Inter-annual water mass variations from GRACE in central Siberia

Julia.Boike [ at ]


Our study analyses satellite and land-based observations of the Yakutsk region centred at the Lena watershed, an area characterised mainly by continuous permafrost. Using monthly solutions of the Gravity Recovery And Climate Experiment satellite mission, we detect amass increase over central Siberia from 2002 to 2007 which reverses into a mass decrease between 2007 and 2011. No significant mass trend is visible for the whole observation period. To further quantify this behaviour, different mass signal components are studied in detail: (1) inter-annual variation in the atmospheric mass, (2) a possible effect of glacial isostatic adjustment (GIA), and (3) hydrological mass variations. In standard processing the atmospheric mass signal is reduced based on the data from numerical weather prediction models. We use surface pressure observations in order to validate this atmospheric reduction. On inter-annual time scale the difference between the atmospheric mass signal from model prediction and from surface pressure observation is <4mm in equivalentwater height. The effect of GIA on the mass signal over Siberia is calculated using a global ice model and a spherically symmetric, compressible, Maxwell-viscoelastic earth model. The calculation shows that for the investigated area any effect of GIA can be ruled out. Hence, the main part of the signal can be attributed to hydrological mass varia-tions. We briefly discuss potential hydrological effects such as changes in precipitation, river discharge, surface and subsurface water storage.

Item Type
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Eprint ID
DOI 10.1007/s00190-012-0597-9

Cite as
Vey, S. , Steffen, H. , Müller, J. and Boike, J. (2012): Inter-annual water mass variations from GRACE in central Siberia , Journal of Geodesy . doi: 10.1007/s00190-012-0597-9



Research Platforms


Edit Item Edit Item