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Abstract The Western Antarctic Peninsula is one of the most rapidly warming regions on
carth. It is therefore important to analyze long-term trends and inter-annual patterns of
change in major environmental parameters to understand the process underlying climate
change in Western Antarctica. Since many polar long-term data series are fragmented and
cannot be analysed with common time series analysis tools, we present statistical approaches
that can deal with missing values. We applied U-statistics after Pettit and Buishand to detect
abrupt changes, dynamic factor analysis to detect functional relationships, and additive
modelling to detect patterns in time related to climatic cycles such as the Southern
Annular Mode and El Nifio Southern Oscillation in a long-term environmental data set from
King George Island (WAP), covering 20 years. Our results not only reveal sudden changes
for sea surface temperature and salinity, but also clear patterns in all investigated variables
(sea surface temperature, salinity, suspended particulate matter and Chlorophyll a) that can
directly be related to climatic cycles. Our results complement previous findings on climate
related changes in the King George Island Region and provide insight into the environmental
conditions and climatic drivers of system change in the study area. Hence, our statistical
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analyses may prove valuable for other polar environmental data sets and contribute to a better
understanding of the regional variability of climate change and its impact on coastal systems.

1 Introduction

With a surface air temperature warming rate of 3.7+1.6 °C per century, the Western Antarctic
Peninsula (WAP) belongs to the most rapidly warming regions on earth (Vaughan et al. 2003;
Turner et al. 2005). Especially the maritime western region of the peninsula with its small
(compared to temperate regions) but distinct seasonal climate oscillations and summer temper-
atures close to the melting points of large ice masses (Vaughan 2006) has become a showcase
area to study the response to climate change of Antarctic ice masses and coastal biota (Smith et
al. 2008; Clarke et al. 2009). Major changes in coastal and shelf systems are becoming evident
in the timing and duration of the annual sea ice cover (Ducklow et al. 2007; Schofield et al.
2010; Stammerjohn et al. 2008), but also in a rise of surface water temperatures (Meredith and
King 2005). The inter-annual climate variability along the WAP is remarkable (Orr et al. 2008)
and mainly driven by the Southern Annual Mode (SAM) and the El Nifio Southern Oscillation
(ENSO) (Schloss et al. 2012; Fogt et al. 2011; Meredith et al. 2008; Stammerjohn et al. 2008).

The SAM index describes the atmospheric variability between the mid- and high-latitude
surface pressure (Gong and Wang 1999) and explains ~35 % of the total southern hemisphere
climate variability (Marshall 2007). Since the WAP stretches out into much lower latitudes than
the rest of the Antarctic continent, the SAM is particularly important for the climatic variability in
this area (Marshall 2007; Russell and McGregor 2010). The recent warming trend at the WAP can
be attributed to a shift towards a positive phase of the SAM since the mid-1960s, resulting in an
observable strengthening of the circumpolar westerly winds (Marshall 2002; Orr et al. 2008;
Gillet et al. 2006; Monaghan et al. 2008) which drives warmer circumpolar deep water onto the
western peninsula shelf. Furthermore, the WAP region is strongly influenced by the tropical El
Niflo Southern Oscillation (ENSO) (Fogt et al. 2011; Russell and McGregor 2010): while EI Nifio
conditions lead to colder periods along the WAP, La Nifia conditions cause warming, including
both a delay of sea ice formation and sea ice duration (Stammerjohn et al. 2008). This is especially
true when ENSO is in-phase with SAM (Fogt et al. 2011; Russell and McGregor 2010).

King George Island (KGI), the largest of the South Shetland Islands (—62.0333, —58.3500), is
located at the northern tip of the WAP (Fig. 1). The Argentine research station Carlini (former
Jubany Station), with the German-Argentine collaborative Dallmann laboratory (run by AWI,
TAA and co-financed by the Dutch NWO), offers a unique platform in terms of both systematic
and interdisciplinary research to investigate the drivers and ecological consequences of global
change in coastal Antarctica. The platform in Potter Cove has by now been continuously active for
more than 20 years. At King George Island, the rapidly increasing air temperatures have resulted
in a dramatic retreat of the local glacier fronts and loss of ice mass, especially in the lower tide-
water parts of the glaciers <270 m above sea level (Blindow et al. 2010; Riickamp et al. 2011).
Glacier melt water run-off carries high particle loads into the coastal areas around the island (Eraso
and Dominguez 2007), and, consequently, sedimentation of eroded material from tributary inlets
such as Potter and Marian Cove into Maxwell Bay have almost tripled since the 1940s (Monien et
al. 2011), with implications for benthic and pelagic systems (Schloss et al. 1999; Pakhomov et al.
2003; Tatian et al. 2008). In November 1991 systematic recordings of hydrological and biological
parameters started in Potter Cove and have continued to the present. Measurements of sea surface
temperature, salinity, Chlorophyll a and total suspended particulate matter concentrations are
conducted from rubber boats, following a weekly to bi-weekly (summer) and monthly (winter)
sampling pattern. Weather conditions at Carlini station (i.e. sea ice formation preventing the
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Fig. 1 Geographical location of Potter Cove, King George Island, and location of the study site E1. Map
source: SCAR Antarctic Digital Database

sampling procedure) and logistical constraints to the regular sampling procedure have caused
short but also longer gaps, with missing values in the data series, especially in the austral winter
months, whereas air temperature has been continuously measured since 1991 until the present
(Fig. 2). Most common types of times series analyses, such as spectral analysis or ARIMA are not
applicable, since they require complete data sets, and often even longer time-scales. Recently,
Schloss et al. (2012) analysed the same dataset (November 1991-December 2009) and presented
a first general trend analysis and cross-correlations to determine long-term climatic trends. In
contrast, the objective of the present paper is to reveal sudden changes in the investigated
parameters related to the major climatic cycles, for a better understanding of climate related
dynamics caused by SAM and ENSO in a small scale coastal Antarctic system. The analysis aims
at explaining some of the previously described non-linear trends and patterns in the data set
(Schloss et al. 2012). To this end, we chose to apply specific tests of turning points and analyses of
non-linear trends, combining all measured parameters with the climatic indices to an advanced
version of this unique data set (now extended until December 2010).
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Fig. 2 Monthly means of environmental data available in this study: sea surface temperature (SST), salinity,
total suspended particulate matter (TSPM), Chlorophyll a (Chl a) and air temperature. Air temperature values
are de-seasonalized after LOESS

2 Material & methods

Sea surface temperature (SST), salinity, total suspended particulate matter (TSPM) and
Chlorophyll a concentration (Chl ) data from November 1991 to December 2010
(230 month in total) were used in this study (doi:10.1594/PANGAEA.745597,
doi:10.1594/PANGAEA.745596, doi:10.1594/PANGAEA.745598). Samples were taken at
station E1 (—62.2321; —58.6665) in Potter Cove close to Carlini station (Fig. 1). Monthly means
of the values of each variable in surface waters (0—10 m) were calculated and used in the
statistical analyses. Air temperature data were obtained from the Servicio Meteorologico
Nacional, Argentina. We used the Southern Annular Mode (SAM) index and the bivariate
ENSO time series (BEST) index (Smith and Sardeshmukh 2000), to evaluate the influence of
climatic cycles on the KGI system. The BEST ENSO index was chosen since it combines the
oceanic component of the ENSO phenomenon (ENSO 3.4 index) with an atmospheric com-
ponent, i.e. the Southern Oscillation index. The SAM index was obtained from the Joint
Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, the
BEST ENSO index from the Earth System Research Laboratory (ESRL) of the National
Oceanographic and Atmospheric Administration (NOAA). Our TSPM data set was comple-
mented with TSPM measurements of Station L1 (—62.2358, —58.6634 of Philipp (2010)),
approx. 440 m apart from our sampling station. Two types of analyses of change were
performed with the data: i) detection of sudden changes, and ii) trends over time.
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2.1 U-statistics: detecting abrupt changes

Time series may have no clear trends, but they can contain sudden changes of average in
some points, i.e. the average value of the variable can be different before and after a certain
point without a slight trend of change. Because climate and ecological systems are not linear,
it is possible that local or regional variables respond in an abrupt way to general oscillations
or tendencies. To explore and eventually detect these kind of changes in each measured
variable we used two statistical methods: the Buishand U-statistics (Buishand 1984) and the
Pettitt U, (Pettitt 1980, 1981).

The cumulative deviation test (Buishand 1984) is based on the rescaled cumulative sum
(CUSUM) of the deviation from the mean. The test is relatively sensitive to change-points
that occur towards the center of the time series (Kundzewicz and Robson 2004), but has
shortcomings if the series contains obvious outliers because that can produce high (and
apparently significant) values which do, however, not correspond to real average change
(Kiely et al. 1998). The series analyzed here have no evident outliers and the method can be
applied without problems. The statistic U after Buishand (1984) was calculated as:

U=+ 1) S (5/0,)}
1

=~
Il

with §; = Y% | (yi —¥) and D, the sample standard deviation.

The null hypothesis of this test is the absence of a sudden change in the time series. In the
case of rejection of the null hypothesis, no approximation of the date of the change is
proposed by this test. Critical values and bounds for the statistic U are listed in Buishand
(1984). Further, in order to test the statistical significance and to determine the turning point
in the time series, a particular form of the non-parametric Mann—Whitney test, developed by
Pettitt (1980), was applied. In this rank-based test the null hypothesis is the absence of a
turning point in the sequence (x;):

U= ZJ.T:,Hsign(x,-—xj),

where sign (x) = =1 if (x/=;) <0; 0 if (x;/~x;) = 0; and +1 if (x/~;) >0.

A time series with no turning point would result in a continuously increasing value of U,.
In case of existing turning points, the Pettitt U, shows local maximum values in the time
series for these points. This test is extremely useful for detecting shifts in the median of a
sample series with unknown turning point, since, in any case, it provides the most probable
changing point of the series, which corresponds to the greatest U, value in the sequence
(Caloiero et al. 2011). U; values were calculated for each available monthly mean of the
different variables and subsequently plotted to visualize the turning points (Fig. 2a—d). In a
series of N data, with ¢ varying between 1 and N — 1, the probability of U, higher than a given
value & is

P(U, > k) ~ 2exp[—6k*/ (N° — N?)]

While rank-based tests have the advantage that they are robust and easy to use, they are
usually less powerful than a parametric approach (Kundzewicz and Robson 2004). All calcu-
lations of U-statistics were performed in Microsoft Excel using the available monthly means of
each variable (SST, Salinity, TSPM and Chl q, cf. Table 2). Monthly means of SST were de-
seasonalized using the standard procedure according to Cleveland et al. (1990) in Brodgar
(v.2.6.6, www.brodgar.com) to eliminate the strong seasonal signals.
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2.2 Additive modeling

To explore the existence of potential functional relationships between measured variables
(SST, salinity, TSPM, Chl a) and potential explanatory ones (air temperature, SAM and/or
ENSO) we used generalized additive modeling (GAM). GAMs were introduced by Hastie
and Tibshirani (1986) and describe general linear models with a linear predictor involving a
sum of smoothing functions of covariates (Wood 2006). The additive model fits a smoothing
curve through the data to link response and explanatory variables. Estimation of smoothers is
done using a method called a back-fitting algorithm (Zuur et al. 2009). We applied GAMs
with a Gaussian distribution and identity-link function for each of the measured response
variables with “year” as a smoothing function s(year). The analysis was performed with the
Brodgar software (v.2.6.6), based on the mgev package in R (Wood 2006). The mgcv
package generally uses smoothing splines and does cross-validation to determine the optimal
amount (i.e. the effective degrees of freedom) of smoothing (Wood 2006; Zuur et al. 2009).

2.3 Dynamic factor analysis (DFA)

To confirm whether the present environmental time series bears any general patterns over time,
and whether the measured variables are related to climatic cycles such as SAM or ENSO, a
dynamic factor analysis (DFA) after (Zuur et al. 2003) was performed using the software
Brodgar (v. 2.6.6). DFA is a method to estimate “trends” that are common to all series, as well as
the effects of explanatory variables and interactions in a multivariate time series data set that
may even contain missing values (Zuur et al. 2003, 2007). Dynamic factor analysis is based on
structural time-series models (Jalles 2009). The trend for a structural time series model, such as

Time series = constant + trend + explanatory variables + noise

is modeled as a smoothing curve, based on a Kalman filter/smoothing algorithm. The ‘explan-
atory variable’ component is modeled as linear regression (Zuur and Pierce 2004; Zuur et al.
2003). Dynamic factor analysis estimates a linear combination of M common trends of all N
time series and can be written in matrix notation as:

vy = Azy + Bx: + e,

where the N x M matrix 4 contains the factor loadings, z, the trend, B the regression parameters,
x; the value of the explanatory variable, and e, the noise components (Zuur et al. 2003; Zuur and
Pierce 2004). Magnitude and sign of factor loadings determine how the common trends are
related to the original time series.

Prior the DFA, monthly means of SST and air temperature data were de-seasonalized
using the standard procedure “Seasonal decomposition by LOESS” in Brodgar (v.2.6.6), to
climinate the strong seasonal signals within these data sets. SAM and ENSO indices were
taken as explanatory variables. Data were checked for normality using QQ-Plots for the
original time series, for square root, cubic root and log;, transformed data. All plots
indicated that the original data are almost normally distributed and that transformations do
not considerably improve normality of the data set. While normality of data is generally
beneficial in DFA models, it is not a prerequisite (Zuur et al. 2003). Table 1 shows the four
dynamic factor models that were used in our analysis. As explanatory variables, both climate
indices SAM and ENSO and their combination were applied. The maximum of three
common trends was calculated. Regarding the modeling of the error covariance matrix R,
the simplest approach is to use a diagonal matrix. Alternatively, a symmetric, non-diagonal

@ Springer



Climatic Change

Table 1 The four dynamic factor models used in the analysis. R is the error covariance matrix

No. Model R

1 data = M common trends + noise diagonal

2 data = M common trends + explanatory variable + noise diagonal

3 data = M common trends + noise non-diagonal
4 data = M common trends + explanatory variable + noise non-diagonal

matrix for R can be used (Zuur et al. 2003) Off-diagonal elements of R represent the
information in the response variables which cannot be explained with the other terms
(Zuur et al. 2003; Zuur and Pierce 2004). We applied different models which 1) yield one,
two or three “model-specific” common trends (see column M in Table 3); ii) models with
and without explanatory variables (SAM, ENSO). An overview of all tested models is given
in Table 3. To decide which model fits the data best, Akaike’s information criterion (AIC)
was used and calculated for each possible combination of explanatory variables. The model
with the smallest AIC is chosen as the optimal fit (Akaike 1974).

3 Results
3.1 U-statistics and turning points

Maximum values of the U statistics are summarized in Table 2. Taking into account the
critical values listed in Buishand (1984), it is possible to detect abrupt changes. In the present
data set, the Buishand U indicates abrupt changes (= turning points) in SST with a
significance level «=0.01 and salinity with a significance level «=0.05. In TSPM and
Chl a the null hypothesis (no abrupt change over time) cannot be rejected, although in TSPM
the U values is close to 90 % significance (cf. Buishand 1984).

For the calculation of U, only the available values of each parameter were included and
missing values were ignored, leading to a condensed data set, where the numbering of the
month is not consistent with the calendar month. To enhance understanding, the actual
calendar month is given in parenthesis throughout the text.

SST shows a clear change-point at month 82 (i.e. May 2009) where U, has its maximum
(Fig. 3a). Before this time point, the mean SST is —0.093 °C+0.04 °C SE (November 1991—
April 2009) and changes to —0.423 °C+0.03 °C SE thereafter (June 2009-December 2010).
The analysis suggests a slight decrease in SST after May 2009. Sea surface salinity also shows a
turning point (Fig. 3b), in this case at month 15 (i.e. December 1993). After this point in the
series the mean salinity shifts from 34.04 psu£0.07 psu SE to 33.77 psu+0.05 psu SE.

While the statistic U indicated no turning point in the Chl a data set, the U, revealed two potential
shifts in the mean, i.e. rather a tiered decrease. The first shift appears after month 20 (i.e. December

Table 2 Summary of statistical

indices U calculated for four n U
parameters. n gives the number of
measured values. Significance on SST 101 0.923%*
the 95 % level is marked with *, on Salinity 101 0.551*
[V 1 kk
the 99 % level with Chl a 161 0.095
TSPM 141 0.318
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Fig. 3 Plot of monthly means of parameters and according calculated U, values against time (month). a de-
seasonalized SST, b Salinity, ¢ Chl @, d TSPM. Only available monthly means were taken into account,
missing values were left out

1993), the second one after month 79 (i.e. April 2002, see Fig. 3c). The mean Chl a content
decreases from 0.772 pg/1+0.09 ug/l SE before December 1993 to 0.581 pg/1+0.07 pg/l SE
between December 1993 and April 2002, and to 0.549 pg/1+£0.07 pg/l SE after April 2002 until
December 2010.

In TSPM two maximum peaks close to each other (see Fig. 3d) make it impossible for the
U-statistics to detect a clear change in the mean. However, the absolute maximum U, value
was calculated for month 109 (= April 2008). The second highest U, value was calculated for
month 120 (= March 2009). Before April 2008, the mean of TSPM can be quantified with
9.87 mg/1+0.80 mg/l SE, whereas after March 2009 it decreases to 5.48 mg/1+0.76 mg/l SE
for the rest of the data set until December 2010.

3.2 Additive modeling
We observed a highly significant non-linear relationship between SST and year (F=16.87,
»<0.001), with all the explanatory variables air temperature, ENSO and SAM having a

significant influence: air temperature (p=0.022), SAM (p 0.005) and ENSO (p<0.001). The
model SST ~ 1 + air temperature + SAM + ENSO + s(year) explains 72.6 % of the total
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explanatory variables. The solid line is the smoother; the dotted lines 95 % confidence bands. Shaded bars
indicate strong La Nifla events, + indicates + SAM events

variation in the SST data set. Visualization of the model (Fig. 4) clearly reveals an ENSO and
SAM-related cyclic pattern. Positive peaks in SST can generally be attributed to + SAM events
and/or strong La Nifia events, which cause warmer conditions with less sea ice in the WAP
region (Stammerjohn et al. 2008; Martinson et al. 2008; Brey et al. 2011). The threshold for a
strong La Nifia was at —1, for a strong SAM + at least two subsequent months with
an index >100. Salinity is significantly influenced by ENSO (p=0.026), again with a
significant non-linear relationship between salinity and year as a smoohthing function
(F=3.193, p=0.020). The resulting model Salinity ~ 1+ ENSO + s(year) explains only 18.2 %
of'the variation, and the confidence intervals of the model are too wide to interpret it sufficiently.
Therefore, we chose to reject the model. In the Chl a content and TSPM data series no influence
of either air temperature, SAM or ENSO can be detected (Figure 5).

3.3 Dynamic factor analysis (DFA)

The model that best fits our dataset is the model with the two common trends depicted in
Fig. 4 and using both SAM and ENSO as explanatory variables with a diagonal error
covariance matrix R (model 2 h with AIC = 1408.24, see Table 3).

The two best defined common trends (model 2 h) are presented in Fig. 4a and b. In the
first common trend a strongly negative peak is visible at month 10 (i.e. August 1992),
followed by a long phase with four positive peaks around months 45 (July 1995), 88
(February 1999), 190 (August 2007) and 210 (April 2009). A positive phase in the middle
(month 120-164, i.e. October 2001-July 2005) is turning into a final negative trend phase
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Fig. 5 Common trends and factor loadings as results of a dynamic factor analysis, based on the 19-year data
set with the variables SST, salinity, Chl a, TSPM and air temperature, and SAM and ENSO as explanatory
variables: a, b common trends of the long-term data set, shaded bars represent El Nifo (dark grey) and La
Nina (light grey) events. + and — represent + SAM and —SAM phases. ¢, d factor loadings representing the
main driver of the according common trend

(month 214-228, i.e. August 2009—October 2010). In the second trend (Fig. 4b), cyclic
patterns become visible with negative peaks after months 10 and 60 (i.e. August 1992 and
December 1995), a long positive phase between months 70 and 160 (i.e. January 1996 and
mid-October 2005), and strong negative peaks again around month 180 (December 2005)
and month 220 (i.e. February 2010). The pronounced negative peaks at the beginning
(August 1992) and the end (February 2010) are visible in both trends. The magnitude of
the factor loadings determines how the common trends are related to the original data
series (Zuur and Pierce 2004). Here, the factor loadings for both trends (Fig. 4c, d)
demonstrate that TSPM is mainly driven by the first trend, while SST, Chl a and
salinity are mainly driven by the second trend. Generally, we can state that the TSPM
trend is high during + SAM events, which are often in phase with La Nifia events.
Strong negative peaks in TSPM are related to -SAM/E] Nifo events. The forces that
are driving the second trend, i.e. mainly SST, Chl a and salinity, are not quite as clear
as for TSPM. But generally speaking this trend is also positive during + SAM/La
Nifa, whereas it is negative during strong -SAM/E] Niflo.
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Table 3 AIC values obtained by applying dynamic factor analysis models 1 to 4 on the time series. M
indicates the number of common trends of the model

Model M Explanatory variable AIC

la 1 - 1498.36
1b 2 - 1485.83
Ic 3 - 1494.57
2a 1 SAM 1411.25
2b 2 SAM 1689.25
2c 3 SAM 1425.83
2d 1 ENSO 1498.15
2e 2 ENSO 1484.07
2f 3 ENSO 1496.00
2g 1 SAM + ENSO 1418.24
2h 2 SAM + ENSO 1408.24
2i 3 SAM + ENSO 1413.28
3a 1 - 1503.42
3b 2 - 1497.45
3¢ 3 - 1500.84
4a 1 SAM 1416.83
4b 2 SAM 1640.43
4c 3 SAM 1433.73
4d 1 ENSO 1506.15
4e 2 ENSO 1508.14
4f 3 ENSO 1505.21
4g 1 SAM + ENSO 1425.01
4h 2 SAM + ENSO 1417.10
4i 3 SAM + ENSO 1442.25

4 Discussion

This analysis of our 20-year hydrographical data set, using specific tests of turning points
and analyses of non-linear trends, was aimed to gain more detailed insight into the climatic
drivers of hydrographic change observed in the coastal systems at King George Island
(WAP). Despite the fact that trend analyses, or analyses of change of time series of less
than 30 years, are often considered too limited to allow reliable modeling (Kundzewicz and
Robson 2004), our methods not only reveal sudden changes for most parameters, but also
cyclic patterns that can be related to climatic oscillations such as SAM and ENSO.

Using the U-statistics after Buishand (1984), we detected sudden changes, i.e. significant
shifts in the mean values within the existing 19y-time series, as a proxy for climate cycles.
By additionally applying the U-statistics after Pettitt (1980, 1981), we were able to date
these sudden changes of SST to after May 2009 and of salinity and Chl a to after December
1993. Before May 2009, SST in Potter Cove was increasing, as demonstrated by Schloss et
al. (2012) for the summer values. A strong El Nifio event in 2009/2010 caused substantial
cooling which led to a decrease in SST. A continuous trend of increasing SST over the past
decades before 2009 in the WAP region has been detected in several studies (e.g. Meredith
and King 2005; Stammerjohn et al. 2008, amongst others). As SST is rising, salinity in
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coastal areas tends to decrease due to surface dilution with enhanced quantities of glacial
melt water. Under experimental conditions simulating glacial influence (higher water tem-
perature and decreased salinity) stress effects on phytoplankton production and, hence, Chl a
accumulation (a proxy for phytoplankton biomass) as well as on algal fitness parameters has
been documented to last at least several weeks (M. Hernando, unpubl. data.). Our findings of a
sudden change in mean SST, with a lower mean after May 2009 coincide with a strong El Nifio
starting only 1 month later. The strong influence of ENSO on the WAP region is well defined
(Murphy et al. 2007; Yuan 2004). A warm ENSO phase (El Nifo) in the Pacific leads to cooling
in the WAP region, entailing an increase of sea ice extent and duration (Stammerjohn et al.
2008; Brey et al. 2011). The decrease of TSPM after March 2009 can also be related to the
influence of this strong El Nifio event, since in March (austral autumn) glacial melting usually
ceases and the El Nifo started directly at the beginning of winter. This coincidence resulted in El
Niflo influence persisting into the austral summer 2009/2010, during which glacier melt was
less intense than in previous years and, hence, resulted in less TSPM production from melt
water inflow. This would also underline that glacier melting and not bottom re-suspension is the
major driver of TSPM concentrations in surface waters of Potter Cove. The reason why similar
effects could not be shown during previous strong El Nifio events, e.g. 1991/92 and 1997/98,
may be attributed to the increasing quality of the data set, with a more constant sampling
scheme after 2000, as well as the fact that all El Nifio events are different (Meredith et al. 2008).

Extrapolating the short-term effect to the natural conditions, this freshening may abate plankton
biomass in the water column corroborated by slightly decreasing salinity and Chl a content from
1993 onwards. Montes-Hugo et al. (2009) and Schloss et al. (2012) both report a decrease in
summer Chl a values at the WAP. Both GAM and DFA revealed the clear impact of climate
oscillations, SAM and/or ENSO on SST, Chl a and TSPM. Whereas in our previous analysis
(Schloss et al. 2012) the influence of either SAM or ENSO was mainly detected in the outer Potter
Cove, now with the GAM and DFA analyses we are able to show the influence of climatic forcing
even in the inner cove, close to the glacier. In contrast to our previous work (Schloss et al. 2012)
which implied a rather slight but steady increase in SST, the GAM actually resolves the underlying
climatic patterns. The DFA reveals main components affected by the climatic cycles, namely SST
and TSPM. The latter is directly linked to the melt water run-off from the glaciers.

Both SAM and ENSO have shown long-period changes in frequency, intensity and
duration (Meredith et al. 2008), leading to a dominance of positive SAM and/or La Nifla
conditions from the late 1980 onwards (Stammerjohn et al. 2012). Therefore, changes in the
coastal ecosystems of the WAP region are to be expected, particularly since the climate
cycles appear to have a great influence on SST and other parameters. The ensuing decrease
in phytoplankton biomass, as documented by the changes in Chl a content and/or species
composition (Schofield et al. 2010), is bound to have important effects on the zooplankton
community composition and abundance and hence on the pelagic food web.

The second common trend identified by the DFA, manifesting mainly in changes of SST and
Chl a content, peaks low immediately before and during the very strong El Nifio events 1991/
92, 1997/98, and 2009, interrupted by a phase of high values in the 20002002 years. Similar
patterns were observed in the Chl a concentrations around Elephant Island, South Shetland
Islands (Loeb et al. 2010). According to Loeb et al. (2010), there was a decade-long regime shift
after the 1997/98 El Niflo towards a phase with more frequent La Nifia and weak El Nifio
events, causing a shift in the zooplankton community with high abundances of copepods and
salps displacing the krill. This species shift is also observed at Carlini Station where the last
massive krill biomasses were observed around 2005 and afterwards replaced by salps (personal
observations, Abele). Martinson et al. (2008) attribute this regime shift to the substantially
increased advection of warm Upper Circumpolar Deep Water (UCDW) onto the shelf after the
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1998 EI Niflo event. This shift is further promoted by an extraordinary storm event in 2002,
which lead to an intrusion of anomalously warm water onto the WAP shelf (Martinson et al.
2008; Turner et al. 2002). This intrusion of warm water may have minimized the cooling effect
of —SAM/EI Niilo, visible in our DFA (Fig. 4a, b: month 125-136, i.e. March 2002—Feb 2003).

Our results emphasize the strong influence of climatic oscillations in the northern WAP
region. Although our study site is located in a shallow coastal environment, the signs of
climatic oscillations can be detected. Whereas in a seminal analysis of the first part of the
present data set (Schloss et al. 2012) the effects of SAM and ENSO appeared to be
conditioned by the distinct local characteristics of the inner Potter Cove environment such
as rather shallow bathymetry, and a higher input of both freshwater and suspended particles
due to glacier melting, the present statistical analyses clearly confirms the strong influence of
SAM and ENSO upon local trends. Importantly, in the analysis of Schloss et al. (2012) the
environmental variables were individually correlated with different climatic drivers, such as
air temperature, SAM and ENSO. These environmental variables are, however, interdepen-
dent and physically connected, and the present analysis statistically combines all measured
variables with the climatic drivers. By combining the variables, the analyses (GAM, DFA)
not only revealed the dominating cyclic patterns, but also highlight how the variables are
related. While our previous analyses assumed a rather linear relation between the single
variables and climatic drivers (Schloss et al. 2012), our present analysis unveils the climat-
ically dynamics in the variables and is therefore more powerful in describing the response of
the Potter Cove pelagic system. The “tipping points” and sudden changes in the time series,
as detected by the U-statistics, are important because they give insights in how and when
changes in the system occur. As our study forms part of an ecological long-term program,
the analysis may help to interpret time dependent shifts in pelagic and benthic ecosystem
compartments investigated by other groups in Potter Cove.

Long-term data series are required for the interpretation of hydrographic and other environ-
mental data in the light of large climatic phenomena (like the SAM and ENSO, or other
oscillations). Since such series are often incomplete and also mostly just at the beginning and
short at many Antarctic platforms (stations, permanent monitoring installations), our statistical
analyses may prove applicable for many similar data sets from other areas. The analysis also
shows, how important it is to continue the monitoring of hydrographical parameters to further
examine climate trends and cycles in the face of global climate change, and to link the Carlini
data sets with other monitoring stations along the Western Antarctic Peninsula such as the Long
Term Ecological Research at Palmer Station (Pal LTER) and the Rothera measuring station
(RaTS, British Antarctic Survey). This will increase the observational density and spatial
resolution of climate change trends along WAP, for a better understanding of the regional
variability of climate change and its impacts on coastal and shelf systems.
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