The Southern Ocean in a high-CO₂ world: Changes in inorganic and organic carbon fluxes

Judith Hauck, Christoph Völker, Tingting Wang Mario Hoppema, Martin Losch, Dieter Wolf-Gladrow

Alfred Wegener Institute for Polar and Marine Research

THE SOUTHERN OCEAN

BACKGROUND

•00

THE PREINDUSTRIAL CARBON CYCLE

THE SOUTHERN OCEAN

BACKGROUND

•00

THE PREINDUSTRIAL CARBON CYCLE

Hoppema et al., 2004

THE SOUTHERN OCEAN

BACKGROUND

000

THE CONTEMPORARY CARBON CYCLE

SOUTHERN ANNULAR MODE (SAM)

SAM Index:

BACKGROUND

000

 Sea level pressure anomalies between the subpolar low and and the subtropical high-pressure systems

SOUTHERN ANNULAR MODE (SAM)

SAM Index:

BACKGROUND

000

 Sea level pressure anomalies between the subpolar low and and the subtropical high-pressure systems

000

SOUTHERN ANNULAR MODE (SAM)

SOUTHERN ANNULAR MODE (SAM)

RESPONSE TO SAM

ECOSYSTEM MODEL RECOM-2

BACKGROUND

Geider et al., 1998; Schartau et al., 2007; Hohn et al., 2009; Hauck et al., GBC, under review

MODEL RUNS

BACKGROUND

MODEL RUNS

BACKGROUND

MEAN MODEL STATE

BACKGROUND

MOST LIMITING FACTORS FOR PHYTOPLANKTON GROWTH

BACKGROUND

Lovenduski and Gruber 2005

BACKGROUND

-0.05

0.05

0

0.1

0.15

BACKGROUND

Modelled total chlorophyll response

BACKGROUND

Modelled total chlorophyll response

BACKGROUND

Response of upward DIC advection (mmol m⁻² y⁻¹ per unit increase SAM at 100 m)

BACKGROUND

Response of upward DIC advection

(mmol m⁻² y⁻¹ per unit increase SAM at 100 m)

BACKGROUND

BACKGROUND

CARBON FLUX ANOMALIES AT POSITIVE SAM

Hauck et al., GBC, under review

SAM-RELATED CARBON BUDGET SUMMARY

- Upwelling of DIC south of Polar Front \approx balanced by northward Ekman transport and downwelling north of Polar Front
- Changes in gas exchange and biological carbon export are of similar magnitude, but much smaller than advective changes
- SAM related sea-air CO₂ flux in SO is 0.09 ± 0.03 PgC vr⁻¹, similar to a recent eddy-resolving study (Dufour, 2011)

THE SOUTHERN OCEAN IN A HIGH-CO₂ WORLD

- CO₂ uptake rate might grow slower than atm. CO₂ concentrations due to circulation changes as response to the positive SAM (Le Quéré et al., 2007)
- Anthropogenic ocean acidification will proceed, might even be amplified by upwelling of carbon-rich deep water (Lenton et al., 2009)