution [8].42

43

In recent papers, we have studied the convergence behavior [8] of the44

standard Picard solver and compared its computational efficiency and robust-45

ness to the ones of a newly developed Jacobian-Free Newton-Krylov (JFNK)46

solver [9]. Our conclusion is that the Picard solver converges very slowly.47

A large number of OL iterations are needed to obtain the fully-converged48

nonlinear solution and the number of OL iterations required is roughly mul-49

tiplied by two when doubling the spatial resolution. Large errors (the largest50

errors coincide with the largest deformations) exist in the approximate so-51

lution if the number of OL iterations is insufficient. For a set of test cases52

and termination criteria, the JFNK solver is 3-7 times faster than the Picard53

solver. Importantly, this computational gain of JFNK over Picard increases54

with resolution and when a more accurate nonlinear solution is needed.55

56

Current sea ice models are almost entirely based on a VP formulation.57

2Sea ice modelers sometimes refer to the OL iterations as pseudo time steps [5] while
it is customary in many other fields to refer to these as Picard iterations and to refer to
this scheme as a Picard solver (e.g., [6]).
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However, many modelers have in the past few years adopted a new approach58

for solving the momentum equation: the Elastic-Viscous-Plastic (EVP) model.59

Hunke and Dukowicz [10] added an artificial elastic term to the VP consti-60

tutive equation in order to relax the stability condition for an explicit time-61

stepping scheme. This approach leads to an explicit scheme using a relatively62

large time step (on the order of 10 s). Because the EVP is an explicit scheme,63

it is naturally suited for parallel computations and has demonstrated very64

good scaling with the number of processors [7]. In this first version of the65

EVP solver, the viscous coefficients were held at the previous time level and66

therefore not updated during the subcycling (the time-stepping is referred67

to as subcycling). This treatment leads to unphysical internal stresses lying68

outside of the yield curve [7]. To cure this problem, Hunke [11] proposed to69

include the viscous coefficients in the subcycling loop. To avoid the increase70

in floating point operations with this new EVP scheme, Young’s modulus was71

redefined in terms of a damping time scale, which allowed a rearrangement72

of the stress equation such that the new EVP model is roughly as efficient as73

the first version [11]. The basic idea of the EVP scheme is to approximate74

the VP solution by damping the artificial elastic waves during the subcy-75

cling. Elastic waves disappear entirely in regions of lower ice concentration76

but remain in the solution where the ice concentration is very high, that is,77

where the ice should be nearly rigid and the VP solution must be regularized78

[11].79

Recently, it has been pointed out, however, that the solution obtained80

with the EVP scheme is quite different that the one obtained with a Picard81

solver. Comparing results from a Picard solver with 2 OL iterations to the82

ones of the EVP with either 120 or 400 subcycles, Losch et al. [12] showed83

that the difference between these two can be larger than other effects: for84

example the effect of lateral boundary conditions and ice-ocean stress for-85

mulation, the choice of rheology (other yield curves) or advection scheme.86

As both solutions are approximate solutions, it was not possible for Losch87

et al. [12] to assert which one is better. Using idealized geometry, Losch88

and Danilov [13] concluded that the implicit and EVP approximate solu-89

tions can differ significantly because the EVP approximate solution tends to90

have smaller viscosities, especially in the vicinity of lateral boundaries and91

marginally resolved flow.92

93

In this study, we investigate the numerical convergence properties of the94

EVP model and compare them to the ones of our JFNK solver. More specifi-95
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cally, we study the accuracy of the solution and the computational efficiency.96

We define a reference VP solution (calculated with an independent solver) to97

which we compare the JFNK and EVP approximate solutions. We also look98

at the impact of residual errors, in both the EVP and JFNK approximate so-99

lutions, on the simulation of sea ice deformations. The EVP model described100

in Hunke [11] is implemented (see also [14]). Additionally, we introduce a101

slightly different EVP solver by adding an extra inertial term to the momen-102

tum equation. This is done in order to get exactly the same solution as the103

implicit solver and to be able to define a residual. Reducing the residual104

to zero with this modified EVP solver ensures that the elastic waves have105

disappeared. Furthermore, this new approach can be used for validating an106

implementation of the EVP solver.107

108

Even though the elastic component in the EVP model was first intro-109

duced as a numerical artifice, some argue that, the EVP approach can be110

considered a different rheology whose derivation is based on VP but that only111

approximates it, because of EVPs different regularization by elastic waves (E.112

Hunke, personal communication). Exploring the physical validity of the EVP113

approach is beyond the scope of this paper. It is possible that the regular-114

ization by elastic waves leads to a physically realistic solution when the ice115

is in a quasi-rigid state. However, large undamped elastic waves have been116

observed to lead to unphysical solutions in some circumstances. For example,117

in order to model landfast ice, Konig Beatty and Holland [15] added isotropic118

tensile strength by shifting the elliptical yield curve into the first quadrant.119

Their simulated landfast ice solution was very close to predictions by theory120

when they used a Picard solver, but they were not able to obtain a stable121

landfast ice with the EVP approach, because of residual elastic waves. In122

this paper, we consider the elastic term as a numerical technique: we inves-123

tigate the use of two solvers (the EVP and JFNK schemes) for solving the124

momentum equation with the standard VP rheology. If the EVP approach125

were interpreted as a new and different rheology, our results would illustrate126

the differences between VP solutions and similar EVP solutions.127

128

It is also important to mention that recent work has questioned the va-129

lidity of the standard VP rheology. Indeed, the standard VP rheology has130

been shown to underestimate the deformations [16], the simulated shear lines131

are too broad compared to observations and do not significantly refine as132

the spatial resolution is increased [17], and statistics of deformations do not133
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match observations [18, 19] in both space and time [20]. While some authors134

propose very different constitutive laws to better represent the deformations135

(e.g., [19, 21]), others argue that a VP formulation requires a different yield136

curve and a different flow rule to improve its representation of sea ice defor-137

mations [17]. To study these new rheologies, accurate, robust and efficient138

solvers are needed. It is the topic of this paper to investigate the behavior139

of two numerical schemes for solving the sea ice momentum equation with140

the standard VP rheology. Nevertheless, our findings can still provide some141

informations on how these solvers would behave for other rheologies (espe-142

cially for the other VP rheologies).143

144

The contributions of this paper are: a thorough investigation of the con-145

vergence properties of the EVP model and their comparison with the ones of146

a JFNK solver, an investigation of the differences in the approximate solu-147

tions obtained with the EVP model and JFNK solver in the context of short148

term simulations, and a new formulation for the EVP solver that leads to149

exactly the same solution obtained with an implicit solver.150

151

This paper is structured as follows. Section 2 describes the sea ice mo-152

mentum equation with a VP formulation and the continuity equation. In153

section 3, the discretization of the momentum and continuity equations and154

the description of the solvers is presented. In section 4, we provide informa-155

tion about the model and describe the forcing fields and the initial conditions156

used for the simulations. A validation of our EVP model implementation is157

presented in section 5. The experiments performed are outlined in section158

6. A discussion is provided in section 7. Concluding remarks are found in159

section 8.160

161

2. Sea ice momentum and continuity equations162

Because of the large ratio between the horizontal and the vertical scales163

O(1000 km/10 m) = O(105), sea ice dynamics is often considered to be a two-164

dimensional problem [1]. The two-dimensional sea ice momentum equation165

is given by166

ρh
Du

Dt
= −ρhfk× u+ τa − τw +∇ · σ − ρhg∇Hd, (1)
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where ρ is the density of the ice, h is the ice volume per unit area (or the167

mean thickness and just referred to as thickness in this paper), D
Dt

is the168

total derivative, f the Coriolis parameter, u = ui+ vj the horizontal sea ice169

velocity vector, i, j and k are unit vectors aligned with the x, y and z axis170

of our Cartesian coordinates, τa is the wind stress, τw the water drag, σ the171

internal ice stress tensor (∇ ·σ is defined as the rheology term), g the gravity172

and Hd the sea surface height. We follow Tremblay and Mysak [22], and173

express the sea surface tilt in terms of the geostrophic ocean current. With174

a simple quadratic law and constant turning angles θa and θw, τa and τw are175

expressed as [23]176

τa = ρaCda|u
g
a|(u

g
a cos θa + k× ug

a sin θa), (2)

τw = Cw[(u− ug
w) cos θw + k× (u− ug

w) sin θw], (3)

where Cw = ρwCdw|u − ug
w|, ρa and ρw are the air and water densities, Cda177

and Cdw are the air and water drag coefficients, and ug
a and ug

w are the178

geostrophic wind and ocean current. Because u is much smaller than ug
a, u179

is neglected in the expression for the wind stress.180

181

With a VP formulation, the constitutive law, that relates the internal182

stresses and the strain rates, can be written as [2]183

σij = 2ηε̇ij + [ζ − η]ε̇kkδij − P δij/2, i, j = 1, 2, (4)

where σij are the components of the ice stress tensor, δij is the Kronecker184

delta, ε̇ij are the strain rates defined by ε̇11 = ∂u
∂x
, ε̇22 = ∂v

∂y
and ε̇12 =185

1
2(

∂u
∂y

+ ∂v
∂x
), ε̇kk = ε̇11 + ε̇22, ζ is the bulk viscosity and η is the shear vis-186

cosity.187

188

We use a simple two-thickness category model and express the ice strength189

P as190

P = P ∗h exp[−C(1− A)], (5)

where P ∗ is the ice strength parameter, A is the sea ice concentration and C191

is the ice concentration parameter, an empirical constant characterizing the192

strong dependence of the compressive strength on sea ice concentration [2].193

194
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The rheology term (∇ · σ) depends on the yield curve and the flow rule,195

through the formulation of the bulk and shear viscosities. In the following,196

we use the elliptical yield curve with a normal flow rule [2]. In this case, the197

bulk and shear viscosities are given by198

ζ =
P

2$
, (6)

η = ζe−2, (7)

where $ = [(ε̇211 + ε̇222)(1 + e−2) + 4e−2ε̇212 + 2ε̇11ε̇22(1− e−2)]
1

2 , and e is the199

ratio of the long axis and the short axis of the elliptical yield curve.200

201

In the limit where $ tends to zero, equations (6) and (7) become singular.202

To avoid this problem, ζ is capped using an hyperbolic tangent [8]203

ζ = ζmax tanh(
P

2$ζmax

). (8)

As in equation (7), η = ζe−2. The maximum bulk viscous coefficient ζmax204

is set to the value proposed by Hibler [2]: 2.5 × 108P (which is equivalent205

to capping $ to a minimum value of 2 × 10−9s−1). As opposed to the reg-206

ularization introduced by Hibler [2], this formulation for ζ is continuously207

differentiable for numerical purposes.208

209

The continuity equations for the thickness (volume per unit area) and the210

concentration are given by211

212

∂h

∂t
+∇ · (hu) = Sh, (9)

∂A

∂t
+∇ · (Au) = SA, (10)

where Sh and SA are thermodynamic source terms. These source terms are213

set to zero in the simulations described in this paper (unless otherwise stated)214

as we concentrate on matters related to the dynamics.215

216
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3. Numerical approaches217

3.1. Temporal and spatial discretizations218

Following Zhang and Hibler [5] and Hunke [11], the advection of momen-219

tum is neglected because this term is very small compared to the other ones220

in the momentum equation. The momentum and continuity equations are221

solved at time levels ∆t, 2∆t, 3∆t, . . . where ∆t is referred to as the ad-222

vective time step and the index n = 1, 2, 3, . . . refers to these time levels.223

As done in most sea ice models (e.g., [2, 10, 22]) a splitting in time is used224

between the momentum and the continuity equations. This splitting implies225

that h and A are considered to be known in the momentum equation as they226

are held at the previous time level. Hence, the u and v momentum equations227

at time level n are written as228

ρhn−1∂u

∂t

n

= ρhn−1fvn − τnwu +
∂σ11

∂x

n

+
∂σ12

∂y

n

+ rn∗u, (11)

ρhn−1∂v
n

∂t
= −ρhn−1fun − τnwv +

∂σ22

∂y

n

+
∂σ12

∂x

n

+ rn∗v, (12)

where rn∗u and rn∗v include the wind stress and the sea surface tilt for the u and229

the v equations. Note that as h and A are held at time n-1, the ice strength230

in the rheology term is also expressed with previous time level values. As the231

water drag and the rheology term are written in terms of the velocity field,232

the only unknowns in equations (11) and (12) are un and vn.233

234

The components of the velocity (u and v) are positioned on the Arakawa235

C-grid (the four corners and the middle of the cell are respectively referred to236

as the nodes and the tracer point). A Dirichlet boundary condition is applied237

at an ocean-land boundary (u = 0, v = 0) and a Neumann condition at an238

open boundary (i.e., the spatial derivatives of the components of velocity in239

the normal direction with the open boundary are chosen to be zero). For240

stability, the ice strength P is set to zero at the open boundaries [24]. A241

f-plane approximation is used with f = 1.46 × 10−4s−1. Spatial derivatives242

(in the rheology term) are discretized using centered finite differences except243

close to land boundaries where second order accurate Taylor series expan-244

sions are used. Viscous coefficients are calculated directly from the velocity245

field at the tracer point and at the grid node (as both of these locations are246

needed to calculate the complete rheology term). The spatial discretization247
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(with nx tracer points in one direction and ny in the other one) leads to a248

system of N = (ny(nx+ 1) + nx(ny + 1)) nonlinear equations for the veloc-249

ity components. Once these equations are solved for un and vn everywhere250

on the grid, the thickness and concentration fields are advanced in time by251

solving:252

253

∂h

∂t

n

+∇ · (hn−1un) = 0, (13)

∂A

∂t

n

+∇ · (An−1un) = 0. (14)

A forward Euler approach is used for the first term of equations (13) and254

(14) along with a simple upstream advection scheme (as done in [22]). We255

now focus on solving the momentum equation, keeping in mind the splitting256

in time of the momentum and continuity equations. We therefore drop the257

superscript for h, A and P which are considered known quantities when solv-258

ing the momentum equation.259

260

3.2. The JFNK solver261

We give a brief overview of the JFNK implementation. More details can262

be found in Lemieux et al. [9] and Lemieux et al. [25].263

264

Following Zhang and Hibler [5], the inertial term at time level n is ex-265

pressed using a backward Euler differencing. Equations (11) and (12) can266

therefore be written as267

ρh
(un − un−1)

∆t
= ρhfvnavg − τnwu +

∂σn
11

∂x
+

∂σn
12

∂y
+ rn∗u, (15)

ρh
(vn − vn−1)

∆t
= −ρhfun

avg − τnwv +
∂σn

22

∂y
+

∂σn
12

∂x
+ rn∗v, (16)

where vavg is the average of the four v components of velocity surrounding268

a u location on the C-grid (same idea for uavg) and the components of the269

internal stress tensor are given by270

σn
11 = ζn(

∂un

∂x
+

∂vn

∂y
) + ηn(

∂un

∂x
−

∂vn

∂y
)−

P

2
, (17)
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σn
22 = ζn(

∂vn

∂y
+

∂un

∂x
) + ηn(

∂vn

∂y
−

∂un

∂x
)−

P

2
, (18)

σn
12 = ηn(

∂un

∂y
+

∂vn

∂x
). (19)

Expanding the water drag and rearranging the terms, equations (15) and271

(16) can be written as272

ρh
un

∆t
− ρhfvnavg + Cn

w(u
n cos θw − vnavg sin θw)−

∂σn
11

∂x
−

∂σn
12

∂y
=

ρh
un−1

∆t
+ Cn

w(u
g
w cos θw − vgw sin θw) + rn∗u,

(20)

ρh
vn

∆t
+ ρhfun

avg + Cn
w(v

n cos θw + un
avg sin θw)−

∂σn
22

∂x
−

∂σn
12

∂y
=

ρh
vn−1

∆t
+ Cn

w(v
g
w cos θw + ug

w sin θw) + rn∗v.

(21)

Using equations (17), (18) and (19), the only unknowns in equations (20)273

and (21) are un and vn. The spatial discretization of equations (20) and (21)274

leads to a system of N nonlinear equations with N unknowns that can be275

concisely written as276

A(un)un = b(un), (22)

where A is an N ×N matrix. The vector un is formed by stacking first the277

u components followed by the v components. Similarly, the vector b is a278

function of the velocity vector un because of Cn
w. We drop the superscript n279

knowing that we wish to find the solution u = un. We introduce the residual280

vector F(u):281

282

F(u) = A(u)u− b(u). (23)

The residual F(u) is useful as it allows one to assess the quality of the283

approximate solution because for F(u) = 0 the solution is fully converged.284

285
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The basic idea of implicit methods for solving a nonlinear system of equa-286

tions is to solve a series of linear systems of equations until this series con-287

verges to the solution u. The solutions of these linear systems of equations288

are called iterates and are represented by u1, u2...uk where the superscript289

denotes the iterate number (not to be confused with the time level).290

291

The Newton method for solving the nonlinear system of equations (22) is292

based on a multivariate Taylor expansion around a previous iterate uk−1:293

F(uk−1 + δuk) ≈ F(uk−1) + F
′

(uk−1)δuk. (24)

The higher order terms are neglected in the expression above. Setting294

F(uk−1 + δuk) = 0, the correction δuk = uk − uk−1 can be obtained by295

solving the linear system of N equations:296

J(uk−1)δuk = −F(uk−1), (25)

where the system matrix J ≡ F
′

is the Jacobian, an N × N matrix whose297

entries are Jqr = ∂Fq(uk−1)/∂(uk−1
r ) (where q = 1, N and r = 1, N). For298

k = 1, an initial iterate u0 needs to be provided. The initial iterate that299

we use is the previous time step solution un−1. Once the linear system of300

equations (25) is solved, the next iterate is given by301

uk = uk−1 + δuk, (26)

Obtaining the Jacobian matrix in equation (25) is a very difficult de-302

velopment task. However, because a Krylov method is used for the lin-303

ear solver, it is possible to avoid forming the Jacobian. Krylov methods304

approximate the solution in a subspace of the form (r0,Jr0,J2r0...) where305

r0 = J(uk−1)δuk
0 + F(uk−1) is the initial residual of the linear system of306

equations. The vector δuk
0 is the initial guess of the linear system of equa-307

tions and is usually taken to be zero. This implies that r0 = F(uk−1). When308

creating the subspace, Krylov methods only require the product of the Jaco-309

bian and a vector. This means that the Jacobian does not need to be formed310

directly: only its action on a vector is required. This is fundamental for311

implementing a Jacobian-free approach as J(uk−1) times a certain vector w312

can be approximated by a first-order Taylor series expansion [26]313

J(uk−1)w ∼
F(uk−1 + εw)− F(uk−1)

ε
, (27)
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where w is a vector needed to form the Krylov subspace (e.g., r0) and ε is a314

small number (10−6 in this implementation).315

316

The Krylov method that we use for the linear solve is the Flexible Gener-317

alized Minimum RESidual (FGMRES, [27]). A Krylov method for solving a318

linear system of equations such as the one described in equation (25) is likely319

to exhibit a very low convergence rate (and possibly robustness issues). To320

accelerate the convergence rate of each linear solve, preconditioning is used.321

Preconditioning transforms the system of equations in a form that is easier322

to solve but that still has the same solution as the original system. The pre-323

conditioning operator that we use is the same used for our Picard solver and324

involves 10 iterations of a Line Successive Over Relaxation (LSOR) solver325

similar to the one implemented by Zhang and Hibler [5] (they use it as a326

solver however, not as a preconditioner). The transformed system of equa-327

tions becomes328

J(uk−1)P−1δz = −F(uk−1), (28)

where δz = Pδuk and P−1 is referred to as the preconditioning operator.329

330

We use an inexact Newton method [28] to improve robustness and com-331

putational efficiency. The idea is to solve the linear system of equations with332

a loose tolerance in early Newton iterations and progressively tighten up the333

tolerance as the nonlinear solution is approached. The preconditioned FGM-334

RES method solves the linear system of equations until the residual is smaller335

than γ(k) ‖ F(uk−1) ‖ where ‖ ‖ is the L2-norm and γ(k) is the tolerance of336

the linear solver at iteration k (a value smaller than 1). The tolerance of the337

linear solver with this inexact Newton approach is given by338

γ(k) =

{

γini, if ||F(uk−1)|| ≥ rest,
||F(uk−1)||
||F(uk−2)|| , if ||F(uk−1)|| < rest.

(29)

The tolerance γini for the initial stage is set to 0.99. Hence, the tolerance339

is very loose in early Newton iterations (until the L2-norm reaches a value340

of rest) and later is calculated from previous values of the L2-norm. The341

parameter rest is the only value that changes with the spatial resolution; it342

is set to 0.05 at 80-km resolution, 0.25 at 40 km, 0.625 at 20 km and 1.25343

at 10 km. These values were chosen in order to get a compromise between344

robustness and computational efficiency. The tolerance γ(k) is also forced to345
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be larger than 0.1 to prevent excessive use of the linear solver which tends346

to slow down the nonlinear solver.347

348

Finally, a termination criterion (defined by γnl) for solving the nonlinear349

system of equations also needs to be given. Hence, the JFNK solver stops350

iterating after a required drop in the nonlinear L2-norm: when the L2-norm351

is γnl times smaller than the initial L2-norm ||F(u0)||. JFNK fails to con-352

verge when the termination criterion is not reached in kmax = 200 iterations.353

Compared to our first JFNK version [9], our current JFNK solver is more354

robust for the following two reasons. First, the viscous coefficients are now355

calculated independently at the tracer and at the node points. In our first356

version, the viscous coefficients were calculated at the tracer points and then357

averaged to obtain the value at the grid node (which is inconsistent because358

of the nonlinear relation). Second, the robustness is improved by setting back359

the linear tolerance to γini when k > 100 (this approach allows the nonlinear360

residual to decrease again when it sometimes flattens out and oscillates in361

the first 100 iterations). We will come back to robustness issues of the JFNK362

solver later in this paper.363

364

Note that developing a JFNK solver from an existing implicit Picard365

solver (e.g., [2] or [5]) is relatively straightforward as the linear solver can366

be used as is for the preconditioning step and the residual vector can be367

obtained from the same linear solver code with minor modifications. Krylov368

solver routines (such as FGMRES) are available in many software libraries369

(e.g, [29]).370

371

3.3. The EVP solver372

The EVP model also solves the momentum equations (11) and (12) at373

time level n. The forcing r∗u and r∗v are again at level n and the same split-374

ting in time approach between the momentum and continuity equations is375

used such that A, h and the ice strength P are held at time level n-1.376

377

The velocity field at time level n is obtained with the EVP by solving378

explicitly the momentum equation from time n-1 to time n. This time inte-379

gration is often referred to as a subcycling of the larger advective time step380

∆t. We denote the subcycling here with the superscript s. At iteration s of381
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the subcycling loop, the solution is advanced from s-1 to s.382

383

Hunke and Dukowicz [10] noticed that equation (4) can alternatively be384

expressed as385

1

2η
σij +

η − ζ

4ηζ
σkkδij +

P

4ζ
δij = ε̇ij . (30)

Adding an artificial elastic strain with an elastic parameter E, we get386

1

E

∂σij

∂t
+

1

2η
σij +

η − ζ

4ηζ
σkkδij +

P

4ζ
δij = ε̇ij . (31)

Introducing T = ζ/E [11], equation (31) can be written as387

∂σij

∂t
+

e2

2T
σij +

1− e2

4T
σkkδij +

P

4T
δij =

ζ

T
ε̇ij . (32)

Following equation (32), the component of the stress tensor are time388

stepped (using the velocity field at time s-1) according to389

(σs
1 − σs−1

1 )

∆te
+

σs
1

2T
=

ζs−1(ε̇s−1
11 + ε̇s−1

22 )

T
−

P

2T
, (33)

(σs
2 − σs−1

2 )

∆te
+

e2σs
2

2T
=

ζs−1(ε̇s−1
11 − ε̇s−1

22 )

T
, (34)

(σs
12 − σs−1

12 )

∆te
+

e2σs
12

2T
=

ζs−1ε̇s−1
12

T
, (35)

where σ1 = σ11 + σ22, σ2 = σ11 − σ22, ζs−1 is ζ (us−1, vs−1) and for example390

ε̇11 = ∂us−1

∂x
. T is a tuning parameter and represents a damping timescale391

for the elastic waves. It is a fraction of the advective time step and is set to392

0.36∆t (unless otherwise stated) following the documentation of the CICE393

model [14]. The EVP subcycling time step is denoted by ∆te. In the stan-394

dard EVP model, Nsub ∗ ∆te = ∆t where Nsub is the number of subcycles.395

The viscous coefficients are in our implementation also calculated following396

equation (8).397

398

With the newly calculated stresses, the velocity is then subcycled accord-399

ing to400
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ρh
(us − us−1)

∆te
=

ρhfvs−1
avg + Cs

w((u
g
w − us) cos θw − (vgw − vs−1

avg ) sin θw) +
∂σs

11

∂x
+

∂σs
12

∂y
+ rn∗u,

(36)

ρh
(vs − vs−1)

∆te
=

− ρhfus−1
avg + Cs

w((v
g
w − vs) cos θw + (ug

w − us−1
avg ) sin θw) +

∂σs
22

∂y
+

∂σs
12

∂x
+ rn∗v,

(37)

where Cs
w = ρwCdw|us−1 − ug

w| (calculated at the u or v C-grid positions).401

402

The spatial discretization also leads to a system of N equations with N403

unknowns. Contrary to the B-grid implementation of Hunke [11], the off-404

diagonal terms (Coriolis and part of the water drag) are explicit (considered405

at s-1 and not s).406

407

The basic idea of the EVP solver is to approximate the VP solution by408

damping the artificial elastic waves (with a T e-folding time scale) during409

the subcycling. The goal is therefore to attenuate the elastic waves as much410

as possible while maintaining numerical stability [11]. Hunke [11] performed411

a stability analysis for the EVP solver. Neglecting the water drag term and412

considering a linear problem (i.e. the rheology term is considered linear), this413

stability analysis shows that the elastic waves damp out and the approximate414

solution is stable if the following relation is respected415

∆te <
4e∆x

(1 + e2)
(
ρhT

ζ
)
1

2 . (38)

This relation indicates that zones characterized by high viscosities set a416

severe constraint on the value of ∆te. It further shows that reducing the417

damping time scale implies a reduction of ∆te to maintain stability and that418

the subcycling time step has to be decreased by a factor of two when doubling419

the spatial resolution. A method proposed by Hunke [11] to mitigate this420

stability issue is to limit the values of the viscous coefficients to enforce the421
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inequality in equation (38). As this approach is not recommended (E. Hunke,422

personal communication) and has never been used in actual applications of423

CICE, we have chosen not to study it in this paper.424

425

3.4. The modified EVP approach426

We propose a modification to the Hunke [11] scheme inspired by the427

work of a few groups in computational fluid dynamics (see for example [30]).428

We call this new solver EVP*. The times-stepping of the internal stresses429

is the same (see equations (33), (34) and (35)). However, we modify the430

time-stepping of the velocities: an extra inertial term is added in order to431

match the backward Euler of the implicit approach. Equations (36) and (37)432

become433

β
(us − us−1)

∆te
+ ρh

(us − un−1)

∆t
=

ρhfvs−1
avg + Cs

w((u
g
w − us) cos θw − (vgw − vs−1

avg ) sin θw) +
∂σs

11

∂x
+

∂σs
12

∂y
+ rn∗u,

(39)

β
(vs − vs−1)

∆te
+ ρh

(vs − vn−1)

∆t
=

− ρhfus−1
avg + Cs

w((v
g
w − vs) cos θw + (ug

w − us−1
avg ) sin θw) +

∂σs
22

∂y
+

∂σs
12

∂x
+ rn∗v,

(40)

where β is a tuning parameter that can change spatially and with time.434

435

Notice the presence in equations (39) and (40) of two time steps: the436

EVP subcycling time step and the advective time step ∆t. These two equa-437

tions are effectively subcycled with a time step of ∆te but the condition438

Nsub ∗ ∆te = ∆t does not need to be respected. The basic idea is that once439

steady state is reached (within the same subcycling cycle of Nsub iterations),440

the first term goes to zero and us tends toward un. Because of the extra in-441

ertial term, once us tends toward un, the representation of the inertial term442

is exactly the same as for the implicit approach and one recovers exactly the443

same solution. One can see this by replacing us by un (same idea for v) and444
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dropping the first term in equations (39) and (40) and comparing these to445

equations (15) and (16).446

447

The term ρhun−1/∆t in equation (39) is like a forcing term (does not448

change during the subcycling) and the term ρhus/∆t acts as a linear drag.449

Following Hunke [11] who neglected the drag term in the stability analysis,450

the condition for stability of EVP* is given by:451

∆te <
4e∆x

(1 + e2)
(
βT

ζ
)
1

2 . (41)

Interestingly, if we set β = ρh in equations (39) and (40), we get exactly452

the same stability condition as the standard EVP solver. The parameter β453

is set to ρh for the experiments described in this paper.454

455

There are advantages with this modified EVP approach: it can used to456

validate the implementation of the standard EVP solver, a residual can be457

calculated and the approximate solution obtained with this solver should458

tend toward the implicit solution if the residual tends toward zero.459

460

4. Model information, forcing fields and initial conditions461

Our regional model can be run at four possible spatial resolutions: 10, 20,462

40 and 80 km (square grid cells). The domain includes the Arctic, the North463

Atlantic and the Canadian Arctic Archipelago (CAA). There are open chan-464

nels in the CAA only for the 10 and 20-km resolution versions. The model465

uses two thickness categories and a zero-layer thermodynamics. A Neumann466

condition for the thickness and the concentration fields is applied at an open467

boundary by imposing spatial gradients equal to zero. The sea ice model is468

coupled thermodynamically to a slab ocean model [22].469

470

The wind stress is calculated using the geostrophic winds derived from471

the National Centers for Environmental Prediction and National Center for472

Atmospheric Research (NCEP/NCAR) six hour reanalysis of sea level pres-473

sure [31]. The geostrophic winds at time level n are linearly interpolated474

between the previous and subsequent six hour geostrophic wind fields. The475

climatological ocean currents were obtained from the steady-state solution476
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of the Navier-Stokes equation in which the advection of momentum was ne-477

glected, a 2-D non-divergent field was assumed and a quadratic drag law was478

used. The forcing used to get the ocean currents is a 30-year climatological479

wind stress field. The thermodynamics is forced by NCEP/NCAR reanalysis480

of monthly mean surface air temperature. All NCEP/NCAR reanalysis data481

are found at www.esrl.noaa.gov.482

483

Previous simulations with the Picard solver are used to obtain the initial484

conditions for the experiments described in this study. These simulations485

started with a uniform thickness of 1 m and a concentration of 100% and486

ran for 10 years (at each spatial resolution) from 1 January 1992 to 1 Jan-487

uary 2002 with a two-hour time step. Starting from the fields obtained on488

1 January 2002, the model was then run with a 20-min time step from 1489

January 2002 to 17 January 2002 00Z. We now turn off the thermodynamics490

and compare the different solvers over the period 17 January 2002 00Z to491

18 January 2002 00Z. The reason why we have chosen this specific 24-hour492

period is that it is characterized by typical conditions with a high pressure493

system close to the Beaufort Sea, convergence north of Greenland and ice494

flowing south through Fram Strait.495

496

For all the experiments, we use revision 291 of our model. All runs were497

performed on a machine with 2 Intel E5520 quad-core CPU at 2.26 GHz with498

8 MB of cache and 72 GB of RAM. The compiler is GNU fortran (GCC) 4.1.2499

20080704 (Red Hat 4.1.2-51), 64 bits. The optimization option O3-ffast-math500

was used for all the runs.501

502

Tables (1) and (2) list respectively the values of the physical and numer-503

ical parameters used for the core runs of the paper. Additional simulations504

are also described for which modification(s) to these parameters are stated505

clearly.506

507

5. Validation of the EVP implementation508

Experiments show that the EVP* solver sometimes does not converge509

when using the standard value of P* (27.5×103 N m−2). When this oc-510

curs, the residual initially decreases but then flattens out. It is possible that511

improvements can be obtained by tuning the damping time scale T or the512
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Symbol Definition value
ρ sea ice density 900 kg m−3

ρa air density 1.3 kg m−3

ρw water density 1026 kg m−3

Cda air drag coefficient 1.2× 10−3

Cdw water drag coefficient 5.5× 10−3

θda air drag turning angle 25◦

θdw water drag turning angle 25◦

f Coriolis parameter 1.46× 10−4s−1

P* ice strength parameter 27.5×103 N m−2

C ice concentration parameter 20
e ellipse ratio 2

Table 1: Physical parameters for the runs

Symbol Definition value(s)
∆x spatial resolution 10, 20, 40, 80 km
∆t advective time step 10, 20, 30 min
γnl termination criterion 0.99 to 10−3

Nsub number of subcycling time steps 30 to 1920
T elastic damping timescale 0.36∆t

Table 2: Numerical parameters for the runs
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parameter β in equations (39) and (40), but this is not explored in this paper.513

Nevertheless, the EVP* solver represents a very useful validation tool for our514

EVP solver implementation. We test that a solution obtained with the EVP*515

solver is the same than the one obtained with the Picard solver when both516

solvers are iterated to full convergence. Passing this test gives us confidence517

that our implementation of EVP (from which the EVP* solver is derived with518

small code changes) is consistent with the Picard solver approach. Both Pi-519

card and JFNK implementations are very well tested softwares.520

521

For this experiment, the spatial resolution is 40 km and the advective522

time step is 20 min. The thickness is set to 1 m everywhere on the domain523

and the concentration to 100%. To ensure numerical convergence, the ice524

strength is set to 27.5×102 N m−2 (an order of magnitude smaller than the525

standard value). We investigate the first time level on 17 January 2002. As526

the condition Nsub ∗ ∆te = ∆t does not need to be respected for the EVP*527

solver, Nsub and ∆te are specified independently. In this experiment, a large528

number of subcycles are performed as we want to reach full-convergence.529

The black line on Figure 1 shows the L2-norm of the nonlinear system of530

equations when a subcycling time step of 30 s is used. Obviously, 30 s is a531

too large ∆te as the approximate solution calculated by EVP* does not con-532

verge. Consistent with equation (41), a smaller subcycling time step (∆te =533

10 s) leads to convergence (blue curve). The flattening out of the curve after534

∼4500 subcycles means that the solution has reached machine accuracy.535

536

The velocity field for the same time level was also calculated using the537

Picard solver (not shown). The differences between the velocity field calcu-538

lated with the EVP* solver and the one obtained using the Picard solver are539

O(10−16cm s−1), i.e. both solvers give the same answer, the small differences540

are due to the machine precision.541

542

Figure 1: L2-norm for the EVP* solver with ∆te = 30s (in black) and ∆te = 10s (in
blue). The time is 17 January 2002 00Z 20 min, the spatial resolution is 40 km and the
advective time step is 20 min.
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6. Experiments543

For comparing the robustness and computational efficiency of a solver544

to the ones of another solver, it is important to define common metrics. It545

was easy for Lemieux et al. [9] to compare in a consistent way robustness546

and computational efficiency of the standard Picard solver and the newly547

developed JFNK solver as both solvers allow a calculation of the nonlinear548

residual. When decreasing the residual to zero (not exactly zero because of549

machine precision), both solvers give exactly the same answer (the velocity550

field at time level n).551

552

In this work, we also have a residual for the EVP* solver. However, for553

the standard EVP model, a different metric is needed. Assuming both solvers554

(JFNK and EVP) find their respective fully converged velocity solution, we555

don’t expect the velocity fields to be exactly the same because of the differ-556

ent treatment of the inertial term. Indeed, the error on the inertial term is557

O(∆te) for the EVP while the backward Euler approach for JFNK exhibits558

an error of O(∆t). In this sense, the EVP should be more accurate than559

JFNK.560

561

For comparing the JFNK and EVP solvers, the Picard solver is used in562

order to get an independent solution. Lemieux and Tremblay [8] showed563

that the approximate solution obtained with the Picard solver converges to564

the VP solution when the residual tends toward zero. At each spatial res-565

olution, a 1-day simulation (on 17 January 2002) was performed with the566

Picard solver with a very small advective time step (10 s) and a very tight567

nonlinear convergence criterion (γnl = 10−6). The ice starts from rest and the568

wind is turned on on 17 January 2002 00Z. With such a small advective time569

step and the low value of γnl used, the velocity, concentration and thickness570

fields obtained on 18 January 2002 00Z form the reference solution. Note571

that the standard value of P* is used (27.5×103 N m−2). The quality of the572

reference solution was assessed using the 40-km grid. Keeping γnl = 10−6,573

the advective time step was reduced to 1 s. Subtracting this highly accurate574

solution (with ∆t=1 s) from the reference solution (with ∆t=10 s), the max-575

imum thickness difference is 5×10−5 m and the maximum velocity difference576

is 1.1×10−3 cm s−1.577

578

Starting again from rest on 17 January 2002 00Z, the approximate solu-579
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tion is advanced in time in order to get the same fields on 18 January 2002580

00Z with either the JFNK or the EVP solvers with a set of advective time581

steps and termination criteria (for JFNK) or number of subcycles (for the582

EVP). The thickness, velocity and deformation fields simulated by the JFNK583

solver and the EVP model are then compared with the reference solution.584

These experiments are performed at 10, 20, 40 and 80-km resolutions with585

advective time steps of 10, 20 and 30 minutes (typical time steps used in586

current regional ice-ocean models [32]).587

588

The differences between the JFNK approximate solution and the refer-589

ence solution are due to the O(∆t) error of the backward Euler approach, the590

large advective time step and the residual errors associated with each solve591

of the momentum equation. The fields on 18 January 2002 00Z simulated592

by JFNK should tend toward the reference solution as ∆t and γnl are reduced.593

594

Similarly, the differences between the EVP approximate solution and the595

reference solution are due to the large advective time step and the residual596

errors caused by undamped elastic waves. Note that the error of the inertial597

term for the EVP is comparable to the error of the inertial term of the refer-598

ence solution and is therefore negligible. We expect the fields on 18 January599

2002 00Z simulated by the EVP model to approach the reference solution as600

∆t is reduced and as the number of subcycles Nsub is increased.601

602

These experiments with different advective time steps and γnl (for JFNK)603

or Nsub (for EVP) will allow us to access the accuracy of the JFNK and EVP604

approximate solutions. The EVP solver is tested for the standard number of605

subcycles (120) proposed in the CICE documentation [14] as well by using606

the following values: 120/4, 120/2, 120x2, 120x4, 120x8 and 120x16. Simi-607

larly, JFNK is tested for values of γnl of 0.99, 0.75, 0.5, 0.25, 0.1, 0.01 and608

0.001. As we will see, these values of Nsub and γnl cover the whole spectrum609

of inaccurate solutions to the most accurate solution possible for a given ∆x610

and a given ∆t. Based on these results, we will define a metric in order to611

compare the computational efficiency of the JFNK solver to the one of the612

EVP model. We focus on the 10-km resolution simulations but occasionally613

refer to the results on the other grids.614

615
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6.1. Accuracy of the JFNK and EVP approximate solutions616

Figures 2a and 2b show the 10-km resolution thickness and velocity fields617

on 18 January 2002 00Z as simulated by the Picard solver. We refer to these618

fields as the reference solution.619

620

Figure 2: Thickness (a) and velocity (b) fields at 10-km resolution on 18 January 2002
00Z obtained with the Picard solver with ∆t = 10s and γnl =−6. These correspond to the
reference solution. For clarity, the thickness is capped to 4 m and one velocity vector out
of a hundred is plotted.

For comparing approximate solutions obtained with JFNK or the EVP,621

we calculated at first the Root Mean Square Difference (RMSD) between a622

simulated thickness field on 18 January 2002 00Z and the reference thickness623

field (Figure 2a). It is interesting to look at this field as thickness acts as624

an integrator of the residual errors during the 1-day integration. The RMSD625

results then provided guidance for the remaining experiments described in626

this paper.627

628

The RMSD are computed for regions where the ice concentration is larger629

than 50%. As an indication, Figure 3 shows the 10-km resolution ice concen-630

tration field on 18 January 2002 00Z as simulated by the Picard solver. The631

RMSD for JFNK and EVP for different spatial resolutions, advective time632

steps and γnl (JFNK) or Nsub (EVP) are shown in Figure 4. Consistent with633

what is expected, the differences with the reference solution decrease as the634

termination criterion γnl for JFNK is reduced. Similarly, the differences for635

the EVP model decrease when increasing Nsub. Also consistent with what636

we expect, the RMSD decreases as the advective time step is diminished.637

For both JFNK and the EVP, the RMSD curves flatten out. This means638

that, at this point, the RMSD are then mostly a consequence of the large639

advective time steps. For both solvers, the minimum RMSD level increases640

with spatial resolution (for the same ∆t). It is observed that for a given ∆t641

and a given ∆x, the minimum RMSD is always at a higher level with the642

EVP model. In other words, the approximate solution obtained with JFNK643

is always more accurate than the one obtained with the EVP (when the644

solvers iterate sufficiently to reach their respective saturated RMSD level).645

Importantly, the difference between the EVP approximate solution and the646
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JFNK approximate solution gets more pronounced as the grid is refined.647

648

Figure 3: Ice concentration field at 10-km resolution on 18 January 2002 00Z obtained
with the Picard solver with ∆t = 10s and γnl =−6

To have an idea of the geographical distribution of these differences, Fig-649

ure 5a and 5c show respectively the differences between the JFNK approxi-650

mate solution with γnl=0.5 and γnl = 10−3 and the reference solution. The651

advective time step is 20 min and ∆x=10 km. Figure 5b and 5d are respec-652

tively the differences between the EVP approximate solution with Nsub = 120653

andNsub = 1920 and the reference solution. Values of γnl=0.5 andNsub = 120654

are chosen to show inaccurate solutions while γnl = 10−3 and Nsub = 1920655

demonstrate the most accurate solutions that can be obtained by a solver for656

a given ∆t and ∆x. Note that decreasing γnl for JFNK from 10−2 to 10−3
657

or increasing Nsub from 960 to 1920 have little impact on their respective658

approximate solution (i.e, there is no need to further decrease γnl or further659

increase Nsub).660

661

Tightening up the convergence criterion from γnl=0.5 to γnl = 10−3 leads662

to a clear benefit for the JFNK solver. Similarly, a larger number of sub-663

cycles for the EVP provides a better approximate solution. However, the664

errors do not decrease to the level of errors obtained with JFNK. Even with665

Nsub = 1920, the EVP leads to differences as large as 75 cm compared to the666

reference solution (for a reference solution of 2.32 m at that location). This667

can be compared to a maximum difference of 5 cm with the JFNK solver (for668

a reference solution of 4.07 m at that location).669

670

a b

Figure 4: RMSD between the approximate solution (thickness) obtained with JFNK and
the reference solution at 40 km (a), 20 km (c) and 10 km (e) and RMSD between the
approximate solution (thickness) obtained with the EVP and the reference solution at 40
km (b), 20 km (d) and 10 km (f).

We now turn to the velocity fields. Figures 6a and 6c show respectively671

the difference between the velocity field simulated by JFNK on 18 January672

2002 00Z with γnl=0.5 and γnl = 10−3 and the reference solution. The time673
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Figure 5: Difference between the thickness field obtained with JFNK with γnl=0.5 (a) or
γnl = 10−3 (c) and the reference solution. Difference between the thickness field obtained
with the EVP with Nsub = 120 (b) or Nsub = 1920 (d) and the reference solution. The
advective time step for the JFNK and EVP solvers is 20 min. To see the details, the
thickness differences are capped to ±2.5 cm.

step is 20 min. Similarly, the approximate solutions for the EVP with re-674

spectively 120 and 1920 subcycles minus the reference solution are shown on675

Figures 6b and 6d. The same reference vector (2 cm s−1) is used for Fig-676

ures 6a, 6b, 6c and 6d. Even though the EVP approximate solution (not677

shown) resembles the reference solution, some differences are present. With678

120 subcycles, the EVP approximate solution has significant errors over all679

the domain. Increasing the number of subcycles from 120 to 1920 improves680

agreement with the reference solution but there are still some regions with681

errors of O(1 cm s−1). Decreasing γnl from 0.5 to 10−3 for JFNK leads to682

errors an order of magnitude smaller than the ones associated with the EVP683

with Nsub = 1920.684

685

a b

Figure 6: Difference between the velocity field obtained with JFNK with γnl=0.5 (a) or
γnl = 10−3 (c) and the reference solution. Difference between the velocity field obtained
with the EVP with Nsub = 120 (b) or Nsub = 1920 (d) and the reference solution. The
advective time step for the JFNK and EVP solvers is 20 min.

Some of the differences between the EVP velocity field and the reference686

solution are due to the different thickness and concentration fields after one687

day of integration. To investigate this impact, a new 10 km resolution ref-688

erence solution was produced keeping the thickness and concentration fields689

constant (only the wind forcing varies) during the 1-day integration. First,690

to quantify the quality of the JFNK and EVP approximate solutions on691

18 January 2002 00Z, the RMS of the magnitude of the velocity difference692

(RMSDv) between the JFNK or the EVP approximate solution and the new693

reference solution was calculated. The time step for the JFNK and EVP694

runs is 20 min. The RMSDv for the JFNK (in blue) as a function of γnl695
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and the RMSDv for the EVP (in black) as a function of Nsub are shown in696

Figure 7a. Again, the JFNK solver leads to smaller differences than the EVP697

model when compared to the reference solution. A smaller γnl appears to698

be needed to reach the saturated RMSDv level as compared to the previous699

RMSD thickness results. Figure 7b shows an example of the geographical700

distribution of these differences for the EVP model. It shows the difference701

between the EVP velocity field on 18 January 2002 00Z with Nsub=1920 and702

the new reference solution. Figure 7b can be compared with Figure 6d (case703

with advection, Nsub=1920). Qualitatively speaking, the conclusions remain704

the same. The differences are of the same order of magnitude (O(1 cm s−1))705

and the largest ones are located in the same regions.706

707

a b

Figure 7: a) RMS of the magnitude of the velocity difference between the JFNK (in blue)
or the EVP (in black) approximate solution and the reference solution. b) Difference
between the velocity field obtained with the EVP with Nsub = 1920 and the reference
solution. The time step for the JFNK and the EVP solvers is 20 min and the spatial
resolution is 10 km. For these experiments, the JFNK, EVP and reference solutions were
obtained with the advection turned off.

We now go back to the experiments with advection. One might argue708

that these differences between the EVP velocity field and the reference solu-709

tion are small. However, small errors on the ice drift do have a large impact710

on the deformations. Figure 8 demonstrates this. Figures 8a and 8b show711

respectively the shear strain rate (second strain rate invariant) and the diver-712

gence simulated by the Picard solver (the reference solution) on the 10-km713

grid. The same fields simulated with the EVP solver with Nsub = 120 are714

shown on Figures 8c and 8d while Figures 8e and 8f are for Nsub = 1920. The715

advective time step for the EVP is ∆t=20 min. Similarly to what is shown716

in Hunke [11], increasing Nsub eliminates noise in the deformation fields. An717

example of this can be clearly seen if we zoom on the area north of Greenland718

(Figures 9a and 9b). In the southern part of this region, the noise disappears719

in the divergence field and the ice becomes very rigid (as seen in the refer-720

ence solution). However, in the region further north, the noise disappears721

but is replaced by bands of convergence that are not seen in the reference722

solution. By comparing Figures 8e and 8f to Figures 8a and 8b, it is obvious723

that these additional deformations are seen at many places in the domain.724
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These arch-like deformations in the EVP approximate solution are similar725

to the ones obtained by Maslowski and Lipscomb [33] with their 9-km EVP726

model. Hence, the EVP solver with Nsub =1920 captures the general pat-727

tern of deformations but leads to additional shear lines and zones of strong728

divergence/convergence when compared to the reference solution. This is729

consistent with the results of Losch and Danilov [13]: the EVP simulates a730

weaker ice cover as it deforms more easily. The shear and divergence fields731

simulated by JFNK (γnl = 10−3, ∆t=20 min) are very similar to the refer-732

ence solution deformation fields (not shown).733

734

a b

Figure 8: Shear (a) and divergence (b) at 10-km resolution obtained with the Picard solver
with γnl = 10−06 and and advective time step of 10 s (the reference solution) on 18 January
2002 00Z. Shear (c) and divergence (d) obtained with the EVP with 120 subcycles. Shear
(e) and divergence (f) obtained with the EVP with Nsub = 1920 on 18 January 2002 00Z.
The advective time step for the EVP solver is 20 min. For clarity, the shear is capped to
0.2 day−1 and the divergence to ±0.05 day−1.

Figure 9: Divergence north of Greenland as simulated by the EVP with Nsub = 120 (a)
and with Nsub = 1920 (b) on 18 January 2002 00Z. The advective time step is 20 min. To
see the details, the divergence is capped to ±0.025 day−1.

We also performed the following simulations to further investigate the735

presence of extra deformations in the EVP approximate solution. The model736

was run for 10 days (17-27 January 2002) with either the JFNK or EVP737

solver. The spatial resolution is 10 km and ∆t=20 min. Because it is a longer738

simulation, exceptionally this experiment includes thermodynamic processes.739

Statistics of deformations were calculated over the whole period based on in-740

stantaneous deformations analyzed every 12 hours. Similar to what is done741

in Girard et al. [18], we calculated the Probability Density Function (PDF)742

of the absolute divergence |D| over a subdomain located in the Arctic Ocean.743

To avoid coastal effects, the size of the subdomain (1900 km x 1800 km ) was744

chosen such that the grids cells are at least 100 km away from the land.745

746
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Bins of constant size of 2 × 10−4day−1 were used to produce the PDF.747

The first bin includes the values of |D| between 0 and 2 × 10−4day−1, the748

second one between 2 × 10−4day−1 and 4 × 10−4day−1 and so on. With749

Xi = {1, 3, 5, ..} × 10−4day−1 giving the midpoint value of each bin and Yi750

representing the fraction of |D| values in each bin, Figure 10 shows log(Yi) as751

a function of log(Xi). The blue curve in Figure 10 shows the PDF for JFNK752

with γnl = 10−3 while the red and the black curves are respectively for the753

EVP solver with either 120 or 1920 subcycles.754

755

Figure 10: PDF of the absolute divergence for JFNK with γnl = 10−3 (in blue), EVP with
120 subcycles (in red) and EVP with 1920 subcycles (in black). For all three simulations,
the spatial resolution is 10 km and the advective time step is 20 min. The statistics of the
absolute divergence (with bins of 2 × 10−4day−1) were calculated over a 1900 km x 1800
km subdomain centered in the Arctic Ocean.

These results confirm what can be qualitatively observed on Figure 8:756

the EVP simulates a weaker ice cover as it deforms more easily (both in con-757

vergence and divergence, not shown). Interestingly, the PDF for the EVP758

model changes significantly when increasing the number of subcycles from759

120 to 1920 as it gets closer to a fat tailed distribution. Consistent with760

the results of Lemieux and Tremblay [8] with a Picard solver, we find that761

the PDF of deformations depends strongly on the level of numerical con-762

vergence. It is beyond the scope of this paper to investigate the impact of763

these extra deformations in the EVP approximate solution on ice growth, but764

we speculate that the EVP solver leads to more ice production than an im-765

plicit solver (because openings in the ice cover strongly affect the ice growth).766

767

The conclusions given in this section are robust. The same RMSD calcula-768

tion was repeated for two different dates (30 January 2002 and 15 September769

2002). Again, results show that the RMSD for EVP is always higher than770

the saturated level obtained with JFNK (not shown). Note that because the771

ice cover is less compact during the September test case, the EVP RMSD772

saturated value is closer to the JFNK saturated value results than it is for773

the winter test cases. We also verified that these conclusions do not depend774

on the treatment of the off-diagonal terms (Coriolis and part of the water775

drag term) for our C-grid implementation. To do so, the Coriolis parame-776

ter and the water drag turning angle were set to zero (for the JFNK, EVP777
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and reference solutions). Comparing again the JFNK and EVP approximate778

solutions to this new reference solution, our conclusions remain the same:779

JFNK is more accurate than the EVP (not shown). Finally, conclusions are780

also unaffected when capping the viscous coefficients to the value proposed781

by Hunke [11], i.e, by setting the lower limit of $ in equation (8) to 10−11s−1.782

783

6.2. Computational efficiency784

As this work involves serial algorithms, we only briefly comment on the785

computational efficiencies of the JFNK and EVP solvers. We used the RMSD786

of the thickness field to investigate the computational efficiency (with ∆t=20787

min). Our tests show that, for the four spatial resolutions tested, the EVP788

and JFNK solvers require roughly the same CPU time to reach their respec-789

tive saturated level (not shown, in fact we calculated the time required for790

the RMSD to be within 5% of the saturated level). As the spatial resolution791

is increased, Nsub needs to be increased for the EVP solver to reach the min-792

imum RMSD. Even though the required γnl for JFNK is roughly constant793

with resolution (∼ 0.2), the number of Krylov iterations increases (this ex-794

plains why the computational efficiencies are comparable for the four spatial795

resolutions). Hence, for a given ∆t and a given ∆x, the EVP and JFNK796

solvers take the same CPU time to reach their respective most accurate so-797

lution, but the solution obtained with JFNK always exhibits a lower RMSD798

value.799

800

7. Discussion801

Because of residual elastic waves, the approximate solution calculated802

with the EVP solver has notable differences with the reference solution. In803

the experiments described in section 6, the damping time scale was set to the804

value proposed in the CICE documentation (T=0.36∆t). Following the no-805

tion that the EVP approximate solution converges to the VP solution in the806

limit of vanishing elastic waves, a better approximation should be obtained807

with the EVP model by decreasing the damping time scale. We investigate808

this idea with two additional sets of experiments with the EVP model, in809

which the damping time scale is reduced to a third and a tenth of the stan-810

dard value. For these experiments, the 10-km grid is used with an advective811

time step of 20 min. The black, blue and red curves in Figure 11 respectively812
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show the RMSD between the EVP with T, T/3 and T/10 and the reference813

solution. As a reference, the RMSD saturated level for the JFNK solver on814

the 10-km grid with ∆t=20 min is shown as the dashed line.815

816

Figure 11: RMSD between the approximate solution obtained with the EVP and the
reference solution for three different damping time scales. The spatial resolution is 10 km
and the advective time step is 20 min. The dashed line shows the saturated RMSD level
of the JFNK solver.

With decreasing damping time scale, the RMSD saturated level approaches817

the one obtained with the JFNK solver (represented by the dashed line).818

However, to resolve the smaller damping time scale, the subcycling time step819

has to be reduced [11]. Reducing the damping time scale significantly is un-820

practical and the way the EVP solver is used is therefore a tradeoff between821

computational efficiency (and a very good parallel scaling) and the presence822

of residual elastic waves. Our conclusions are in agreement with the results823

of Losch and Danilov [13]: the EVP approximate solution converges slowly824

to the VP solution.825

826

For a given ∆t and a given ∆x, the EVP and JFNK solvers take the827

same CPU time to reach their respective most accurate solution (note that828

the JFNK approximate solution is closer to the reference solution than the829

EVP one for all the spatial resolutions tested). It is important, however,830

to point out that all efficiency statements are based on serial code. At this831

point, we expect that the EVP solver scales better with the number of pro-832

cessors because our preconditioner involves an LSOR [7]. Current work is833

focusing on implementing a multi-grid [34] based preconditioner, and even-834

tually using a parallel multilevel preconditioner such as ML available in the835

Trilinos library [29]. A similar numerical framework (JFNK + the Trilinos836

library) has been developed for ice sheet modeling and preliminary results837

show very good scaling with the number of processors [35].838

839

As mentioned earlier, the VP formulation with an elliptical yield curve840

and a normal flow rule (the standard VP rheology) is contentious. Recent841

work questions its ability to properly simulate the sea ice deformations (e.g.,842

[16, 17, 18]). Some authors argue that a VP formulation requires a different843

yield curve and a different flow rule to improve its representation of sea ice844
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deformations [17]. We argue that a JFNK solver should be preferred over845

the EVP model for testing this idea. Indeed, testing different VP rheologies846

would be hampered by the residual elastic waves in the EVP approximate847

solution as one would be unable to differentiate between effects of a specific848

rheology (yield curve and flow rule) and effects of numerical noise.849

850

The implicit framework of the JFNK solver represents another advantage.851

Lipscomb et al. [36] demonstrated analytically that the splitting in time be-852

tween the momentum and the continuity equations can lead to unphysical853

solutions when the advective time step is too large: a solution exists but it is854

inconsistent with the forcing conditions. Numerical experiments showed that855

sea ice models run into this fundamentally numerical problem as the grid is856

refined, so that the approximate solution can even blow up [36]. This prob-857

lem is caused by the explicit treatment of the ice strength in the momentum858

equation (as done in almost all the sea ice models). We have not observed859

such instability in our model, probably because we use a very diffusive up-860

stream advection scheme and a two-thickness category model (as opposed to861

more sophisticated thickness distribution approach).862

863

The instability issue related to the splitting in time approach clearly needs864

attention as models are run at increasingly higher spatial resolution. Even865

though Lipscomb et al. [36] proposed a way to mitigate this problem by mod-866

ifying the ridging scheme, we think a different numerical treatment could867

further improve the stability and offer more versatility for formulating the868

ridging scheme. As the JFNK solver is based on an implicit approach, it869

is naturally suited for resolving this issue within a fully-implicit treatment870

(similar to the strength implicit model of Hutchings et al. [37]) or using im-871

plicit/explicit time integration techniques [38].872

873

In Lemieux et al. [9], we have shown that both the Picard and JFNK874

solvers can have failures (i.e., a solver does not reach the termination cri-875

terion before the maximum allowed number of iterations). For the same876

advective time step, the number of failures increases as the grid is refined.877

The JFNK solver seems to be particularly sensitive at high resolution. We878

erroneously speculated that the increased number of failures with resolution879

was related to the small-scale sea ice deformations. Here, we report to the880

contrary that in a thorough analysis of failures, we found that most of them881

are located near a coast in regions where the thickness and concentration882
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fields vary significantly from one grid cell to the next. Hence, these failures883

relate to the issue described by Lipscomb et al. [36] and further motivate the884

implementation of a fully-implicit solver or the use of an implicit/explicit885

time integration.886

887

8. Conclusion888

We have compared the convergence properties (accuracy of the solution889

and computational efficiency) of a recently developed Jacobian-free Newton-890

Krylov (JFNK) serial algorithm to the ones of the widely used Elastic-891

Viscous-Plastic (EVP) model for solving the sea ice momentum equation892

with a VP formulation. To do so, a reference VP solution was calculated by893

using a very small advective time step (10 s) and a tight nonlinear conver-894

gence criterion. A Picard scheme was used as an independent solver in order895

to obtain this reference solution. Tests were then performed with JFNK and896

the EVP solver at 10, 20, 40 and 80-km spatial resolutions and using advec-897

tive time steps of 10, 20 and 30 min.898

899

For both solvers, the Root Mean Square Difference (RMSD) between a900

solver’s simulated thickness field and the reference solution decreases when901

the convergence criterion (for JFNK) is tightened up or when more subcycles902

(for EVP) are used. The RMSD eventually flattens out because the errors903

are then a consequence of the large advective time step, but the RMSD for904

the EVP flattens out at a higher level than for the JFNK solver. This is the905

case for all advective time steps, when both solvers use the same advective906

time step. The differences between the EVP and JFNK approximate solu-907

tions increase as the grid is refined.908

909

Using the RMSD to investigate the computational efficiency, results show910

that the JFNK and EVP solvers require about the same CPU time to reach911

their respective RMSD saturated level, but the JFNK most accurate solu-912

tion is always closer to the reference solution than is the EVP one. For a913

given advective time step, it is possible to improve the accuracy of the EVP914

approximate solution by decreasing the damping time scale. Unfortunately,915

a smaller damping time scale needs to be resolved by a shorter subcycling916

time step, so that overall the computational efficiency of the EVP solver is917

decreased. Consistent with the results of Losch and Danilov [13], we conclude918
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that the EVP converges slowly to the VP solution. It is however known that919

the EVP model scales very well with the number of processors [7]. While920

some existing JFNK parallel codes show very good scaling (e.g., [35]), it re-921

mains to be seen how our JFNK implementation will behave in a parallel922

environment.923

924

Because of residual elastic waves, the velocity field calculated with the925

EVP solver has notable differences with the reference solution. These resid-926

ual errors are clearly noticeable in the deformation fields. As opposed to927

the JFNK solver, the deformations simulated on a 10-km grid with the EVP928

solver exhibit extra shear lines and zones of large divergence/convergence929

when compared to the reference solution. Results also show that the Prob-930

ability Density Function (PDF) of the absolute divergence changes signifi-931

cantly between the standard number of subcycles (120) and the more accu-932

rate solution obtained with 1920 subcycles. The distribution is then more933

fat tailed, and gets closer to the PDF obtained with the JFNK solver.934

935

Because it is an implicit method, the JFNK solver opens up new per-936

spectives of solving numerical issues related to time stepping algorithms (as937

shown in [36]) and quickly changing ice conditions in high resolution models938

by a fully implicit approach or implicit/explicit time integration techniques939

[38]. Such approaches are excluded with the EVP solver by construction.940
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