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ABSTRACT: The ability of blue mussels Mytilus edulis L. to withstand severe environmental hypoxia
was studied in mussels from an intertidal population and from a suspended cultured settlement. Speci-
mens were exposed to air for 60 h at +10°C. Tissues were analysed for the amount of anaerobic meta-
bolic end products, adenylates, phosphagen, and inorganic phosphate, and for changes in intracellular
pH (pH;). Proton balance and Gibb's free energy of ATP hydrolysis were calculated. Under the experi-
mental conditions applied succinate appeared to be the only anaerobic end product. Under control con-
ditions pH; measured using the homogenate technique ranged between 6.78 and 6.85 in both groups.
Very small decreases in pH; were observed after air exposure. Rapid breakdown of ATP and phospho-
L-arginine (PLA) was accompanied by the accumulation of inorganic phosphate, free AMP and ADP.
The Gibb's free energy change of ATP hydrolysis decreased from about —57 to =50 kJ mol™}, showing
the depletion of energy reserves in the tissues. The calculated ATP turnover rate was higher in inter-
tidal mussels. It is concluded that mussels from the intertidal zone demonstrate lower abilities for meta-
bolic depression under the conditions of air exposure than cultured (sublittoral) ones. The latter are
characterised by higher initial PLA content. These differences may be related to a difference in mito-
chondrial density depending on the habitat.
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INTRODUCTION

Blue mussels Mytilus edulis L. belong to a species
complex characterised by high ecological plasticity.
They inhabit the temperate and boreal zones of the
northern hemisphere with different temperature and
salinity regimes {for review see Seed & Suchanek
1992). Besides that, the species complex colonises both
subtidal and intertidal zones, forming dense settle-
ments on tidal flats, which are exposed to air for up to
55-75% of the time in a tidal cycle (Baird 1966, Seed
1969). Mussels living in biotopes with very different
ecological conditions display physiological differences.
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Some of these differences, such as growth rate (Dickie
et al. 1984, Sukhotin & Maximovich 1994}, respiration
rate (Okumus & Stirling 1994) and clearance rate (Oku-
mus & Stirling 1994, Labarta et al. 1997), are completely
determined by environmental parameters and disap-
pear after placing the mussels in equal life conditions.
Others, such as assimilation efficiency (Labarta et al.
1997), mortality rate (Dickie et al 1984, Mallet et al.
1990), energy partitioning (Rodhouse et al. 1984) and
ammonia excretion (Okumus & Stirling 1994), are
maintained for prolonged periods suggesting the pres-
ence of genetic differences between the populations or
an 'ecological memory’ of the individuals with respect
to pre-experimental conditions. Among them is the dif-
ference between mussels in their response to air expo-
sure. It was shown by many authors that initial acclima-
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tisation to subtidal or intertidal conditions changes
some parameters of metabolism in bivalves during
anoxia. Thus, mussels from low and high tidal levels
showed a difference in ‘oxygen debt’ after air exposure
(Moon & Pritchard 1970, de Vooys & de Zwaan 1978);
subtidal and intertidal M. edulis during and after expo-
sure to air were characterised by differences in the ac-
tivity of pyruvate kinase (Holwerda et al. 1984) and in
mortality (Wijsman 1976, Demers & Guderley 1994).
Total heat dissipation in intertidal mussels during air
exposure and especially during recovery tended to be
greater than in subtidal ones (Shick et al. 1986). It has
been reported that short-term intertidal acclimatisation
favours the accumulation of opines and decreases the
use of the succinate pathway in M. edulis (Demers &
Guderley 1994). However, the data remain controver-
sial. Acclimatization of M. galloprovincialis to the inter-
tidal regime leads to an increase of succinate accumu-
lation during environmental anaerobiosis (de Vooys
1979), while in M. edulis the opposite appears to be the
case {Demers & Guderley 1994). No differences were
observed in the adenylate energy charge in oysters
Crassostrea gigas from different tidal levels (Moal et al.
1989). Therefore, the main goal of the present work was
to investigate whether there are differences in the en-
ergetics of mussels from littoral and suspended culture
populations under normal conditions as well as during
exposure to air.

MATERIAL AND METHODS

Mussels. Blue mussels Mytilus edulis L. were col-
lected in late September 1996 from 2 different sites
near Cape Kartesh (Kandalaksha Bay, White Sea;
66°20.230' N, 33°38.972'E). The region is charac-
terised by a prolonged and cold winter season and a
short, relatively warm summer. Ice covers the sea from
December to early May. The warmest summer month
is August with a mean temperature in the surface
water layer of +13.8°C. Extreme water temperatures
are -1.5°C and +19.3°C (Babkov 1982); therefore, sea-
sonal changes cover more than 20°C. In contrast, air
exposed mussels in the intertidal zone experience
heating with body temperatures of up to 38°C
(Sukhotin & Berger unpubl. data).

Tides in the region are regular with an amplitude of
about 2 m. Salinity in the surface waters ranges
between 24 and 26 %. with a large decrease in April-
May to 15%.. In some years it may decline to near 0%
(Babkov 1982, Babkov & Lukanin 1985). Investigated
mussel populations were situated 2 km apart from
each other. The intertidal settlement is a mussel bed
between —-0.2 and +1.2 m above 0 m tidal level and is
characterised by a density of about 10000 ind. m™2.

Four to 6 yr old mussels comprise more than 60 % of the
total number. Cultured mussels grow on 3 m ropes
hanging from the rafts of a small mussel aquaculture
farm. Mussel density was about 4500 ind. m™! of rope.
Two year old mussels represented 80 % of the popula-
tion. Mussels from both investigated locations live at
the same mean temperatures. However, intertidal
mussels are subjected to wider daily temperature fluc-
tuations and are regularly exposed to air, while cul-
tured mussels experience conditions supporting larger
growth rates and never encounter air exposure.

Mussels were sampled from the littoral settlement at
the level of +0.7 m, where the emersion period com-
prises about 20 % of the tidal cycle. The other sample
was taken from suspended substrates of a mussel
aquaculture farm at 1 m depth. After collection mus-
sels were kept in aquaria for 2 d. Then they were trans-
ported to the Alfred-Wegener Institute (Bremerhaven,
Germany) and placed in aquaria containing filtered
recirculated natural sea water. Temperature was main-
tained at +10°C, salinity was 22 to 24 %.. No food was
added.

Wet tissue weight of mussels varied between 0.6 and
0.8 g with mean values of 0.73 + 0.02 g (SE, n = 33) for
aquaculture and of 0.64 + 0.03 g (SE, n = 35) for littoral
mussels. Age of the mussels was determined by count-
ing and measuring the rings of winter growth delays
on the shells. All cultured mussels were 2 yr old while
littoral ones varied between 5 and 10 yr of age.

Experimental design. After 2 wk of acclimatization
in the laboratory 20 mussels from each habitat were
exposed to air for 60 h. Air exposure was performed at
the same temperature (+10°C). Other mussels (con-
trols) remained immersed. It is well known that during
exposure to air Mytilus edulis can maintain both aero-
bic and anaerobic metabolism using atmospheric oxy-
gen due to shell gaping (Coleman 1973, Widdows et al.
1979, Shick et al. 1986). To avoid differences in gaping
and to prevent the diffusion of oxygen into the mantle
fluid and the desiccation of tissues, exposed mussels
were kept tightly closed by ribbon bands. After air
exposure, control and exposed mussels were quickly
opened and all tissues were withdrawn from the shells,
weighed, and frozen by freeze-clamping in liquid
nitrogen (Wollenberger et al. 1960).

Analyses. All tissues of the mussel body were pooled
for further analysis. Intracellular pH (pH;) was deter-
mined using the homogenate technique (Portner et al.
1990). Samples were powdered in liquid nitrogen and
then resuspended in ice-cold medium containing
160 mM KF and 1 mM nitrilotriacetic acid. pH of the
medium was 6.5. After centrifugation pH of the super-
natant was determined with a capillary electrode
(Radiometer, Copenhagen E5021) thermostatted to the
temperature of the experiment (+10°C).
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Anaerobic end products, adenylates, phosphagens
and inorganic phosphate were determined in perchlo-
ric acid extracts. Weighed tissue samples ground
under liquid nitrogen were added to 3 times the vol-
ume of ice-cold 0.6 M perchloric acid. After homogeni-
sation and further centrifugation the pH of the extract
was adjusted to 7.0-7.5 by use of 5 M KOH. After final
centrifugation the supernatant was stored at -80°C.

Alanopine and strombine were analysed by ion ex-
clusion chromatography using an HPLC system as
described in Sommer et al. (1997). Succinate, acetate
and propionate were measured according to a method
described in Hardewig et al. (1991) and Sommer et al.
(1997). Concentrations of AMP, ADP and ATP were
measured by HPLC according to the method described
by Fischer (1995). The amounts of inorganic phosphate
(Py), L-arginine (LA) and phospho-L-arginine (PLA) in
extracts were determined spectrophotometrically
using enzymatic tests according to Grieshaber et al.
(1978) and Portner (1990).

Calculations and statistics. The ratio of PLA to
PLA+LA levels (Rpps) was calculated as [PLAJ/[LAJ+
[PLA]. Adenylate energy charge (AEC) was estimated
according to Atkinson (1968). The levels of free AMP
and AMP as well as values of Gibb's free energy
change of ATP hydrolysis were calculated in accor-
dance with the method described in Portner et al.
(1996). Free Mg?* concentration was assumed to be
1 mmol I"%,

Metabolic proton production (AH" ) was estimated
based on the differences in metabolite concentrations
between exposed and control mussels, assuming that
accumulation of 1 mol of succinate is accompanied by
the release of 2 mol of protons (Portner 1987a), and that
ATP hydrolysis does not add protons at the obtained
pH; values (Portner 1987a). Influence of PLA break-
down on proton balance was accounted for by estimat-
ing proton quantities bound by the phosphate buffer.
The fraction of protonated phosphate (F) was calcu-
lated using the equation F = 1/(10PH-PX2 4+ 1), assuming
that pKa (10°C) = 6.836. The non-respiratory proton
production (AH on resp) Was calculated as: AH on resp =
~IBus! - ApH; — ABic (pmol g~! wet wt), where By is the
non-bicarbonate tissue buffer value, and Bic is bicar-
bonate concentration (Pértner 1987b). Pyxg was
assumed to be 24 mmol pH™* kg™! which is an average
value for muscle and non-muscle tissues in 2 bivalve
molluscs (Eberlee & Storey 1984) possibly somewhat
overestimated for methodological reasons (Portner
1990). We did not measure changes in bicarbonate
concentrations; therefore, ABic values were neglected,
thus giving only a rough estimate of the non-respira-
tory proton production. However, bicarbonate levels at
the pH; measured are small and will not greatly influ-
ence the analysis.

2-way ANOVA was used for analysing the effect of
the factors habitat and exposure versus controls. Post
hoc comparisons were made by Tukey's HSD Test for
unequal N. All parameters, except P;, were weight
independent. In the ANOVA of P; levels tissue weight
was included as a covariate. Calculation of the para-
meters of linear regressions was performed according
to a standard algorithm (Glotov et al. 1982). Correla-
tions were calculated using Spearman's non-paramet-
ric correlation coefficients. All calculations were per-
formed with the package Statistica for Windows,
Release 4.3 (StatSoft, Inc.).

RESULTS
Intracellular pH

pH; values in White Sea mussels under normoxic
conditions varied between 6.66 and 6.96 with means
equal to 6.85 = 0.01 for cultured and 6.78 = 0.02 for lit-
toral specimens. ANOVA showed a significant (p <
0.001) influence of exposure and habitat on the pH,; of
the mussels. Air exposure caused a reduction in pH; in
both groups of mussels (Fig. 1a). The pH change was
larger in cultured mussels, and was characterised by
higher initial pH; values. Cultured mussels had a
higher pH; after anoxia as well, but this difference was
not statistically significant.

Anaerobic end products

Concentrations of alanopine, strombine, acetate and
propionate in the tissues of White Sea mussels were
below limits of detection in both control and air
exposed groups. Succinate appeared to be the only
significant end product. The effects of habitat and air
exposure as well as of the combined factors on succi-
nate concentration were highly significant (ANOVA,
p < 0.001). In control groups cultured and littoral mus-
sels did not differ significantly in the concentration of
succinate; nonetheless, mean levels were 2 times less
in cultured than in littoral specimens. After exposure to
air considerable succinate accumulation was observed
in both groups, and this increase was more pro-
nounced by a factor of 1.5 in littoral specimens
(Fig. 1b).

Inorganic phosphate
The concentration of P; in mussels was significantly

influenced by both factors—exposure (ANOVA, p <
0.001) and habitat (ANOVA, p < 0.02)—but not by
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Fig. 1. (a) Intracellular pH (pH;); (b) succinate concentrations;

and (c) inorganic phosphate concentrations (P;) in cultured

and littoral mussels. Vertical bars represent standard errors.

Difference of mean values for cultured and littoral specimens
at *p =0.05, **p=0.01 and ***p = 0.001 levels

their combination. This means that the effect of expo-
sure did not differ in littoral and cultured mussels.
Absolute values under normoxia were between 1.5
and 2.5 pmol g~! wet wt. Air exposure for 60 h led to a
2-fold increase in P; concentrations in both groups of
mussels. P; levels were always lower in the littoral
group (Fig. 1¢).

Phosphagen

2-way ANOVA showed the significant (p < 0.001)
influence of both investigated factors, i.e. exposure
and habitat, on the concentrations of LA and PLA as
well as on the ratio of PLA content over the sum of PLA
and LA concentrations.

The initial concentrations of PLA in cultured mussels
were more than 2 times higher than in littoral mussels
(Fig. 2a). Air exposure caused a considerable depletion
of PLA due to its transphosphorylation to ADP. Final
amounts of PLA were similar in mussels from both
investigated habitats. Thus, the decrease of PLA dur-
ing the emersion was by 3.07 pmol g~! wet wt in cul-
tured and by 1.28 pmol g~! wet wt in littoral mussels.

The degradation of PLA was correlated with the
release and accumulation of LA in mussel tissues. LA
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Fig. 2. (a) Concentrations of phospho-L-arginine (PLA), (b) t-

arginine (LA), (c) the whole phosphagen/aphosphagen pool,

and (d) relative amount of PLA (Rpp,) in cultured and littoral
mussels. For further information see Fig. 1




Sukhotin & Portner: Environmental anaerobiosis of Mytilus edulis populations 153

¥ 0.35 5 0.85
§ ——@— Aquaculture ’§ a ‘cg 075 | b
30025 | ---0O-- Littoral Pid T R
= = 0.65
'5‘ g 0.55 —@— Aquaculture
G_:0.15 - -=--0 -~ Littoral
= Z 045 [ RETEEEEPEPEEEEEE,
< =
0.05 0.35
Control Exposed Control Exposed
- 1.0 ‘g 17 —
ES < d
k] z P T
£ 08} - b I hs
- &
- E
Fig. 3. Changes in the concentra- g 06+ E 13} %~ -
tions of {(a) AMP, (b) ADP, (c) ATP, = - el
and (d) total adenylates in cul- = 04 | —®— Aquaculture ... g 11! o Aquaculure 77+ ‘§
tured and littoral mussels during z ---O - - Littoral § = ---O- - Littoral
air exposure. For further informa- ~ 02 5 0.9
tion see Fig. 1 Ceontrol Exposed = Control Exposed

concentrations in control groups did not differ
(Fig. 2b). After exposure a significant (Tukey's HSD,
p < 0.001) excess of LA levels in cultured mussels over
that of littoral ones was observed (Fig 2b). The sum of
PLA and LA remained unchanged in both groups.
However, the difference in this parameter between
mussels from the 2 habitats was highly significant
(Tukey's HSD, p < 0.001) (Fig. 2c). Cultured specimens
contained 1.6 times more phosphagen/aphosphagen
than littoral ones, largely due to the difference in PLA
levels under control conditions.

The Rpra was 0.60 in cultured and 0.41 in littoral
mussels under control conditions. This difference was
significant at p < 0.001 (Tukey's HSD). After emersion
this parameter declined in both mussel groups to very
similar values ranging between 0.14 and 0.17 (Fig. 2d).

Adenylates and ATP turnover rate

The factor air exposure significantly affected AMP
and ATP concentrations as well as the indices AEC and
[ADPJ/[ATP]. The total amount of adenylates did not
change in cultured mussels and slightly decreased in
littoral specimens.

AMP concentrations in control groups ranged be-
tween 0.07 and 0.08 pmol g~! wet wt and displayed a
more than 3-fold increase during air exposure (Fig. 3a).
AMP levels were similar in mussels from both habitats
under all experimental conditions (Tukey's HSD test).
However, cultured mussels had slightly lower AMP
levels. Free AMP concentrations calculated for control
mussels were about 3 and 8 x 1074 pmol g~! wet wt in
cultured and littoral mussels, respectively. The relative

rise in free AMP levels after air exposure was much
higher than observed for total AMP concentrations
(Fig. 4a). In cultured mussels the levels of free AMP
increased 29 times while littoral ones showed a 5-fold
rise.

ANOVA showed a statistical difference (p < 0.001) in
ADP levels between littoral and cultured specimens.
Cultured mussels contained 1.5 times more ADP than
littoral ones (Fig. 3b). There was no pronounced effect
of air exposure on ADP, but in littoral mussels it
remained at nearly the same level while it increased in
cultured mussels. In contrast, free ADP levels in-
creased significantly (p < 0.001). The initial free ADP
content was nearly 2 times lower in cultured mussels.
However, after a 5-fold rise during air exposure, free
ADP levels in cultured specimens exceeded the con-
centration in littoral ones (Fig. 4b).

According to 2-way ANOVA, ATP concentration in
mussels was influenced by both factors—exposure (p <
0.001) and habitat (p < 0.05). The average initial ATP
content of the whole body was 0.8 to 0.9 umol g~ wet
wt, with slightly lower levels in littoral specimens. Air
exposure led fo a significant drop in ATP levels, 1.5
(p < 0.05) and 2.5 (p < 0.001) times below the control
values in cultured and littoral specimens, respectively.
The decrease in ATP levels during emersion was more
pronounced in littoral mussels (Fig. 3c).

The total amount of adenylates in White Sea mussels
ranged between 1.3 and 1.5 umol g~! wet wt. It was
significantly (ANOVA, p < 0.001) higher in cultured
mussels. The decrease in ATP content in cultured ani-
mals during air exposure was completely compensated
by the corresponding rise in ADP and AMP levels;
thus, the sum of adenylate levels remained constant
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(Fig. 3d). In littoral mussels the decrease in ATP was
larger, ADP remained unchanged and the rise in AMP
levels was also not sufficient to counterbalance the
drop in ATP, therefore the adenylate pool decreased
(Fig. 3d). The index [ADP}/[ATP] was significantly af-
fected by exposure and increased in emersed mussels.
This ratio was similar in mussels from both habitats.

AEC in mussels under normal conditions was about
0.75 in both groups. After exposure a significant
(ANOVA, p < 0.001) drop in AEC by 0.15 and 0.26 was
recorded in cultured and littoral mussels, respectively
(Fig. 4c). Thus, AEC in exposed mussels differed
markedly between the investigated habitats.

Starting from -56 to ~57 kJ mol™! the Gibb's free
energy change of ATP hydrolysis, i.e. the driving force
for all ATPases, fell in exposed mussels to a value of
around —50 kJ mol™! (Fig. 4d). This change was statisti-
cally significant at p < 0.001. There was no consider-
able difference in dG/d€ between cultured and littoral
mussels.

Using the data on ATP breakdown and PLA degra-
dation during 60 h of air exposure and assuming that
succinate was the only end product during anaerobio-
sis, it is possible to estimate the metabolic rate in mus-
sels during emersion in terms of ATP turnover rate
according to the formula:

—AJATP] - A[PLA] +2.75ASuccinate]

MATP = F

where M ATP is the ATP turnover rate (umol ATP g!
wet wt h™!) and t is the time of air exposure (h). Thus,
M ATp for cultured mussels during 2.5 d of anaerobiosis
was 0.19 and, for littoral ones, 0.25 pmol ATP g~! wet
wt h™%, In spite of less ATP decrease, the contribution of

PLA depletion was almost 2 times higher in cultured
mussels due to a considerable excess in initial PLA
concentration and a larger rise in free ADP levels
(Table 1). However, the rise in succinate levels caused
M ATp to be higher in littoral specimens.

Proton balance

Sixty hours of environmental anaerobiosis in Mytilus
edulis led to the metabolic production of about 5 and
10 pmol H* g~! wet wt in cultured and littoral mussels,
respectively (Table 2). AH", was determined to a
major extent by succinate accumulation. Proton buffer-
ing by inorganic phosphate through PLA breakdown
was higher in cultured mussels. However, impact of
this process was negligible in both groups of mussels.
Non-respiratory proton load appeared to be low com-
pared to AH",.; (Table 2). The discrepancy between
AH' et and AHY o ey Was 3 pmol g™' wet wt in cul-
tured mussels and reached 9 pmol g~! wet wt in littoral
mussels.

DISCUSSION

Mussels Mytilus edulis are known as facultative
anaerobes well adapted to withstand prolonged peri-
ods of severe hypoxia or anoxia (for review see de
Zwaan & Mathieu 1992). Mussels experience these
conditions in the intertidal zone when exposed to air
for hours. Moreover, spring ice and snow melting
causes a drastic drop to nearly 0%. salinity in surface
seawater layers in some regions of the White Sea
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Table 1. Calculated values of ATP turnover (M arp, pmol ATP g~! wet wt h™!) in mussels from the 2 habitats, derived from succi-
nate accumulation (Catabolism), as well as PLA and ATP depletion

Habitat Catabolism PLA ATP Sum M xrp
ATP equivalents % ATP equivalents % ATP equivalents % ATP equivalents

Cultured 8.19 71 3.07 26 0.30 3 11.56 0.19

Littoral 13.33 88 1.28 9 0.48 3 15.09 0.25

Table 2. Proton balance (pmol g~! wet wt) in air exposed mus-
sels from different habitats. The analysis is based on differ-
ences in metabolite concentrations AConc (see ‘Results’)

Control  Exposed AConc AH et
Agquaculture
Succinate 0.23 3.51 3.28 6.56
ATP 0.86 0.57 -0.31 -
PLA 4.33 1.26 -3.07 1.65
Total AH* o 4.91
AI_:{thnon-resp 1.87
Littoral
Succinate 0.44 5.78 5.33 10.66
ATP 0.8 0.32 -0.48 -
PLA 1.85 0.57 -1.28 0.71
Total AH* et 9.95
AI_I+non»resp 1.05

(Babkov & Lukanin 1985). Such low salinity values can
be recorded for 2 wk. They are below the known toler-
ance limits of mussels (Berger 1986). Low salinity
causes a decline in hemolymph osmolality in mussels
(Stickle & Denoux 1976), an increase in respiration rate
(Stickle & Sabourin 1979), and in extreme cases shell
closure and survival by use of anaerobic metabolism.
Under the conditions of our experiment the period dur-
ing which mussels can survive without water depends
on factors such as temperature and humidity of the sur-
rounding air, the possibility of intermittent gaping, and
the reproductive stage of the mussels. White Sea blue
mussels survive in air at +10°C for more than 10 d
(Alyakrinskaya 1972, Golikov & Smirnova 1974). In our
experiment the exposure period of 2.5 d was environ-
mentally realistic, long enough to determine the onset
and degree of anaerobiosis, but not critical for survival.
No mortality was observed in either control or exposed
groups of mussels.

End products

Under environmental hypoxia various end products
are reported to be accumulated in tissues of mussels
Mytilus edulis. Predominant are succinate, propionate
and acetate (Kluytmans et al. 1977, Widdows et al.

1979, Kluytmans & Zandee 1983, Demers & Guderley
1994, and many others), and to a minor extent the
opines alanopine (Kreutzer et al. 1989, Demers & Gud-
erley 1994) and strombine (de Zwaan et al. 1983,
Kreutzer et al. 1989, Demers & Guderley 1994). In our
study only succinate was detected as an anaerobic end
product in the White Sea mussels. In support of our
findings, Isani et al. (1995) could detect opines only
after 14 d of anoxia at +10°C in M. galloprovincialis.

There are 2 possible explanations of the absence of
propionate observed in the present study after 60 h of
air exposure at +10°C. Firstly, the typical lag period of
propionate formation (Kluytmans et al. 1977, de Zwaan
et al. 1982) should be longer than 1 d at +10°C in cold-
adapted mussels from the White Sea. Widdows et al.
(1979) did not detect propionate accumulation in
Mytilus edulis during 48 h air exposure at +10°C, while
at +20°C propionate concentration increased several
fold. An alternative explanation could be derived from
the fact that the conversion of succinate to propionate
in mussels shows strong seasonal fluctuations. For
mussels from the North Sea it was shown that propi-
onate synthesis was high in summer and nearly absent
in winter (Kluytmans et al. 1980). Mussels for our work
were collected in late September and the experiment
was performed in mid-October. Possibly, propionate
(and acetate) were not accumulated due to seasonal
metabolic changes.

The extent of succinate accumulation is in close
agreement with previously published data for Mytilus
edulis under similar experimental conditions (Kluyt-
mans et al. 1975, Ebberink et al. 1979, Widdows et al.
1979, Kluytmans & Zandee 1983).

pH; and proton balance

pH; of White Sea Mytilus edulis obtained in the pre-
sent study appeared to be lower than those known from
the literature. In our experiment pH; in control groups
never exceeded 6.96. Differences among tissues cannot
be held responsible because we also determined pH; in
each muscle, mantle and hepatopancreas tissues and
did not record pH; values above 7.02 (data not pre-
sented). pH; values measured by the distribution of
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[*C]DMO for muscle tissues and for the whole body of
M. edulis from the Canadian Atlantic coast were 7.37
and 7.38, respectively (Walsh et al. 1984). pH; deter-
mined by both DMO distribution and by [F'P]NMR
spectroscopy in resting muscle of mussels from The
Netherlands ranged between 7.41 and 7.44 (Zange
et al. 1990). Other data available for M. edulis con-
cerned pH in other tissues (and body fluids): foot, 7.42;
mantle, 7.14 (Walsh et al. 1984); haemolymph, 7.4 to 7.6
(Jokumsen & Fyhn 1982, de Zwaan et al. 1983, Walsh et
al. 1984); extrapallial fluid, 7.3 to 7.6 (Wijsman 1975).

However, the data obtained in the present study do
not seem unrealistic. Intracellular pH in unfertilized
eggs of sea urchins is 6.8 (Hamaguchi et al. 1997); in
the whole body of water scorpion Ranatra chinensis
(Insecta) a value of 6.84 was found (Chiba et al. 1991).
Both studies were performed using the [*'P]NMR
method. Mean pH value in the foot tissue of mussels,
measured by a glass electrode pricked directly into the
foot, was about 6.95 (Wijsman 1975). The explanation
of low pH; values obtained in the present study may
therefore be derived from the differences in methods.
We used the homogenate technique for pH; determina-
tions. Usually, homogenate and DMO distribution
techniques yield similar values in white muscles of
several species, while in tissues containing large num-
bers of mitochondria (e.g. in heart muscle), DMO con-
siderably overestimates mean pH; (Pértner et al. 1990).
In this context, it should be noted that pH; in the mus-
cle tissues of lugworms Arenicola marina from the sub-
arctic White Sea was lower than in lugworms from the
temperate North Sea (Sommer et al. 1997). The differ-
ence is explained by higher mitochondrial densities in
the tissues of cold-adapted White Sea lugworms. Ac-
cordingly, lower pH; values are also found in abdomi-
nal muscle of the sand shrimp Crangon crangon from
the White Sea compared to specimens from the North
Sea (Sartoris & Portner 1997). We conclude that at least
some of the pH difference between literature values
and our data is due to the higher content of mitochon-
dria in White Sea mussels. Even if other, acidic cell
compartments should contribute to the low pH moni-
tored by the homogenate technique this should not
affect our conclusion concerning the difference be-
tween littoral and cultured mussels and their pH
changes.

Intracellular pH is considered to be one of the impor-
tant factors controlling metabolic rate (for review see
Portner 1993) as well as the pathways of metabolic
energy production in invertebrates during sustained
anaerobiosis (Wijsman 1975, Kluytmans et al. 1977,
Grieshaber et al. 1994). In a simplified approach, pH;
changes depend upon the metabolites formed and the
extent of PLA degradation as well as the substrates
used for energy production (Pértner 1987a) and tissue

buffer capacity (Heisler 1986). They also depend upon
the possibility to release the protonated end products
into the external medium. In bivalves, this depends on
‘gaping’ patterns (Wijsman 1975, Littlewood & Young
1994). Moreover, the neutralisation of acidic sub-
stances by calcium carbonates from the shell deter-
mines the extent of pH; changes (Alyakrinskaya 1972,
Akberali et al. 1977, Jokumsen & Fyhn 1982). We
found a small (less than 0.1 pH unit) but statistically
highly significant (ANOVA, p < 0.001) acidification in
White Sea mussel tissues indicating the onset of anaer-
obic metabolism. Minimal pH; was 6.65. For compari-
son, pH in the foot of Mytilus edulis rapidly decreased
from 6.95 to 6.65 during the first 5 h of air exposure and
then within 7 d reached a value of about 6.5 (Wijsman
1975). Eight hours of air exposure led to a fall of pH; by
about 0.35 units in the whole body of mussels and by
nearly 0.9 units in the mantle tissue, reaching a low
value of 6.27 (Walsh et al. 1984),

A significant difference in pH; was recorded for mus-
sels from the 2 habitats. Cultured mussels were char-
acterised by higher pH; values than littoral ones in both
control and exposed groups. This goes along with a
larger degree of succinate accumulation and of net
ATP depletion in littoral mussels (Figs. 1b & 3¢) leading
to acidosis. We interpret the lower pH; and higher rate
of succinate accumulation to indicate higher mitochon-
drial content in littoral mussels, similar to findings in
Arenicola marina (Sommer et al. 1997, Sommer & Port-
ner 1999).

Cultured mussels initially had a much higher PLA
content and demonstrated more substantial PLA de-
gradation during exposure than littoral ones (Fig. 2a).
Since it was previously shown (Pdrtner 1987a,b) that
PLA breakdown is accompanied by proton absorption,
it could be expected that cultured mussels were able
to maintain higher pH; values. The accumulation of
P;, which in turn can increase tissue buffer capacity, was
also more pronounced in cultured mussels (Fig. 1c).
In the context of the findings that cultured mussels
showed less succinate accumulation during anaerobiosis
than littoral mussels (Table 1}, it appears that anaero-
bic ATP production was shifted in cultured mussels
from proton producing catabolism to proton consuming
depletion of PLA reserves. This feature together with
lower PLA levels would also support the conclusion
that littoral mussels possessed more mitochondria.

The non-respiratory proton load in mussels was 1 to
2 pmol g-! wet wt which is much lower than values
found for lugworms Arenicola marina (Sommer & Port-
ner 1999) or periwinkles Littorina spp. (I. M. Sokolova,
C. Bock & H.-O. Pértner unpubl.). Succinate produc-
tion was the major source of protons. These data corre-
sponded well to those obtained in Litforina spp.
(Sokolova et al. unpubl.). In contrast, opine production
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was the most important source of protons in A. marina
(Sommer & Pértner 1999). Metabolic proton formation
was 2 times higher in littoral mussels supporting our
conclusion that littoral mussels show lower pH; values
at higher ATP turnover rate than cultured ones. The
significant excess of AH*; over AH" onresp indicates
efficient pH; regulation either by proton release from
cells during anaerobiosis (Pértner et al. 1991) or by
contribution of calcium carbonate buffers from the
shells (Akberali et al. 1977, Byrne & McMahon 1991),

High-energy phosphates and metabolic rate

Absolute values of PLA contents in White Sea
Mpytilus edulis are in good agreement with those pub-
lished in the literature (Beis & Newsholme 1975,
Ebberink et al. 1979, de Zwaan et al. 1982). Ry, was,
however, lower than previously reported (Zange et al.
1989, Isani et al. 1995). Thus, for the resting anterior
byssus retractor muscle of M. edulis, Rp 4 in normoxia
was not less than 0.8 (Zange et al. 1989), while mean
values for cultured White Sea mussels were 0.60 and
0.41 for littoral ones. In this context, it should be noted
that all literature data concern muscle tissues, while
we used the whole mussel. Isani et al. (1995) reported
0.21 pmol g~! wet wt of PLA under normal conditions
for the whole body in M. galloprovincialis, a value
much lower than our data. The authors explained this
phenomenon by the spawning period at the time of the
experiments. Seasonal variations of the PLA pool in
mussels were reported elsewhere (Ebberink et al.
1979, Zurburg & Ebberink 1981) and may be corre-
lated with fluctuations in aerobic metabolic rate and in
the setpoints of pH; regulation. Possibly, the frequent
oscillation between net PLA depletion and rephospho-
rylation of LA in littoral specimens may also lead to
lower steady state levels of PLA and LA,

Maximal ATP levels are observed in muscles and
gonads, while gills and hepatopancreas contain much
less ATP (Zurburg & Ebberink 1981, Goromosova &
Shapiro 1984). In White Sea mussels ATP concentra-
tion in the whole body ranged between 0.80 and
0.86 pmol g~! wet wt. This is about 2 times lower than
the values published for the whole body of Mytilus
edulis from the North Atlantic and the North Sea
(Addink & Veenhof 1975, Wijsman 1976, Ansell 1977),
but close to or even higher than those recorded for
other species: M. galloprovincialis (Isani et al. 1995),
gastropods Patella caerulea (Michaelidis & Beis 1990)
and Hexaplex trunculus (Xomali et al. 1996). Possibly,
the lower adenylate levels are related to lower mean
temperatures at the White Sea (Zielinski & Pértner
1996). AEC in White Sea M. edulis did not differ
between habitats and was about 0.75. This value is in

close agreement with those known for marine molluscs
(Beis & Newsholme 1975, de Zwaan et al. 1982, Kapper
& Stickle 1987, Isani et al. 1995). Air exposure for 60 h
caused a highly significant decline in ATP and a corre-
spondent increase in AMP concentrations in mussels
from both habitats. The ATP and AEC decrease in lit-
toral mussels was more pronounced as reflected in
their higher metabolic rate (Figs. 3c & 4c). PLA and
ATP breakdown goes along with an increase of free
AMP and ADP contents which appeared to be more
pronounced in cultured mussels. Under normal condi-
tions free AMP and ADP concentrations in mussels
were found to be somewhat lower than those pub-
lished for Sipunculus nudus (Zielinski & Pértner 1996).
Values of the Gibb's free energy changes of ATP
hydrolysis were in good agreement with those recently
published for some other species: —57 kJ mol™! for rest-
ing muscle of squid (Pértner et al. 1996), and —-56 kJ
mol™! for a sipunculid worm (Zielinski & Portner 1996),
and for Littorina spp. (Sokolova et al. unpubl.). The
observed drop in dG/dg after 60 h of air exposure at
+10°C indicates a considerable decrease of cellular
energy levels. However, the value of —50 kJ mol™!
should be above the level critical for survival since M.
edulis is known to withstand longer periods of anaero-
biosis at this temperature. The values of dG/d§ after air
exposure in Mytilus from the White Sea coincide with
those obtained for muscle tissue of an Antarctic bivalve
mollusc, Limopsis marionensis, and of squid in normal
conditions (Portner et al. 1999).

The observed difference in ATP depletion between
mussels from the 2 habitats together with the differ-
ence in succinate accumulation gives evidence that
cultured mussels were capable of a more efficient
metabolic arrest, reducing their glycolytic flux to a
greater extent than littoral ones. Indeed, the ATP
turnover rate (Table 1) was 1.3 times higher in littoral
than in cultured specimens. Our values of M ATP agree
with data estimated for Mytilus galloprovincialis dur-
ing 24 h exposure in anoxic water at +10°C (Isani et al.
1995) and significantly exceed those for North Sea M.
edulis at +20°C (de Zwaan et al. 1991). By contrast, the
bivalve mollusc Scapharca inaequivalvis displayed a
10 times lower anaerobic metabolic rate than M. gallo-
provincialis, suggesting a higher resistance to hypoxia
(Isani et al. 1989, de Zwaan et al. 1991).

Published data concerning the difference in meta-
bolic rate in subtidal and intertidal mussels are contro-
versial. Shick et al. (1986) determined heat dissipation
in mussels as a measure of metabolic rate and received
results close to those obtained in the present study.
They reported that intertidal Mytilus edulis had
greater total heat dissipation during exposure and sub-
sequent recovery than subtidal ones. Aerobic meta-
bolic rate and ‘oxygen debt’ after air exposure of M.
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californianus from 2 vertically separated populations
were also higher in mussels inhabiting upper horizons
of the intertidal zone, compared to those living at lower
levels (Moon & Pritchard 1970). These results go along
with data reported by de Vooys (1979) that long-term
intertidal acclimatisation leads to higher rates of succi-
nate production, and therefore metabolic rate in M.
galloprovincialis. In contrast, de Vooys & de Zwaan
(1978) recorded a more pronounced oxygen debt after
air exposure in subtidal compared to intertidal M.
edulis, which might suggest a higher anaerobic meta-
bolic rate in subtidal mussels. Demers & Guderley
(1994) wrote that wild intertidal M. edulis were char-
acterised by lower anaerobic metabolic flux, if com-
pared to cultured specimens. The authors found that
intertidal acclimatisation reduced anaerobic succinate
accumulation. The rate of anaerobic ATP production
also decreased by at least 50%. Possibly, the gaping
behaviour of intertidal mussels reduces anaerobiosis,
an influence excluded in our study. Animals adapted to
environmental anaerobiosis (intertidal conditions) are
expected to (1) maintain high reserves of glycogen,
(2) possess mechanisms to minimise metabolic acido-
sis, (3) use more efficient pathways of fermentative
ATP production, and (4) reduce metabolic rate to a
greater extent (Storey & Storey 1990). This may only
hold true for between species comparisons. Mitochon-
drial content may rise when temperature fluctuations
rise as is the case for White Sea intertidal mussels. This
certainly depends upon the intertidal area investigated
in a latitudinal gradient. In support of this hypothesis
an elevated mitochondrial density in cold-adapted
eurythermal animals is suggested to induce a rise in
metabolic cost owing to the cost of mitochondrial main-
tenance (Portner et al. 1998). Mitochondrial density is
higher in White Sea than in North Sea Arenicola
marina, and associated with a more than 2-fold rise
in standard metabolic rate (Sommer & Portner 1999).
The present data suggest that a high amplitude of
temperature fluctuations may exacerbate the rise in
energy expenditure owing to a further increase in
mitochondrial density. This leads to higher aerobic and
anaerobic metabolic rates in littoral compared to
cultured M. edulis and would also explain reduced
growth rates in intertidal specimens.

Conclusions

Mussels from the intertidal zone demonstrate lower
abilities for metabolic depression under air exposure
than cultured (sublittoral) ones. Cultured mussels are
characterised by a higher initial PLA content. These
differences may reflect the difference in mitochondrial
density depending on the habitat.
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