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Ensemble-smoothing can be used as a cost-

efficient addition to ensemble square root

Kalman filters to improve a reanalysis in data

assimilation. To correct a past state estimate, the

smoothing method utilizes the cross-covariances

between the present filtered state ensemble and

a past ensemble at the time instance where the

smoothing should be performed. Using the cross-

covariances relies on the assumption that the

dynamics of the system under consideration are

linear. For nonlinear models, it can be expected

that the smoothing is suboptimal. In this study,

twin assimilation experiments are used to assess

the influence of nonlinearity on the performance

of the smoother.

For ensemble square-root filters (e.g. ETKF, ESTKF, SEIK) one can write:

Filter analysis step at time tk X
a
k|k = X

f

k|k−1
Gk

Notation:

State vector x
f ∈ R

n; Ensemble of N members X
f =

[

x
f (1), . . . ,x f (N)

]

i| j denotes state at time i conditioned on observations up to time j.

Single smoother step X
a
k−1|k = X

a
k−1|k−1

Gk

The matrix Gk from the filter analysis at time tk is used.

Smoothing over multiple times X
a
i|k = X

a
i|i ∏

k
j=i+1 G j

(ti+1, ti+2, . . . , tk)

Lorenz96 Model
A forcing parameter F controls the nonlinearity

of the Lorenz96 model [1]. Increasing F results

in stronger nonlinearity. Assimilation experiments

are performed over 20000 time steps with an

ensemble of 34 members. Used is the Error

Subspace Transform Kalman Filter (ESTKF)[2]

implemented in PDAF [3, 4].

Global Ocean Model FESOM
FESOM [5] is used in a global configuration.

The state vector dimension is about 10 million.

Synthetic observations of the sea surface height

are assimilated each 10th day over one year. The

ESTKF with regulated observation localization [6]

is used with an ensemble of 16 members.

Lorenz96: Effect of model nonlinearity
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Lorenz96: Effect of forecast length
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Left: The model nonlinearity is

controlled by the forcing F . Mean

RMS errors are computed from

time step 2000 to the end of each

experiment. The mean RMS error

increases with F . The smoother

reduces the RMS error. There is

an optimal lag at which the RMS

error is minimal.

At the optimal lag, the RMS error

grows strongly when F exceeds

4. At this value, the model dy-

namics become nonperiodic. The

RMS error of the smoother is

about 50% of the filter RMS error

for all F > 4.

The RMS computation excludes

the initial transient phase of the

assimilation. After the transient

phase, the smoother deteriorates

the state estimates for the pe-

riodic cases with F ≤ 4. Thus

the optimal lag is 0. For F > 4

the optimal lag decreases ap-

proximately proportional to F−1.

The optimal lag is about 5 times

the model error doubling time for

F = 10.

Above: For fixed F = 5, the length of

the forecast phase is increased. The

RMS errors of the filter and smoother

grow with the forecast length. The

difference of both errors remains nearly

constant. Thus, the nonlinearity of the

model determines the impact of the

smoother.

There is an optimal lag at which

the error of the smoother estimate

reaches its minimum. The optimal lag

shrinks for growing forecast lengths

from 123 to 50 time steps. The error

bars show that the state estimate

depends on the initial ensemble.

Global ocean model
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Below: The assimilation of synthetic

sea surface height (ssh) data signif-

icantly reduces the RMS errors of

the forecasts and filter analyses. The

smoother has an additional positive im-

pact. It also improves the unobserved

fields, but to a smaller extent.

The dependence of the smoother

on the lag is similar to that with the

Lorenz96 model. Small lags up to 50

days have a strong positive impact

on the state estimate. The optimal

lag for this configuration is at about

90 days.

• Ensemble smoothing is suboptimal

for nonlinear models.

• The nonlinearity determines the size

of the smoother impact.

• There is an optimal smoother lag

at which the positive impact of the

smoother is maximal.

• The optimal lag is a multiple of the

model’s error-doubling time.
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