Workshop-Script:
Scientific Figures with GMT4/3

& Bash-Programming

Malte Thoma*

October 1, 2012

"' This is a draft !!!
Please be aware that it contains several errors.
However, feel free to use it to learn something about

GMT and bash-programming.

Please send comments and corrections to Malte. Thoma@awi.de

I hear and I forget.
I see and I remember.

I do and I understand.
(Confucius)

*Many thanks to Jorg Robl for his contributions to sections 1.1 and 7.1, Christoph Oelke for his contribution to section 5.4, Florian
Wobbe and Vikram Unnithan for their additional ideas for section 5 as well as Tobias Linke for the translation of this script.

CONTENTS

Contents

Introduction 5
1.1 ,What is GMT?¢ o e e e e 5
1.2 Official documentation oL L e e e e e 5
1.3 Prerequisites for this workshop L 6
1.4 Working Environmento e 6
Simple maps 7
2.1 Command line e e e e e 7
2.2 Shell-Script e e e 7
2.3 Explanations to the use of pscoast 8
2.4 Exercise 1: pscoast L 8
X—-Y-plots with the command psxy

3.1 Usage of standard input e e e e e e

3.2 Exercise 2: psxy, axis labels, color 10
3.3 Readinginput from afile 11
3.4 Exercise 3: psxy, pstext, special characters o L oL 12
Linux-tools & bash-programming 13
4.1 Exercise 4: psxy, grep, awk, logarithmic projectiono L oL 14
4.2 Some hints for bash programming Lo e 16
4.3 Functions and queries in the bash 16
4.4 Command line arguments for bash programs Lo 18
4.5 Exercise 5: Command line arguments for bash programs 19
4.6 Incidental remark oL e 20
4.7 Additional exercise 6: bash-programmingo i e e e e e 20
Maps, cities, legends and more 23
5.1 Exercise 7: Extern data, transparency, pslegend oo e 23
5.2 Exercise 8: Something about projectionso 25
5.3 Exercise 9: Plotting ship track GPS-dataonamap L. 26
5.4 psxy and the date formato 26
Representation of data with two independant variables 29
6.1 Simple 3D graphs with psxyz L L 29
6.2 Exercise 10: PSXYZ o o o i e e e e e e e e e e e e 29
6.3 2D graphs with grdcontour 30
6.4 Exercise 11: grdcontouro e e e e 30
6.5 2D plots with grdimage 31
6.6 Exercise 12: grdimage e e e e 31
6.7 Exercise 13: 3D graphs with grdview e 32
Creation of grid files in the netCDF-format 34
7.1 Digital height models L 35
7.2 Exercise 14: DEMs and xyz2grd e e 36

7.3 Gridding of data L e 37

LIST OF FIGURES

A Colormaps

B Useful tools

B.1 Distance of two points on the earth surface oL o
B.2 Tangent e

B.3 Correlation coefficient L e e e e

C Sample Solutions

C.1 Solution to Exercise 5 e e e e e e e e
C.2 Solution to Exercise 6 e e e e e e e
C.3 Solution to Exercise 7 o e e e e e e e e e e e
C.4 Solution to Exercise 8 L e e e e
C.5 Solution to Exercise 9 L e e e e e e

C.6 Solution to Exercise 12.
C.7 Solution to Exercise 14

Bash—scripts, examples and solution

2.1 First example: pscoast
3.1 psxy, usage of standard input
3.2 psxy, gmtmath, input from afile
4.1 psxy,grepandawk

4.2 psxy, minmax, bash programming, grep and awk

4.3 bash-program to write a header or a footer for GMT figures.

5.1 psxy with date format
6.1 psSXyz
6.2 grdcontour

B.1 Calculation of the distance (in km) between two points with given geographical coordinates.

B.2 Calculation of a tangent for a (z,y) dataset. . . .

B.3 Calculation of the correlation coefficients (and the variances) of a (z,y) Dataset.

C.1 Exercise’s solution 5 (write_head foot.sh)
C.2 Exercise’s solution 6 (bash task.sh, Part 1) . . .
C.3 Exercise’s solution 6 (bash task.sh, Part 2) . . .
C.4 Exercise’s solution 7 (land_coloured.sh)
C.5 Exercise’s solution 8 (projections_task.sh, Part 1)
C.6 Exercise’s solution 8 (projections task.sh, Part 2)

C.7 Exercise’s solution 9 (nmea.sh)

C.8 Exercise’s solution 12 (grdcontour _task.sh, Part 1)o oL

C.9 Exercise’s solution 12 (grdcontour task.sh, Part 2)

(
C.10 Exercise’s solution 14 (dem.sh, Part 1)
C.11 Exercise’s solution 14 (dem.sh, Part 2)

List of Figures

3.1 Exampleforpsxy.
3.2 Example for psxy und pstext
4.3 Example for a logarithmic projection and gmtset

40

42
42
42
43

44
44
45
47
48
50
51
93

11
14
17
18
27
29
30
42
42
43
44
45
46
47
48
49
50
51
52
53
54

10
13
14

LIST OF FIGURES

4.4 Plot for Exercise 6. e e 21
5.5 Examples for creative use of pscoast, psxy and pslegend. 24
5.6 Projections and node connections on a sphere I oL L L o 25
5.7 Projections and node connections on a sphere IT L o oL 25
5.8 Plotting a ship track from GPS-data. Lo 26
5.9 Examples for date and time scales Lo 28
6.10 Example for psxyz and Exercise 10. 33
6.11 Examples for grdcontour and Exercise 11. L 33
6.12 Topography of Europe and the Alps with grdimage. 33
6.13 Topography of Europe and the Alps with grdview. 34
7.14 Graphic representation of the SRTM30-data (several examples). 38
A.15 The RGB color scheme 0 0 0 e 40

A.16 The GMT CPT colormaps v v i vt it et e e e e e e e e e e e e 41

1 Introduction 5

1 Introduction

1.1 ,What is GMT?

GMT stands for Generic Mapping Tools. 1t is a software package that can be used for processing and graphical

representation of data. The GMT developers summarise it as follows:

GMT is a free, open source collection of ~ 60 UNIX tools that allow users to manipulate (x,y) and (x,y, 2)
datasets (including filtering, trend fitting, gridding, projecting, etc.) and produce Encapsulated PostScript
File (EPS) illustrations ranging from simple z-y plots through contour maps to artificially illuminated
surfaces and 3-D perspective views in black and white, gray tone, hachure patterns, and 24-bit color. GMT
supports 25 common map projections plus linear, log, and power scaling, and comes with support data such

as coastlines, rivers, and political boundaries.

GMT was and still is being developed by Paul Wessel and Walter Smith. The software is licensed under the GNU-
license. GMT is written in ANSI C standard (Kernighan & Richi 1988) and therefore runs on nearly every system
where a C-compiler is available. It runs under Windows, Unix, Linux, MacOS, BEOS and other operating systems,
but full performance can only be achieved in combination with shell-programming. For this reason the combination
of Unix/linux and GMT has been established. If someone wants to stick to Windows, the Linux emulation CYGWIN
is an option.

GMT can be handled via command lines (similar to DOS) or, more effciently, using shell scripts. There is no GUI
(Graphical User Interface) with menu control or buttons to click on. This may appear to be a disadvantage at first,
but working intensively with GMT this proves to be its actual strength.

Most Windows applications more and more become “Swiss Army knives (and hence need more and more resources).
In contrast, GMT chose to use UNIX. Each task is carried out by a small and flexible program. This modular concept
makes it possible to incorporate — via shell programming and Unix/Linux — tools such as awk, cat, grep etc. into
GMT-shell-scripts. The advantages are obvious:

1. Only the programs needed are loaded into the memory.
2. Each of those programs is tiny in comparison to proprietary software as ArcView, CorelDraw, or Word.
3. Each individual operation is independent. Hence, errors can be localised easily.

4. The individual tools can be combined in shell scripts, data can be transfered via pipes.

Maps and graphics in many well-known journals such as JGR, EOS, EPSL and others are in large parts computed
with GMT. This is on the one hand due to its special flexibility through script programming, on the other hand due
to the aesthetic value of the maps.

1.2 Official documentation

The official GMT documentation can be consulted online:
http://gmt.soest.hawaii.edu/gmt/html/gmt_services.html
In particular, there is a number of helpful supplements that are beyond the scope of this workshop. This includes,

amongst others:

e Compilation of all GMT commands.

e Explanation of all possible projections with a graphical example.

e A useful ’cook-book’ which includes numerous examples for complex graphics.

e The technical reference with tables for patterns, octal codes for special characters, fonts and range of colors.

6 1 Introduction

1.3 Prerequisites for this workshop

e A linux account (username and password) is essential.

e Knowledge of the functionality of a shell (or xterm) where commands can be prompted.

e Knowledge of the most important UNIX-commands. These are (without claiming to be complete): mkdir, 1s,
cd, cp, mv, rm, man, chmod, ssh, scp. Please make yourself familiar with them, if you do not know them.
You can do this for instance by consulting the online manuals (e.g. man 1s or man man). It is not necessary to
know all options of a command. It is sufficient to know what the command generally does and how to obtain
more information about the options (with man).

e Knowledge about the functionality of the <TAB>—key and the T—key in the shell (or xterm).

e Knowledge about the X-Windows clipboard (cut & paste).

e A computer with a complete GMT installation needs to be accessible. If this is not the case on a local machine,
you have to use ssh to log in to the respective machine (possibly with an explicit X- redirection), e.g. ssh -X
limbig.dmawi.de.

e You need a text editor and know how to use it. Examples for text editors are vi, vim, jed, joe, emacs. An
example for a graphical text editor would be gedit. It is important that you feel familiar with your editor. If
you do not have sufficient experience with any one, I recommand joe — it is small, fast, configurable, potent and
has a good help function. Online help and tutorial can be found here:
http://heather.cs.ucdavis.edu/matloff/public_html/Joe/NotesJoe.NM.html
The following tasks must be performed with the text editor:

open a file

save a file
close the editor

mark, copy and move words, lines, paragraphs
— find & replace (if possible with ’placeholders’ or so called regular expressions)

1.4 Working Environment

e Create a working directory (e.g.: mkdir GMT)
and move into this directory (cd GMT)
e Execute the following commands
mtn -d mtn.db db init
mtn -d mtn.db pull apps3.awi.de de.awi.GMTCourse
mtn -d mtn.db co -b de.awi.GMTCourse
to set up your monotone-database, pull the GMT-example scripts from the server, and to checkout the de . awi.GMTCourse
branch.
e To get updates later, you might have to use
mtn -d mtn.db pull apps3.awi.de de.awi.GMTCourse
(mtn pull from within your de.awi.GMTCourse directory might be enough, if the defaults are set accordingly.)
mtn update (from within your de.awi.GMTCourse directory)
e Create your working directory you want to run the course in, e.g. mkdir course

e Execute cp de.awi.GMTCourse/gmtdefaults4.base course/

© 00 N DU R W N -

= e
[)

2 Simple maps 7

2 Simple maps

2.1 Command line

Entering the command

pscoast -JNO/15 -R-180/180/-90/90 -Bg30/g15 -G150 -A10000

shows the PostScript-code created by pscoast in the shell (the meaning of the individual options will be explained in
2.3). In general that does not make much sense; it is more useful to redirect the output into a file with the extension
.ps (hint: use the 1-key):

pscoast -JNO/15 -R-180/180/-90/90 -Bg30/gl5 -G150 -A10000 > bsp.ps

The file bsp.ps now contains the figure created by pscoast and can be viewed, e.g. with the program gv: gv bsp.ps.

2.2 Shell-Script

If a command is used regulary (with slightliy changed options), it is complicated to enter it manually every time. To
avoid that typing work, one can use a bash-script to execute several commands in a row. For our examples the script
would look like that:

pscoast -JNO/15 -R-180/180/-90/90 -Bg30/gl5 -G150 -A10000 > bsp.ps
gv bsp.ps

It would work, but it has some (more or less) obvious disadvantages. A better example is Script 2.1. In the next

section the recurrent elements of bash-programming are explained by looking at that script.

Script 2.1 First example: pscoast

#!/bin/bash

cp gmtdefaults4.base .gmtdefaults4
OUT=pscoast . ps

PRO—INO/15

REG——R—180/180/—90/90
ANN=-Bg30/g15

This is a comment
pscoast $PRO $REG $ANN —G150 —-W1 —A 10000 > $OUT

gv $OUT
rm $OUT # Another comment

e The first line forces the execution of the script as a bash-script (independent from the shell actually used). That
line should be found in every script.

e Line two ensures a consistent default .gmtdefaults4 at the beginning of our script.

e In the lines three to six the variables OUT, PRO, REG and ANN are assigned (attention: no space before and behind
the =).

e Comments in bash-scripts begin with a #.

e The lines nine, eleven and twelve contain the actual commands.

e Options are passed to a program (in this case pscoast) with a leading -.

e A $ (as found in the lines nine, elven and twelve) in combination with a variable returns its value.

e Line twelve deletes the created file.

e Blank lines are for better readability.

In general, there are two reasons to save options (or something else) in variables (and not enter them directly):

2 Simple maps

Very long options (e.g. -B) make it hard to understand the script and
options that are used more than once had to be adjusted in all locations in the script if the value of the option
changes. (In Script 2.1 this is only relevant for the output-file pscoast.ps (0UT), but it is still common sense to

use variables for regulary used options as -J and -R.)

Options that are just relevant for one command (in this example it is -G, -W und -A) are written directly behind

the command.

2.3

Explanations to the use of pscoast

The options for the command pscoast used in Script 2.1 shall be explained:

24

-J defines the kind of projection (in the example N is chosen, a "Robinson’-projection). More information about
the different kinds of projection can be found in Section 8, the GMT-manual
http://gmt.soest.hawaii.edu/gmt4/gmt_services.html or simply (but without examples) with the com-
mand man psbasemap.

-R sets the plotted region (in this case the whole earth).

-B sets the labels of the axes (here none), the tic-interval (here none) and the size of the grid (here 30° in
X-direction (longitude) and 15° in Y-direction (latitude)).

-G defines the color of dry land (0=black, 255=white).

-W sets the line width for the boarder of the continents.

-A sets the minimum size of structures (in km?) that are shown in the map. Anything smaller will not appear
in the plot.

Exercise 1: pscoast

Open three xterms and place them on the display so you can work with all of them (alternatively you can replace
one xterm with a graphical editor like gedit).

Move into your working directory for this course, e.g, with

cd ~/GMT/course

(this holds for all examples in this course).

Copy the Script 2.1 with the command

cp ~/de.awi.GMTCourse/in_pscoast.sh .

and open it with your favourite editor.

Check if the script is executable fron within a xterm. (1s -1 should show an x for the user access permissions.
If it is not executable use the command chmod u+x in_pscoast.sh to change the access permission (u—user,
+—add, x—executability).)

Execute the bash-script, by entering the command ./in_pscoast.sh. As result a plot should appear on the
display.

6. Open the manpage for pscoast in another xterm (man pscoast).

Experiment with the different parameters of the option and read the corresponding section in the manpage:

a) Test other gray tones -G (Colors are subject to Exercise 2).
b) Test which changes can be achieved by using the option -I (with different values).

~ o~

Test which changes can be achieved by using the option -N (with different values).

A~
SIS
— =

Try other values for the region -R.
Test other projections (e.g. -JW0/15, -JQ180/15). Attention: Not every projection is capable of displaying

A
[¢)
~

the whole earth from pole to pole. An example for that is the mercator-projection (next point):
(f) Test the projection option -JM15. Adjust the region option -R until you don’t have any error messages. Try
different regions.

W N DU R W N

[I e e e ol i
= O © 00N U AW~ O ©

3 X-Y-plots with the command psxy 9

(g) Test e.g. -JS10/90/15 -R-30/50/35/72 and -JS0/90/15 -R-30/50/35/72.
What is the difference?
(h) Try to create a title and axes labels with option -B, man psbasemap might be helpful. If you can not solve

this task, wait for Script 3.1 where option -B will be explained in all details.

3 X-Y-plots with the command psxy

The most common task is the graphical representation of a function y = f(z). Therefore, the command psxy is used.
There are two possibilities to submit data to psxy (and most other GMT-commands), one can use an ASCII-file or the
standard input. Both possibilities are introduced in this chapter. (For the sake of completeness it is to be mentioned

that all GMT-commands are also able to read binary data (instead of ASCII), but this is rarely practically relevant.)

3.1 Usage of standard input

In this section it is explained how data is read via standard input. Furthermore some of the many plot options offered

by psxy are explained. Starting point for this section is Script 3.1.

Script 3.1 psxy, usage of standard input

#!/bin/bash
cp gmtdefaults4.base .gmtdefaults4

OUT=psxyl . ps
PRO=—JX15/10
REG=R0/10/1/8
ANN=-B1/0.5

psxy $SREG $PRO $ANN <<END > $OUT
1

0

D= 0 W N~ O
N~ 00 & Ot N

END

gv $OUT
ps2raster —A —Te $OUT
rm $OUT

e The <<END in line eight signifies reading standard input till END (in line 16) is reached’. Important:

— The final string (here END) must always start in the first column.
— After the final string must be line break (and no blank character or <TAB>).

— The string END is arbitrary, every random string can be used.

e The command ps2raster -A is useful to remove the white frame around the postscript-plot. That might make
sense when the plot is to be used in another document (e.g. LaTeX). The option -Te creates an eps-file, other
options are e.g. jpegor png. Further information can be found in the ps2raster-manualman ps2raster. Examine
the difference with gv!

Figure 3.1 shows the plot from Script 3.1 and what can be achieved by adjusting some options and parameters (see
Exercise 2).

10

3 X~Y-plots with the command psxy

8.0

9 10
. 8.0

7.5
7.0 H
6.5 1
6.0
5.5
5.0 1
4.5 1
4.0 H
3.5
3.0 1
25
2.0 1
1.5

1.0

- 75
7.0
- 6.5
- 6.0
- 5.5
- 5.0
- 45
- 4.0
- 3.5
- 3.0
- 25
- 2.0
- 15

T 1.0
9 10

Distance (m)

Example 2
. * |
*
4 * L
Kk X I
Ny S

Time (s)

Figure 3.1: Plot from Script 3.1 before (left) and after (right) changing some options and parameters.

3.2 Exercise 2: psxy, axis labels, color

1.

Copy the Script 3.1 with the command

cp ~/de.awi.GMTCourse/in_psxy.sh .

and execute it.

The option -J defines the projection method, the X stands for a linear projection. The two following numbers

set, the size of the plot in cm.

(a) Modify the numbers slightly.

(b) Remove the second number and the /, what does it mean?

Try to find out what’s the meaning of parameter -R and modify it.

The option -B is quite powerful and therefore quite complex. To check out the capabilities of this option try the

following modifications:

(a) Slightly modify the two numbers.

(b) leave out the second number and the /.
(c) Try the following: ANN=-B1/1SWne. The letters represent the four cardinal directions.

i. Switch the capital and the small letters.

ii. Completely remove single letters.
(d) Frame-tics and gridlines can be created with £ and g. Test ANN=-B1£0.5g2/1£0.75g5SWne and change the

values of the parameters until the result is satisfying.

(e) Now add axis labels ANN=-B1:x-axis:/1:y-axis:SWne

—
)
SN

and a title ANN=-Bl:x-axis:/1:y-axis::.Example2:SWne.

(g) All former labels did not include any blank spaces. But at least in the title a blank space in front of the 2

would make sense. To achieve that two points have to be taken care of:

i. The whole title must be set in (single or double) quotation marks. Otherwise the variable ANN is only

assigned until the first blank space and the rest can not be interpreted by the shell.

ANN=‘“-Bl:x-axis:/1:y-axis::.Example 2:SWne‘

ii. To make GMT read the whole option -B (not only till the first blank space following Example) the
variable $ANN must be set in double quotation marks:psxy $REG $PRO ‘‘$ANN‘‘<<END>$0UT. Single quo-
tation marks would prevent the shell from interpreting $-sign as the value of ANN — the shell would
just submit the $ANN to GMT.

W N Ut W N

e el e e e
W~ DU W= O ©

3 X-Y-plots with the command psxy 11

A necessity for blank spaces exists in axis labelling when it comes to units, experiment with it!

5. The read data pairs are connected with a line as standard option, but psxy offers a great number of options to

modify the representation of the data:

Add the option -L to force the representation as a closed traverse.

Replace the -L by -Sc0.3 (S stands for symbol, c fiir circle).

Add -G150 (color of the points).

Add -W5 (lines around the points), try to find out what the number behind the -W does.

Replace -Sc0.3 by -Sa0.5 (the a stands for star), what does the number mean? Modify it!

Add a -N, watch the boundary points.

Read the section of the manpage of psxy that deals with the symbols. Try other symbols. (Attention: some
symbols need more than two data rows.)

Add an error estimator (in y-direction).

) For the black and white reprentation GMT uses grey-scale values from 0 (black) till 255 (white). For the

representation of colors the RGB color model is used. In this model each of the colors red, green and blue
is assigned a number between 0 and 255.

i. Change the color of the symbols with the option -G e.g. to -G200/100/0.

ii. Change the color of the lines (option - W), e.g. to -W5/0/100/200.
With support from Figure A.15 on page 40 it should be easy to work with RGB color model, try other
colors!

3.3 Reading input from a file

An important premise for reading data from a file is the existence of one. In Script 3.2 two files each with two rows

are created with gmtmath. gmtmath is a calculater that works with Reverse Polish Notation. More information can be

found in the manpage of gmtmath (man gmtmath). Here it is sufficient to understand that the x-axis ranges from 0 to

100 and that the square root of x is calculated at equally distributed sampling points with a step size of 10 and 1.

Script 3.2 psxy, gmtmath, input from a file

#!/bin/bash
cp gmtdefaults4.base .gmtdefaults4

OUT=psxy _datei.ps

IN1=psxy_datei_a.dat

IN2=psxy_datei_b.dat

PRO=JX15/10

REG=R0/100/0/10

ANN="-B10:x:/1:sqrt (x)::. Beispiel _3:SWne"

gmtmath —T0/100/10 T SQRT = $IN1
gmtmath —T0/100/1 T SQRT = $IN2

psxy $REG $PRO "SANN" $IN2 —W5/0/0/200t20 10:0 —K > $OUT
psxy $REG $PRO $IN1 —St0.3 —N —G200/0/0 —W5/0 —O >> $OUT

gv $OUT

rm $OUT $IN1 $IN2

As it is not possible to plot lines and points in one single psxy command, psxy is called twice with different options.

Most options of the command psxy have already been discussed in Script 3.2 and Exercise 2, so only new options (and

their parameters) are explained.

e The option -W plots a solid line as standard. To create a dashed line, the parameter t has to be added.

12

3 X~Y-plots with the command psxy

3.4

The number of pixels to be drawn (here 20).

The seperator _

The number of pixels not to be drawn (here 10).

One :

The number of pixels before the first pixel is drawn (here 0).

The PostScript code created by the first psxy command in line 13 must not be closed (i.e. it must be written

no footer). This can be prevented by the option -K.

The PostScript code created by the second psxy command in line 14 must not

have a header. This is achieved by the option -0.
overwrite the output file, but append the code, therefore >> is used instead of >.

The axes labels ($ANN) just need to be written once — so it is missing in line 14.

Exercise 3: psxy, pstext, special characters

. Copy the Script 3.2 with the command

cp ~/de.awi.GMTCourse/in_psxy_file.sh .

and execute it.

. Permute the two variables $IN1 and $IN2 in the lines 14 and 15. Try to understand what changed (afterwards

restore the original order.)

Remove the title.

Experiment with other settings for the parameter t in the option -W.

One of the most common mistakes working with GMT is the wrong usage of the options -K and -0, often in

combination with mixing up > and >>. To be able to recognize the cause for the error containing (or missing :-)

plot, the following errors are simulated:

(a) Remove the -X in line 13 (undo!).
(b) Remove -0 in line 14 (undo!).
(c) Change >> to > in line 14 (undo!).

Add a text to the plot by working through the following points.

(a) The second psxy command must not write a footer.
(b) Add the following lines to line 15 in the script

—~

i. pstext $REG $PRO -0 <<END >> $0UT

ii. 12 5 12 0 0 MC The root function
iii. END
You should understand the first and the third line (otherwise ask!). Bring to your mind what the additional
information behind pstext means. (Why -07 Why no -K? Why <<END>>?7) Execute the modified script, a
text should appear in the plot.
Open the manpage for pstext (man pstext) and try to find out what the seven parameters read via standard
input mean.
Change the position of the text so it starts at (x,y)=(5,9), therefore three parameters must be changed.
Try font No. 33 (but never hand in a plot with a calligraphic font otherwise loss of points is unpreventable
;-). All available fonts can be found in the in Section 1.2 mentioned Technical Reference Appendix G.
Change the text color.
Change the backround color of the text.
Try to add a second text line without using a new pstext command.
The second line should contain the text ,Kronecker symbol: §;;“ (refer to the Technical Reference Appendix

4 Linux-tools & bash-programming 13

(j) Experiment in a third line with the German umlauts. Use the following table (or look in the appendix of
the GMT-cookbook):

Character-encoding scheme Character-encoding-scheme
Character | 15otatint+ | Standard + || " | Standard+ | 1SOLatin1+
A \304 \276 A \344 \342
o) \326 \331 o \366 \363
U \334 \335 i \374 \370
R \337 \373

In the file .gmtdefaults4 standard character-encoding scheme is defined. Since GMT43 schemes can be
used. With the command gmtset CHAR_ENCODING = <Character-encoding-scheme> the encoding-scheme
can be changed. All octal codes can be found in the Technical Reference in Appendix F.

7. Compare Figure 3.2 with your own plot and try to find the cause for eventually existing differences.

10 : =

9 4 The root function _&” -
The Kronecker symbol: 3 AT

sqrt(x)

14/ The German umlauts: 86t 8 AOU |

0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

X

Figure 3.2: After completing Exercise 3 the figure for the modified Script 3.2 should look roughly like that.

4 Linux-tools & bash-programming

In most cases there is no file with just two columns which happen to be exactly the one you like to plot. So it is
necessary to have a tool to choose the columns (and/or rows) to be plotted. GMT is not able to process anything else
than the first columns. But that is not necessary anyway. It was a deliberate decision in the developement of GMT
not to program anything that other programs are already able to do. As two of the most important programs in this
context grep and awk shall be introduced in this section. The most common usage of these programs (in connection
with GMT) is demonstrated in Script 4.1.

e grep reads in a file (but is also able to read from standard input) and gives back only the rows matching a
certain pattern. grep offers numerous options. In this case -v is used, which returns all lines not matching the
pattern. A commentary line is conventionally marked by a #, the grep in line nine filters all the lines starting
with that character and returns the other lines in standard output.

e The | is a pipe. That means that the ouput of the left command is used as input for the right command. In
that case the result of the pipe is: awk receives the output of grep as input and psxy uses the output of awk as
input. The line breaks after the pipes Script 4.1 are only reasoned by readability and are not obligatory.

W N DU AR W N

e el el el =
DU A W N R O ©

14

4 Linux-tools & bash-programming

Script 4.1 psxy, grep and awk

#!/bin/bash
cp gmtdefaults4.base .gmtdefaults4

OUT=grep awk la.ps

IN=./data/grep awk.dat

PRO=—JX15/10

REG=R0/635/0/0.7

ANN="-B100: Frequency_in_Hz:/0.1: Amplitude_in @ m@ m:SWne"

grep —v ’#’ $IN |
awk ’{print $1,$4}’ |
psxy $REG $PRO "$ANN" —W5/200/0/0 > $OUT

gv $OUT
ps2raster —A —Te $OUT
rm $OUT

e awk is actually a powerful (script) programming language. In connection with GMT only few of its abilities are
used. awk can read commands from a file, but in our case it is more effective to add the commands directly
following the call of awk. Therefore, the commands must be enclosed in ’{...}’. The most often used awk

command is print. With option $1 the first coloumn is returned, with $2 the second coloumn and so on...

4.1 Exercise 4: psxy, grep, awk, logarithmic projection

1. Create the subdirectory data and copy the file containing the data:
cp ~/de.awi.GMTCourse/data/grep_awk_1.dat ./data/.
Take a look at the data in the file (use joe or emacs or less or cat or ...).
2. Copy the Script 4.1 with the command
cp ~/de.awi.GMTCourse/grep_awk_la.sh .
and execute it.
3. Sometimes the linear projection is not the most suitable one. To use a logarithmetic projection, the following

changes have to be made:

(a) The projection has to be changed: PRO=-JX15/101. The 1 effects that the y-axis uses a logarithmic scale.

Try to execute the script after this change and find out what causes the error!

0.7 3
0.1 - L,
0.5 - -
E £
= = om !
£ 041 e °
S g A A &
E 3 AW i o 2
£ 03 = | v wv W \I o
S S 0.001 |
& =
0.2 <
0.0001 |
0.1 3 2
0.0 T T T T T T le-05 T T T T T T -3
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Frequency in Hz Frequency in Hz

Figure 4.3: Example for Script 4.1 (left) and Exercise 4 (right).

4 Linux-tools & bash-programming 15

(b) Change the region option to REG=-R0/635/1e-4/0.7. Why is the amplitude of some of the frequencies
missing? Change the region so that the amplitude can be plotted for all frequencies.

(c¢) For caption of the axis in a logarithmic projection only the values 1, 2 or 3 should be used. (That means
the value 0.1 of the option -B has to be replaced.) Test all three values for the y-Axis. For using ,,3 “
you will have to change the height of the plot to be able read the caption. What is the effect of the three
possibilities?

(d) Try to use a logarithmic scale for the x-axis as well (undo!)
4. Sometimes it makes sense to write two graphs in one figure. That requires the following steps:

(a) The first psxy command must not write a footer.

(b) The phase is in the 5th column in the data file. Plot this column in another color. (You have to use psxy
in combination with grep and awk.)

(c) As it does not make sense to use a logarithmic scale for the phase, you have to define a new projection
variable for the psxy command that does not contain 1.

(d) You will see that you need another region for the y-axis. Add a second variable for the region. As it is in
general, the region to be plotted is not known. Enter the following line in a shell (not the script):
grep -v ’#’ data/grep_awk_1.dat | awk ’{print $1,$5}’ | minmax
The GMT-command minmax returns the mininmum and the maximum of all entered columns. It is possible
to format this output in a way it can be used by psxy as region option:
grep -v ’#’ data/grep_awk_1.dat | awk ’{print $1,$5}’ |minmax -I1/1
This output is exactly what we want to write into the second region variable. In the shell script it can be
used like that:

REG2=‘grep -v ’#’ data/grep_awk_1.dat | awk ’{print$1,$5}’ | minmax -I1/1¢

Important are the two reversed single quotation marks at the beginning and the end of the command whose
result is to be written into the variable. This quotation mark can be created (in joe) by pressing (maybe
twice) the key combination SHIFT + <key between £ and Backspace> on a German keyboard.

(e) The caption of the axis has to be changed for the phase. Define a second variable that plots the caption
of the axis on the right side und use this variable as option for the psxy command that plots the phase.
Compare your plot with figure 4.3.

(f) To plot the caption of the axis in the same color as the graph, one parameter in the file . gmtdefaults4 has to
be changed. This can be done from inside the script by using the command gmtset BASEMAP _FRAME_RGB =
200/0/0. BASEMAP_FRAME_RGB is the parameter that needs to be altered and 200/0/0 is the corresponding
color. (A list of all parameters in .gmtdefaults4 can be called by man gmtdefaults.) To create the three
different colored captions of the axes in Figure 4.3 (right), three commands with each a certain option -B
are necessary. The two y-axes can be created simultaneously with the corresponding plot, the caption of the
x-axis either by a psxy command that receives no data via standard input or (simpler) with the command

psbasemap.

5. awk can do much more: change the awk-command reading in the amplitude to awk ’{print $1,sqrt($2*$2+$3%$3)}°.
(Remember: The second column contains the real part, the third one the imaginary part). The same plot should
appear. If the plot has changed, comment out the following pipe and the psxy command and take a look at the
output of the two different awk commands via standard output. If you find a difference think about possible
reasons. If you are not sure, ask, this is important! The solution to this problem (and many other problems as
well): Every script using awk should contain the command LANG=C directly behind the first line.

6. Change the awk command reading the phase: Do not use the fifth coloumn but calculate the phase from the real
and imaginary part by using the function atan2(y,x).

7. Write the awk command if (i++%5==0) in front of one of the print commands. What is changing (and why)?

16 4 Linux-tools & bash-programming

4.2 Some hints for bash programming

As complex programs without any errors are hardly written on the first go, it is of advantage to test a code every
time after implementing an extension. In many cases a syntax error is the cause for an abnormal termination. The

following hints should make it possible to locate the error and correct it.

e Often it is useful to check if a variables value is what you expect it to be. This can be done with the command
echo $0UT.

e The command exit terminates a bash script at any given point.

e Single lines can be commented out by using the #.

If you have knowledge in procedural programming®, you will be familiar with the concepts introduced in this section

and you will just have to get used to the syntax.

4.3 Functions and queries in the bash

A strength of programming languages is the possibility to perform similar tasks with slightly changed parameters with
minimal effort. An example (though not the best) is the script of the last exercise, where the program psxy is called
twice with preceeding grep and awk. Even though it is not necessary in this case, that script can be used to show how
such a structure is realized. Script 4.2 shows a bash script, that contains two functions. The essential parts of this

script shall be explained in this section.

e Copy the Script 4.2 with the command
cp ~/de.awi.GMTCourse/in_bash.sh . and execute it.

e Functions are initiated by the keyword function, followed by the name of the function and the (optional)
parenthesis (). The body of the function is bordered by curly brackets {...}.

e The functions must be located ahead of of the main program. In Script 4.2 the main program only contains
the definiton of some variables, the call of the function plot_ps, the command to display the plot gv and the
command rm to remove the created file.

e Variables declared within a function should be (if possible) local to prevent side effects in other parts of the
program.

e One disadvantage of Script 4.2 is the necessity to use psxy to create an empty figure containing just a header.

e In line 14 a loop is started that ends in line 20. The loop is run twice, one time variable i is assigned the value
Amplitude, the second time the value Phase.

e In every run of the loop the function set_parameter is called at the beginning, then the defined parameters are

used to

1. set the parameter BASEMAP_FRAME_RGB with the command gmtset to the value of $COLOR,
2. create a temporary file, that contains just the two columns of the input data which shall be plotted,
3. set the region option with the minmax command and

4. create the plot by using psxy.

The only thing new (besides the loop itself) is the usage of the variables in combination with awk: Before the
command (enclosed in ’{...}?) the option -v is used to set the awk variable c to the value of the bash variable
COLUMN. This is necessary because within the awk commands the (global) bash variables are not known.

e The function set_parameter writes the one parameter passed to it to the variable WHAT, this is just a matter of
clarity.

LA procedural programming language uses algorithms to formulate the necessary procedures. In general the following elements are used:
variables, arithmetics, queries, loops and functions. Examples for this class of programming languages are amongst others Pascal, Basic,
Fortran und C. Another approach is modular programming. Here, the focus is on subdividing and encapsulating the data in single modules.
Examples are e.g. C++ and Java.

© 0 N D U R W N =

NN NN NN NN NN R 2 s e = e e
© 00 N U R WY = O © 0Nt WNN = O

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4 Linux-tools & bash-programming

17

Script 4.2 psxy, minmax, bash programming, grep and awk

#!/bin/bash
LANG=C

cp gmtdefaults4d.base .gmtdefaults4

OUT=bashl . ps
PRO=—JX15/10
IN=./data/grep_awk_1.dat
TEMP_DAT=tmp . dat

function plot ps()

{
psxy $PRO —R0/1/0/1 —K << END > $OUT
END
for i in Amplitude Phase ; do
set _parameter $i
gmtset BASEMAP FRAME RGB = $COLOR
grep —v '#’ $IN | awk —v c¢=$COLUMN ’{print $1,8c}’ > $TEMP DAT
local REG=‘minmax $MINMAX INC $TEMP_DAT*
psxy $REG $PRO "$ANN" —W5/$COLOR —K —O $TEMP_DAT >> $OUT
done

local ANNAB—B100:"Frequency_in_Hz":/Sn
gmtset BASEMAP FRAME RGB — 0/0/0
psbasemap $REG $PRO "$ANNAB" —-O >> $OUT

function set parameter ()

{
local WHAT=$1
if [$WHAT =— Amplitude |; then
MINMAX _INC=—T1 /0.1
ANN="-B100: Frequency_in _Hz:W"
COLUMN=4
COLOR=200/0/0
elif [$WHAT — Phase |; then
MINMAX INC=11 /1
ANN="-B/1g100 : Phase:E"
COLUMN=5
COLOR=0/0/200
else
echo "error_in_’select for gmt()’"
exit 1
fi
}
plot ps
gv $OUT

rm $OUT $TEMP_DAT

e By using an if-query the parameters are set. Important in this context is

— the semikolon ; before then has the same effect as a line break.

— The square brackets [...] must be surrounded by blank chars (or a line break).

— The == is a test-query, which is not to be mixed up with the assignment =.

W N DU R W N

18 4 Linux-tools & bash-programming

4.4 Command line arguments for bash programs

Only if a program can be started with command line arguments it is really versatile. For example it might be helpful
to have a program that writes a postscript header or footer depending on the command line argument. This program
could replace the psxy command in line 12 of Script 4.2.

This program needs two values, the name of the postscript-file and the information if a header or a footer is to be
written. Both could (theoretically) follow the call of the program (e.g. write_head_foot.sh datei.ps F) and then
be read within the script with $1 and $2. In this simple case that might even be sufficient. But already interchanging
the arguments would result in a problem — and this method is totally inadequate if you need a script that reads an
undertermined number of arguments (as every GMT command does).

Script 4.3 bash-program to write a header or a footer for GMT figures.

#!/bin/bash

function usage|()

{
echo —e "\n__Usage:_‘basename_$0‘_has_to_be_called_with_\n\n"\
"lloou —O<PostScript—File>__... (output_ file)\n"\
L W< [K|O]> L oiiiooeaaaaann (write _header(K)_or_footer (O))\n"
exit 1
}
function check_args()
{
OUT=NONE
HEADFOOT=NONE
FORCE=FALSE
while getopts fO:w: OPT ; do
case $OPT in
O) OUT=30PTARG ;;
w) HEADFOOT=30OPTARG ;;
x) usage;;
esac
done
if [$OUT =— NONE]; then usage
elif [$SHEADFOOT != K —a $HEADFOOT != O | ; then usage
fi
}
function write head foot ()
{
if [$HEADFOOT — K |; then
psxy —R0/1/0/1 —JX1 —$HEADFOOT /dev/null > $OUT
else
psxy —R0/1/0/1 —JX1 —$HEADFOOT /dev/null >> $OUT
fi
}

check args $=
write_head_foot

The bash offers an easy solution to this problem. The program in Script 4.3 is admittedly comparatively long, but
in return it is robust and easily expandable (an advantage not to be underestimated). The new elements of this Script

are explained in this section.

e Every program should contain a usage() function, that explains what it does and which options are offered.

— The -e option of the echo is explained in the manpage (read it!).

— Whereas $1 and $2 refer to the first and second argument passed to a bash program, $0 contains the name
of the program (including its path). The program basename removes all the path information from the file
name. Take a look at the really short manpage!

4 Linux-tools & bash-programming 19

The \ at the end of a line causes the program to ignore the line breaks, otherwise the echo command would
have to be written in every line.

As the function usage () is only called if an error occurs, it terminates the program with exit. The 1 behind
exit is the ezit value of the program. Conventionally a program returns the value 0 if it ran successfully
and a number unequal zero if errors occured. This exit value can be read by the parent program. What is
the advantage of this concept? If you do not see it, ask!

e As first step the main program calls the function check_args () with the argument $*. That means all argu-

ments are passed to the function. check_args() checks if the program has all the necessary arguments and if

the parameters are valid. If anything is not correct, the function usage () is called and terminates the program.

At first the two variables OUT and HEADFOOQT are initialized — otherwise there might occur problems with the
if query. Try to understand what could cause these problems. If it is not obvious to you, run the program
without it and/or ask.

The while loop executes the intern bash command getopts until all command line arguments are processed.
The ,,-“ before the argument is removed and the rest is written to the variable OPT. The string 0:w: indicates
on the one hand that only the arguments 0 and w are valid, on the other hand (because of the ,,:%) that
they need a parameter, which is saved in the variable OPTARG. (There are also arguments with no parameter,
what is the difference?)

The case-query is an alternative (in this case a good one) to multiple if queries. Try to realize what is
happening there and under which circumstances usage () is called.

At the end of the function it is checked if all conditions for a successful run are fulfilled. An output file
must be defined (that is not called NONE) and the option -w must have been passed either the parameter K

or the parameter 0. The -a in line 23 represents the logical and.

e If no problems occur, the function write_head_foot () is called and writes the postscript header or footer. As

psxy needs input data the (empty) file /dev/null is read in.

4.5 Exercise 5: Command line arguments for bash programs

1. Copy the Script 4.3 with the command
cp ~/de.awi.GMTCourse/tools/write_head_foot_start.sh ~/bin/.
(Perhaps you will have to create the target directory with mkdir first.)

2. Make sure the directory ~/bin exists and execute the script in an xterm (without options).

3. Execute the script twice, write a header in the first and a footer in the second run. Take a look at the result

with gv <file.ps>.

4. Add an optional option to the program that decides whether an existing output file shall be overwritten when

writing a header. The new option shall be adressed by -f (force).

(a)
(b)
(c)

(d)

Supplement the function usage () first.
Initialize the variable FORCE with the value FALSE in the function check_args ()
Modify the while-loop, so the call of the function with the option -f
i. does not cause a mistake,
ii. sets the value of the variable FORCE to TRUE.
With the command if [-e $0UT] one can check whether a file exists. Add this test at an appropriate
location and terminate the program with an explaining error message if the variable FORCE is not set

accorcdingly.

5. Compare your program with the sample solution in Appendix C.1. This solution includes further expansions.

Decide if you want to use this or your own solution for future work with GMT.

6. Change line 14 of the example Scripte 4.2 so it uses the the new program write_head_foot.sh.

20 4 Linux-tools & bash-programming

4.6 Incidental remark

Now you know the basic GMT-commands (e.g. psxy, pstext and minmax), some useful Linux-tools (e.g. grep and
awk) and the essential elements of bash-programming (e.g. loops, queries, functions, command line arguments, ...).
With these tools it is possible to write complex programs for the visualisation of two-dimensionl data with GMT.
The Additional Exercise 6 deepens the so far acquired knowledge of bash-programming with a challenging example.
As the work through this exercise might take several hours and this workshop is focussed on the visualisation of data

with GMT, you should only start this exercise if you have sufficient time or otherwise go forward to Section 5.

4.7 Additional exercise 6: bash-programming

This exercise is way more demanding then the ones you have done before. The bash script you have to write in order
to create Figure 4.4 is about 100 lines long, so it may take a while until you get a satisfying result. But if you take
your time to understand each step, you will be in the position to write bash scripts for complex tasks on your own.
When done, you can compare your solution with the sample solution in the Appendix C.2. Do not get discouraged if
an error message occurs instead of the expected result at the first go. In most cases a typing error, a missing blank
char or a quotation mark too much or too less is the cause for the error. Do not be afraid to ask if you can not find

an error or understand an idea.

1. Copy the file
cp ~/de.awi.GMTCourse/data/bash_task.dat ./data/.
Take a look at the file (it is best viewed with tabulator size 12, which can be set easily in joe by pressing ~T and
chosing the corresponding option with the cursor keys). This file contains the mean value, the quadratic mean
value and the variance for each 20 (randomly chosen) points in time for different sample sizes. In this exercise a
bash script is to be written that plots this data (compare Figure 4.4).

2. Open the (new) file aufgb.sh in an editor and take care that

(a) the file is executed as a bash script,

(b) the variable LANG is set to C,

(c) the variable IN is defined and contains the path of the input file,

(d) the variables TDAT and TDAT2 define two temporary file names,

(e) the variable PRO=-JX15/6 is defined,

(f) the variable OUT is defined and set to the name of the PostScript-file.

3. Save the script.

4. Make the script executable and test it (it should be executable without any error messages). While proceeding in
this exercise execute the program after each change in the script. Syntax errors have to be corrected immediately
(1), otherwise the program can not be developed in a rational manner.

5. As we want to have several plots in one PostScript-file, it is necessary to decide how header and footer of the
PostScript-file shall be created. The easiest solution is to use the program write_head_foot.sh written in
Exercise 5. Call it twice, once to write a header and once to write a footer. If an error should occur during
the execution of the extern script (e.g. because the output-file already exists and no option -f was passed) the
program should be terminated immediately. This can be achieved by testing the exit value of the extern script
with the line
if [$7 -ne 0]; then exit 1; fi
(,$7“ contains the exit value of the program called last and ,,-ne* stands for not equal).

6. Take a look at the output of the script by adding the command gv $0UT and executing it.

7. Write a command that deletes the temporary files and the PostScript-file at the end of your bash-script.

8. Call the function plot_all() between the two calls of write_head_foot.sh.

9. Write the function plot_all(). It should contain

4 Linux-tools & bash-programming

21

Mean Value

Squared Mean Value

Variance

0.54

0.52

0.50

0.48

0.46

500 Sampling Size
2000 Sampling Size
10000 Sampling Size [

0.38

10 20 30 40 50 60 100

Time Sampling Point

0.36

0.34

0.32

500 Sampling Size
2000 Sampling Size
10000 Sampling Size [

0.30

0.095

100
Time Sampling Point

0.090 -

0.085

0.080 -

500 Sampling Size
2000 Sampling Size
10000 Sampling Size [

0.075

Time Sampling Point

Figure 4.4: Plot for Exercise 6.

22

4 Linux-tools & bash-programming

(a) a loop over the three values M, QM and V.

(b) a call of the function select_one() with the current value of the loop variable.

10. Write the function select_one (), that accomplishes the following points

(a) Save the passed argument in the variable WHAT.
(b) Depending on the value of the variable WHAT the variables

i
ii.
iii.

iv.

COLUMN (coloumn of the input data),

ANNTXT (label of the y-axis),

ANNINC (increment of the y-Axis, use the value 0.2 to start with) and

OFFSET (assign value 0 for M and 8.5 for QM and V. The meaning of this variable will become clear in

the framework of this exercise.

should be set in an if query. Remember to catch potential errors with an else query.
(c¢) Define the variable ANN:

i
ii.

iii.

The increment of the x-axis shall be 10.
The label of the x-axis shall be time sampling point.

For the y-axis the formerly defined values shall be used.

(d) Read the second, the one corresponding to the variable COLUMN and the third coloumn from the input file

and write the result in the temporary file $TDAT. Use the programs grep and awk (remember the -v option

for the awk command!).

(e) Define the variable REG and use the program minmax with the option -I1 to write the region option to it.

(f) Write a loop over the three values 500, 2000 and 10000 (the numbers correspond to the three sampling

sizes). The loop body should contain the following commands:

i

ii.

iii.

An if query that sets for each of the three possible values of the loop variable

A. another color (e.g. COLOR=200/0/0)

B. the variable OFFSET=0 for all but the first run of the loop.

An awk command, that reads the lines from the file $TDAT for which the condition ,third coloumn of
the line is equal to the string "Size="<sample size> “ is true and writes them into the file $TDAT2.
The call of the function plot_one().

11. Write the function plot_one(), that uses GMT-commands to plot the data in the file $TDAT2. The following

commands should be used:

(a) A psxy command, that plots the points in the corresponding color. Use the variables ANN, REG, PRO and
COLOR. Attention: The variable COLOR contains just the RGB color code and (unlike the other variables)
not a letter that defines the kind of option. Also, use the option -Y$0FFSET, -K and -0. Check if the script
produces graphical output.

(b) You will notice that the scaling of the x-axis and y-axis is inadequate.

i

ii.

iii.

Modify the scaling of the axis by changing the parameter -I of the command minmax to -110/0.1.

It is better to choose the y-increment depending on the data. Define a new variable YINC at the right
location and set it to an appropriate value.

Create an axis caption with additional 'frametics’ (compare Figure 4.4), by using YINC and ANNINC in
the definition of ANN. (Attention: a$§YINCE£$ANNINC can not work because f is interpreted as part of the
variable $YINC. To solve the problem use double quotation marks at the right location.)

(¢) Now try to connect the points with a line by using a second psxy command. The result will not be sufficient.

i

Try to understand why; it might help to take a look at the file $TDAT2. That can be done e.g. by
using the command cat $TDAT2 at the appropriate location (here!) in the script (man cat explains
the command). As it is enough to see the data once (from the first run of the loop), it makes sense to

terminate the bash-program with exit afterwards.

5 Maps, cities, legends and more 23

ii.

iii.

iv.

You will realize the data is unsorted; the psxy command connects the data points in the given (and in
this case pointless) order.

To sort the data use the program sort. The output of sort can (and should) be directly passed to
psxy via a pipe.

Probably the plot is still not correct. To understand the reason take a look at the output of sort: The
sorting is performed alphanumeric.

. Open the manpage of sort und search for the option -n. Now you should be able to create the figure

(compare Figure 4.4).

(d) To change the order of the plots (the mean value first, the variance last) you have to

i

ii.

change one loop
modify the definition of the variable OFFSET at two locations.

(e) Until now one can not see in the figure which color belongs to which sample size. Therefore the command

pstext is used.

i

ii.

iii.

Pass the sampling size to plot_one () and save it within the function to a new variable.

The y-position of the text must also be passed to the function plot_one (), as it must not be constant
(test it with a constant position first if you don’t know why). Add the new variable YTXTPOS at the
right location, pass it to plot_one() and change that function accordingly.

Write a call of the pstext command, that reads in the text to be displayed via standard input (<<END).

12. After finishing this exercise your figure should look like Figure 4.4. Try to understand eventually existing

differences.

5 Maps, cities, legends and more

With pscoast it is quite easy to generate maps in 25 different projections with rivers, political boarders and so on.

But in many cases it is necessary to add point data (e.g. postions of volcanoes, cities or deposits) with symbols and

text as a second layer in such a map. How that works is explained in this chapter.

5.1 Exercise 7: Extern data, transparency, pslegend

In this exercise Figure 5.5 shall be generated. Though it is not really aesthetic due to too many colors and being

overloaded, one gets to know some useful tools and options during its creation.

1. Write a bash-script that generates a map showing Germany and its political boarders in Mercator projection.
As region option use -R4/18/45/56 (comp. Fig.5.5).

2. GMT comes with a database of the political boarders, but it can not assign closed traverses to countries. For

this purpose, external data (e.g., from the internet) is needed. For the purpose of this workshop you’ll find the

necessary data in textttde.awi.GMTCourse/data/germany2pts.txt.

3. Take a look at the data with an editor. It consists of of several segments (why?). GMT is also able to process

multi-segment files. If you take a look at the manpage of psxy you will learn that therefore the option -M

must be used and the segments are separated by a >.

4. Use this dataset to color Germany (compare Figure 5.5).

5. Plot the

(a) Water areas,

(b) rivers,

(c

state boarders and

(d) a scale (try gmtset LABEL_FONT_SIZE = xx or gmtset ANNOT_FONT_SIZE = xx to set font size).

24

5 Maps, cities, legends and more

10.

11.

56° 56°

54° 54°

Berlin

52° 50°

Minster

50° 50°

48° 48°

® cities | A volcano
O restricted area ® Germany

46°
0 100 200 300
GMT-Workshop

46° o
I—

5 10° 15°

Figure 5.5: Examples for creative use of pscoast, psxy and pslegend.

(e) a directional rose

with one additional pscoast command.

To display cities in the map open a new file (e.g. german_citys.txt) and enter for the cities (e.g.) Miinster,
Munich and Berlin in the first coloumn the longitude, in the second the latitude, in the third the name of the city
and in the fourth the number of inhabitants. Instead of the German umlauts you have to use the corresponding
octal codes (see p. 13).

Use awk and psxy to plot the cities as dots. Calculate the size of the dots automatically by a suitable scaling of
the number of inhabitants.

Use awk and pstext to label the cities. To generate the necessary input for pstext, the command awk ’{print
$1, $2-0.2,12,0,1,"MC",$3}’ $INCis quite handy ($INC is the variable where the input file german_citys.txt
is saved). Try to understand (eventually consult man pstext) what’s happening.

It is also possible to use your own (or predefined) symbols (defined by a polygon) by using the command psxy
-Sk. A list with all predefined symbols can be found in

$GMTHOME/share/custom/. For example you can create a volcano eruption in Munich by using the predefined
symbol volcano. To read only the line with ,Munich* from the input file one can use the command awk ’{if ($3
== "Munich") print $1,$2}’ $INC as filter.

Draw a ,restricted area” around the volcano eruption. Use the command psxy with the option -Gp300/8:F0/255/64B-.

Read the manpage, to find out what p300/8 means. Vary the values! Unfortunately the manpage is not com-
plete. Behind the ,,:* is declared which colors are used as forground (F) and background(B). The - does not
stand for a color, but a transparency (a markedly useful feature).

It was possible to generate legends with several pstext and psxy commandy.However, since GMT4/ the pslegend
command makes life a lot easier. Take a look at the manpage (especially the given examples) and try to create

5 Maps, cities, legends and more 25

. . 180° §
180° 260 200 60°
Y. .
. .
2, . G\ %,
Tokyo i:
~ TBkyo | 2oy =
80° ? 2 @ 2
<{j,, > & = %
» o
[T > iy i!/ 1% =
;b ? g il / k o 7
60" =) o
4 SESRE L8 118 % . 8
‘} 5 K A == . * Mymbai
40" T2 Chicags T~ = § "
P = AT I =B ‘}f-_* ﬁ% Mum
Habana | [o &
b 400 N N el & 7%, &
B v .
_20° l } Y — 2Y\°° Lambert
Mercator J Ghomonic Great Circle (psxy)
—40° 4 g:g;g:ée (;zs?) A Great Circle (psxy) 3 —— Loxodrome (psxy —A) b§
Spherical Eanr‘: Projection (project) { Loxodrome (psxy —A) » Spherical Earth Projection (project)
- Plane Earth Projection (project -N) Spherical Earth Projection (project) - - - Plane Earth Projection (project —N) i
~60° T T - Plane Earth Projection (project -N) S T0° T 20
120° 180° 240° 300° 0 60° T 2 0
.
Figure 5.6: Examples for different projections and node connections on a sphere.
16p°
2.
.
S
Q 'O
Tokyo ',
X - 180°200° 220° 240° 260° 280°300°320°340° 0° 20° 40° 60° 80" 100°120° 140" 160" 180"
=] . .
\ . 3, 80 — = = ==~
-~ S o0 123 ;J/%sﬁ R il = hod
A MRS Sy 2Nk AR ENAR EE
60" 0 T \724‘3 A Tokyo [
—r s : ‘\\\\\\ 2 [R /Z .
S umbai f < 40" lumbai
,_\ SESON KL)""\\ Kﬁ A
« mg.i\m‘ G o ‘ o'y v
, X w3 \ PRy
[: & & |7 XA . "
Stereograpfic AEEY -] i o
ereographic j
Great Circle (psxy) _. —20° Gall-Peters N
—— Loxodrome (psxy ~A) S N Hammer /’/ -40' - Great Circle (psxy) S a0
Spherical Earth Projection (project) L (LBVealdCiVC\e (psxy) " ;:’;gi’é’;“;nh e
5 jecti ject — oxodrome (psxy — 60" —60°
Plane Earth Projection (project -N) i Spherical e et (e 60" - - Plane Earth Projection (project -N) e e 60
N ... jecti i | - B T T T T T T T T B
=90 T 20 Plane Earth Projection (project -N) 80 80
0 180°200° 220° 240° 260° 280°300°320°340° 0 20° 40° 60° 80" 100°120° 140" 160° 180"

Figure 5.7: Additional projection examples.

a legend as seen in Fig. 5.5. To set the font size in the legend you can use gmtset ANNOT_FONT_SIZE = xx.

5.2 Exercise 8: Something about projections

GMT comes with many many projections. Not all projections are suitable for all tasks. Keep in mind, that the

interpretation of geographical scientic data may depend on the projection!

1. Take a look at Figure5.6 and try to understand the difference of the lines in connection with the applied
projection.

2. Copy the following script to your working directory
cp ~/de.awi.GMTCourse/projections_start.sh

3. Try to understand what the script does and what the different lines mean in each projection.

4. Adjust the script so that it shows the created map in the following additional projections: Stereographic, Hammer,
and Gall-Peters (see Figure 5.7).
Note: The one-world maps, sold by many alternative stores, usually apply the Gall-Peters projection. Why?

6. Compare your solution with those in C.4.

26 5 Maps, cities, legends and more

54°00"

1| X = 1 /\ O ssas
IR

| Pl

.

Figure 5.8: Plotting a ship track from GPS-data.

5.3 Exercise 9: Plotting ship track GPS-data on a map

We have introduced many tools to apply our knowlegde to a simple application: Consider some files with given GMP-
data. Your job is to visualize the track. In this example we have two GPS-files (one for each day) we will plot on a

map of the German Bight.

1. Copy the following GMP-files to your working directory
cp ~/de.awi.GMTCourse/data/nmea.day[12] ..
2. Take a look at those files, this is the NMEA-output of a GPS. The longitude and latitude information we need has
to be extracted from the lines starting with §GPGGA. According to http://www.gpsinformation.org/dale/nmea.htm,
the geographical information within the NMEA-record is coded as
4807.038,N Latitude 48 deg 07.038’ N
01131.000,E Longitude 11 deg 31.000" E
3. Write a bash-script:

(a) Write a loop over both nmea.day files

(b) Extract the lines starting with $GPGGA (hint: use grep ~)

(c) Use awk to extract the degrees and minutes (with substr) and calculate decimals from the minutes.
(d) Write the result into one or two files.

(e) Create a figure looking similar to Figure 5.8.

4. Many solutions are possible, compare yours with

~/de.awi.GMTCourse/nmea. sh.

5.4 psxy and the date format

A new feature since GMT4 are time azes in XY-plots. It is easy to use the time format in the ISO-8601 norm, but
individual formats can be defined as well. Here one example for the definition of abscissa and ordinate:
-R/2001-01-01T00:00:00/2001-03-15T12:00:00/40/80 X-axis from 1.1.01 till 15.3.01, 12:00
-JX16.5T/3.0 Width of the time axis: 16.5 cm, height of the plot: 3 cm
The label of the axis can be set via -B. With gmtset TIME_LANGUAGE <language> it is possible to switch between
different languages. This is illustrated in Script 5.1. -B[p] defines the primary label, -Bs the secondary label. In the
upper part for example the first labelled intervall is the year (-1Y), the second is the month, every third month is
labelled in an abbreviated form (Jan, Feb etc.) (30), every month gets a frametic (10) and every 12th (120) is marked
by a line. Please note that the y-axis caption for -Bs is not plotted (/a0£0).

An overview of the many date and time options for GMT4 can be found under
http://gmt.soest.hawaii.edu/gmt4/doc/html/GMT_Docs/node22.html or directly by using ’man gmtdefaults’.

© 0 N D U W N =

U Ut U OU O OU O U O U0 B B B B B B R R R B W W W W W W W W W W NN NDNDNNNNRE R R e e
© 00N DU AR WNRFEF O © WSO R WN O © WU R WN RO ®©OoWwSO U b WNRFEO®©WWNUAE WN R~ O

5 Maps, cities, legends and more

27

Script 5.1 psxy with date format

#!/bin/bash
cp gmtdefaults4.base .gmtdefaults4

OUT=date format.ps ; PRO=—JX16.5T/3

gmtset TIME_LANGUAGE us # oben

gmtset PLOT DATE_FORMAT o # o: month only
gmtset TIME FORMAT PRIMARY Ao # Ao: abbreviated month in capital letters

#X—Achse Time
dat11=2001-01—-01T00:00:00
dat12=2003—01—-01T00:00:00
#Y—Achse

dat21=40

dat22=80.1

psbasemap —R$datll/$datl2/$dat21/$dat22 $PRO —X3 —Y15 \
—B30flo:"":/a20f10g20:"value":WSe —BsalYgl20/a0f0 —-K > $OUT

psxy —R $PRO -W7/50 —O -K <<EOF >> $OUT
2001—-03—12 69
2001 —-07—-02 66

EOF

gmtset TIME_LANGUAGE fr # Middle

gmtset PLOT _DATE_FORMAT —"dd_o" # replacing the leading zeros with ’'—’
gmtset PLOT CLOCK_FORMAT hh # hour only

dat11=2001-01—-01T00:00:00
dat12=2001-01—-05T00:00:00

psbasemap —R$datll/$dat12/$dat21/$dat22 $PRO \
—B6hflh/a20f10g20WSe —BsalDflhgld/a0f0 —Y—5 —K —O >> $OUT

psxy —R $PRO -W7/50 —K —O <<EOF >> $OUT
2001-01—-03T06:41:00 53
2001-01—-03T19:41:00 59

EOF

gmtset TIME_LANGUAGE no # unten
gmtset PLOT CLOCK FORMAT hh :mm
gmtset TIME FORMAT SECONDARY fD # fD: full name of day in small letters

dat11=2001-02—02T00:00:00
dat12=2001—-02—-04T11:00:00

psbasemap —R$datll/$datl2/$dat21/$dat22 $PRO \
—B6Hf2h /a20f10g20WSe —BsalKgld/a0f0o —O —K —Y—5 >> $OUT

psxy —R $PRO —W7/50 —O <<EOF >> $OUT
2001 —-02—-02T11:59:00 51

2001 —-02—-02T14:59:00 71

EOF

gv $OUT &
ps2raster —A —Te $OUT
rm $OUT

The required settings are e.g. controlled by gmtset TIME_LANGUAGE,

PLOT_DATE_FORMAT, PLOT_CLOCK_FORMAT, TIME_FORMAT_PRIMARY, or TIME_FORMAT_SECONDARY.

28

5 Maps, cities, legends and more

value

80
\
60
40 ‘ U I T 7 ! T 7 I
AN APR JUL OCT JAN APR JUL OCT
2001 2002
80
60
/
40 rrrrryrrrrreryrrrrryrrrrrprrrrryrrrrryrrrrrprrrrryrrrrrprrrrerrrrrryr T rrrr T rrr ey rrrr ey T rreT
0O 6 12 18 0 6 12 18 0O 6 12 18 0O 6 12 18 O
1 Janvier 2 Janvier 3 Janvier 4 Janvier
80
60 //
6 4+—T—"——"—T ——T T T T T T T T T
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

Fredag

Lardag

Sgndag

Figure 5.9: Three examples for date and time scales: Script 5.1.

0 N U s W N

[I I e e R N
N = O © 01U ks wi~ O ©

6 Representation of data with two independant variables 29

6 Representation of data with two independant variables

For the representation of data that depends on two variable, GMT offers plenty of possibilities. In this chapter,
the programs psxyz (Section 6.1), grdcontour (Section 6.3), grdimage (Section 6.5) and grdview (Exercise 13) are
introduced. Finally the conversion of data to a format readable for GMT will be subject to Chapter 7.

6.1 Simple 3D graphs with psxyz

The most simple method to represent 3D data graphically is offered by the command psxyz. It is introduced in Script
6.1.

Script 6.1 psxyz

#!/bin/bash
cp gmtdefaults4d.base .gmtdefaults4

OUT=psxyz_1la.ps

PRO="-JX15/10_—JZ5"

REG=R0/10/0/8/0/10
ANN=B1:x—axis:/l:y—axis:/2:z—axis :SWneZ
ANG=E135 /30

sxyz $REG $PRO $ANN $ANG —So00.4 —G0/0/200 <<END>$OUT
1 1

p
0
1
2
3
8
10
6

N~ 00 & Ot N
N U W N

END

gv $OUT
ps2raster —A —Te $OUT
rm $OUT

The options of the commands psxy and psxyz do not differ substantially so in this section only new elements are
discussed.

e The projection now occurs not only in two but in three dimensions. Therefore, additionally to -JX, -JZ is used.
e The region option -R is enhanced by zpi, and zyay.

e The axis option -B now contains an additional third part for the z-axis.

e The biggest difference is the option -E, where the viewing angle is set by azimuth and elevation.

e The input data must (of course) consist of three columns (for some symbols even more).

6.2 Exercise 10: psxyz

1. Copy Script 6.1 with the command

cp ~/de.awi.GMTCourse/psxyz_la.sh .

and execute it.

Vary the parameters of the projections -JX and -JZ.

Change the Z to z in the axis option -B, or completely delete this char. What happens?

Experiment with different viewing angels.

Test other symbols in different sizes.

Try to create the right graph in Figure 6.10. At first think about the differences between the left and the right
graph. Use the manpage of psxyz and proceed step by step!

S oA W

0 N D U W N

30 6 Representation of data with two independant variables

6.3 2D graphs with grdcontour

psxyz is unsuitable for the visualisation of 2D-fields, like elevation. Such data must be ,gridded before it can be
plotted. How to create grid files is subject to Chapter 7. This Section is about the visualisation of an existing grid
file. The easiest possibility to plot 2D-fields is a contour plot. In Script 6.2 a simple example can be found.

Script 6.2 grdcontour

#/bin/bash
cp gmtdefaults4.base .gmtdefaults4

PRO=—JL10/43.5/35/50/15
REG=—R—10/30/35/59
ANN=—B10f5g5/5f5g2.5
OUT=grdcontour . ps
INGRD=./data/etopo5.grd

pscoast $REG $PRO $ANN —G200 -K > $OUT
grdcut $REG —Geurope.grd $INGRD
grdcontour $REG $PRO europe.grd —O —C500 —A1000 >> $OUT

gv $OUT
ps2raster —A —Te $OUT
rm $OUT europe.grd

e An Azimuthale-Lambert-Projection (-JL) is used. More information can be found in the manpage of pscoast,
psbasemap or the official documentation of GMT (see Chapter 1.2).

e The variable INGRD contains the path of the file with the gridded data.

e The command grdcontour plots the contour lines.

6.4 Exercise 11: grdcontour

1. Get the topography from ftp://ftp.awi.de/incoming/mthoma/etopob.grd
2. Copy the Script 6.2 with the command

cp ~/de.awi.GMTCourse/grdcontour.sh .

and execute it.

3. Open man grdcontour and use it to solve the following tasks.

(a) Find out what is the matter with the two options -A and -C (with their current values) and vary their
values.
(b
(c
(d
(e
4. Finally the plot should look like the central plot in Figure 6.11.
5. Now the script will be expanded, so that different regions can be plotted with the script.

Add a yellow box as background for the caption.
Add the option -G and try different parameters.
Add a unit to the labels of the contour lines.
Scale the data so the unit can be km.

)
)
)
)

(a) Create a loop over the values Europa and Alpen.
(b) Within the loop the two functions select_region() and plot_ps() shall be called.
i. Write the function plot_ps(). This function shall contain
A. the formerly used GMT commands,
B. gv $0UT and
C. rm $0UT.

6 Representation of data with two independant variables 31

6.5

(In this case ps2raster is not necessary.)

ii. Write the function select_region(). In this function the variables PRO, REG, ANN and OUT shall be set
in an if-query depending on the variable passed to the function. Use the following values for projection
and region for the Alps: PRO=-JC10/45.5/15 (Cylindric-Cassini-Projection) and REG=-R5/15/43/48.

(c) The graph of the Alps should finally look like the right one in Figure. 6.11.

2D plots with grdimage

For the representation of contour lines, the abilities of grdcontour are obviously limited: There are areas with large

and areas with small height gradients and therefore the density of contour lines varies strongly. More beautiful figures

can be created by grdimage.

6.6

1.

Exercise 12: grdimage
Enhance the script you wrote for Exercise 11 with the new function check_args (), where the arguments passed
to the script are evaluated (compare Script 4.3 and Exercise 5).

(a) The Region shall be set with the Argument -r ([EJurope, [A]lps).
(b) The graphic representation shall be set with the argument -r (grd[c]ontour, grd[ijmage).

. Initialize the variables in a way that a call of the program without arguments results in the figure known from

Exercise 11.

Write an usage () -function that explains the supported arguments.

Test your program with different options.

Now add an if-query for the variable of the graphic representation to the function plot_ps(). Do not forget to
catch potential occuring errors with else.

Add the following three lines to the part executed if grdimage is to be used

(a) CPT=color.cpt
(b) makecpt -Ctopo -T-7000/3500/1000 > $CPT
(c) grdimage $INGRD $REG $PRO -C$CPT > $0UT

and execute the script with the option to use grdimage; test both regions.
Probably you will be a bit disappointed by the result, but that can be changed. Anyway at first some basics
shall be explained.

(a) The program grdimage needs a colormap, that contains the information which values are assigned to which
color. This colormap is read in by the option -C.
(b) In this case the name of the colormap is saved in the variable CPT.

(c) To create the colormap the command makecpt is used. The most important options for this program are:

i. -T sets the colors with the lowest and the highest value and defines the distance between the different
colors

ii. -Cis reference to a so-called master- colormap. The contained colors are scaled according to the option
-T. GMT offers several pre-defined colormaps (Figure A.16), individual ones can be created if necessary.

Add a pscoast command that plots the coastline. As resolution choose intermediate and neglect structures
smaller than 1000 km?.

Add a legend for the used colormap with the command psscale. Use the option

-D7.5/-1/15/0.5h -B1500:Topography:/:m:

You will see that the plot is partially out of the visible domain. You can change that by adding a bigger offset
in y-direction in the first GMT-command with the option -Y5.

32

6 Representation of data with two independant variables

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.
20.

21.
22.
23.

6.7

Test the option -I and -E of the command psscale.

Test other values for the -D option of the command psscale (undo!).

Change the increment in the option -T of the makecpt command (e.g. 100 or 3000).
Test (with different increments) how a continuous color gradient affects the plot.

Test other colormaps, consult Figure A.16 for the selection.

Use the GMT-program grdgradient to increase the height of the structures in the plot:

(a) Define the variable GRADGRD=gradient.grd.

(b) The command
grdgradient $INGRD -G$GRADGRD -Ne0.6 -A0/270
calculates the derivative in the directions defined by the option -A and normalized by the values set in the
option -N. Further information can be acquired with man grdgradient.

(c) Add the created gradient file to the grdimage command with the option -I.

Execute the script. You will realize that it takes a long time. That is because the input file for the topome-
try /bathymetry contains the data for the whole earth. It would be absolutely sufficient to apply the command
grdgradient (and all following) just to the domain that is going to be plotted. Therefore take the following
steps:

(a) Define a new variable INGRDCUT=in_tmp.grd
(b) Open man grdcut and and use it to find out how to cut out the target domain.
(c) Replace $INGRD by $INGRDCUT where necessary.

Test different parameters for the options -N and -A of the command grdgradient.

You will realize that the representation of Europe is quite good while the input data (with the 5 minutes
resolution) is apparently not sufficient for the Alps. This problem can be solved with the command grdsample:
Write an if-query that takes the following steps for the Alps:

(a) Defining the variable INGRDCUT2=in_tmp_2.grd,

(b) Calling the command grdsample and interpolating the topography in a resolution of one minute to the file
$INGRDCUT2 and

(c) Moving (not copying!) the file $INGRDCUT2 to $INGRDCUT.

Attention: The command grdsample does not create any new data but interpolates between the existing data
and creates new sample points. So the new result does not get any better but is just more beautiful (at least in
most cases).

Use different colormaps depending on the region of interest.

By using the command makecpt one can abandon the option -T and the values in the master-cpt-file will be
used as limits. Test that command with different colormaps!

Delete all temporary created files within the script.

Compare the plots your script generates with Figure 6.12.

Compare your solution with the sample solution in Appendix C.6.

Exercise 13: 3D graphs with grdview

A more plastic representation than with grdimage can be created with grdview. The options and parameters of both

programs are pretty similar, that is why it only takes little effort to modify the solution of Exercise 12 (which can be

found in Appendix C.6) so it uses grdview.

1.

Enhance the description of the parameter -g in the usage () function, so it covers the use of grdview (parameter

v).

33

6 Representation of data with two independant variables

or & 9 r Z 00
sixe-z

Figure 6.10: Example for psxyz and Exercise 10.

s 127 13 14
N N |

10°
.

15

14"

1 12°

1

o

bl

Figure 6.11: Examples for grdcontour and Exercise 11.

30"

~10°

(7Y 4

-

Z

.

7 .
.,"'-"_

-6000

0 2000 4000 6000 8000
Topography

—2000

-6000 -4000

—8000

Topography

Figure 6.12: Topography of Europe and the Alps with grdimage.

34 7 Creation of grid files in the netCDF-format

2. Many commands in the the function plot_ps can be used for both, grdimage and grdview, therefore the
implementation elif [$HOW == i -o $HOW == v]1; then is reasonable.

3. psscale shall be called at last and write the footer.

4. Modify the program so the command line option -gv suppresses the execution of grdimage and pscoast but
grdview is called. Additional to the options used by grdimage, grdview needs the following parameter: -JZ3
-E200/40 -Qi

a) The OptiOIlS -JZ3 -E200/40 are already known from Section 6.1 SXyz).
PsXxy
b) The OptiOH -Qi controls the style of the representation. More information can be found in the manpage
g

(man grdview).

5. Now you should be able to generate the two plots in Figure 6.13 with your script.

—— —_— pm b m

T T T 1 T 1 T T

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000 ~6000 -4000 -2000 0 2000
Topography Topography

Figure 6.13: Topography of Europe and the Alps with grdview.

7 Creation of grid files in the netCDF-format

The programs grdcontour, grdimage and grdview are all reading in grid files as input data. A grid file contains all
necessary information in binary form so the data can be saved compactly and processed quickly. To save these infor-
mations GMT uses the netCDF (Unidata Network Common Data Form) format?. Not all sources (internet, research
institutes, own measurements, ...) provide data in the netCDF-format, therefore in most cases a data cenversion will
be necessary. In the simplest case the data is available in a three-coloumned-table (as ASCII-file) with an equidistant
(z,y, z) triple. If the domain is known (it can be get with with minmax) and the constant distance of the data points
as well, this data can be converted to the netCDF format with the command xyz2grd -R<Region> -I<dx[/dyl>.
Binary data can also be converted to the netCFD format with xyz2grd, but in this case further information (in form
of options) is required. These will be topic to Section 7.1.

If the data is not available equidistant, it has to be gridded. That means, the existing data is interpolated or
extrapolated on an equidistant grid. This procedure is error prone as — depending on the used algorithm — the original
information can be distorted (See Section 7.3).

2http://www.unidata.ucar.edu/packages/netcdf/.

7 Creation of grid files in the netCDF-format 35

7.1 Digital height models

A good topograhy data is available from the SRTM (Shuttle Radar Topography Mission,
http://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission). The data can be downloaded in different

resolutions:
SRTM30: The SRTM30 dataset can be seen as the legitimate successor of GTOPO30. Both datasets have a resolution

of 30” or round about 1km. But the SRTM30 data is way more precise. That is mainly because the SRTM30
dataset contains only data from one source (radar antenna of the space shuttle), not to mention the better
technology. All data south of 60°S and north of 60°N is more or less identical with GTOPO30, because there
were no new measurements in this area. As the the dataset is quite large, it is devided in 28 parts.

SRTM3: The SRTM3 Data results from the same raw data as SRTMP30, but it has a resolution of 3” or round about
90 m.

The conversion of data to the netCDF-format is sometimes quite troublesome. Basically every data source requires
different options and parameters. In the best case the dataset consists of a long list of height values, better binary than
ASCII (much faster). For the conversion GMT provides the tool xyz2grd®. The documentation of the SRTM-data is
supplied with the data. If you e.g. want to represent the Alps, the data of interest can be found in the file €020n90.
Get the data (incuding the meta-information) from ftp://ftp.awi.de/incoming/mthoma/e020n90.tar.gz extract
the file and take a closer look at the header:

From these information the paramters for xyz2grd must be extracted. Open the manpage of xyz2grd for better

BYTEORDER M

LAYOUT BIL

NROWS 6000

NCOLS 4800

NBANDS 1

NBITS 16
BANDROWBYTES 9600
TOTALROWBYTES 9600
BANDGAPBYTES 0

NODATA -9999

ULXMAP 20.00416666666667
ULYMAP 89.99583333333334
XDIM 0.00833333333333
YDIM 0.00833333333333

understanding of the following information.

-R20/60/40/90

results from content of the documentation.

-Ge020n90.grd
Choose a name.
-I0.5m

XDIM and YDIM set the resolution in x- and y-dicection. 0.00833333333333°corresponds to 0.5 minutes.
e -N-9999
If there are regions without values in the dataset (e.g. sea) this value is assigned. In case of SRTM30 it is —9999.
o -F
Force Pixel Registration (Grid Registration is standard in GMT and does not need an option). Basically there
are two possibilies to save extensive data: The data points can refer to the intersection of grid lines or just to the
space in between them (see table). This is an important information for GMT as the number of sample points

in rows and columns and therefore the overall number of data points is changed.

31f you have a not documented binary format that you want to convert - do not even think about it! (Except you have really much time
and consider yourself being quite frustration tolerant :-)

36

7 Creation of grid files in the netCDF-format

7.2

Grid Registration Pixel Registration
o o
graphic
o O
Tmax—Tmin _ __ 60-20 _ Tmax—Tmin __ 60—20 _
columns T + 1 = 5008333333333 + 1 = 4801 T = Goos333333333 — 4800
Ymax —Ymin _ 90—40 _ Ymax —Ymin __ 90—40 _
rows T + 1 = 5508333333333 T 1 = 6001 T = Goos3sasazazs — 0000

This is how one can see that the SRTM30 Data uses the Pixel Registration format and therefore the parameter
-F is necessary. (The SRTM3 data uses the Grid Registration format!!!).

-ZTLhw

If you try to take a look at the file €020n90.dem with an editor you will see pretty fast that it is a binary file.
Basically the binary format is the best way to store large amounts of data as it can be saved with minimum
space requirements and processed quite fast. Unfortunately, it is also a bit harder to convert. Generally, it is
common that the data of a domain is written line by line from the top left to the bottom right corner. This is
what the parameters TL stand for (top-left, that is default in GMT and can be dropped in this case).

The last two parameters are way more delicate. As you might know from programming C, Fortran or Pascal
etc., there are a couple of different numerical types of variables which differ in the covered number range and
precision. But they also differ in the required memory and here the trouble starts. xyz2grd needs to know what
kind of number is used in the source file. In the manpage of xyz2grd is a list of all supported numerical formats.
If working with DEMs you can always start with trying the parameter h. In programming C and C-++ this is
type short. It is meant to save integers with a relatively small range of numbers. Normally 2 byte are provided.
Thus, for the coding of a short-value are 16 bit available (2! = 65536 possibilities). One unsigned short is
therefore able to code a number range from 0 — 65535. A signed short divides the number range equally in
positive and negative values and lies consequently between —32.768 and 32.767 - virtually perfect for a digital
height model.

If parameter h happens to be not working and xyz2grd results in an error message, the correct data type has
to be calculated. Number of lines x Number of columns = Number of data points or 6000 x 4800 = 28800000.
Now we take a look at the size of our DEMs (1s -1 e020n90.dem). The filesize is 57600000 byte.

filesize / number of data points — memory per data point or 57600000/28800000 — 2.

As you can see every data point in the SRTM30 dataset has 2 byte available. As it has to be possible to save
negative height values one can logically conclude that the file format signed short 2-byte integer (or parameter
h) must be used.

The parameter w (byte swapping) is necessary because most height models are created on Unix-workstations.
The CPUs of workstations (big endian) save numbers consisting of several bytes in a different order than x86
CPUs of desktop computers (little endian).

Exercise 14: DEMs and xyz2grd

. With the information of the last section, you should now be able to

(a) download the DEMs e020n90.tar.gz and w020n90.tar.gz
(b) convert them to the netCDF format and
(c) check the created .grd file with grdinfo.

Use the information contained in grdcut and grdpaste to generate a grid file for the region -R5/30/43/52.

3. Check the new grid file with grdinfo.

Another test of the grid file can be performed with grd2xyz. As the test of this high resolution dataset would
take too long and this tutorial is mainly about the functionality of the programs, resample the dataset with
grdsample to an interval of 1° x 1° degree and use grd2xyz on the result. You should be able to interprete the
output produced by the shell.

7 Creation of grid files in the netCDF-format 37

5. Plot the SRTM30-data with grdimage. Use the Lambert-projection -JA18.5/47/15 and the region -R10/43/28/51r.
Find out what the r stands for. Use one of the colormaps GMT_topo.cpt, GMT_relief.cpt or GMT_globe.cpt.
These can be found in the directory $GMTHOME/share/cpt/. Use grdgradient -A0/270 -NeO.6 to create a
gradient file and plot a legend with psscale.
Hint: As long as you experiment with the different parameters you should use the scaled-down grid file to de-
crease computing time. Figure 7.14 contains several examples which can be used as orientation. Note that the
areas with no valid data (NAN, not a number) are masked in different colors. If a *. cpt-file does not contain any
information for the color of NAN (a line starting with N), the value set in .gmtdefauts will be used. This value
can be redefined with the command gmtset COLOR_NAN = 0/50/150.

6. GMT is also suitable to mask certain area of data.

(a) Use the dataset of the Austrian boarder de.awi.GMTCourse/data/austria2pts.txt for the next task.
(b) Use the command grdmask to create a new grid dataset. Assign 1 to all points inside (and on) and 0 to all
points outside the Austrian boarders. The domain and the grid interval must be identical to the dataset
which shall be masked. Try to understand the command
grdmask austria2pts.txt -I0.5m -R5/30/43/52 -F -NO/1/1 -Gmask.grd
by reading the manpage.
(c) Use the command grdmath to multiply the two grid datasets:
grdmath mask.grd <grid file>.grd MUL = austria.grd
Try to find out what this operation does. The command grdmath is quite powerful and enables numberous
calculations, therefore a closer look at the manpage is recommended.

(d) Plot the new grid file austria.grd with grdimage.

7. Plot the SRTM30-data with grdview. Check out different -Q paramters. (Attention: -Qc creates a file three
times as big as -Qi and the parameter -Qs makes this ratio even bigger then 75.)

A sample solution can be found in Appendix C.7.

7.3 Gridding of data

GMT offers three programs to grid data. In this context ,gridding” refers to converting unevenly distributed ASCII-
data to the netCDF-format. The program xyz2grd does not belong to this category as it does not grid the data but
just converts it from ASCII (respectively binary) to netCDF. As it would go far beyond the scope of this workshop
to discuss the different gridding algorithms, this section shall just introduce the three programs provided by GMT.
More detailed information and examples can be found in the Cookbook in the sections 7.12 and 7.14-7.16. Generally
it has to be stated that there is no optimal gridding algorithm as the best choice of program strongly depends on the

application and the existing data.

e triangulate
Gridding by Delauney-Triangulation: The existing (unevenly distributed) data points are connected with the aim
of creating preferably equilateral triangles. This is achieved by maximizing the minimum angle in all triangles.

— A value is calculated for all points located inside a triangle.

— By using the distance to each corner of the triangle as a weighting factor these values can easily be computed.

— Points outside of the triangulated domain are not assigned any value (respectively NAN, in other words:
There is no extrapolation).

— No point has a value smaller or bigger than the three local triangle points.

— The computed grid is not differentiable as points of discontinuity might arise where two neighbouring grid
points are located in different triangles. That is physically not correct!

— By using the command grdfilter the field can be made differentiable via smoothening it.

38

7 Creation of grid files in the netCDF-format

Elevation
Elevation

Elevation
Elevation

Elevation

Figure 7.14: Graphic representation of the SRTM30-data (several examples).

7 Creation of grid files in the netCDF-format 39

e nearneighbor

For every point it is searched for existing data points in a given search radius -S that is devided in a certain

number of directional sektors -N. From every sector the closest point is chosen and the value is calculated by a

weighted mean value from all sectors.

— There is no extrapolation. Points with no valid data points in the search radius are assignened the value

NAN.

— nearneighbor works best if the existing data points have about the same direction in x- and y-direction as

otherwise the search radius would have to be a function of the search direction.

e surface

Is able to calculate good looking and smooth grids.

For every point of the grid a value is calculated (extrapolation!).

At the boundary points extremes might appear, especially if the distance to the closest existing data point
is large.

As an iterative method is used, the calculation of a grid with surface takes significantly longer than it
would take with triangulate or nearneighbor.

Before using surface one should use blockmean, blockmedian or blockmode to calculate a local mean
value for the data set.

To conlude this section it shall be mentioned what Walter Smith, one of the two GMT developers, had to say

concerning the well-known gridding algorithm kriging:

Strictly speaking, kriging is a particular interpolation technique, and GMT does not have anything that does exactly this.
By experimenting with the option switches on surface or nearneighbor you may get a result that is just fine for what you had
in mind, and may be close to what kriging would do.

For those who are interested:

kriging (named after a South African mining geologist) refers to interpolation by the following process:

1. Determine the autocovariance function of the data (the kriging literature refers to this in the somewhat transposed form
of a ,semi-variogram®).

2. Interpolate the data by a moving weighted average process, using the autocovariance to determine the weights so as to
minimize the expected squared error in the interpolated estimate.

While this sounds good in theory and is optimal in the sense of minimizing the expected squared error, in practice there
are some issues to contend with. First, the error minimization and the optimality can only be established for data having
certain statistical properties (stationarity, ergodicity, and some restrictions on the form of the autocovariance function), and
many datasets won’t have these properties (stationarity, for example, so one has to remove a trend surface first and then
do kriging on the residuals). Second, a practical algorithm cannot offer complete freedom in determining the autocovariance
function empirically from the data; instead, algorithms support only one or a few functional forms for what kriging calls
the ,semi-variogram®, and one uses the data to fit parametric models to this and then uses this for the interpolation. This
practical restriction means that the assumed form of the autocovariance actually employed by the routine is not the true
autocovariance of the data, and this means that the optimality has been destroyed. So kriging is optimal in theory but maybe
not in practice. Finally there is the problem of how you get a good estimate of a semi-variogram or a covariance function
from data sparsely and irregularly spaced in the first place — these things are most easily calculated from gridded data, but
if you had a grid you wouldn’t be kriging in the first place. Concerns about these issues have stopped me from writing a
kriging program for GMT so far. (This wasn’t a problem for Krige in his original application; he was given samples (rock
cores drilled) on an equidistant grid and his problem was to estimate the properties in the gaps between samples.)

In a certain sense, both nearneighbor and surface are also interpolating by moving weighted averages. This is obvious for
nearneighbor and less obvious, though embedded in the finite difference equations, for surface. Thus both of these methods
can give a result something like kriging; the only question is whether the choice of weighting scheme in these algorithms is
close to what kriging would have chosen, or close to optimal. By playing with the tension parameter in surface you can change
the weighting, which changes the power spectrum of the solution, which is equivalent to changing its autocovariance function.

40 A Colormaps

A Colormaps

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

b=96 b=128 b=160

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

b=192 b=224 b=255

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

Figure A.15: The RGB color scheme

A Colormaps 41

cool copper cyclic
o e L e
1.00 0.00 0. 1.00 0
drywet gebco globe
M | |
12 -7000 -5250 -3500 -1750 0 10000 -5000 0 5000 10000
gray haxby hot
— e .|
0.00 0.25 0.50 0.75 1.00 0 8 16 24 32 0.00 0.25 0.50 0.75 1.00
nighttime no_green
M S -
1.00 0.00 0.2 1.00 -32 -
ocean paired panoply

NI T——

-8000 -6000 -4000 -2000

polar rainbow red2green
S) N—
-1.0 -0.5 0.0 0.5 1.0 0.00 0.25 0.50 0.75 1.00 -1.0 -0.5 0.0 0.5 1.0
relief sealand sais
e e
—-8000 —-4000 0 4000 8000 -5625 -3750 -1875 0 1875 -1.0 -0.5 0.0 0.5 1.0
split topo WySi Wyg
1.0 -7000 -3500 3500 7000 O

Figure A.16: The GMT CPT colormaps

© 0 N DU AR W N

e
N o= O

© 00 N DU W N -

el e e
TR W N RO

42 B Useful tools

B Useful tools

GMT can also be used for data analysis, some useful scripts can be found in this section.

B.1 Distance of two points on the earth surface

Script B.1 Calculation of the distance (in km) between two points with given geographical coordinates.

#!/bin/sh

LANG=C

usage="Usage:__ ‘basename_$0‘__lonl _latl_lon2_lat2"
if ["$#" !'= "4"] ; then

echo $usage
exit 1
fi
echo —n "Distance_(km):__"
project —C$1/$2 —E$3/84 —G1000 —Q | tail —1 | cut —f3

B.2 Tangent

Script B.2 Calculation of a tangent for a (z,y) dataset.

#!/bin/bash
Linear Regression f(z)=a+bz from two—column data file (z,y)

DATA=$1

XMIN=‘minmax —C $DATA | awk ’{print $1}’°
XMAX=‘minmax —C $DATA | awk ’{print $2}’°

trendld —Fxy $DATA —N2 -V > /dev/null 2> t
A0=‘grep "Polynomial" t | awk ’{print $5}°°
Al=‘grep "Polynomial" t | awk ’{print $6}°°

echo "f(x)_=_$A0_+_$A1_x_x"
rm t

© 00 N DU W N -

e e e e e
N o U R W N RO

B Useful tools 43

B.3 Correlation coefficient

Script B.3 Calculation of the correlation coefficients (and the variances) of a (x,y) Dataset.

#!/bin/bash

LANG=C

#Diese Berechnung stimmt mit der in Fachlexikon Physik S.500
angegebenen Formel ueberein.

DATA=$1

Variance y=‘trendld —N1 —Fr $DATA | awk '{ s += $1%8$1; } END { print s/NR}’ ¢
Variance r=‘trendld —N2 —Fr $DATA | awk '{ s 4+= $1%8$1; } END { print s/NR}’*

KK=‘calc "—p_config(\"display\" ,2);_config(\"leadzero\" ,1);\

eoo.config(\"tilde\" ,0);_sqrt (1_—_$Variance_r_/_$Variance_y)" | tail —nl *
#echo "Variance_y = $Variance_y"

#echo "Variance r = $Variance r"

#echo "Korreklationskoeffizient = $KK"

echo $KK

Addtitional to trendid, which was used in these examples, GMT provides many more tools to analyse and/or
modify data, e.g. trend2d, grdtrend, grdfft, grdfilter, fitcircle, ...

© 0 N DU AR W N

S D Ut Ot U OU Ut O UL U U U A B R B R B R R R R W W W W W W W WWWNNNNDNDNDNNNNWRE =R e
= O © 00 N U R WN O © WO Utk WNFO®OWSN DU B WNRO ©OWwN Ut E WNRFEF O ®© WS O ULE WN=O

44

C Sample Solutions

C Sample Solutions

C.1 Solution to Exercise 5

Script C.1 Exercise’s solution 5 (write _head foot.sh)

#!/bin/bash
LANG=C

function usage|()

{
echo —e "\n__Usage:_‘basename_$0‘_has_to_be_called_with_\n\n"\
"eleoo —O<PostScript—File>_..o. (output_file)\n"\
"eleoo —w<[K[O] > euunnouuunnn (write _header(K)_or_footer (O))\n"\
"o [—e] e ca e e (creazes_eps,_just_vaild_for_—wO)\n"\
LT |t IR (force ,_overwrites_PostScript—File)\n"\
"o [=8] e c i eaa o (show_resulting_postscript_file)\n"\
exit 1
}
function check_args()
{
OUT=NONE
HEADFOOT=NONE
FORCE=FALSE
while getopts efO:sw: OPT ; do
case $OPT in
O) OUT=$OPTARG ;;
e) EPSI=TRUE ;;
f) FORCE=TRUE ;;
s) SHOW PS=TRUE ;;
w) HEADFOOT=30OPTARG ;;
x) usage;;
esac
done
if [$OUT = NONE]; then usage
elif [SHEADFOOT != K —a $HEADFOOT != O | ; then usage
fi
}
function write_head_foot ()
{
if | SHEADFOOT — K |; then
if | —e $OUT —a $FORCE — FALSE |; then
echo —e "\nError:_’$OUT’_exists ,_use_the_—f_option_to_overwrite\n"
usage
fi
psxy —R0/1/0/1 —JX1 —$HEADFOOT /dev/null > $OUT
else
psxy —R0/1/0/1 —JX1 —$HEADFOOT /dev/null >> $OUT
if ["SEPSI"]; then
ps2raster $OUT
rm $OUT
local OUT=${OUT%.ps }.eps
fi
echo "_$OUT_created"
if [$SHOW PS |; then gv $OUT; fi
fi
}

check args $=
write head foot
exit 0

© 00 N DU W N -

TUR R R R R R R R B B W W W W W W W W W W N NN NN NN N L R e e e e e e
O © 00 N U R WN O © WSO U & WK O © W O U WN O © 0~ O Ut ks Wi+~ O

C Sample Solutions 45

C.2 Solution to Exercise 6

Script C.2 Exercise’s solution 6 (bash_task.sh, Part 1)

#!/bin/bash
LANG=C

IN=./data/bash task.dat
TDAT=a5_tmp. dat
TDAT2=a5_tmp2.dat
OUT=bash _task .ps
PRO=—JX15/6

function plot one()
{
local ANZREAI=$1
local YTXTPOS=$2
psxy "$ANN" $REG $PRO —Sc0.3 —G$COLOR $TDAT2 —-K —-O —Y$OFFSET >> $OUT
sort —n $TDAT2 | psxy $REG $PRO —W3/$COLOR —K —O >> $OUT
pstext —R0/10/0/10 $PRO —K —O —G$COLOR <<END >> $OUT
9.8 SYTXTPOS 13 0 1 MR SANZREAL Sampling Size
END

}

function select_one()

{
local WHAT=$1

if [SWHAT = M]; then
local COLUMN=4
local ANNINC=0.01
local ANNTXT="Mean_Value"
local OFFSET=8.5
local YINC=0.02

elif [$WHAT — QM |; then
local COLUMN=5
local ANNINC=0.01
local ANNTXT="Squared_Mean_Value"
local OFFSET=8.5
local YINC=0.02

elif [$WHAT =— V |; then
local COLUMN=6
local ANNINC=0.0025
local ANNTXT=Variance
local OFFSET=0
local YINC=0.005

else
echo "error_in_’select one()
exit

 n

fi
local ANN="—B10f5:Time_Sampling _Point:/a"$YINC" f"$ANNINC" :SANNTXT : SWne"

grep —v ’#7 $IN | awk —v c¢=$COLUMN ’{print $2,%c,8$3} > $TDAT
local REG=‘minmax —I10/$YINC $TDAT*

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87

46

C Sample Solutions

Script C.3 Exercise’s solution 6 (bash task.sh, Part 2)

for i in 500 2000 10000; do
if [$i = 500]; then
local COLOR=200/0/0
local YTXTPOS=9
elif [$i = 2000]; then
local COLOR=0/0/200
local YTXTPOS=8.2
local OFFSET=0
elif [$i == 10000 |; then
local COLOR=0/200/0
local YTXTPOS=7.4
local OFFSET=0
else
echo "error_in_’select one()’"
exit
fi
awk —v w=$i ’{if ($3="Size="w) print $1,$2} > $STDAT > $TDAT2
plot _one $i $YTXTPOS
done
}
function plot all()
{
for i in VQM M; do
select _one $i
done
}
../ tools/write head foot.sh —O$OUT —wK —f
if [$? —ne 0 |; then exit 1; fi
plot _all
../ tools/write_head_foot.sh —O$OUT —wO
gv $OUT
ps2raster —A —Te $OUT
rm $OUT $TDAT $TDAT2

© 00 N DU W N -

Ot O U O QU OU O OU U U Wi B B B B B R B R B WWwWw W WwWwWwWwWw W NN NDNDNDNNNNRPE =R e e e e
© 0 N DU A WNRFEF O © WU R WN O ©OWN Ut & WKNKFO®©WN U R WKNRFRO© WSO A WNRF O

C Sample Solutions

47

C.3 Solution to Exercise 7

Script C.4 Exercise’s solution 7 (land_ coloured.sh)

#!/bin/bash
LANG=C

cp gmtdefaults4.base .gmtdefaults4

OUT=land _coloured. ps
IN=data/germany2pts. txt
INC=data/german citys.txt
PRO—JM15
REG=R4/18/45/56
ANN—B5 / 2WSEN
RP="$PRO_$REG_—K_-O"

gmtset CHAR_ENCODING = Standard+
function plot karte ()

{
gmtset BASEMAP_TYPE fancy

pscoast $RP "$ANN" —G200 —Na —Dh —A100 >> $OUT # Map with gray countries
psxy $IN $RP —-m —G200/0/0 —L >> $OUT

gmtset LABEL_FONT_SIZE = 12
gmtset LABEL OFFSET = 0.1lc
Rivers, Sea, Boarders, Scaling

gmtset HEADER FONT SIZE 14 HEADER OFFSET 0.1
pscoast SRP —S32/155/128 —Lf6/55.5/52/200k1 —Tf6/54.2/1.7/3 —W0 —11 —I2 —I8 —Dh —Na/5 —A100 >> $OUT
awk ’{print $1, $2, 0.15+%$4/5e6} > S$INC

Germany in red

psxy $RP —Sc —G0/0/200 >> $OUT # Clities
$2+.15, 1}’ SINC |
psxy $RP —Skvolcano —G200/200/0 —W2/0 >> $OUT # Munich as vulcano

awk ’{if($3=="Munich") print $1, $2,6}° SINC |
psxy —L $RP —Gp300/8:F0/255/64B— —W2/0 —Skpentagon >> $OUT # Restricted area

awk ’{if($3 = "Munich") print $1+.1

awk ’{print $1, $2-0.2, 12 , 0 , 1

legend
gmtset ANNOT FONT SIZE = 12

)

2

Font size

as points

"MC" ,$3}° S$INC |
pstext $RP —G255 >> $OUT # Caption of the

cities

pslegend —L1.0 $RP —Dx0/0/8.5/3.5/BL —F —G255 << END >> $OUT

H 14 1 Legend

D 0.5 2t10_10:0

N 2

V 0.3 2

S 0.3 ¢ 0.2 0/0/200 0 0.6 cities
S 0.3 kvolcano 0.4 200/200/0 2
S 0.3 n 0.3 p300/8:F0/255/64B—
S 0.3 g 0.3 200/0/0 0 0.6 Germany
V 0.3 2

N1

D 0.5 2t10 10:0

G 0.2

M 10 52 300+1+jr f

G —-0.1

L 12 33 MC GMT=-Workshop

END

}

write head foot.sh —O$OUT —f —wK
plot _karte
write _head foot.sh —O$OUT —s —wO —Te

0.

0

6

volcano

0.6

restricted area

of the wunit

‘km

3

© 00 N DU W N -

CUOT U R B R B B R S R B A DWW W W W W WWWNNNNNNNNNLW SRR e e e e e
N= O © 000N DU R W~ O © 000N U R WO OO NOU R WN = O ©OooNOURWN = O

48

C Sample Solutions

C.4 Solution to Exercise 8

Script C.5 Exercise’s solution 8 (projections task.sh, Part 1)

#!/bin/bash

LANG=C

CITIES=cities .txt

cities ()

rm $CITIES 2> /dev/null

function
{

echo

echo

echo

echo
}
function
{

local

local
}
function
{

local

local

local

" —82.3833_..23.1333_Habana" >> S$CITIES
"139.7_ ooooo 35.6833_Tokyo" >> $CITIES
"72.850342_..19.023174 _Mumbai" >> $CITIES
" —87.654419_41.851151 _Chicago" >> $CITIES

proj()

POPT=‘awk —vl11=81 —vI2=$2 ’{if (11=NR) { x1=81;
if (12=NR) { y1=$%1; y2=$%2 }
} END {printf ("—Chf/%f_—E%f/%f" ,x1,x2,yl,y2)}’ S$CITIES"

DIST=100 # distance of projected mnodes
project $POPT —Q —GS$DIST $3 # if $3 is set to —N a

plot ()

p=%1
OUT=projection $p.ps
REG=—R—180/180/0/90

local ANN—=—Ba20g20/a20g20
local PRO
if [$p = "Mercator"]; then

ANN=—Ba60g20/a20g20SWne
REG=R110/470/ —60/80

PRO=—JM16

elif [$p = "Gnomonic"]; then
PRO=—JF0/90/72/14

elif [$p = "Lambert"]; then
PRO=—JA0/90/14

elif | $p — "Stereographic" |; then
PRO=—JS0/90/14

elif [$p = "Hammer" [; then
PRO=JH16

REG=R—180/180/—90/90

elif

[$p = "Gall—Peters"]; then

PRO——JY0/45/16
REG——R—180/180/—90/90

else

echo "Unknown_Projection"
exit 1

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

C Sample Solutions

49

Script C.6 Exercise’s solution 8 (projections task.sh, Part 2)

fi
local RP="-K_—O_$REG_$PRO"
../ tools/write _head_foot.sh —wK —O$OUT —f
coastline
pscoast $RP $ANN —DIl —A15000 —G220 —S191/239/255 —W0.5p >> $OUT
psxy $CITIES $RP —W5/255/127/0 >> $OUT # great circle
psxy $CITIES $RP -W5/204/0/0 —A >> $OUT # lozodrome
another way of plotting the great circle (between Habana&Tokyo)
proj 1 2 | psxy $RP —W5/50/200/255t10_30:0 >> $OUT
proj 2 3 | psxy $RP —W5/50/200/255t10_30:0 >> $OUT
proj 3 4 | psxy $RP —W5/50/200/255t10_30:0 >> $OUT
another way of plotting the lozodrome (between Mumbai$Chicago)
proj 1 2 -N | psxy $RP -W5/0/0/200t10_30:0 >> $OUT
proj 2 3 -N | psxy $RP -W5/0/0/200t10_30:0 >> $OUT
proj 3 4 -N | psxy $RP —W5/0/0/200t10 30:0 >> $OUT
plot city points and annotate
psxy $CITIES $RP —Sc0.2 —G255/255/0 -W >> $OUT
awk ’{print $1,$2,12,0,"Helvetica—Bold" ,"TC",$3}’ $CITIES |
pstext $RP —Dj0.2 —W255 >> $OUT
echo "L_14_1_BC_$p" > $$
echo "S__0.55_.—._.loo—0oob/255/127/0 ..1.2__Great_Circle_.(psxy)\n" >> $$
echo "S__0.55__—.oloo—0oo5/204/0/00000n 1.2__Loxodrome__.._(psxy.—A)" >> $%
echo "S__0.55__—__1_..—___.5/50/200/255t10_30:0_1.2__Spherical_Earth_Projection_(project)" >> $$
echo "S__0.55__—__1_..—_._..5/0/0/200t10_30:0__1.2__Plane_Earth_Projection_(project_—N)" >> $$
pslegend $RP —Dx0/0/8/2.7/BL —G200 —F $$ >> $OUT
rm $$
../ tools/write _head_foot.sh —wO —O$OUT
echo "$OUT_written"
gv $OUT
ps2raster —A —Te $OUT
}
cities
for p in Mercator Gnomonic Lambert Stereographic Hammer Gall—Peters; do
plot $p
done
rm $CITIES

© 00 N DU W N -

S U OU Ut U Ut U OU U U U B B BB R R R R B B WW W W W W WW W WNNNNDNNNNNDNWS =R e e e
O © WO Ut A WNKFO ©OWN OOULE WNRFRO®©OWSN U A WNRFEO®© N DU B WN O © WO Ut & wiw k= O

50

C Sample Solutions

C.5 Solution to Exercise 9

Script C.7 Exercise’s solution 9 (nmea.sh)

#!/bin/bash
LANG=C

cp gmtdefaults4.base .gmtdefaults4
gmtset PLOT DEGREE_FORMAT +ddd :mm

function get data()

{
for ((i=1;i<=2++i)); do
grep '“$GPGGA’ data/nmea.day$i | awk —F, ’{lon=substr($5,1,3);
lat=substr($3,1,2);
lon2=substr($5,4)/60.;
lat2=substr($3,3)/60.;
print lon-+lon2,lat+lat2}’ > $$. $i
done
}
function plot ()
{
local OUT=nmea. ps
local COL1=200/0/0
local COL2=200/100/0
local REGI="—R7/9/53.3/54.22"
local PROI="-JM15"
local W=7.85 E=7.95 S=54.13 N=54.2
local REG2="-R$W/$E/$S/$N"
local PRO2="—JM5"
local PCOAST="-K_-O_—G220.—S191/239/255_~W0.5p/0_"
../ tools/write head foot.sh —O$OUT —f —wK
pscoast $PCOAST $REG1 $PRO1 —Dh —Ba0.25g0.25/a0.25g0.25NEsw >> $OUT
psxy —R —J —K —O —L —W3/0/0/200< <END >> $OUT
$W 8s
$W $N
$E $N
$E $S
END
psxy —R —J -K -O $$.1 —W5/$COL1 >> $OUT
psxy —R —J —K —O $$.2 —W5/$COL2 >> $OUT
gmtset BASEMAP FRAME RGB 0/0/200
pscoast $PCOAST $REG2 $PRO2 —Df —B10 —X1 —Y1 >> $OUT
psxy —R —J -K -O $$.1 —W5/$COL1 >> $OUT
psxy —R —J -K O $$.2 —W5/$COL2 >> $OUT
../ tools/write _head_foot.sh —O$OUT —wO
ps2raster —A —Te $OUT
rm $OUT
gv ‘echo $OUT | sed ’s/.ps/.eps/g’"
}
get_data
plot

rm $$.

© 00 N DU R W N

S U OU Ut U Ut O OU U UU U B B B B R R R R B AR WW W W W W WWWwWNNNNDNNNNNDNWS R R e e
O © WO Ut A WNKFO ®©OWN OOULERE WNRFRO®©OWSN U EAE WNRFEO®© N DU E WN O © w0 Ut wiw k= O

C Sample Solutions

51

C.6 Solution to Exercise 12

Script C.8 Exercise’s solution 12 (grdcontour task.sh, Part 1)

#/bin/bash

LANG=C

int i = 7:

float f = 1.5;
string s = "hallo"

INGRD=./data/etopo5.grd
WORKGRD=work . grd

function usage|()
{
echo —e "\n__Usage:_‘basename_$0‘_has_to_be_called_with_\n\n"\
" leon —r<Region>____._.oooo ([Allpen,_[E]ropa;_default:_both)\n"\
HHHHH —g<Darstellung>___._(grd[c]ontour,_grd[i]|mage,_grd[v]iew;_default:_c)\n

exit 1

}

function check_args()
{
REGION="A_E"
HOW=c
while getopts g:r: OPT ; do
case $OPT in
r) REGION=SOPTARG ;;
g) HOW=$OPTARG ;;
x) usage;;
esac
done

}

function select_region ()
{
WHAT=$1
OUT=contour _image $WHAT" "$HOW. ps
if [WHAT = E]; then # Europa
PRO=JL10/43.5/35/50/15
REG=—R—10/30/35/59
ANN=—B10f5g5 /5 f5g2 .5
MASTERCPT=relief
elif | $WHAT — A |; then # Alpen
PRO—JC10/45.5/15
REG=-R5/15/43/48
ANN=—B1figl/1flgl
MASTERCPT=sealand
else

"_error_in_’select "

echo
exit 1

fi

grdcut $INGRD —-G$WORKGRD —R$REG
}

function plot ps()

{

if [$HOW = ¢ |; then
pscoast $REG $PRO $ANN —G200 -K > $OUT

52 C Sample Solutions

Script C.9 Exercise’s solution 12 (grdcontour task.sh, Part 2)

61 grdcontour $REG $PRO $WORKGRD —O —C0.25 —A1/200/200/0 —G15/100 \
62 —Z0.001 —Nkm >> $0OUT

63 elif [$HOW — i —o $HOW =— v |; then

64 local CPT=color.cpt

65 local GRADGRD=gradient.grd

66 # INGRDCUT=in_tmp . grd

67 # grdcut $INGRD —GS$INGRDCUT $REG

68

69 if [WHAT = A |; then

70 local INGRDCUT2=in tmp 2.grd

71 grdsample $WORKGRD —GS$INGRDCUT2 —I1m

72 myv $INGRDCUT2 $WORKGRD

73 fi

74

75 makecpt —C$MASTERCPT —Z > $CPT

76 grdgradient $WORKGRD —GSGRADGRD —Ne0.6 —A0/270

7 if [$HOW = i]; then

78 grdimage $WORKGRD $REG $PRO —C$CPT -K —Y5 —I$SGRADGRD > $OUT
79 pscoast $REG $PRO $ANN —-W3 —O —-K —A1000 —Di —I1 >> $OUT

80 else

81 grdview $WORKGRD $REG $PRO —C$CPT -K —Y5 —ISGRADGRD —JZ3 —E200/40 —Qi > $OUT
82 fi

83 psscale O —C$CPT —I —E —-D7.5/—1/15/0.5h —B2000: Topography:/:m: >> $OUT
84 rm $CPT $GRADGRD

85 else

86 echo "_error_in_’plot_ps’"

87 exit 1

88 fi

89 echo " ’'$OUT’ _created"

90 gv $OUT

91 ps2raster —A —Te $OUT

92 rm $OUT

93}

94

95

96 check args $x

97

98 for i in $REGION; do

99 select _region $i

100 plot _ps

101 done
102 rm $WORKGRD

© 00 N DU W N -

S U OU Ut U Ut O OU U U U B B BB R R R R B AR WW W W W W WWWwWNNNNDNNNNNDNWS R R e
O © W N O Ut AR WNKFE O ®©OWN OOULERE WNRFRO®©OWN U EAE WNRFE O ®© N DU E WN O © w0 Ut wiw k= O

C Sample Solutions

53

C.7 Solution to Exercise 14

Script C.10 Exercise’s solution 14 (dem.sh, Part 1)

#!/bin/bash
LANG=C

function dem2grd()

{

}

for 1 in 1 2; do

if [$i = 1]; then
local ZIN=./data/e020n90.tar.gz
local REG=—R20/60/40/90
GIN[$i]=./data/e020n90.grd

elif [$i = 2 |; then
local ZIN=./data/w020n90.tar.gz
local REG=—R—20/20/40/90
GIN[$i]=./data/w020n90.grd

else
echo ERROR
exit 1

fi

local IN=‘tar —wildcards —t "«DEM" —zf $ZIN*

if [! —e $IN]; then
echo "extracting _$IN_from_$ZIN"
tar —wildcards —x "«DEM" —zf $ZIN
fi
if [! —e ${GIN[S$i]}]; then

echo "gridding >$IN<_=>_${GIN[S$i]}_"
xyz2grd $REG $INC —GS${GIN[$i]} —N—9999 —F —ZTLhw $IN
#grdinfo ${GIN[$i]}
fi
done

function get_region_of_interest()

{

if [! —e $AGRD]; then
grdpaste ${GIN[1]} S${GIN[2]} —GS$$
grdcut $$ $CUTREG —G$AGRD
rm $$
#grdinfo $AGRD
fi
if [! —e $SASGRD |; then # resample for rougher resolution
grdsample $AGRD —G$ASGRD $LOWINC
fi

function plot_ps()

{

local MCOOL=$1

local HOW=$2

local COL=3GMTHOME/share/cpt/GMT $MCOL. cpt
local GRD=SAGRD

local PRO=—JA18.5/47/15

local REG=—R10/43/28/51r

local ANN—B5g5/5g5

gmtset COLOR. NAN = 0/50/150
if [$MASK =— FALSE]; then
local GIN=$GRD
local OUT=dem_$HOWSMCOL. ps

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

54

C Sample Solutions

Script C.11 Exercise’s solution 14 (dem.sh, Part 2)

else
local MASKDATA—./data/austria2pts.txt
grdmask $MASKDATA $INC $CUTREG —F —NO/1/1 —Gmask.grd
grdmath mask.grd $GRD MUL = t.grd
local GIN=t.grd
local OUT=dem_mask $HOWS$MCOL . ps
fi

grdgradient $GIN —Ggrad.grd —A0/270 —Ne0.6
if [$HOW = I |; then
grdimage —C$COL $GIN $PRO $REG "$ANN" —Igrad.grd -K > $OUT
psscale —D16.5/5.1/9/0.5 —E —1 —O —K —C$COL —B1000: Elevation:/:m:/ >> $OUT
echo "11.15_.0__.14_0__0__MC_$MCOL" |
pstext —JX15 —R0/10/0/10 —N —O >> $OUT
elif [$SHOW = V |; then
PROZ—=-1Z5
grdview $PROZ —C$COL $GRD $PRO $REG "$ANN" —Igrad.grd -K —E150/40 —Qc > $OUT
psscale —D4.5/1/9/0.5h —E —I —O —C$COL —B2000: Elevation:/:m:/ >> $OUT
else
echo "Error_in_ plot_ps()_$HOW’"
exit 1
fi

gv $OUT

ps2raster —A —Te $OUT $OUT. epsi

ps2raster —A —Te $OUT

echo "created_‘echo_$OUT_|_sed_’s/.ps/.eps/ "
eps2eps $OUT. epsi SOUTEPS

rm $OUT $OUT. epsi grad.grd t.grd 2> /dev/null

INC=10.5m

LOWINC=TI1
AGRD=./data/alp.grd
ASGRD=./data/alp small.grd
CUTREG=—R5/30/43/52

dem2grd
get _region_of_interest
#AGRD=3ASGRD; INC=$LOWINC # comment for high resolution

MASK=FALSE

for

i in topo relief globe; do
plot_ps $i I

done

plot ps relief V
plot ps topo V
MASK=TRUE

plot _ps globe I

exi

t 0

