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With global climate change ocean warming and aci-
dification occur concomitantly. Environmental change
develops rapidly and may leave insufficient time for
evolutionary adaptation. Thus, the survival and distri-
bution of species will depend on their existing ability
to exploit their physiological plasticity. Investigating
the synergistic effects of warming and CO2 accumula-
tion is important to predict the future state of matrine
ecosystems.

An existing concept places emphasis on a central
role for extracellular pH and the capacity of acid-base
regulation in shaping sensitivity to ocean acidification.
pH regulation and the energetically costly processes
involved appear crucial to sustain the performance of
marine organisms. Especially under rising tempera-
tures, small pH disturbances in body fluids might al-
ready exert critical impact on physiological processes.
We therefore studied the effects of ocean acidification
on thermal tolerance, energy metabolism and acid-
base regulation capacity of the White Sea (sub-Arctic)
population of the blue mussel Mytilus edulis.
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Mytilus edulis

Wild type adult mussels (3-8cm shell length) were collected from the subtidal zone of the
White Sea, Russia, transfered to the AWI, divided in two groups and acclimated for at least
one month at 10°C. After pre-acclimation mussels were exposed to normocapnia (390patm)
and hypercapnia (1120patm), respectively, in a recirculating seawater system with pre-
equilibrated header tanks (see above).

Experimental design

Two weeks after CO2-exposure mussels were challenged by an acute temperature rise from
10-28°C (3°C/night). Respiration rate was recorded online using microoptodes (PreSens). At
each temperature step samples of haemolymph were taken anaerobically close to the post-
erior adductor muscle. Samples of mantle tissue were frozen in liquid N2. Haemolymph acid-
base and oxygen status were determined with a blood gas analyser (PO2, PCO2, pH) and a
gas chromatograph (CCO2). Additional acid-base parameters (e.g. HCO3~) were calculated
according to Heisler (1986). Intracellular pH of tissue was determined by the homogenate
method developed by Pértner et al. (1990). Onset of anaerobiosis (succinate level) were
measured in deproteinized tissue extracts using high resolution 1H-NMR spectroscopy in a
400 WB Avance NMR spectro meter (BrukerBioSpin).
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Q Combined hypercapnia and heat exposure lead to an early
intracellular acidosis indicating reduced energy allocation
to intracellular pH regulation.
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Q COz2 exposure may affect pejus limits more than critical

Q Permanent hypercapnia may only be sustained at the
expense of organismic performance, especially at the
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