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Abstract 

Current climate warming is affecting arctic regions at a faster rate than the rest of the world. 

This has profound effects on permafrost that underlies most of the arctic land area. 

Permafrost thawing can lead to the liberation of considerable amounts of greenhouse gases 

as well as to significant changes in the geomorphology, hydrology, and ecology of the 

corresponding landscapes, which may in turn act as a positive feedback to the climate 

system. Vast areas of the east Siberian lowlands, which are underlain by permafrost of the 

Yedoma-type Ice Complex, are particularly sensitive to climate warming because of the high 

ice content of these permafrost deposits.  

Thermokarst and thermal erosion are two major types of permafrost degradation in 

periglacial landscapes. The associated landforms are prominent indicators of climate-

induced environmental variations on the regional scale. Thermokarst lakes and basins 

(alasses) as well as thermo-erosional valleys are widely distributed in the coastal lowlands 

adjacent to the Laptev Sea. This thesis investigates the spatial distribution and 

morphometric properties of these degradational features to reconstruct their evolutionary 

conditions during the Holocene and to deduce information on the potential impact of future 

permafrost degradation under the projected climate warming. The methodological approach 

is a combination of remote sensing, geoinformation, and field investigations, which 

integrates analyses on local to regional spatial scales. 

Thermokarst and thermal erosion have affected the study region to a great extent. In the Ice 

Complex area of the Lena River Delta, thermokarst basins cover a much larger area than do 

present thermokarst lakes on Yedoma uplands (20.0 and 2.2 %, respectively), which 

indicates that the conditions for large-area thermokarst development were more suitable in 

the past. This is supported by the reconstruction of the development of an individual alas in 

the Lena River Delta, which reveals a prolonged phase of high thermokarst activity since the 

Pleistocene/Holocene transition that created a large and deep basin. After the drainage of 

the primary thermokarst lake during the mid-Holocene, permafrost aggradation and 

degradation have occurred in parallel and in shorter alternating stages within the alas, 

resulting in a complex thermokarst landscape. Though more dynamic than during the first 

phase, late Holocene thermokarst activity in the alas was not capable of degrading large 

portions of Pleistocene Ice Complex deposits and substantially altering the Yedoma relief. 

Further thermokarst development in existing alasses is restricted to thin layers of Holocene 

ice-rich alas sediments, because the Ice Complex deposits underneath the large primary 

thermokarst lakes have thawed completely and the underlying deposits are ice-poor fluvial 
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sands. Thermokarst processes on undisturbed Yedoma uplands have the highest impact on 

the alteration of Ice Complex deposits, but will be limited to smaller areal extents in the 

future because of the reduced availability of large undisturbed upland surfaces with poor 

drainage. On Kurungnakh Island in the central Lena River Delta, the area of Yedoma uplands 

available for future thermokarst development amounts to only 33.7 %. The increasing 

proximity of newly developing thermokarst lakes on Yedoma uplands to existing 

degradational features and other topographic lows decreases the possibility for thermokarst 

lakes to reach large sizes before drainage occurs. 

Drainage of thermokarst lakes due to thermal erosion is common in the study region, but 

thermo-erosional valleys also provide water to thermokarst lakes and alasses. Besides these 

direct hydrological interactions between thermokarst and thermal erosion on the local scale, 

an interdependence between both processes exists on the regional scale. A regional analysis 

of extensive networks of thermo-erosional valleys in three lowland regions of the Laptev Sea 

with a total study area of 5,800 km² found that these features are more common in areas 

with higher slopes and relief gradients, whereas thermokarst development is more 

pronounced in flat lowlands with lower relief gradients. The combined results of this thesis 

highlight the need for comprehensive analyses of both, thermokarst and thermal erosion, in 

order to assess past and future impacts and feedbacks of the degradation of ice-rich 

permafrost on hydrology and climate of a certain region. 
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Kurzfassung 

Die gegenwärtige Klimaerwärmung wirkt sich auf arktische Regionen stärker aus als auf 

andere Gebiete der Erde. Das hat weitreichende Konsequenzen für Permafrost, der weite 

Teile der terrestrischen Arktis unterlagert. Das Tauen von Permafrost kann zur Freisetzung 

erheblicher Mengen an Treibhausgasen sowie zu gravierenden Änderungen in der 

Geomorphologie, Hydrologie und Ökologie betroffener Landschaften führen, was wiederum 

als positive Rückkopplung auf das Klimasystem wirken kann. Ausgedehnte Gebiete der 

ostsibirischen Tiefländer, die mit Permafrost des Yedoma Eiskomplex unterlagert sind, gelten 

aufgrund des hohen Eisgehalts dieser Permafrostablagerungen als besonders empfindlich 

gegenüber Klimaerwärmungen. 

Thermokarst und Thermoerosion sind zwei Hauptformen der Permafrostdegradation in 

periglazialen Landschaften. Die zugehörigen Landschaftsformen sind auf der regionalen Skala 

bedeutende Indikatoren klimainduzierter Umweltvariationen. Thermokarstseen und -senken 

(Alasse) sowie Thermoerosionstäler sind in den Küstentiefländern der Laptewsee weit 

verbreitet. Die vorliegende Dissertation untersucht die räumliche Verbreitung und die 

morphometrischen Eigenschaften dieser Degradationsformen mit dem Ziel, ihre 

Entwicklungsbedingungen während des Holozäns zu rekonstruieren und Hinweise auf 

potenzielle Auswirkungen zukünftiger Permafrostdegradation im Zuge der erwarteten 

Klimaerwärmung abzuleiten. Der methodische Ansatz ist eine Kombination aus 

Fernerkundungs-, Geoinformations- und Geländeuntersuchungen, die Analysen auf lokalen 

bis regionalen räumlichen Skalen integriert. 

Thermokarst und Thermoerosion haben die Untersuchungsregion tiefgreifend geprägt. Im 

Eiskomplexgebiet des Lena-Deltas nehmen Thermokarstsenken eine weitaus größere Fläche 

ein als Thermokarstseen auf Yedoma-Hochflächen (20,0 bzw. 2,2 %), was darauf hin deutet, 

dass die Bedingungen für die Entwicklung von großflächigem Thermokarst in der 

Vergangenheit wesentlich günstiger waren als heute. Die Rekonstruktion der Entwicklung 

eines einzelnen Alas im Lena-Delta belegt eine andauernde Phase hoher 

Thermokarstaktivität seit dem Übergang vom Pleistozän zum Holozän, die zur Entstehung 

einer großen und tiefen Senke führte. Nach der Drainage des primären Thermokarstsees im 

mittleren Holozän erfolgten Permafrostaggradation und -degradation parallel und in 

kürzeren abwechselnden Etappen innerhalb des Alas und führten zu einer komplexen 

Thermokarstlandschaft. Trotzdem die spätholozäne Thermokarstentwicklung im Alas 

dynamischer ablief als die erste Entwicklungsphase, resultierte sie nicht in der Degradation 

großer Teile pleistozäner Eiskomplexablagerungen und einer wesentlichen Veränderung des 
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Yedoma-Reliefs. Weitere Thermokarstentwicklung in bestehenden Alassen ist begrenzt auf 

geringmächtige Lagen holozäner eisreicher Alas-Sedimente, da die Eiskomplexablagerungen 

unter den großen primären Thermokarstseen vollständig getaut waren und die 

unterlagernden Sedimente aus eisarmen, fluvialen Sanden bestehen. Thermokarstprozesse 

auf ungestörten Yedoma-Hochflächen wirken am stärksten verändernd auf 

Eiskomplexablagerungen, werden aber in Zukunft auf geringere Ausmaße begrenzt sein, da 

die Verfügbarkeit großer ungestörter, schwach drainierter Yedoma-Hochflächen abnimmt. 

Auf der Insel Kurungnakh im zentralen Lena-Delta beträgt der für zukünftige 

Thermokarstentwicklung verfügbare Anteil an Yedoma-Hochflächen nur 33,7 %. Die 

zunehmende Nähe von sich entwickelnden Thermokarstseen auf Yedoma-Hochflächen zu 

bestehenden Degradationsstrukturen und anderen negativen Reliefformen verringert die 

Möglichkeit der Thermokarstseen, große Ausmaße zu erreichen bevor sie drainieren. 

Die Drainage von Thermokarstseen durch Thermoerosion ist in der Untersuchungsregion 

weit verbreitet, aber Thermoerosionstäler versorgen Thermokarstseen und –senken auch 

mit Wasser. Neben diesen direkten hydrologischen Wechselwirkungen zwischen 

Thermokarst und Thermoerosion auf der lokalen Ebene existiert auch eine Interdependenz 

zwischen beiden Prozessen auf der regionalen Ebene. Eine regionale Analyse weitreichender 

Netze von Thermoerosionstälern in drei Tieflandgebieten der Laptewsee mit einer Fläche 

von insgesamt 5800 km² zeigte, dass diese Formen häufiger in Gebieten mit höheren 

Geländeneigungen und Reliefgradienten auftreten, während Thermokarstentwicklung 

stärker in flachen Tiefländern mit geringeren Reliefgradienten ausgeprägt ist. Die 

kombinierten Ergebnisse dieser Dissertation zeigen die Notwendigkeit von umfassenden 

Analysen beider Prozesse und Landschaftsformen, Thermokarst und Thermoerosion, im 

Hinblick auf die Abschätzung vergangener und zukünftiger Auswirkungen der Degradation 

eisreichen Permafrosts auf Hydrologie und Klima der betrachteten Region und deren 

Rückkopplungen. 
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1 Introduction 

1.1 Scientific background and rationale 

1.1.1 Permafrost and climate change 

Permafrost, i.e. ground that remains frozen for at least two consecutive years (van 

Everdingen, 2005), underlies about one quarter of the Earth’s land surface and is particularly 

widespread in the Arctic (Figure 1-1). Recent global climate warming is occurring in the Arctic 

at a much faster rate than in other parts of the world and therefore significantly affects polar 

permafrost regions (AMAP, 2011). Consequently, of major concern in current periglacial 

research is the question of how permafrost reacts to climate warming and which effects and 

consequences this reaction may have on the local, regional, and global scales. 

 

Figure 1-1. Permafrost distribution in the northern hemisphere and location of the study region (black 

rectangle). 
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The Snow, Water, Ice and Permafrost in the Arctic (SWIPA) Scientific Assessment Report 

(AMAP, 2011), which synthesizes the scientific knowledge on arctic changes, describes 

various effects of changes in the distribution and extent of permafrost on: 

 hydrological processes, 

 geomorphological processes, 

 ecological processes, 

 feedbacks to climate through trace gas emissions and albedo changes. 

Observations and analyses of these processes often show contrasting changes and effects in 

different regions, under different conditions, or at different developmental stages. The 

processes are interrelated and the interactions between factors and feedbacks are highly 

complex (Jorgenson et al., 2010). This also applies for a certain type of permafrost 

degradation, thermokarst. Thermokarst is defined as the thawing of ice-rich permafrost or 

the melting of massive ice resulting in surface subsidence and characteristic landforms such 

as thermokarst lakes and thermokarst basins (alasses) (van Everdingen, 2005). The formation 

of thermokarst lakes is accompanied by changes in surface hydrology, disturbance of 

vegetation, thawing of the underlying permafrost up to depths of several tens to hundreds 

of meters because of the higher heat capacity of the lake water, mobilization of deep pools 

of fossil organic carbon and their release to the atmosphere (Zimov et al., 1997; Osterkamp 

et al., 2000; West and Plug, 2008; Grosse et al., 2011). After the drainage of thermokarst 

lakes, their basins remain in the landscapes as topographic lows, permafrost starts to 

aggrade, vegetation reestablishes, organic matter accumulates and can act as a carbon sink 

(Hinkel et al., 2003; Grosse et al., 2012). While lake formation and lake drainage can occur 

simultaneously in the same area, remote sensing studies of thermokarst lake area changes 

have shown increasing as well as decreasing lake area trends for different regions (Payette et 

al., 2004; Smith et al., 2005; Riordan et al., 2006; Kravtsova and Bystrova, 2009; Labrecque et 

al., 2009). 

Another major type of permafrost degradation is thermal erosion, i.e. the erosion of ice-rich 

permafrost by the combined mechanical and thermal action of moving water (van 

Everdingen, 2005). This process also interacts with other landscape factors and processes, 

for example by forming thermo-erosional gullies and valleys that may change surface runoff 

systems, increase sediment and nutrient delivery to rivers, lakes, and the sea or drain 

thermokarst lakes (Marsh and Neumann, 2001; Bowden et al., 2008; Toniolo et al., 2009; 

Rowland et al., 2010). 
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1.1.2 Siberian Ice Complex 

In Siberia, vast areas are underlain by late Pleistocene ice-rich permafrost deposits of the 

Yedoma-type Ice Complex (Figure 1-2). These syngenetically frozen, fine-grained deposits 

contain large amounts of ground ice in the form of segregated ice and huge ice wedges 

(Figure 1-3), which make them particularly sensitive to climate warming and prone to 

degradation (Schirrmeister et al., 2010, 2013). They also contain considerable amounts of 

fossil organic carbon that might become accessible due to permafrost thaw (Khvorostyanov 

et al., 2008; Schirrmeister et al., 2011b). The highest methane emissions from arctic lakes 

are indeed reported from lakes in Yedoma or Yedoma-like sediments (Walter et al., 2006). 

 

Figure 1-2. Distribution of Ice Complex deposits and location of the study region (black rectangle). Map 

compiled by G. Grosse, University of Alaska Fairbanks. 
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Figure 1-3. Exposure of Ice Complex deposits at the Laptev Sea coast of the Cape Mamontov Klyk area. Ice 

wedges appear in light grey, sediment patches in darker colors. Persons for scale (Photo by G. Grosse, 2003).  

The degradation of these ice-rich deposits is not only a modern phenomenon, but has 

already extensively occurred due to global warming during the transition from late 

Pleistocene to Holocene (Romanovskii et al., 2004; Kaplina, 2009). Several studies have 

conducted general areal quantifications of past permafrost degradation by thermokarst and 

thermal erosion and show that up to >75 % of certain Ice Complex areas have been 

degraded during the Holocene (Kaplina et al., 1986; Grosse et al., 2005, 2006; Veremeeva 

and Gubin, 2009). However, detailed knowledge about the evolution of different types of 

degradational landforms and their interactions is still scarce. 

1.2 Aims and approaches 

Thermokarst and thermal erosion are two major types of permafrost degradation that are 

likely to increase under a continuing arctic warming, especially in the sensitive Siberian arctic 

lowlands underlain by Ice Complex deposits. However, both processes have already affected 

these regions during previous warm periods and have formed characteristic landscapes that 

constitute some of the boundary conditions for future changes. The key research questions 

to be addressed in this thesis are therefore: 

How have thermokarst and thermal erosion affected Siberian ice-rich permafrost in the past, 

and what potential do they have for its future degradation under a continuing arctic 

warming? 
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To answer these questions the specific objectives are to: 

 quantify existing thermokarst and thermo-erosional landforms in a key region, 

 determine the morphometric characteristics and spatial distribution of thermokarst 

and thermo-erosional landforms in different relief and cryolithological settings, 

 distinguish different types and developmental stages of thermokarst and thermo-

erosional landforms, 

 assess the interaction between thermokarst and thermal erosion, 

 deduce the potential extent of future development of thermokarst and thermal 

erosion. 

The methodology applied throughout the thesis is a combination of remote sensing (RS), 

Geographical Information Systems (GIS), and field investigations. The mapping and 

characterization of the degradational landforms over the large study region was conducted 

by means of RS, using medium to high resolution optical satellite imagery (Landsat-7 ETM+, 

ALOS AVNIR-2, ALOS PRISM, RapidEye, Hexagon, Corona). Relief analyses were performed 

using Digital Elevation Models (DEMs), and detailed morphometric and process studies were 

based on field investigations. The integration of all data acquired on the different scales and 

their spatial analyses were realized in the frame of a GIS. In addition, data derived during 

field investigations were used for ground truth and validation of RS and GIS data. 

1.3 Study region 

The East Siberian study region consists of three study areas underlain by Ice Complex 

deposits, the Cape Mamontov Klyk area, the third terrace of the Lena River Delta, and the 

Buor Khaya Peninsula (Figure 1-4). These areas are part of the coastal lowlands of the Laptev 

Sea that are framed by small mountain ridges of 200 to 500 m height to the south, the 

Pronchishchev Ridge, the Chekanovsky Ridge, and the Kharaulakh Range. The region is 

situated in the continuous permafrost zone (Figure 1-1) with permafrost depths between 

200 and 700 m and mean annual ground temperatures between -9 and -11 °C (Yershov, 

2004). The active layer thickness reaches 20 to 60 cm in July-August. The permafrost 

aggradation over large areas of the coastal plain and the arctic shelf, which was exposed 

during the regression of the sea in the late Pleistocene, was facilitated by a strongly 

continental climate that has persisted for several thousand years and prevented glaciation at 

least since the late Saalian (Hubberten et al., 2004; Svendsen et al., 2004). In the study areas, 

Ice Complex deposits of up to several tens of meters thickness accumulated during the late 

Pleistocene (Schirrmeister et al., 2003, 2008, 2011c; Schwamborn et al., 2002b; Wetterich et 

al., 2008, 2011) (Figure 1-2). In the Lena River Delta, they were eroded to small remnants by 
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fluvial and deltaic activity during the Holocene and now form the third geomorphological 

main terrace of the Lena Delta (Grigoriev, 1993; Schwamborn et al., 2002b; Schirrmeister et 

al., 2011a). During the Holocene transgression, the coastline moved hundreds of kilometers 

to the south before it reached its present position about 5 cal. ka BP (Bauch et al., 2001). 

 

Figure 1-4. Location of the study areas (white outlines). 

The Laptev Sea region belongs to the Arctic Rift Zone that is characterized by vertical block 

tectonics with a high modern seismic activity (Grigoriev et al., 1996; Drachev et al., 1998; 

Franke et al., 2000). Tectonic movements of significant amplitudes are reported for the 

Holocene (Galabala, 1987). 

The present arctic continental climate is characterized by long severe winters with mean 

January temperatures between -36 and -32 °C and short cold summers with mean July 

temperatures between 4 and 8 °C (Treshnikov, 1985). Mean annual precipitation rates are 

only between 200 and 400 mm. The study region belongs to the arctic tundra zone with 

vegetation dominated by sedges, mosses, and dwarf shrubs (CAVM team, 2003). 

1.4 Thesis outline 

This thesis is composed of five chapters, including an introduction, three main chapters, and 

a synthesis. The main chapters are original research papers that have been published or 

prepared for publication in international peer-reviewed journals (Table 1-1). 
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Table 1-1. Overview of publications presented within this thesis. 

Publication Chapter 

Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., Schirrmeister, L., 2011. Spatial analyses of 
thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere 5, 849-
867, doi:10.5194/tc-5-849-2011. 

Chapter 2 

Morgenstern, A., Ulrich, M., Günther, F., Roessler, S., Fedorova, I. V., Rudaya, N. A., Wetterich, 
S., Boike, J., Schirrmeister, L., 2012b. Evolution of thermokarst in East-Siberian ice-rich 
permafrost: A case study. Geomorphology, under review. 

Chapter 3 

Morgenstern, A., Grosse, G., Arcos, D. R., Günther, F., Overduin, P. P., Schirrmeister, L., 2012a. 
The role of thermal erosion in the degradation of Siberian ice-rich permafrost. In preparation for 
Journal of Geophysical Research – Earth Surface. 

Chapter 4 

 

Chapter 2 investigates different stages of thermokarst lakes and basins in Ice Complex 

deposits of the Lena River Delta, their impact on and their future potential for the 

degradation of ice-rich permafrost (Morgenstern et al., 2011). Chapter 3 reconstructs the 

evolution of an individual alas on Kurungnakh Island, Lena Delta (Morgenstern et al., 2012b). 

Chapter 4 provides an inventory of thermo-erosional landforms in three lowland areas 

adjacent to the Laptev Sea (Morgenstern et al., 2012a). Chapter 5 gives a synthesis of the 

results presented in all three papers of the thesis. It also highlights the accomplished 

scientific advances and offers avenues for future research. 

Due to the given structure of the three individual papers, overlapping sections and repetition 

of general information is partly unavoidable within the thesis. 

1.5 Authors’ contributions 

As a result of the multidisciplinary character of the investigations, several co-authors 

contributed to the three papers with their specific expertise (Table 1-1). As first author, A. 

Morgenstern designed the studies, reviewed the relevant literature, contributed to the data 

collection, conducted all analyses and interpretation of the data unless otherwise stated, 

wrote and coordinated the publications, and created most of the figures. 

Further contributions to the papers presented in the three main chapters are as follows and 

include the results of the diploma theses of F. Günther and S. Roessler that were supervised 

by A. Morgenstern: 

Chapter 2: A. Morgenstern performed the entire mapping of the data, their morphometric 

and statistical analyses and interpretation. F. Günther constructed the ALOS PRISM DEM and 

contributed to the DEM analyses. I. Fedorova jointly with A. Morgenstern conducted the 

bathymetric measurements of the lakes on Kurungnakh Island and their analyses. L. 

Schirrmeister and G. Grosse provided guidance and help throughout the study and valuable 

reviews at various stages of the manuscript. 
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Chapter 3: A. Morgenstern conducted the field work and data acquisition together with M. 

Ulrich, F. Günther, S. Roessler, I. Fedorova, and J. Boike. A. Morgenstern and M. Ulrich 

conducted lab analyses of the sediment samples. M. Ulrich and F. Günther constructed the 

Alas DEM, F. Günther processed the ALOS PRISM data and derived the PRISM DEM. S. 

Roessler performed the multispectral classification of the ALOS AVNIR-2 data. N. Rudaya and 

S. Wetterich performed the bioindicator analyses and interpretation. A. Morgenstern 

performed the entire GIS analysis and integrated all data and their interpretation. All co-

authors critically reviewed and discussed interpretation and earlier versions of the 

manuscript, M. Ulrich and S. Wetterich contributed to some of the figures. L. Schirrmeister 

helped in designing the study and developing subsequent ideas and provided guidance 

throughout the whole process. 

Chapter 4: A. Morgenstern, G. Grosse, D. Arcos, and F. Günther contributed to the GIS 

mapping, A. Morgenstern performed all subsequent GIS analyses. A. Morgenstern, G. 

Grosse, F. Günther, P. Overduin, and L. Schirrmeister participated in the field observations 

and critically reviewed and discussed interpretation and earlier versions of the manuscript. L. 

Schirrmeister, G. Grosse, and P. Overduin provided guidance and help throughout the study. 
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2 Spatial analyses of thermokarst lakes and basins in Yedoma 

landscapes of the Lena Delta 

A. Morgenstern1, G. Grosse2, F. Günther1, I. Fedorova3, L. Schirrmeister1  

1 Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Potsdam, 

Germany 
2 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA 
3 Arctic and Antarctic Research Institute, Otto Schmidt Laboratory for Polar and Marine 

Research, St. Petersburg, Russia 

The Cryosphere 5, 849-867, 2011, doi:10.5194/tc-5-849-2011. 

2.1 Abstract 

Distinctive periglacial landscapes have formed in late-Pleistocene ice-rich permafrost 

deposits (Ice Complex) of northern Yakutia, Siberia. Thermokarst lakes and thermokarst 

basins alternate with ice-rich Yedoma uplands. We investigate different thermokarst stages 

in Ice Complex deposits of the Lena River Delta using remote sensing and geoinformation 

techniques. The morphometry and spatial distribution of thermokarst lakes on Yedoma 

uplands, thermokarst lakes in basins, and thermokarst basins are analyzed, and possible 

dependence upon relief position and cryolithological context is considered. Of these 

thermokarst stages, developing thermokarst lakes on Yedoma uplands alter ice-rich 

permafrost the most, but occupy only 2.2 % of the study area compared to 20.0 % occupied 

by thermokarst basins. The future potential for developing large areas of thermokarst on 

Yedoma uplands is limited due to shrinking distances to degradational features and delta 

channels that foster lake drainage. Further thermokarst development in existing basins is 

restricted to underlying deposits that have already undergone thaw, compaction, and old 

carbon mobilization, and to deposits formed after initial lake drainage. Future thermokarst 

lake expansion is similarly limited in most of Siberia’s Yedoma regions covering about 106 

km², which has to be considered for water, energy, and carbon balances under warming 

climate scenarios. 

2.2 Introduction 

Climate warming in most northern high-latitude permafrost regions (ACIA, 2004) has 

resulted in widespread warming of permafrost, and also, in some cases, permafrost 

degradation during the last few decades (Romanovsky et al., 2010). Thawing of permafrost 

soils and sediments is often accompanied by the release of old organic carbon (Anisimov and 
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Reneva, 2006; Zimov et al., 2006b; Schuur et al., 2008; Grosse et al., 2011) and changes in 

water and land surface energy balances (Osterkamp et al., 2009), which may influence 

atmospheric processes via feedback mechanisms (Chapin et al., 2005; Walter et al., 2006; 

Schuur et al., 2009). 

Thermokarst is one of the most obvious forms of permafrost degradation in arctic 

landscapes. Thermokarst is defined as the process by which characteristic landforms result 

from the thawing of ice-rich permafrost or the melting of massive ice (van Everdingen, 

2005). During a phase of global warming about ten to twelve thousand years ago, 

thermokarst affected large areas in arctic lowlands with ice-rich permafrost (Romanovskii et 

al., 2000; Walter et al., 2007). In the late Pleistocene, such ice-rich deposits (Ice Complex) of 

the Yedoma Suite were deposited in northern Siberia (Sher et al., 1987; Schirrmeister et al., 

2011c). Today, thermokarst lakes and basins alternate with ice-rich Yedoma uplands in this 

region. Thermokarst has important effects on the ecology, geomorphology, hydrology, and 

local climate of affected landscapes (Osterkamp et al., 2000; Grosse et al., 2011). Various 

recent studies have investigated thermokarst lakes as sources of carbon release to the 

atmosphere (Zimov et al., 1997; Walter et al., 2006, 2007; Schuur et al., 2009; Zona et al., 

2009; Karlsson et al., 2010) or as indicators of a changing water balance in permafrost 

regions by analyzing changes in lake area using remote-sensing methods (Payette et al., 

2004; Smith et al., 2005; Riordan et al., 2006; Kravtsova and Bystrova, 2009). The highest 

methane emissions from arctic lakes are reported for lakes in Yedoma or Yedoma-like 

sediments (Walter et al., 2006). Drained thermokarst lake basins have been investigated on 

a broad scale using satellite remote sensing on the North Slope of Alaska (Frohn et al., 2005). 

The classical works of Soloviev (1959, 1962) and Czudek and Demek (1970) describe the 

development of thermokarst in Ice Complex deposits in Central Yakutia (Siberia). In this 

region with a continental climate, thermokarst starts to develop under subaerial conditions. 

Only after initial ground subsidence does water accumulate in the evolving thermokarst 

basins that are termed “alasses” at a more developed stage. In the wet polygonal tundra of 

the north Siberian lowlands, evolving thermokarst in ice-rich deposits is represented by 

ponds and circular lakes that completely fill their basins. As these thermokarst lakes grow, 

they eventually coalesce with neighboring lakes or drain partially or completely. The 

remaining basins feature steep slopes, flat bottoms, and smaller remnant thermokarst lakes. 

Repeated cycles of permafrost degradation under thermokarst lakes and subsequent 

permafrost aggradation after full or partial lake drainage can lead to multiple cycles of 

secondary thermokarst within basins accompanied by modifications of initial basin-and-lake 

morphometry and the growth of hydrostatic pingos in the basin (Katasonov, 1960; 



Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta  Chapter 2 
The Cryosphere 5, 849-867, 2011 
   

 

 
 

11 

Romanovskii, 1961; Soloviev, 1962). Recent studies of modern thermokarst activity in 

Yedoma landscapes have focused on thermokarst lakes by detecting broad-scale changes in 

thermokarst lake area (e.g., Kravtsova and Bystrova, 2009). However, thus far they have not 

distinguished between thermokarst lakes on Yedoma uplands and thermokarst lakes in 

basins of older-generation thermokarst, and have not addressed these complex thermokarst 

basins. A broad review of hydrogeomorphological aspects of thermokarst lakes, drainage, 

and drained lake basins is provided by Grosse et al. (2012). 

To estimate future carbon release from Yedoma areas due to thermokarst it is necessary to 

assess the impact of thermokarst processes on the evolution of permafrost landscapes 

under climate scenarios that predict significant Arctic warming. In this study we provide a 

basis for quantifying potential thermokarst evolution in Siberian ice-rich permafrost by 

answering the question of where and to what extent thermokarst may develop in the study 

area, an area which comprises the third Lena River Delta terrace with its Ice Complex 

deposits. The specific objectives are: 1) to assess different stages in lake and basin 

development based on remote sensing and geoinformation techniques, 2) to analyze the 

spatial distribution of these lakes and basins, and elucidate any effects of relief position and 

cryolithological context, and 3) to deduce the potential extent of future thermokarst 

evolution in the study area.  

2.3 Study area and regional setting 

The north Siberian Lena River Delta (73°N; 126°E) is situated in the continuous permafrost 

and tundra zone. It features Ice Complex deposits on insular remnants of a late-Pleistocene 

accumulation plain in the foreland of the Chekanovsky and Kharaulakh ridges, which now 

form the third Lena Delta terrace (Grigoriev, 1993) (Figure 2-1). These insular remnants of 

Ice Complex deposits will be termed islands in the following and named after the delta island 

they belong to. The stratigraphical composition of the third terrace can be divided into two 

late-Pleistocene main units and a Holocene unit (Schwamborn et al., 2002b; Schirrmeister et 

al., 2003, 2011a; Wetterich et al., 2008) (Figure 2-2). The lowest unit consists of fluvial, 

interbedded medium-to-fine-grained and silty sands deposited by a meandering paleo-Lena 

River during the early Weichselian period (between 100 and 50 ka). In some lower parts the 

sands include plant remains and alternate with peaty layers. The cryostructure of the sandy 

section is mostly massive with some small ice wedges. Gravimetric ice content is between 20 

and 40 wt% and total organic carbon (TOC) content is between 1.0 and 5.4 wt%. The upper 

Pleistocene unit is formed by polygenetic Ice Complex deposits that accumulated during the 
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Figure 2-1. Location of the study area in the Lena River Delta, North Siberia. 

 

Figure 2-2. Typical stratigraphical composition of the study area with lower fluvial sand unit, upper Ice Complex 

unit, and Holocene cover. Ice wedges in the Ice Complex appear in light grey colors. Person for scale (Photo by 

M. Ulrich, 26 Aug 2008). 

middle and late Weichselian (between 44.5 and 17 ka). It consists of peat, silty sand, and 

peaty paleosoil layers with a high gravimetric ice content (38 to 133 wt%). The ground ice 

occurs as segregated ice in the form of ice bands, veins, and small ice lenses. Very large 

syngenetic ice wedges can be several meters wide and up to 20 m tall. TOC content exhibits 

a wide range in Ice Complex deposits (1.1 to 32.5 wt%). The vertical position of the sharp 

boundary between the lower and upper units varies within the study area by up to several 

tens of meters, likely due to neotectonic block movements affecting the Lena Delta 
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(Schwamborn et al., 2002b). In the western Lena Delta this boundary is found in the height 

range of 15-25 m above river level (a. r. l.), whereas in the eastern Lena Delta the boundary 

is located below the river level (Grigoriev, 1993). The Holocene unit is represented by 

deposits covering the Ice Complex and deposits of thermokarst depressions. Deposits of the 

Holocene cover exposed on top of the Ice Complex unit consist of brownish-black, 

cryoturbated silty sand with numerous small peat inclusions and are characterized by 

smaller ice wedges. Deposits of thermokarst depressions are composed of cryoturbated silty 

sands, numerous plant remains, and peat inclusions, and contain syngenetic ice wedges 

about 3 to 5 m wide (Schirrmeister et al., 2003). 

The modern outlines and surface patterns of the third terrace are the result of ca. 12,000 

years of permafrost degradation and of deltaic processes that have been ongoing since the 

mid-Holocene (Schwamborn et al., 2002b). Thermokarst processes have greatly influenced 

the landscapes in this region since the Bølling-Allerød and during the early Holocene (Kaplina 

and Lozhkin, 1979; Romanovskii et al., 2000; Kaplina, 2009). Thermokarst lakes and basins 

are depressed into the flat Yedoma uplands of the study area. Individual and sometimes 

networked thermo-erosional channels drain the islands. Thermal erosion is fostered by high 

ice contents in the Yedoma and the high relief gradient of the third terrace; these small 

islands (a few tens of kilometers in diameter) are strongly dissected by delta channels and 

reach elevations of more than 60 m above the adjacent river level. Yedoma uplands are 

characterized by polygonal microrelief with small ponds. Thermokarst lakes can reach 

diameters of several kilometers. If their water table is below the surrounding Yedoma 

surface, their rims are often dissected by small thermo-erosional gullies (Figure 2-3). Basin 

diameters range from several hundreds of meters for single forms to tens of kilometers for 

coalesced forms. Basin floors are mainly flat with ice-wedge polygons, polygon ponds, and 

thermokarst lakes that are mostly remnants of the initial large thermokarst lake that formed 

the basin. Pingos have formed in some of the basins, with heights up to 30 m above the 

basin surface and diameters of up to 150 m (Grigoriev, 1993). 

Within the study area, Kurungnakh Island (72° 23'N; 126° 03'E) (Figure 2-1) serves as a key 

site for more detailed investigations. This island is the easternmost part of the tectonically 

uplifted western delta and has elevations of up to 55 m above sea level (a. s. l.). 
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Figure 2-3. Types of thermokarst features distinguished in this study.   

2.4 Data and methods 

2.4.1 Remote-sensing data and processing 

A Landsat-7 ETM+ image mosaic of the Lena River Delta (Schneider et al., 2009) served as 

the basis for mapping the thermokarst lakes and basins within the extent of the Lena Delta 

Ice Complex. We defined this extent as all areas of the third geomorphological main terrace, 

excluding the bedrock outcrops of the Sardakh and Amerika-Khaya islands. We also excluded 

lakes and basins at the boundary of the Ice Complex whose original morphology has been 

directly influenced by fluvial-deltaic action. The manual mapping was done using a desktop 

Geographical Information System (GIS). The resulting vector layer was then modified using 

our own field knowledge and expert advice given by M. N. Grigoriev (personal 

communication, 2009).  

The Landsat scenes covering the Ice Complex extent show a medium water level situation in 

summer (26 July 2001 in the western part, 27 July 2000 in the central and eastern part). An 

Ice Complex area of about 140 km² affected by cloud cover was replaced by a subset of a 

Landsat scene from 5 August 2000 (path 130, row 9). 

To extract all water bodies automatically, we applied a grey-level thresholding on band 5 of 

the Landsat data using the image processing software ENVITM 4.6. In these mid-infrared 

wavelengths water bodies are strong absorbers, easily distinguishable from other land cover 

types (Morgenstern et al., 2008a). All pixels with top-of-atmosphere reflectance values of 0 

to 0.1 were defined as water. We manually removed all water pixels related to drainage 



Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta  Chapter 2 
The Cryosphere 5, 849-867, 2011 
   

 

 
 

15 

channels, small streams, and river delta channels. The resulting data set was converted into 

vector polygons. Subsequent data processing and analyses were performed using the GIS 

software package ArcGISTM 9.3 and its spatial data analysis toolbox. In the following all 

extracted water bodies are referred to as lakes for reasons of readability even though 

smaller water bodies are actually ponds. 

Basins were manually digitized along their upper margins at the scale of 1:30,000. The 

transition between Yedoma surface and basin slopes is visually clearly distinguishable in the 

Landsat data due to better drainage of slopes. Each basin was assigned to one of two 

categories: single basins are distinct basins formed by local thermokarst activity, whereas 

coalesced basins consist of at least two basins that have merged due to lateral lake 

expansion in the past. Basins that are located adjacent to each other and connected via 

narrow drainage channels but have retained their original morphometry were treated as 

separate features; each was assigned to the category single. Each lake was assigned a 

location attribute that had the value on Yedoma uplands or in basin (Figure 2-3).  

Mapping of all features was performed in the Universal Transverse Mercator (UTM) 

projection Zone 52N with the geodetic datum WGS 1984 because this was the original 

projection of the Landsat mosaic. The study area has a large E-W extent of about 250 km and 

covers the 51N and 52N UTM zones.  The UTM meridian is situated in the center of the Lena 

Delta and crosses Kurungnakh Island. To minimize distortion effects on morphometric 

calculations the data sets were separated along the UTM meridian into a western and an 

eastern part. The western part was re-projected to its original UTM Zone 51N. Kurungnakh 

Island and affiliated data sets were assigned completely to Zone 52N, because the larger 

areal percentage belongs to this zone. 

2.4.2 Morphometric analyses 

For all lakes and basins, morphometric variables including area, perimeter, circularity index, 

elongation index, orientation of major axis, and the coordinates of centroids were calculated 

(Table 2-1). The circularity index is a measure of how strongly an object's shape deviates 

from a perfect circle. Values approaching 0 indicate that an object has a) an irregular or 

complex outline, b) includes islands, or c) is very elongated. A square has a value of 0.785. 

The calculations of the elongation index (major axis/minor axis) and orientation of major axis 

refer to the axes of a best-approximated ellipse with an area equal to that of the object 

being analyzed. 

 

 



Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta  Chapter 2 
The Cryosphere 5, 849-867, 2011 
   

 

 
 

16 

Table 2-1. Overview of morphometric variables calculated for lakes and basins. Major and minor axes lengths 

and orientation of major axis for lakes are not shown here, but were calculated the same way as for basins. 

illustration  variable calculation possible value 
range 

 

area GIS output [0; ∞] m² 

perimeter GIS output [0; ∞] m 

circularity index = 4 x π x area / perimeter² [0; 1] , 1 = 
perfect circle 

elongation index = major axis length / minor 
axis length 

[1; ∞], 1 = 
equal axes 

orientation of 
major axis (α) 

angle between E-W reference 
axis and  major axis (counter-
clockwise) 

[0;179.9] ° 

normalized 
centroid distance 

= distance between basin and 
lake centroids / major basin 
axis length 

[0; 1] 

angle between 
basin and lake 
centroids (β) 

angle between E-W reference 
axis and the distance 
between basin and lake 
centroids (counter-clockwise) 

[0;359.9] ° 

 

Because the lakes were extracted from raster data and vectorized without smoothing, the 

30 m x 30 m spatial resolution of the Landsat data has to be taken into account for 

morphometric analyses. Star and Estes (1990) recommend using a conservative raster cell 

size, one sixteenth the size of the minimum mapping unit. Therefore, we set the minimum 

lake size for analyses of the shape metrics circularity index, elongation index, and orientation 

of main axis to be 14,400 m² (16 times 30 m x 30 m). The pixel-based outline of the lakes has 

a strong effect on the circularity index because it is based on area and perimeter. An object 

with a smooth outline will have a shorter perimeter than an object of the same area with a 

complex outline. In consequence, the pixel-based lake circularity cannot reach the value of 1 

for a perfect circle and will always have lower values than digitized basins of the same shape. 

Thus, comparisons of circularity index between subpopulations of the data set are only 

legitimate among lakes, but not between lakes and basins, as the basins were manually 

digitized. The elongation index is therefore used as an additional measure and should give 

meaningful results because visual estimations of the basins (especially in the category single) 

reveal that they generally do not have complex outlines. 

For each basin we determined the number of lakes per basin, the sum of lake area, and the 

percentage of lake area. The distance between basin centroid and lake centroid and the 

angle formed by moving counter-clockwise from the E-W reference axis to the line between 
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the centroids were calculated to assess the position of lakes within single basins (Table 2-1). 

Centroid distances were normalized by dividing the distance by the length of the major basin 

axis to allow comparison between basins of different sizes. In addition, pingos were mapped 

as point objects on the basis of Landsat and Corona satellite data and topographic maps. 

Distances and angles between pingos and basin centroids were calculated in the same way 

as for lakes in basins. 

Statistical analyses of the resulting dataset were performed using the SPSSTM 16.0 software. 

An explorative data analysis (EDA) and the Kolmogorov-Smirnov test revealed non-normal 

distribution for all variables. Therefore, we used non-parametric tests for subsequent 

analyses. In order to test for morphometric differences between the subgroups lakes on 

Yedoma uplands versus lakes in basins and lakes on Yedoma uplands versus single basins, we 

applied the rank-based Mann-Whitney-U test. 

2.4.3 Relief analyses on Kurungnakh Island 

For Kurungnakh Island, a high-resolution Digital Elevation Model (DEM) based on an ALOS 

PRISM satellite image stereo triplet (acquisition date 21 September 2006) was available 

(Günther, 2009). The DEM has a horizontal resolution of 5 m and a vertical accuracy of 

5.8 m. For the rest of the study area, elevation information was derived from digitized 

1:200,000 topographic maps. The spatial resolution of these maps is too coarse to extract 

terrain information in the detail needed for analyzing the thermokarst relief of the whole 

Lena Delta Ice Complex. 

We used the high-resolution DEM to analyze the relief position of thermokarst features and, 

in particular, their position in relation to the two sedimentary units. According to 

Schirrmeister et al. (2003) and Wetterich et al. (2008) we assume that the average boundary 

between Ice Complex deposits and underlying fluvial sands lies between 15 and 20 m a. r. l. 

For calculation purposes in the GIS we set the height of the boundary to 17 m a. s. l. All lakes 

and basins whose floors are partially or completely below the 17 m contour line are 

considered to have their base in the fluvial sands of the lower stratigraphical unit. 

Detailed field observations in combination with DEM analyses in eastern Kurungnakh Island 

revealed that in areas with a negligible slope of 0 to 2° ice-wedge polygons occur, whereas in 

areas with slope ≥ 2° usually no polygons exist, but hummocks are prevalent. We also 

interpret this threshold as the relief condition for thermokarst initiation, i.e. at slopes ≥ 2° 

better drainage would prevent water accumulation and restrict lake formation. To calculate 

the area prone to potential new thermokarst lake development within the limits of the 

remaining Ice Complex on Kurungnakh Island, and assuming that new lakes would 
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predominantly form on poorly drained, flat Yedoma upland surfaces, we subtracted all areas 

with a slope of ≥ 2° and existing thermokarst lakes and basins from the area above the 17 m 

reference plane. The resulting binary raster was target-oriented filtered using a combination 

of the morphological Erode and Dilate filters of ENVITM 4.8 with a kernel size of 5 x 5 to 

correct for the influence of the systematic undulating surfaces of the DEM, which occurred 

mainly on the flat Yedoma uplands. 

During a field campaign in summer 2008, the relief characteristics and lake bathymetries 

were investigated in detail in one thermokarst basin with three large lakes located in the 

south of Kurungnakh Island (Morgenstern et al., 2008b; Ulrich et al., 2010). 

2.5 Results 

2.5.1 Area calculations and morphometric characteristics 

The study area, i.e. the mapped Ice Complex, covers an area of 1,688.1 km², which is 5.8 % of 

the Lena Delta area (29,000 km²) and 98.6 % of the third terrace area (1,711.6 km²); the 

remaining areas consist of exposed bedrock (Morgenstern et al., 2008a). We detected 2,327 

water bodies (minimum one pixel, 900 m²) with a total area of 88.3 km² within the study 

area (Table 2-2). Thus, at a 30 m pixel resolution 5.2 % of the Ice Complex extent is covered 

with open water. Of the total water body population, 1,509 water bodies are situated on 

Yedoma uplands and 818 are in basins. Even though they are much more abundant, lakes on 

Yedoma uplands cover a smaller total area than lakes in basins (37.4 and 50.9 km², 

respectively). Figure 2-4 shows the study area with all thermokarst lakes and basins mapped. 

Table 2-2. Area calculations for water bodies on the third Lena Delta terrace (except bedrock islands). 

 All lakes minimum 
one pixel (900 m2) 

Lakes on Yedoma 
uplands 

Lakes in basins All lakes ≥ 14,400 m² 

N 2,327 1,509 818 514 
Area (km²) 88.3 37.4 50.9 82.8 
Percentage of study area 5.2 2.2 3.0 4.9 
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Figure 2-4. Overview of study area with all thermokarst features investigated: a) western part, b) eastern part. 

Landsat-7 ETM+ mosaic, band 4, GeoCover 2000 © NASA. 

Thermokarst basins cover a total area of 337.7 km² or 20.0 % of the study area (Table 2-3). 

Of the 169 basins mapped, the majority (n = 144) was categorized as single. Single basins 

cover a much smaller areal extent, but show a higher lake area percentage than do 

coalesced basins (20.2 % and 11.7 %, respectively). Finally, 22.2 % of the study area is 

affected by thermokarst. Lakes on Yedoma uplands account for a much lower proportion of 

total area than do thermokarst basins (2.2 % and 20.0 %, respectively). 

Table 2-3. Area calculations for thermokarst basins on the third Lena Delta terrace (except bedrock islands). 

 All basins Single basins Coalesced basins 

N 169 144 25 
Area (km²) 337.7 133.0 204.7 
Percentage of study area 20.0 7.9 12.1 
Total lake number 818 263 555 
Sum of lake area (km²) 50.9 26.9 24.0 
Total lake area as a percentage of total basin area 15.1 20.2 11.7 
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Frequency distributions of area values for all water bodies in the study area show strong 

skewness towards lower values, because small water bodies are much more abundant than 

large lakes (Figure 2-5). However, lakes ≥ 14,400 m² that are considered for morphometric 

analyses still cover 93.8 % of the whole lake area, because even though their number is small 

(514 versus 2,327 for the whole water body population) they account for most of the lake 

area. This is consistent with the specific patterns of the relationship between lake surface 

area and areal frequencies found in various Ice Complex regions (Grosse et al., 2008) or in 

more general patterns throughout other environments (Downing et al., 2006). 

 

Figure 2-5. Histogram of area of all water bodies in the study area (1 ha = 10,000 m²). 

Lakes on Yedoma uplands (n = 296) differ significantly from lakes in basins (n = 218) in their 

morphometric characteristics except for the elongation index (Table 2-4). Lakes on Yedoma 

uplands are, on average, smaller than lakes in basins (median = 35,000 m² and 67,900 m², 

respectively) and have a smoother shoreline (Table 2-5). Frequency distributions of lake 

orientation on Yedoma uplands show a major peak in the WNW direction and a minor peak 

in the NNE direction (Figure 2-6). Lakes in basins show a slightly different picture with a 

more pronounced NNE direction, but also two peaks directed to the WNW and NW. 

Table 2-4. Results of the rank-based Mann-Whitney-U test for morphometric differences between lakes on 

Yedoma uplands and lakes in basins. Significant differences between the two lake subgroups were found for 

area, circularity index, and orientation of major axis. 

 Area Circularity index Elongation index Orientation of 
major axis 

Mann-Whitney-U 23,916 23,654 31,059 26,657 
Z -5.017 -5.176 -.724 -3.369 
Asymptotic significance (two-sided) .000 .000 .469 .001 
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Table 2-5. Comparison of morphometric characteristics of thermokarst lakes ≥ 14,400 m² and single basins. 

Area values for all lakes including lakes < 14,400 m² are shown in brackets. 

 Lakes on Yedoma uplands Lakes in basins Single basins 

N 296  (1509) 218  (818)     144 

Area  
Total (km²) 

Median (m²) 
Interquartile range (m²) 

Minimum (m²) 
Maximum (m²) 

 
33.7 

35,000 
65,800 
14,400 

2,482,200 

 
(37.4) 

 (2,700) 
(8,100) 

(900) 
(2,482,200) 

 
49.1 

67,900 
210,300 

14,600 
2,112,300 

 
(50.9) 

 (2,700) 
(16,200) 

(900) 
(2,112,300) 

 
133.0 

362,300 
1,096,200 

20,400 
7,706,600 

Circularity index 
Median 

Interquartile range 
Minimum 
Maximum 

 
0.48 
0.17 
0.12 
0.70 

  
0.41 
0.21 
0.07 
0.70 

  
0.93 
0.05 
0.74 
0.98 

Elongation index 
Median 

Interquartile range 
Minimum 
Maximum 

 
1.55 
0.60 
1.03 
6.19 

  
1.58 
0.82 
1.04 
8.07 

  
1.29 
0.24 
1.02 
2.02 

Outlines smooth shorelines more complicated 
shorelines 

smooth, circular 
outlines 

Main orientation WNW NNE NNE 

Depth 10 m and more up to 4 m up to 35 m 

 

 

Figure 2-6. Frequency distribution of major axis orientation for a) lakes ≥ 14,400 m² on Yedoma uplands, b) 

lakes ≥ 14,400 m² in basins, c) all lakes ≥ 14,400 m², and d) single basins. Intervals = 1°, 0° = East, 90° = North, 

180° = West. 

Tests between lakes on Yedoma uplands (n = 296) and single basins (n = 144) reveal 

significant differences for all morphometric variables (Table 2-6). Lakes on Yedoma uplands 

are, on average, much smaller than single basins (by about one order of magnitude; the area 

median equals 35,000 m² and 362,300 m², respectively), and more elongated. Orientation 

shows the same major peaks for both groups, one in the NNE and one in the WNW direction, 
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but with differing frequencies (Figure 2-6). Lakes on Yedoma uplands have a much stronger 

prevailing orientation in the WNW direction; in contrast, single basins are more frequently 

oriented in the NNE direction. Table 2-5 shows a comparison of the morphometric 

characteristics between lakes on Yedoma uplands, lakes in basins, and single basins. 

Table 2-6. Results of the rank-based Mann-Whitney-U test for morphometric differences between lakes on 

Yedoma uplands and single basins. Significant differences between the two subgroups were found for all three 

morphometric variables. 

 Area Elongation index Orientation of major axis 

Mann-Whitney-U 4,724 9,823 17,742 
Z -13.254 -9.180 -2.852 
Asymptotic significance (two-sided) .000 .000 .004 

 

Frequency distributions of the major axis orientations for all lakes ≥ 14,400 m² show a major 

orientation peak in the WNW direction and a minor peak in the NNE direction (Figure 2-6). In 

a previous study, all lakes ≥ 200,000 m² on the third Lena Delta terrace were found to exhibit 

a major NNE orientation (Morgenstern et al., 2008a). A selected distribution of major axis 

orientations for lakes with areas between 14,400 m² and 200,000 m² (n = 425) shows a peak 

in the WNW direction. This indicates an approximately 90° difference between the major 

orientation of smaller (14,400 m² to 200,000 m²) and of larger (≥ 200,000 m²) lakes. The 

frequency distributions of the major axis orientation of single basins show a major peak in 

the NNE and a minor peak in the WNW direction, opposite the orientation of all lakes 

≥ 14,400 m². 

Basins have a low lake area percentage (median = 3.9 and 2.3, interquartile range = 19.0 and 

22.1 for all basins and for single basins, respectively). Correlation between basin area and 

lake area percentage was found to be slightly positive (r = .453, p ≤ .01 for all basins and 

r = .212, p ≤ .01 for single basins). Lakes in basins are not regularly situated in basin centers, 

but are shifted towards basin margins, mostly in northern and southern directions  

(Figure 2-7).  

Bathymetric data from six lakes in the study area suggest that lakes on Yedoma uplands are 

deeper than lakes in basins (Figure 2-8). Lakes 1, 2, and 3 are situated in a 30 m deep 

thermokarst basin. Maximum recorded depth is 3.6 m for lake 1, 4.2 m for lake 2, and 4.0 m 

for lake 3. Lake 4 is also located in a thermokarst basin, but it covers a large part of the basin 

floor. Its maximum recorded depth is 8.1 m. Lakes 5 and 6 are situated on Yedoma uplands 

and reach depths of 12.5 and 9.0 m, respectively (Pavlova and Dorozhkina, 2000). 
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Figure 2-7. Position of lakes within single basins: a) frequency distribution of normalized distances between 

lake and basin centroids, b) frequency distribution of angles (in °) between basin and lake centroids. 0° = East, 

90° = North, 180° = West, 270° = South. 

 
Figure 2-8. Bathymetric profiles of lakes in relation to relief position. For lake locations see Figure 2-4. Lake 

areas and profile directions are as follows: lake 1 = 1,841,400 m², from N to SE; lake 2 = 104,400 m², from N to 

S; lake 3 = 221,400 m², from N to S; lake 4 = 421,200 m², from N to S; lake 5 = 1,636,790 m², from NW to SE; 

lake 6 = 2,460,134 m², from N to S. Bathymetric data from  lakes 5 and 6 from Pavlova and Dorozhkina (2000). 

Table 2-7 compares the characteristics of permafrost relief, thermokarst lakes, and basins 

between major islands of the study area. Islands of the tectonically-uplifted western part of 

the study area show higher maximum relief heights, especially Khardang Island, which 

experienced separate block uplift (Grigoriev, 1993). Maximum Ice Complex thickness varies 

greatly between the islands, but shows similar ranges in the western and eastern parts of 

the study area. Maximum basin depths as inferred from topographic maps are lower in the 

eastern part, but do not seem proportional to maximum Ice Complex thickness. Khardang 

Island has a very low lake area percentage while featuring the largest basin sizes by far. 



 

Table 2-7. Comparison of thermokarst features and permafrost characteristics between major islands of the study area. 

  Ebe-Basyn Khardang Dzhangylakh Kurungnakh Botulu Sobo Buor-Ylar Bel'kej-Dzhangy-
Aryta 

Island Area (km²) 160.7 826.7 93.9 259.5 14.5 262.1 32.2 5.6 
 Max. relief height (m a. s. l.) a 51 66 43 55 36 42 21 30 
 Max. Ice Complex thickness (m) b 33 48 16 38 36 c 42 c 21 c 30 c 

Lakes  N 
(N ≥ 14,400 m²) 

205 
(57) 

375 
(93) 

227 
(23) 

549 
(116) 

14 
(5) 

841 
(185) 

92 
(27) 

11 
(4) 

 Area  
Total (m²) 
Median (m²) 

 
13,003,200 

4,500 

 
22,835,900 

2,700 

 
3,566,900 

1,800 

 
19,425,600 

2,700 

 
674,900 

8,600 

 
20,781,600 

2,400 

 
6,111,900 

4,500 

 
126,000 

8,100 
 Percentage of island area 8.1 2.8 3.8 7.5 4.7 7.9 19.0 2.3 

Basins N 25 46 5 44 0 42 7 0 
 Area 

Total (m²) 
Median (m²) 
Median of single basins (m²) 

 
28,098,200 

553,100 
380,000 

 
128,906,600 

1,451,100 
1,211,300 

 
1,811,200 

351,600 
224,700 

 
99,235,100 

329,900 
228,700 

 
- 
- 

 
71,386,400 

323,300 
248,300 

 
8,425,000 

278,900 
247,000 

 
- 
- 

 Percentage of island area 17.5 15.6 1.9 38.2 - 27.2 26.2 - 
 Total lake area as a percentage of total 

basin area 
26.3 13.7 7.3 16.0 - 10.7 27.0 - 

 Median lake area percentage 13.4 1.7 3.7 2.3 - 4.2 3.8 - 
 Max. depth (m) a  15 30 15 35 - 10 10 - 

Lakes on Yedoma 
uplands and basins 

Total area (m²) 33,725,400 134,137,200 5,246,700 102,766,700 674,900 84,509,600 12,266,200 126,000 
Percentage of island area 21.0 16.2 5.6 39.6 4.7 32.2 38.1 2.3 

a Inferred from 1:200,000 topographical maps. 
b Estimated from outcrop studies (Grigoriev, 1993) and maximum relief height. 
c Values indicate the "visible" thickness above the river water level because the Ice Complex base is situated below the sea level here.
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In the study area 34 pingos were mapped, the majority situated in coalesced thermokarst 

basins (24 versus ten in single basins). In single basins, pingos are situated at distances of 

several hundreds of meters from the basin centers (min = 224 m, max = 598 m; normalized 

distances: min = 0.24, max = 0.57), mostly in the NNE and SSW directions (Figure 2-9). 

 
Figure 2-9. Position of pingos within single basins. Normalized distances and angles (in °) were calculated 

between basin centroids and pingos. 0° = East, 90° = North, 180° = West, 270° = South. 

2.5.2 Relief analyses of Kurungnakh Island 

The mapped extent of the key study area on Kurungnakh Island is 259.5 km². The total area 

of thermokarst (i.e., all thermokarst basins and lakes on Yedoma uplands) on Kurungnakh 

Island is 102.8 km², or 39.6 % of the key study area. Thermokarst lakes and basins that 

intersect or are situated below the 17 m isoline cover 71 % of the total thermokarst area. 

This amounts to 73 km², or 28.1 % of the Kurungnakh Island area (Figure 2-10). The surfaces 

of these thermokarst features (lake water level and basin bottoms) have subsided to the 

base of the Ice Complex deposits or lower. This areal calculation is very conservative because 

it does not take into account lakes and basins with surfaces above the 17 m contour line that 

should have formed taliks (bodies of unfrozen ground) that also reached the boundary 

between Ice Complex deposits and fluvial sands. This is illustrated in Figure 2-11, which 

shows a profile line derived from the ALOS PRISM DEM that is situated above 17 m a. s. l. 

while the lake floors reach the 17 m level. 

Based on the ALOS PRISM DEM, the deposits above the 17 m reference plane approximately 

represent the remaining Ice Complex deposits; the volume of these deposits was calculated 

to be 2.9 km³. The TOC reservoir of this volume amounts to 70 Mt (= 0.07 Pg) as calculated 

following the method described in Strauss et al. (2012), and corresponds to an average 

organic carbon inventory of 24 kg C m-3. 
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Figure 2-10. DEM of Kurungnakh Island indicating the position of thermokarst features above and below the Ice 

Complex boundary at 17 m a. s. l.  Of the total Kurungnakh Island area, 28.1% is covered by features under 

which the Ice Complex deposits should have already completely degraded.  The line between a and a’ indicates 

a profile section across a Yedoma and thermokarst basin assemblage (see Figure 2-11). 

 
Figure 2-11. Profile section across a Yedoma and thermokarst basin assemblage on Kurungnakh Island (for 

position see Figure 2-10) showing topographic positions of investigated features. The thaw potential of 

thermokarst is much greater on Yedoma uplands than in basins. The profile line was derived from the ALOS 

PRISM DEM, the depths of lakes from bathymetric measurements, and the approximate position of the Ice 

Complex base from outcrop studies (Schirrmeister et al., 2003; Wetterich et al., 2008). Positions of taliks are 

hypothetical, based on modeling studies of similar environments in other regions (West and Plug, 2008). 

The area of Kurungnakh Island above 17 m a. s. l. with slopes of 0 to 2° that is not included in 

the thermokarst features amounts to 87.4 km² (Figure 2-12). This means that only 33.7 % of 

the area within the limits of Ice Complex deposits represents flat Yedoma uplands 

unaffected by thermokarst or thermal erosion where new thermokarst could potentially 
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start to develop. However, we are aware that lateral thermokarst expansion of existing lakes 

close to slopes may result in reworking of Ice Complex deposits along these slopes as well. 

 
Figure 2-12. Yedoma uplands of Kurungnakh Island unaffected by thermokarst or thermal erosion with slopes 

< 2°. This area (33.7 % of Kurungnakh Island) is vulnerable to future thermokarst. 

2.6 Discussion 

2.6.1 Thermokarst extent in the study area 

Lakes cover 5.2 % of the study area; this coverage is low compared to other arctic tundra 

regions like the western arctic coastal plain of Alaska with about 20 % lake coverage (Hinkel 

et al., 2005) or the Tuktoyaktuk Peninsula in arctic Canada with 30 % lake coverage  (Côté 

and Burn, 2002). Within the Lena River Delta, the third terrace features the lowest lake area 

percentage (Morgenstern et al., 2008a). The Landsat resolution of 30 m per pixel did not 

allow small ponds to be detected. Grosse et al. (2008) showed that small ponds significantly 

contribute to the lake coverage of Ice Complex areas. For their OLE study site, which is part 

of the westernmost portion of our study area, they calculated 13.3 % lake coverage including 

all standing water bodies of ≥ 30 m². This is still a small percentage of the whole study area. 

An assessment of the area available for potential thermokarst evolution in Ice Complex 

deposits that is solely based on detecting thermokarst lakes by remote-sensing methods 
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would therefore deduce a high thermokarst potential for this study area. However, the total 

basin area mapped in our study area exceeds the total current lake area by a substantial 

factor of four, according to our calculations. This adds a high percentage to the area of Ice 

Complex degradation due to thermokarst, which is 22.2 % of the study area. In Alaska, on 

the North Slope thermokarst lakes and drained basins cover a combined area of 46.1 % 

(Frohn et al., 2005), and on the Barrow Peninsula 72 % (Hinkel et al., 2003). The remaining 

77.8 % of our study area cannot be considered undisturbed Yedoma surfaces as thermal 

erosion also plays an important role in Ice Complex degradation. The results from 

Kurungnakh Island show that only 33.7 % of the island area is undisturbed flat Yedoma 

surface. This is in the same range as results of previous remote-sensing-based studies that 

cover other portions of the Ice Complex accumulation plain in the Laptev Sea region. For the 

Bykovsky Peninsula east of the Lena Delta, Grosse et al. (2005) calculated the area affected 

by thermokarst and thermal erosion to be more than 50 %; for the area of Cape Mamontov 

Klyk west of the Lena Delta, Grosse et al. (2006) calculated the affected area to be 78 %. 

2.6.2 Areal constraints on thermokarst development 

Modern lakes on Yedoma uplands are, on average, much smaller than single basins (by 

about one order of magnitude). Taken together with the fact that total basin area exceeds 

total lake area, this suggests that thermokarst lakes have reached much greater sizes in the 

past. After drainage, basins can undergo expansion through lateral erosion mainly by 

secondary thermokarst lakes in the basins. The smoothness of single basin boundaries 

indicates that this process cannot account for substantial area increase after drainage of the 

initial lake, which suggests that the size of these basins is indeed largely a result of the first 

lake that formed. We therefore conclude that conditions for large-area thermokarst lake 

development were more suitable in the past. During the massive thermokarst development 

in this region about 12 ka ago the coastline was situated hundreds of kilometers to the north 

of its present location (Bauch et al., 2001; Kaplina, 2009). The study area was not part of a 

river delta, but of a broad accumulation plain where Ice Complex deposits were distributed 

widely (Schirrmeister et al., 2011a). The terrain presumably was not as affected by fluvial 

erosion as it is nowadays in the delta context (Schwamborn et al., 2002b), and thermo-

erosional gullies probably started to form simultaneously with the development of an 

increasing relief gradient between Yedoma uplands, thermokarst basins, and delta channels. 

Consequently, the area of thermokarst lake formation was little limited by the hydrological 

networks that forced growing lakes to drain; hence, large thermokarst lakes with diameters 

of several kilometers each were able to form. 
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In contrast, in the present situation small remnants of the former coherent Ice Complex 

plain have been elevated above a dynamic river delta environment, fostering the 

development of thermal erosion and the connection of Yedoma uplands to the hydrological 

network. The limiting effect of thermal erosion on the areal extent of thermokarst is also 

reflected in a lower lake area percentage in regions of higher relief energy, especially in the 

uplifted western part of the study area (Table 2-7). On Khardang Island, which has 

experienced an additional block uplift (Grigoriev, 1993), the discrepancy between the largest 

basins and the smallest lake area percentage suggests that there has been an abrupt change 

in thermokarst conditions, from large-scale to very limited, a change resulting from better 

drainage and thermal erosion. 

Bosikov (1991) suggested that the lake area percentage of basins is an indicator of the 

evolutionary stage of thermokarst basins in central Yakutia. Younger thermokarst basins 

would have a higher lake area percentage than old basins. Assuming that smaller basins are 

younger, they should tend to have a higher lake area percentage than larger basins. In our 

study area we found an opposite correlation. However, single basins exhibit a higher lake 

area percentage compared to coalesced basins. This fact results from a better connection of 

coalesced basins to the hydrological network; these basins have often coalesced into broad 

valleys, which drained through thermo-erosional channels. The water accumulation that is 

required for renewed lake growth is, therefore, less probable in coalesced than in single 

basins. The total number of pingos in coalesced basins (24) is much higher than in single 

basins (10). The occurrence of pingos, therefore, might also indicate the evolutionary stage 

of thermokarst basins. However, it is beyond the scope of this study to further investigate 

this hypothesis. The more irregular shapes of lakes in basins compared to lakes on Yedoma 

uplands reflect the complex basin floor morphology with drainage channels, pingos, lake 

terraces, different areas of permafrost aggradation and subsidence, etc. 

2.6.3 Stratigraphical constraints on thermokarst development 

The low lake area percentage in basins indicates that if drainage of lakes on Yedoma uplands 

occurs, lake level falls to the elevation of the drainage sill. Further water supply to the basin 

cannot lead to further water level rise or to the infilling of the basin to its margins. 

Subsequent thermokarst evolution in the basins does not seem likely to result in the 

substantial further subsidence of the lake or basin floor that would be required for large 

secondary thermokarst lakes to develop in existing basins. This can be explained by the 

stratigraphy of the study area, in particular the relatively ice-poor and thus thermokarst-

resistant sand unit below the Ice Complex. 
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Figure 2-13 illustrates thermokarst evolution in the specific stratigraphical context of the 

study area. The maximum Ice Complex thickness observed at coastal bluffs is about 30 m 

(Grigoriev, 1993) and possibly reaches about 48 m on Khardang Island (Table 2-7). Basin 

depths of up to 30 m are common, so the majority of first-generation thermokarst lakes 

have already completely thawed the Ice Complex deposits within their basin footprint (stage 

3 in Figure 2-13). 

In our study area, the sediments underlying the Ice Complex are fluvial sands with a 

gravimetric ice content of 20 to 40 %, which is too low to allow for continuing significant 

thermokarst subsidence below the Ice Complex base. Even if the floor of a first-generation 

thermokarst lake has not yet reached the Ice Complex base, its talik naturally will expand 

below it. A thermokarst lake a few meters deep will develop a talik several tens of meters 

deep in cold, ice-rich permafrost over several hundred to a few thousand years (Anisimova, 

1962; Schwamborn et al., 2002a; West and Plug, 2008). Consequently, Ice Complex deposits 

underneath first-generation thermokarst lakes have undergone taberal development, 

including ice loss, organic carbon depletion, and compaction, resulting in a diagenetically 

altered, thawed sediment which may refreeze again after lake drainage. Portions of Ice 

Complex deposits, including ground ice, are possibly conserved underneath smaller lake 

basins that drained at a stage corresponding to stage 2 in Figure 2-13, before they reached 

full thermokarst maturity and developed a deep talik (Kaplina, 2009). However, only a small 

number of such basins exist in the study area as inferred from basin sizes. 

After first-generation thermokarst lakes drained the taliks and basin deposits gradually 

refroze, permafrost formed accompanied by ground ice aggradation. The renewed ground 

ice content, however, does not reach the amount included in initial Ice Complex deposits 

which accumulated over several tens of thousands of years. Permafrost sediments that have 

developed in thermokarst basins can be divided into three main horizons with varying 

ground ice content (Kaplina, 2009; Wetterich et al., 2009) (stages 4 and 5 in Figure 2-13). The 

lowest horizon represents the former Ice Complex sediments, which were thawed, 

compacted, partly deformed, and refrozen. These so-called taberites have a much lower ice 

content than did the original Ice Complex (between 20 to 40 wt%), and can be several 

meters thick. Refrozen lake sediments overlaying the taberites have similar ground ice 

contents (20 to 40 wt%). The top horizon (i.e., alas deposits) is formed by silt and peat layers 

with very high ground ice content similar to that of the Ice Complex (up to 200 wt%), and can 

reach thicknesses of 5 to 7 m. A system of ice veins and wedges penetrates these horizons of 

basin sediments, which are epigenetic in the taberal and lake sediments and syngenetic, due 

to peat accumulation, in the alas deposits (Kaplina, 2009; Wetterich et al., 2009). Favourable
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Figure 2-13. Scheme of thermokarst development in Yedoma landscapes of the Lena River Delta in plane view 

(left) and cross section (right). 1: Flat, undisturbed Yedoma uplands with polygonal tundra. 2: Thermokarst 

lakes on Yedoma uplands - initial stage with lateral and vertical thermokarst development, lake sedimentation, 

talik in non-steady state. 3: Thermokarst lakes on Yedoma uplands - mature stage with lateral expansion only, 

lake sedimentation, talik fully developed. 4: Partially drained, coalesced thermokarst basin with remaining or 

second-generation thermokarst lake - partial refreezing of former talik, taberites, and lake sediments with ice 

aggradation and peat accumulation. 5: Partially drained coalesced thermokarst basin with pingo. 
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conditions for considerable second-generation thermokarst, therefore, are provided only in 

the top horizon; the lower two resemble the underlying fluvial sands in terms of low ground 

ice content. 

The different potential for ground subsidence due to thermokarst is also supported by the 

different depths of lakes on Yedoma uplands versus lakes in basins (Figure 2-8). While the 

former (lakes 5 and 6) reach depths of 12 m, the latter (lakes 1 to 3) are no more than 4 m 

deep. Lake 4 illustrates an intermediate stage. It partly drained before thermokarst was fully 

developed. The exposed basin floor is situated at 30 m a. s. l., which is well above the Ice 

Complex base (Figure 2-11). The remaining lake continued the thermokarst process and 

reached its present depth of 8 m. The present lake floor is situated directly at the 17 m level, 

which we defined as the generalized Ice Complex base. In fact, the Ice Complex base should 

be situated a few meters lower here, because a layer of taberites necessarily exists 

underneath the lake bottoms. Its thickness depends on the original ice content of the Ice 

Complex; the lower the ice content, the thicker the taberal layer. 

Figure 2-11 shows lake bottoms situated at the assumed Ice Complex base and lake surfaces 

and basin floors located only a few meters higher. This suggests that the taberal layer is only 

a few meters thick and the original ice content was very high. For the large thermokarst 

basin with lakes 1 to 3, taberites have been calculated to be 2.3 m thick, assuming a total ice 

content of 90 vol% in the original Ice Complex (Ulrich et al., 2010). Soloviev (1962) also 

describes central Yakutian basin floors situated just above the Ice Complex base. Therefore, 

basin depths can be used as indicators of ice content and total thickness of Ice Complex 

deposits. 

2.6.4 Impact of future thermokarst development 

These findings emphasize that the effect of thermokarst development varies depending on 

whether it takes place on undisturbed plain surfaces or in existing basins of older-generation 

thermokarst. Newly developing thermokarst lakes on Yedoma uplands have a stronger 

transformative impact on permafrost sediments, landscape character, and environmental 

processes than thermokarst lakes in existing basins. Taliks forming underneath thermokarst 

lakes on Yedoma uplands enable the activation of physical and biochemical processes in the 

Ice Complex deposits, altering their structure and the composition of organic matter that 

had been conserved for thousands of years. The sediments in basins, however, have already 

been reworked and do not possess the characteristics of the very ice-rich permafrost of the 

surrounding Yedoma uplands. These differences between thermokarst on Yedoma uplands 

and thermokarst in basins also have implications for the carbon cycle. Walter et al. (2007) 

report that refrozen taberal Ice Complex deposits beneath drained Holocene thermokarst 
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lakes contain ~33 % less carbon than those Ice Complex deposits that never thawed. Ice 

Complex on Yedoma uplands has a high ground ice content; therefore, it is very sensitive to 

potential thermokarst development in a warming climate. Thermokarst lakes developing on 

Yedoma uplands thus have a higher potential to mobilize older, and more labile, carbon than 

do second-generation thermokarst lakes in existing basins. At the same time the potential 

for the development of new thermokarst lakes, especially large lakes that are able to form 

extensive taliks before they drain, is very limited. A well-established connection of the basins 

to the drainage system also allows for the erosion of basin sediments. Taberites, lake 

sediments, and Holocene peat horizons together with ground ice that aggraded during 

refreezing can be removed from the basin floor, thus eliminating the basis for future 

thermokarst development. In this case, the organic matter of the basin sediments is 

transported to the fluvial system. 

On Kurungnakh Island, at least 71 % of all thermokarst lakes and basins have subsided to the 

Ice Complex base. Here, the Ice Complex deposits have thawed completely and have been 

exposed to biogeochemical processes such as the decomposition of old organic matter. If we 

assume that fully-developed taliks have existed underneath most of the remaining 29 % of 

thermokarst lakes and basins, thermokarst has completely degraded Ice Complex deposits in 

up to 39.6 % of the area of Kurungnakh Island. Areas outside existing thermokarst lakes and 

basins above the Ice Complex base with slopes of up to 2° are available for the initiation of 

new thermokarst lakes because these areas allow ponding of water and ground subsidence. 

The areas with slopes of more than 2° can also be affected by thermokarst, mainly by lateral 

growth of existing thermokarst lakes. In some cases ponding of water can also occur on 

upper slopes of Yedoma uplands. However, extensive thermokarst activity is not possible 

here, because lateral growth will lead to drainage when the lake reaches the lower parts of 

the slope. Many of the steeper slopes (5 to 20°) surround large thermokarst lakes or belong 

to thermo-erosional valleys that cut across the surface of Kurungnakh Island, indicating that 

lateral sediment transport and mass wasting processes are also important contributors to 

the degradation of Ice Complex deposits. Key processes are thermal abrasion of lake shores 

and thermal erosion in retrogressive valleys or gullies. Mobilization, transport, and 

transformation of organic matter differ between in situ thawing and ground subsidence in 

local thermokarst lakes and the lateral dynamics involving slope processes and flowing 

water. It will thus be of interest in future work to investigate the extent to which the 

remaining Ice Complex is degraded by newly developing thermokarst, or by thermal abrasion 

due to the expansion of thermokarst lakes in existing basins, or by thermal erosion. 
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The implications of significantly reduced thermokarst potential in large parts of the study 

area are also highly relevant for most other Yedoma landscapes in Siberia, which are 

estimated to occupy an area of 106 km² (Zimov et al., 2006a). Environmental changes at the 

transition between Pleistocene and Holocene led to extensive thermokarst activity in 

Siberian Ice Complex deposits (Kaplina, 2009). The percentage of thermokarst affected 

terrain as well as the morphology of thermokarst lakes and basins varies between different 

Yedoma regions. Precise calculations of Yedoma and thermokarst area percentages are rare, 

but old thermokarst basins generally exist in nearly all Yedoma regions and restrict future 

thermokarst lake expansion. In the Kolyma lowlands, for example, Kaplina et al. (1986) 

report different degrees of Yedoma dissection by thermokarst basins from weak (<25 %) to 

very high (>75 %). In a subset of this area, Veremeeva and Gubin (2009) calculated that 65 % 

are covered by thermokarst basins and only 26 % represent Yedoma uplands. For the 

Yedoma region of the Bykovsky Peninsula, Grosse et al. (2005) found that about 53 % of the 

area is affected by thermokarst. For the Lena-Anabar lowland, which is similar in geological 

composition to the Lena Delta study area with Ice Complex deposits underlain by fluvial 

sands, about 49 % of the area is covered with thermokarst landforms (Grosse et al., 2006). 

Kaplina (2009) points out two types of Yedoma territories in north Yakutian lowlands, where 

thermokarst has no potential to develop. The first type corresponds to the situation in our 

study area representing drained Yedoma massifs and remnants where water accumulation is 

impeded. The second type are areas, where coalesced thermokarst basins form extensive 

alas plains underneath which the former Ice Complex almost completely underwent taberal 

reworking. This shows that investigations of modern and possible future thermokarst lake 

development in Siberian Yedoma regions in the context of changes in landscape, hydrology, 

climate, carbon cycle, etc. always have to consider the history of former thermokarst 

evolution and permafrost degradation. 

2.6.5 Oriented thermokarst development 

The lateral growth of thermokarst lakes and the spatial development of second-generation 

thermokarst in existing basins did not proceed uniformly, as can be seen from morphometric 

and orientation analyses. Even though lakes and basins in the study area are not as 

elongated as the oriented lakes of the second Lena Delta terrace (Morgenstern et al., 

2008a), the descriptive statistics of circularity and elongation indicate a general deviation 

from round and regular forms. Smaller lakes (14,400 to 200,000 m²) are oriented mainly in 

the WNW direction whereas larger lakes (≥ 200,000 m²) and single basins have major 

orientation peaks to the NNE.  Several hypotheses can be proposed to explain this 90° shift 

in orientation from smaller to larger forms. First, if it is true that smaller thermokarst lakes 

have not existed as long as larger lakes and single basins, the external orienting forces may 
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have changed their direction by 90° at some time during the Holocene. Second, the strength 

of the orienting forces may have changed with growing lake size. Third, smaller lakes may be 

dominated by different orientation-driving forces than are larger lakes. Despite several 

decades of research, there is still a debate about which factors control thermokarst lake 

orientation in areas where lake orientation does not follow underlying relief structures. On 

the North American Arctic Coastal Plain, preferential erosion of the lake shores at right 

angles to prevailing summer wind directions due to wind-driven currents and wave activity 

has been proposed and agrees well with current main wind directions (e.g., Carson and 

Hussey, 1962; Côté and Burn, 2002; Hinkel et al., 2005); however, authors investigating 

orientation and directed evolution of thermokarst lakes and basins in Siberian Ice Complex 

deposits discuss solar insolation (e.g., Soloviev, 1962; Boytsov, 1965; Ulrich et al., 2010) and 

erosion due to wave activity in the direction of prevailing summer winds (e.g., Kuznetsova, 

1961). The first of our three hypotheses would rule out solar insolation as the main factor for 

lake orientation. A possible explanation could be a change in major summer wind direction 

during the Holocene. Under our second hypothesis an important effect of solar insolation is 

also implausible. However, if main summer wind direction remained stable, a change in its 

effect from wave-induced erosion (abrasion) in the wind direction to the establishment of 

wind-driven currents at right angles to the main wind direction or vice versa might be 

possible. Our third hypothesis implies that in smaller lakes wind has a stronger effect on 

orientation than does solar insolation, while in larger lakes and in basins the effect of solar 

insolation dominates that of wind effects. This is physically not plausible, as wind effects 

should intensify with growing lake area. 

A change detection study for all lakes ≥10,000 m² on Kurungnakh Island revealed the 

directional growth of lakes in the NNW direction during the investigated time period of 

about 40 years (Günther, 2009). Following the solar radiation hypothesis, the NNE (SSW-

facing) slopes of the lakes and basins should receive maximum energy shortly after noon and 

therefore be preferentially eroded. The results of modeling solar radiation rates for a 

thermokarst basin on Kurungnakh Island showed the highest values for south-facing basin 

slopes. Rates for west-facing slopes exceeded rates for east-facing slopes (Ulrich et al., 

2010). Solar insolation as the single orienting factor is thus only acceptable if a summer 

cloud-cover regime with consistently higher cloudiness in the afternoon were to be observed 

on Kurungnakh Island. Wind data from the meteorological station on Stolb Island near 

Kurungnakh Island (72.4°E 126.5°N, data from 1955–1991) show pronounced southern wind 

directions for the whole observation period and three peaks for the period of positive 

temperatures, one from the S, one from the ESE, and one from the NNW (Morgenstern et 
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al., 2008a). This would support the hypothesis of orientation due to prevailing winds in the 

direction of major axes for the lakes of Kurungnakh Island over the last 40 years. 

Lakes in basins are not situated in the centers of the basins, but are shifted mainly towards 

northern and southern margins (Figure 2-7), indicating that asymmetrical basin profiles 

result from directional basin evolution. Thermokarst lakes are often deeper at the sides of 

active thermokarst development (Romanovskii, 1961). After partial drainage, residual lakes 

in basins remain at the sides of recent thermokarst activity. If thermokarst development 

proceeded unidirectionally over the whole study area, as has been observed for Kurungnakh 

Island over the last 40 years, lakes in basins should be situated predominantly in one 

direction only from the basin center. The bi-directionally clustered distribution of lakes in 

basins therefore does not support hypotheses of unidirectional factors such as solar 

insolation and prevailing summer winds in the direction of the main axes. It is interesting to 

note that the position of pingos in single basins is similar to the position of lakes in basins; 

pingos are also shifted in northern and southern directions from the basin centers  

(Figure 2-9). However, the low number of pingos in single basins in the study area does not 

permit using pingo position to derive robust conclusions about oriented thermokarst 

development. 

The inconsistencies of lake and basin orientation patterns in the study area over space and 

time, as described above, do not allow the cause of oriented thermokarst development in 

the Yedoma landscapes of the Lena River Delta to be clearly elucidated at present. 

2.7 Conclusions 

Large parts of the study area are affected by thermokarst, and total thermokarst basin area 

exceeds total thermokarst lake area by a factor of four. Three developmental stages of 

thermokarst complexity have been distinguished in this study: 1) lakes on Yedoma uplands, 

2) single basins with residual and second-generation lakes, and 3) coalesced basins with 

residual and second-generation lakes. The morphometric characteristics of lakes on Yedoma 

uplands differ significantly from those of lakes in basins or single basins, reflecting different 

evolutionary conditions. However, the differences between the two lake types are not clear-

cut and do not allow for automatically classifying lakes on Yedoma uplands and lakes in 

basins based on morphometric indicators in a GIS. Thermokarst lakes and single basins show 

oriented morphometries, but the factors and processes responsible for oriented 

thermokarst development in the study area remain unclear. Conditions more suitable to the 

development of large-area thermokarst in the Ice Complex deposits of our study area have 

existed in the past; such development will be further limited in area and depth in the future. 
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The proximity of newly-developing thermokarst to existing degradational features like 

thermokarst basins and thermo-erosional valleys as well as to delta channels reduces the 

potential for considerable thermokarst activity on Yedoma uplands before drainage occurs. 

On Kurungnakh Island, 33.7 % of the total area is vulnerable to future thermokarst on 

Yedoma uplands. Further thermokarst processes in existing basins are limited due to the 

underlying ice-poor fluvial sands and, in the case of basins where permafrost has aggraded 

during the Holocene, due to the thin layers of ice-rich alas sediments and peat horizons. No 

old organic carbon will be directly mobilized from these areas. Developing thermokarst lakes 

on undisturbed Yedoma uplands have the highest impact on the alteration of Ice Complex 

deposits and Yedoma landscapes. However, past thermokarst activity and erosion have 

severely diminished original Yedoma surfaces, not only in the study area, but in Siberian 

Yedoma regions in general, so future thermokarst lake expansion in these landscapes may 

be considerably restricted. Therefore, it is necessary to differentiate between the various 

developmental stages of thermokarst and landscape units in order to assess the degradation 

of very ice-rich permafrost due to thermokarst, for example to quantify organic carbon 

inventories and the potential for future carbon fluxes.  
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3.1 Abstract 

Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in 

East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. 

We investigate the temporal and spatial dynamics of a 7.5 km², partly drained thermokarst 

basin (alas) using field investigations, remote sensing, Geographic Information System (GIS), 

and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. 

The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the 

initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and 

persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby 

creating a >20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is 

characterized by alternating stages of lower and higher thermokarst intensity within the alas 

that were mainly controlled by local hydrological and relief conditions and accompanied by 

permafrost aggradation and degradation. It included diverse concurrent processes like lake 

expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of 

drainage channels and a pingo, which occurred in different parts of the alas. This more 

dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. 

However, on the regional scale, the changes that occurred during the second evolutionary 

phase after drainage of the initial thermokarst lakes were less intense than the extensive 

thermokarst development that affected vast areas of East Siberian coastal lowlands during 
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the early Holocene as a result of a significant regional change to warmer and wetter climate 

conditions. 

3.2 Introduction 

Thermokarst lakes and basins are ubiquitous landforms in arctic lowlands. Current research 

has a particular focus on thermokarst processes in ice-rich permafrost deposits in Siberia and 

the North American Arctic, because these deposits are highly vulnerable to degradation 

under a warming climate. The high content of excess ice accounts for their high thawing 

potential, and the large amount of organic matter (OM), which has been stored in 

permafrost deposits for several thousand years, has a high potential for the release of 

greenhouse gases (Jorgenson et al., 2006; Walter et al., 2007; Schuur et al., 2009; Grosse et 

al., 2011). Thermokarst in East Siberian ice-rich permafrost massively developed at the 

transition from Pleistocene to Holocene, but after the Boreal period (9-7.5 ka BP), the 

thermokarst landscapes appeared as they do today and have experienced only minor 

changes since then (Romanovskii et al., 2004; Kaplina, 2009). Parallel to this concept of 

unidirectional thermokarst evolution, including initiation, expansion, drainage, and cessation 

of thermokarst activity leading to stable modern thermokarst landscapes, thermokarst has 

been regarded as a highly dynamic process, and the concept of a thaw lake cycle which has 

been repeated several times during the Holocene has been proposed (e.g. Hopkins, 1949; 

Tomirdiaro, 1965; Billings and Peterson, 1980; Hinkel et al., 2003). This concept describes 

secondary thermokarst activity in drained basins after sufficient ice aggradation, but 

substantial evidence is lacking that several complete thaw lake cycles have occurred in arctic 

tundra landscapes during the Holocene (French, 2007; Jorgenson and Shur, 2007). Many 

recent studies, which investigate thermokarst lake area changes by means of multitemporal 

remote sensing, reveal ongoing thermokarst dynamics during the last decades. For different 

Siberian regions in the continuous permafrost zone, these change detection studies show 

thermokarst area increase (Smith et al., 2005; Walter et al. 2006; Kravtsova and Bystrova, 

2009) as well as decrease resulting from lake drainage (Kravtsova and Bystrova, 2009; 

Günther et al., 2010), but also areas where no changes occur (Kravtsova and Bystrova, 2009). 

These studies merely differentiate the settings in which these lake area changes take place, 

but it has been shown that there are great differences between the potential and impact of 

developing thermokarst in undisturbed ice-rich late-Pleistocene deposits and that in older-

generation thermokarst basins (Morgenstern et al., 2011). 

In Yedoma-type Ice Complex deposits of the Laptev Sea region several studies have been 

conducted regarding the general stratigraphy (e.g., Wetterich et al., 2008; Schirrmeister et 

al., 2011a, 2011c), the onset of thermokarst (Kaplina and Lozhkin, 1979; Tumskoy, 2002), 
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recent changes of thermokarst lake area (Günther, 2009; Kravtsova and Bystrova, 2009; 

Günther et al., 2010), or the potential of future thermokarst evolution (Morgenstern et al., 

2011). However, there is a gap in our knowledge about how these permafrost degradation 

landforms have developed during the Holocene, i.e. whether they experienced several cycles 

of drainage, permafrost aggradation, and thermokarst formation, or not. 

Our investigations aim at the detailed characterization of the temporal and spatial dynamics 

of thermokarst in ice-rich permafrost. Field investigations of a partly drained thermokarst 

lake basin (alas) in Ice Complex deposits with three large lakes are combined with remote 

sensing, Geographic Information System (GIS), and sediment analyses to distinguish different 

stages of thermokarst dynamics. The specific objectives are: 1) to characterize the modern 

thermokarst landscape based on morphological and surface properties, 2) to discriminate 

different phases of thermokarst development, and 3) to reconstruct the landscape dynamics 

due to permafrost degradation and aggradation during the Holocene. 

3.3 Study site and regional setting 

The investigated alas is situated on Kurungnakh Island in the south-central Lena River Delta 

(72°19’N; 126°12’E) (Figure 3-1) in the continuous permafrost and subarctic tundra zone. 

Kurungnakh Island belongs to the third geomorphological main terrace of the Lena Delta 

(Grigoriev, 1993), which is distributed in the southern delta as erosional remnants of a late-

Pleistocene accumulation plain in the foreland of the Chekanovsky Ridge bordering the Lena 

Delta to the south. It consists of three stratigraphical main units (Schwamborn et al., 2002b; 

Schirrmeister et al., 2003, 2011a; Wetterich et al., 2008) (Figure 3-2). The lowest unit is 

composed of fluvial sands with a gravimetric ice content between 20 and 40 weight percent 

(wt%), which accumulated between 100 and 50 ka BP. The transition to the overlying Ice 

Complex unit is very sharp and is situated between 15 and 20 m above river level (arl), 

corresponding to 16 to 21 m above sea level (asl) at the eastern side of Kurungnakh Island. 

The Ice Complex unit consists of silty and peaty deposits with high gravimetric ice content 

(38 to 133 wt%) and huge syngenetic ice wedges. It polygenetically accumulated during the 

interstadial period between about 50 and 32 ka BP and during the stadial period about 17 ka 

BP. The Holocene unit (8 to 3 ka BP) occurs as a cover on top of the Ice Complex unit and as 

infillings of thermokarst depressions and is composed of cryoturbated silty sands with peat 

inclusions and small ice wedges. 
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Figure 3-1. Location of the study area. (a) Ice Complex remnants (black outlines) in the southwestern Lena 

River Delta forming the third terrace. 1 – Ebe-Basyn Island, 2 – Khardang Island, 3 – Dzhangylakh Island 

(Landsat-7 ETM+ mosaic, band 4). (b) Kurungnakh Island. Black outline marks the Ice Complex extent; arrows 

indicate the flow direction of the thermo-erosional valley draining the investigated alas. 4 – Alas valley formed 

by coalescence of several alasses (Landsat-7 ETM+, RGB 4-5-3, over DEM shaded relief derived from 

topographic maps). (c) Investigated thermokarst depression with three large thermokarst lakes. White circle 

indicates a small pingo; white arrow shows the flow direction of the draining thermo-erosional valley (ALOS 

AVNIR-2, RGB 4-3-2, acquisition date: 18 August 2006). 
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Figure 3-2. Bluff at the eastern side of Kurungnakh Island. This location close to the investigated alas reveals 

the stratigraphical composition of the island with lower fluvial sands, upper Ice Complex, and Holocene cover. 

Ice wedges in the Ice Complex appear in light grey colors; border between sands and Ice Complex located at 15 

to 20 m height. 

The total area of Kurungnakh Island is 350 km², but the described stratigraphy has been 

eroded in large part at the margins by meandering delta channels. The area with the 

preserved stratigraphy of fluvial sand, Ice Complex, and Holocene units has an extent of 

259.5 km² (black outline in Figure 3-1b), but also shows a highly dissected surface resulting 

from intensive thermokarst and thermo-erosional activity during the Lateglacial to early 

Holocene period (Romanovskii et al., 2000; Morgenstern et al., 2011). The thermokarst-

affected area within the Ice Complex extent of Kurungnakh Island covers 103 km², with total 

alas area considerably exceeding total lake area (99 km² and 19 km², respectively). Maximum 

surface elevation of Kurungnakh Island is 55 m asl in the southeast on the Yedoma surface 

close to the investigated alas and gradually decreases in the northwestern direction. The flat 

Yedoma uplands are characterized by polygonal tundra with numerous ponds and small 

thermokarst lakes. 

Alasses on Kurungnakh Island are mostly oval in shape, up to 3.5 km long, 3 km wide, and 

30 m deep, with steep slopes and flat floors. They have often coalesced with neighboring 

depressions, most notably in central Kurungnakh, where a large alas valley dissects the 

island from north to south (Figure 3-1b). Most alasses contain lakes and ponds and small 

streams or drainage channels. Many of them drained through thermo-erosional valleys that 

cut across the island’s surface. Pingos have developed on some of the alas floors. The 

investigated alas is considered to be typical of thermokarst landforms in northeast Siberian 

coastal lowlands with ice-rich permafrost as they are described, for example, in Romanovskii 

(1961). 
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3.4 Material and methods 

3.4.1 Remote-sensing data and processing 

ALOS PRISM satellite data with a geometric resolution of 2.5 m acquired in triplet OBS1 

mode on 21 September 2006 entirely cover Kurungnakh Island and surrounding delta areas. 

A Digital Elevation Model (DEM) was derived from all stereo pairs of this PRISM triplet. This 

DEM with a horizontal resolution of 5 m and a vertical accuracy of 5.8 m was then used to 

orthorectify the PRISM nadir image (Günther, 2009). Both data sets were used in this study 

for context analyses of the Kurungnakh Island setting and relief. 

For high resolution spatial analyses of the 7.5 km² large alas, an alas DEM with 3 m pixel size 

was produced from detailed tacheometric field measurements (Ulrich et al., 2010, 2011). Its 

vertical accuracy of 0.28 cm is very high and allows for detailed analyses of the alas terrain. 

Spatial data processing and analyses were performed using the GIS software package 

ArcGISTM 10.0 of ESRITM. 

Multispectral ALOS AVNIR-2 satellite data with a geometric resolution of 10 m acquired on 

18 August 2006 cover the eastern part of Kurungnakh Island including the investigated alas. 

The four spectral bands of these data cover the visible (VIS) and near-infrared (NIR) parts of 

the electromagnetic spectrum and allow for the classification of land cover types, which are 

characterized by different moisture regimes and vegetation coverage and composition. A 

supervised maximum-likelihood classification of the AVNIR-2 data was performed using the 

ENVITM 4.5 software. Detailed field records of surface characteristics were used for training, 

and the alas DEM as well as a soil adjusted vegetation index (SAVI) were considered in the 

classification approach (Roessler, 2009). 

3.4.2 Field data and sediment analyses 

Field work in August 2008 during the LENA 2008 Expedition within the framework of the 

Russian-German Cooperation “System Laptev Sea” (Wagner et al., 2012) included detailed 

surface characterization of the whole study area, lake investigations, and sediment sampling. 

A detailed tacheometric survey, which included a trigonometric point close to the alas at 

55 m asl as a reference, provided for accurate height assignment of different relief features, 

e.g. lake levels (Ulrich et al., 2010). Bathymetry of the three large alas lakes was measured 

along several profiles using an echo sounder (GarminTM GPSmap 178C Sounder) on board a 

small non-motorized rubber boat. In the deeper parts, one short core per lake was taken 

from the rubber boat using an UWITEC gravity corer equipped with a 60 cm long and 6 cm 

wide PVC liner (Lake Core (LC)-1, LC-2, and LC-3 at 2.4, 4.0, and 3.6 m water depth, 

respectively). The short cores did not penetrate deeply (max. 31 cm), because the high 

density of the clastic sediments at the bottom prevented further penetration of the PVC 
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liner. The cores were kept upright until they reached the shore. After visual examination and 

description, the cores were cut into approximately 1 cm thick slices that were stored in 

plastic bags until they reached the lab. Two outcrops were studied for stratigraphical 

reconstructions, one at a 1.5 m high bluff at the southeastern shore of Lake 3 (OC-A) and 

one in a neighboring alas to the southeast, where a thermo-erosional valley exposed 

deposits of the alas floor (OC-B) (Morgenstern et al., 2008b; Wagner et al., 2012) (Figure 

3-3). 

 

Figure 3-3. Elevation zones of the alas derived from the alas DEM and location of sampling sites. Background 

image: ALOS PRISM, acquisition date: 21 September 2006. 
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In 2009, a 4 m deep permafrost core (K2) was drilled into the alas floor between Lake 1 and 

Lake 3 (72°19'12.6''N, 126°11'35.7''E) (Figure 3-3) and the removed core was kept frozen 

(Boike et al., 2009). An unfrozen peat cover of 20 cm depth was removed before coring and 

is not included in subsequent laboratory analyses. The core was already split in the field into 

5 to 10 cm long segments. Because of the warm air temperatures during the sampling 

process, the core sections thawed superficially and subsequently refroze, so that primary 

sediment and ice structures could not be clearly distinguished during subsequent inspection 

in the lab. 

All sediment samples were analyzed for sediment parameters (magnetic susceptibility (MS), 

grain size mean, grain size distribution, and sorting degree after Trask (1932)) and OM 

characteristics (total organic carbon (TOC), total carbon (TC), and total nitrogen (TN) 

contents, and stable carbon isotopes (13C of TOC)) at AWI Potsdam using the institute’s 

standard procedures as described in Wetterich et al. (2009). MS was determined using a 

Bartington MS2 MS meter, sensor type MS2B. Grain size distribution was measured with a 

laser diffraction particle analyzer (Coulter LS 200), TOC, TC, and TN contents with the CNS 

analyzer Elementar Vario EL III, and stable carbon isotopes (13C) of TOC with a Finnigan 

DELTA S mass spectrometer. 13C analyses of the K2 permafrost core were conducted at the 

German Research Center for Geosciences (GFZ), Potsdam using a Finnigan DELTAplusXL mass 

spectrometer. The accelerator mass spectrometry (AMS) 14C dating of selected samples was 

performed at the Poznan Radiocarbon Laboratory, Poland (Goslar et al., 2004). Plant remains 

for dating were hand-picked under a microscope; only in some cases, where no plant 

fragments were visible under the microscope, bulk samples were used. Calibrated ages were 

calculated using CALIB rev. 6.0.0 (data set: IntCal09; Reimer et al., 2009) (Table 3-1). 

Throughout the paper, uncalibrated ages are given. Some samples of the K2 permafrost core 

produced modern ages. These were excluded from calibration and further interpretation, 

because they most probably result from contamination of the samples with fresh plant 

material. 
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Table 3-1. Results of the AMS 
14

C dating of samples from different alas sections. Ages in brackets were 

excluded from calibration and further geochronological interpretation. 
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    No. Sample ID Lab no. 
mean 
depth 
(cm) 

dated 
material 

Uncal. AMS 
ages (a BP) 

Cal. AMS 
ages, 

minimum 
(ka BP) 

Cal. AMS 
ages, 

maximum 
(ka BP) 

K
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1 K2-2 Poz-37315 59 plant remains (modern) - - 

2 K2-5 Poz-41118 93.5 bulk 3620 ± 35 3.84 3.99 

3 K2-9 Poz-37316 154 plant remains (modern) - - 

4 K2-9 Poz-41119 154 plant remains 5660 ± 50 6.31 6.56 

5 K2-13 Poz-37318 184 plant remains (1775 ± 35) - - 

6 K2-19 Poz-41120 241.5 bulk 17390 ± 100 20.33 21.2 

7 K2-22 Poz-37319 287.5 plant remains (modern) - - 

8 K2-26 Poz-41121 346 plant remains 12640 ± 80 14.42 15.25 

9 K2-27 Poz-41122 354.5 plant remains (260 ± 80) - - 

10 K2-28 Poz-37320 367.5 plant remains (modern) - - 

11 K2-28 Poz-41124 367.5 plant remains (modern) - - 

12 K2-29 Poz-41125 379.5 plant remains (590 ± 50) - - 

13 K2-30 Poz-41126 399 bulk 17340 ± 100 20.28 21.16 

LC
-

1
 14 LC-1-12 Poz-30237 13.9 plant remains 795 ± 30 0.673 0.744 

15 LC-1-23 Poz-30238 25.4 plant remains 1515 ± 35 1.33 1.448 

LC
-

2
 16 LC-2-15 Poz-30239 14.4 plant remains 1280 ± 30 1.171 1.288 

17 LC-2-29 Poz-30240 30.5 plant remains 1645 ± 30 1.485 1.617 

LC
-

3
 18 LC-3-11 Poz-30241 12.4 plant remains 1230 ± 30 1.068 1.189 

19 LC-3-22 Poz-30243 25.4 plant remains 1660 ± 30 1.514 1.628 

O
C

-A
 20 OC-A-4 Poz-42943 55 plant remains 4240 ± 30 4.81 4.86 

21 OC-A-8 Poz-42944 113 plant remains 5015 ± 35 5.66 5.77 

22 OC-A-12 Poz-42945 149 plant remains 5440 ± 50 6.18 6.32 

O
C

-B
 

23 OC-B 64-67 Poz-30244 65.5 plant remains 635 ± 39 0.551 0.666 

24 OC-B 129-145 Poz-30245 137 plant remains 9980 ± 50 11.25 11.63 

25 OC-B 162-183 Poz-30247 167.5 plant remains 6570 ± 40 7.42 7.52 

26 OC-B 225-238 Poz-30248 231.5 plant remains 9930 ± 50 11.23 11.42 

 

3.4.3 Pollen analyses 

Twelve samples of the K2 permafrost core were analyzed for pollen. Each sample of two 

grams of dry sediment was treated for pollen analysis using standard methods of Faegri and 

Iversen (1989). In total, 51 pollen, spore, and non-pollen palynomorph (NPP) taxa were 

identified. The microscopic analysis revealed moderately high pollen concentration and good 

preservation of pollen grains allowing an easy counting of up to 300 terrestrial pollen grains 

per sample. Percentages of all taxa were calculated based on the total sum of all pollen and 

spore taxa of higher vascular plants taken as 100 %. A pollen diagram was produced with the 

Tilia/TiliaGraph software (Grimm, 1991). In the diagram, visual definition of the local pollen 

zones was supported by CONISS (Grimm, 1987).  
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3.5 Results 

3.5.1 Relief and morphometry 

The investigated alas is a single, closed basin of oval shape surrounded by Yedoma uplands 

(Figure 3-1c). It is about 3.3 km long (N-S) and 2.5 km wide (E-W). One drainage outlet in the 

southwest discharges the alas via a thermo-erosional valley into the Olenyokskaya Channel. 

The relief height of the alas as derived from the alas DEM ranges from 19.3 m asl at the 

drainage valley in the southwest to about 50 m asl at the upper alas slope in the east 

(Figure 3-3). Mean alas depth is 21.5 m. Elevations of the alas floor, slopes, and surrounding 

Yedoma uplands are generally lower in the west than in the east. The height difference 

between the Yedoma uplands adjacent to the eastern and western alas slopes are up to 

15 m with maximal heights of about 53 and 38 m asl in the east and west, respectively. This 

pattern follows the general elevation decline of the surface of Kurungnakh Island as evident 

from the PRISM DEM derivatives, where the mean slope over the whole Ice Complex extent 

of Kurungnakh Island (Figure 3-1b) from east to west is 0.05° and the slope around the 

investigated alas is 0.18° in the WNW direction. The highest elevation of the island, 55 m asl, 

is located on the Yedoma upland just east of the alas (Figure 3-3). 

Three large lakes are situated on the alas floor close to the alas margins in the northwest 

(Lake 1), east (Lake 2), and south (Lake 3), with areas of 1.7, 0.1, and 0.2 km², respectively 

(Table 3-2). The lake levels were measured in August 2008 at 21.0, 28.4, and 24.0 m asl, 

respectively. Lake 1 and Lake 2 have a regular, oval shape with their major axes oriented in 

N-S directions and an elongation index (major axis / minor axis) of 1.4 and 1.3, respectively. 

Lake 3 has an irregular shoreline with several small bays and is elongated in the WNW-ESE 

direction with an elongation index of 1.7. Maximum recorded depth was 3.6 m for Lake 1, 

4.2 m for Lake 2, and 4.0 m for Lake 3. These depths exceed the thickness of the maximum 

ice cover, which can be up to 2 m thick in arctic regions (Jeffries et al., 1996), so the lakes do 

not freeze to the bottom in winter. The bathymetric profiles revealed differences between 

the lakes in subaqueous relief. In Lake 1 and Lake 3, a water depth of 1.5 m and more is 

reached at 40 and 28 m distance from the shore, respectively, except in the small western 

and eastern bays of Lake 3 where water depth is less than 1.5 m. In Lake 2, these shallow 

depths occur as far as 130 m from the shoreline. Lake 2 is the smallest and the deepest of 

the three lakes; its deepest parts (more than 3 m) occur along the major axis and close to the 

retrogressive thaw slump. The deepest parts of Lake 1 and Lake 3 were recorded in the 

central part and in the western half, respectively. Direct hydrological connections via distinct 

beaded streams (i.e. a stream characterized by narrow reaches linking pools or small lakes 

(van Everdingen, 2005)) exist between Lake 1 and Lake 3 and between each of these lakes 

and the discharging drainage valley (Figure 3-3). Outflow from Lake 2 into Lake 1 occurs 
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diffusively over the alas floor through widened polygonal troughs as observed during the 

field work in 2008. The surrounding Yedoma uplands drain into the alas via several small 

thermo-erosional gullies that are indented into the alas slopes, except at the steep slope 

sections without gullies in the west, where the adjacent Yedoma uplands are inclined away 

from the alas. 

Table 3-2. Comparison of morphometric characteristics of the three alas lakes. 

 Lake 1 Lake 2 Lake 3 

Area (m²) 1,737,357 122,203 239,482 
Perimeter (m) 5,168 1,343 2,872 

Elongation index (major axis / minor axis) 1.37 1.31 1.69 

Orientation (angle between E-W reference axis and major axis, 
counter-clockwise) (°) 

83 92 155 

Lake level in August 2008 (m asl) 21.0 28.4 24.0 

Maximum recorded depth (m) 3.6 4.2 4.0 

Deepest position of lake floor (m asl) 17.4 24.2 20.0 

 

Around Lake 1, two lake terraces exist with their upper borders at 21.7 and 24.1 m asl 

(Figure 3-3). The lower terrace narrows from north to south and is completely absent at the 

southernmost part of Lake 1. The upper terrace is broader in the east and south of Lake 1, 

where it was not restricted by the alas slopes. Lake 3 has one lake terrace with its upper 

border at 25.0 m asl. The outline of this border is more regular than that of Lake 3 itself. The 

lake terrace is very narrow in the south, where the shoreline of Lake 3 lies almost at the foot 

of the alas slope, and merges with the upper terrace of Lake 1 in the area between the two 

lakes. There, a circular area with a diameter of about 50 m, which is elevated up to 1 m 

above the surrounding terrace and features distinct vegetation and moisture, is assumed to 

be an initial pingo. The rest of the alas floor, i.e. the alas floor above the lake terraces, 

increases in relief height from 25.0 m asl in the west to 32.6 m asl in the east.  

The shores of Lake 1 are very flat. In some places a zone of brown, peaty sediments occurs 

between the lake and the vegetated polygons of the alas floor. On the eastern shore, this 

material was built up in mounds of up to 40 cm height in summer 2008 (Figure 3-4a). These 

mounds were probably created from lake ice pushing against the shore. At the beginning of 

the field campaign, the shoreline was situated within a few meters of the peat mounds. 

Frequent heavy rain events at the end of August (Muster et al., 2012) obviously contributed 

a substantial water supply to the lake and led to its areal increase, so that the shoreline 

approached the peat mounds by the end of the field campaign. At the southern shore of 

Lake 1, eroding polygons with surfaces well above the lake level are building a small cliff. 

Here, the lake floor in the littoral zone is characterized by peat mats which are dissected by 

large cracks (Figure 3-4b). The cracks are about 10 to 20 cm deep and in some places reveal 
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light-colored, fine-grained sand underneath the peat mats. The lower lake terrace at the 

western shore is partially submerged, thereby forming several small islands at the lake 

shore, which makes it hard to clearly define the shoreline (Figure 3-4c). 

 

Figure 3-4. Surface characteristics of selected alas elements. (a) Peat mounds at the eastern shore of Lake 1 

resulting from ice push. View to the south. (b) Littoral zone of Lake 1 (southern shore) displays peat mats 

dissected by large cracks. (c) View from the Yedoma uplands west of Lake 1 shows western alas slope, lake 

terraces with rectangular low-center polygons, and irregular western shoreline of Lake 1. View to the east. 

(d) Eroding polygons at the western shoreline of Lake 2. View from the Yedoma uplands east of Lake 2 to the 

west; Lake 1 is in the background. (e) Northern shoreline of Lake 3 with prominent polygon centers. View to 

the northeast. (f) View from the Yedoma uplands east of Lake 2 to the northwest reveals alluvial fan with belt 

of aquatic plants and steep slope section with retrogressive thaw slump (black arrow), where the lake cuts into 

the alas slope. 
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At the western shore of Lake 2 and around Lake 3 the shoreline traces degrading polygons 

(Figure 3-4d, e), indicating that these lake shores are not stable and the lakes are expanding. 

At the location of the OC-A outcrop at the southern shore of Lake 3 close to the southern 

alas slope, parts of the polygons that are being eroded have slumped into the lake, creating 

a small cliff with disturbed vegetation cover, which made the deposits accessible for 

sediment investigations. The lake floor at this location exposes mineral sediments without 

submerged vegetation or peat.  

Lake 1 and Lake 2 prograded into the adjacent alas slopes, thereby interrupting the initial 

oval alas outline. The angles of the alas slopes are much steeper in these interrupted areas 

(Figure 3-5a). The slope north of Lake 2 features a retrogressive thaw slump indicating its 

instability (Figure 3-4f). In August 2008, the thaw slump was about 15 m wide and 50 m long 

with a headwall of about 2.50 m height. East of Lake 2, the alas slope appears to bulge to the 

east. A horseshoe-shaped depression segues into a short valley and drains the Yedoma 

surface into Lake 2. At the valley termination, an alluvial fan is prograding into Lake 2, 

leading to a displacement of the Lake 2 eastern shoreline by about 10 m over a length of 

about 60 m. In front of this alluvial fan, a belt of aquatic plants with their upper parts above 

the water table is visible (Figure 3-4f). 

On the southeastern alas side a small lake basin drains into the alas via a broad U-shaped 

valley. Visual comparison of satellite data from different years and seasons shows that the 

small basin is sometimes filled with one large lake and sometimes several smaller residual 

lakes are scattered on the basin floor. In 2008, the small basin contained two irregular, 

residual lakes, and four ponds were lined up along the valley (beaded drainage). At the 

termination of the drainage valley, the alas floor is elevated by about 1 m relative to the 

surrounding surface, which points to the aggradation of an alluvial fan in front of the valley. 
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Figure 3-5. Surface characteristics of the alas. (a) Slope map derived from the alas DEM. The steepest slope 

sections indicate unstable slopes after the progradation of Lake 1 and Lake 2 into the initial alas outline. 

Background image: ALOS PRISM, acquisition date: 21 September 2006. Lines a-a’ and b-b’ show position of 

profiles in Figure 3-9. (b) Results of the multispectral classification of ALOS AVNIR-2 data (acquisition date: 18 

August 2006) adopted from Roessler (2009). 

3.5.2 Land cover  

Figure 3-5b shows the result of the land cover classification. The shore regions of Lake 1, 

Lake 2, and Lake 3 are classified as shallow water areas, either loaded with a large amount of 

sediment or overgrown with Carex stans or Arctophila fulva. The terrace of Lake 3 and the 

lower terrace of Lake 1 were assigned to “Wet polygonal tundra, dominated by sedges and 

mosses”. The polygon walls are built by Sphagnum sp., and the centers are covered with 

Carex stans (coverage 10 to 50 %). At the shore of Lake 2, this class is completely absent. The 

upper terrace of Lake 1 and the alas floor are composed of the classes “Moist polygonal 

tundra, dominated by sedges and mosses” and “Moderately moist polygonal tundra, 

dominated by mosses and dwarf shrubs”. They are intersected by drainage channels of the 

class “Wet valley floors and wet tundra”. The moist polygonal tundra class is characterized 

by a strong differentiation between the well-drained concave polygonal rims, which are 

covered by mosses and dwarf shrubs, and the water-filled centers, which are densely 

covered with sedges. Such wet centers are absent in the class “Moderately moist polygonal 

tundra …”; only the polygonal troughs are water-filled. The flat or convex polygon surfaces 
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are covered with mosses and dwarf shrubs (Salix sp.). There is a smooth transition between 

the classes “Moderately moist polygonal tundra …” and “Wet valley floors and wet tundra”, 

depending on the proportion of wet polygonal troughs and ponds and drainage channels to 

drier polygon parts; this proportion determines the amount of moisture present, which 

defines the class. Tall and dense growths of Eriophorum scheuchzeri are characteristic of the 

class „Wet valley floors and wet tundra“. Clearly visible in Figure 3-5b is the class 

differentiation of the alas floor with increasing distance to the slope. Drainage concentration 

in polygonal troughs leads to clearly drier surfaces. 

The alas slopes and the thermo-erosional valley appear drier than the flat surrounding 

Yedoma uplands and alas floors, but the steepest slope sections adjacent to Lake 1 and Lake 

3 are distinguishable by fresher vegetation, which is dominated by dwarf shrubs, mostly Salix 

sp. The slopes are characterized by hummocks of different heights, mostly covered with 

Eriophorum vaginatum. The numerous thermo-erosional gullies that intersect the slopes are 

much wetter and were therefore classified as “Wet valley floors and wet tundra”. 

The Yedoma surface contains classes similar to those of the alas floor, but shows a larger 

amount of small overgrown ponds, especially south and east of the alas. The Yedoma surface 

west of the alas is drier and dominated by the class “Moderately moist polygonal tundra …”. 

A special feature is the basin of a thermokarst lake on the Yedoma surface east of the alas, 

which drained a few decades ago (Ulrich et al., 2009) and is characterized by thermokarst 

mounds and very fresh, dense and tall growths of grasses and dwarf shrubs. 

It becomes obvious that some of the distinctive relief units described in chapter 3.5.1 are 

also characterized by discrete land cover types. The lower terrace around Lake 1 and the 

terrace of Lake 3 as well as the discharge paths and drainage channels are clearly 

distinguishable from the rest of the alas floor due to higher surface moisture. The slopes of 

the thermokarst basins and the thermo-erosional valley appear drier than the flat 

surrounding Yedoma uplands and alas floors, but the steepest slope sections adjacent to 

Lake 1 and Lake 3 are distinguishable by fresher vegetation. 

Table 3-3 summarizes all morphological elements which compose the investigated thermo-

karst landscape in ice-rich permafrost. Their quantitative and qualitative characteristics are 

described on the basis of field observations and remote sensing and GIS analyses. 

  



Table 3-3. Quantitative and qualitative characteristics of morphological elements of the investigated alas. 

Relief element 

 

Areal 
percentage 
of study 
areaa 

Spatial range of 
individual 
features 

Relief 
height  
(m asl) 

Microrelief and 
micromorphology 

Vegetation Spectral characteristicsb 

Lakes 26.7 See Table 3-2 See  
Table 3-2 

- Hydrophytes, peat mats 
in littoral zone 

Low reflectance, slightly higher 
in green region, very low in NIR 

Lake terraces 53.3 Up to 350 m 
wide; 0.7 to 
2.3 m relief 
difference 

21 to 25 Low center polygons with 
large polygonal ponds on 
flat parts, hummocky on 
gentle slopes 

Sedges dominate in low 
centers, sphagnum on 
polygon walls 

Low reflectance due to open 
water bodies, very low SAVI 
values 

Alas floor 17.3 - 25 to 
32.6 

Flat to slightly inclined; 
moist to wet polygonal 
tundra 

Sedges in polygonal 
ponds 

Moist polygons with highest 
reflection in VIS; slightly lower 
reflectance of wet polygons 

Pingo 0.7 50 m in 
perimeter, 1 m 
high 

24.5 to 
25.5 

Slightly convex elevation 
with circular base 

Dense moss cover with 
salix shrubs and few 
grasses 

High reflections, high SAVI 
values due to clearly drier 
surface on elevated part; wet 
margin around the base with 
lower reflectance 

Stable alas slopes 22.7 2 to 9° 22 to 50 Low profile curvature, flat 
and more rectilinear 

Dense moss and dwarf 
shrub coverage, 
hummocks with 
Eriophorum 

Driest surfaces, high 
reflectance and high SAVI 
values 

Unstable alas 
slopes 

2.5 9 to 29° 24 to 50 Very convex upper slope 
sections, very concave lower 
slope sections, end sharply 
on alas floor 

Tall growths of dwarf 
shrubs and grasses, very 
fresh vegetation 

Dry surfaces, densely 
vegetated, highest SAVI values 

       



 
 
Continuation of Table 3-3. Quantitative and qualitative characteristics of morphological elements of the investigated alas. 

 
 

Relief element 

 

Areal 
percentage 
of study 
areaa 

Spatial range of 
individual 
features 

Relief 
height  
(m asl) 

Microrelief and 
micromorphology 

Vegetation Spectral characteristicsb 

Retrogressive 
thaw slump 

0.008 15 m wide, 50 m 
long, headwall 
2.5 m high 

29 to 40 Concave profile curvature, 
slope movement, disturbed 
vegetation cover 

- Not distinguishable as 
individual feature in ALOS 
AVNIR-2 data 

Thermo-
erosional gullies 
in the alas slopes 

- 120 to 200 m 
long 

21 to 50 Higher frequency of deep 
gullies in stable alas slopes 

Tall and densely growing 
grasses and sedges, 
moss interspersed 

High NIR reflectance, high SAVI 
values 

Inflowing valleys n.d. 370 to 525 m 
long, 150 to 
300 m wide 

28.4 to 
53 

U-shaped cross profile, 
slightly concave slopes 

Densely vegetated floors 
(Eriophorum, grasses), 
hummocky slopes with 
mosses and dwarf 
shrubs 

Dry slopes with high 
reflectance, floors with high 
SAVI values 

Outflowing valley n.d. 4.3 km long 19 to 32 V-shaped cross profile Grasses and salix shrubs High reflectance 

Beaded streams n.d. 370 to 600 m 
long 

19 to 24 Small streams connecting 
pools of open water 

Densely vegetated 
channels (Eriophorum) 

High reflectance, highest SAVI 
values 

Yedoma uplands 2.7 - 38 to 55 Flat or slightly inclined, 
polygonal tundra 

Moist polygons with 
mosses and dwarf 
shrubs 

high reflectance 

a
 The study area reference for this table is the extent of the alas DEM (Figure 3-3), which has an area of 7.5 km². 

b
 Based on Roessler (2009). 
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3.5.3 Core and exposure records 

Permafrost core K2 

The K2 permafrost core contains three lithological units as inferred from the results of grain 

size and OM analyses (Figure 3-6a): 

 

Figure 3-6. Comparison of the sedimentological, biogeochemical, and geochronological records of the study 

site. (a) Permafrost core K2, (b) outcrops OC-A and OC-B, (c) short cores of Lake 1, Lake 2, and Lake 3. Note 

changing scale ranges of some of the parameters. 
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The lower unit A (400 to 285 cm depth) is dominated by consistent fine-sandy silt with a 

mean grain size between 20 and 43 µm and a sorting degree of 2.7 to 3.5. The OM data are 

also consistent with TOC contents between 2.2 and 2.6 wt%, C/N ratios of 8.1 to 9.9, and 


13C values between -27.4 and -27.0 ‰. The total inorganic carbon (TIC) content varies 

between 0.1 and 0.5 wt%. At a depth of 346 cm, Ephippia (water flea eggs) were found and 

at a depth of 370 cm, ostracod shells (2 x Cytherissa lacustris adult, 1 x Cytherissa lacustris 

juvenile, and some ostracod fragments). This holarctic distributed ostracod species is 

common in thermokarst deposits of late Quaternary interstadial or interglacial periods. 

Regionally, it was found in last interglacial and Lateglacial-Holocene permafrost sequences at 

the Oyogos Yar coast and on Bol’shoy Lyakhovsky Island (Dmitry Laptev Strait) (Wetterich et 

al., 2009; Kienast et al., 2011). Radiocarbon dates for unit A are of Lateglacial age (17,340 ± 

100 a BP at 399 cm depth and 12,640 ± 80 a BP at 346 cm depth) (Table 3-1). 

Unit B (285 to 155 cm depth) differs from unit A only in its considerably varying grain size 

parameters. Mean grain size of the silt and sandy silt varies from 23 to 92 µm and the sorting 

degree from 2.8 to 6.6. OM is similarly composed as in unit A with TOC contents between 2.4 

and 3.2 wt%, C/N ratios of 9.1 to 11.3, and 13C values between -27.9 and -27.0 ‰. TIC 

content varies between 0.2 and 0.5 wt%. One radiocarbon date of 17,390 ± 100 a BP was 

obtained at 241.5 cm depth (Table 3-1). 

There is a distinct change in OM characteristics at about 155 cm depth. Therefore, the upper 

part of the core (155 to 0 cm depth) is separated as unit C. TOC contents and C/N ratios are 

higher (3.2 to 8.7 wt% and 14.4 to 16.7, respectively), reflecting less intense OM 

decomposition, while lower δ13C values between -29.2 and -28.7 ‰ are probably also 

caused by changes in the plant community composing the OM. TIC is slightly higher than in 

units A and B, varying between 0.4 and 0.7 wt%. Grain size parameters show a similar 

consistent pattern as in unit A with sandy silts having a mean grain size between 27 and 

55 µm and a sorting degree of 2.9 to 4.5. Radiocarbon ages in unit C belong to the middle 

(5660 ± 50 a BP at 154 cm depth) and late Holocene periods (3620 ± 35 a BP at 93.5 cm 

depth) (Table 3-1). 

Changes in pollen and spore taxa composition and abundances led to a subdivision of the K2 

permafrost core into three pollen zones (PZs) (Figure 3-7). The border between the upper 

two PZs coincides with the border between units B and C described above. 
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Figure 3-7. Pollen diagram of the K2 permafrost core drilled on the alas floor. Note that the pollen record starts 

at 100 cm depth (NAP: non-arboreal pollen, AP: arboreal pollen). 

PZ 1 (400 to 330 cm) is characterized by the dominance of Duschekia fruticosa, Betula S. 

Nanae, and Cyperaceae. This zone reveals the highest percentages of arboreal pollen taxa 

owing to high abundances of dwarf alder and birch pollen. The spectral composition of this 

pollen zone suggests the spread of shrubby tundra with Duschekia fruticosa and Betula S. 

Nanae in the region.  

PZ 2 (330 to 155 cm) is noticeable for a decrease of Duschekia fruticosa pollen. Dominating 

taxa of PZ 2 are Cyperaceae and Betula S. Nanae. These changes may reflect a change to 

colder and drier climate, resulting in the disappearance of dwarf alder. 

Distinctive features of PZs 1 and 2 are the continuous presence of the cosmopolitan green 

algae family Zygnemataceae (Zygnema-type) spores. Algae prefer stagnant, shallow, and 

mesotrophic freshwater habitats (van Geel and van der Hammen, 1978) or fluvial surface 

sediment (Medeanic, 2006); their presence indicates the occurrence of lacustrine sediments. 

PZ 3 (155 to 100 cm) exhibits a significant increase of Poaceae pollen abundances 

accompanied by a dominance of Cyperaceae and Betula S. Nanae pollen. Pollen specta of PZ 

KS3 suggest grass tundra distribution.  



Evolution of thermokarst in East Siberian ice-rich permafrost: A case study  Chapter 3 
Geomorphology, under review 
   

 

 
 

58 

Outcrops OC-A and OC-B 

The OC-A outcrop at the southeastern shore of Lake 3 revealed 1.6 m of unfrozen deposits 

(Figure 3-8a). The permafrost table was located at 160 cm and water accumulated at 155 cm 

depth. The deposits are characterized by sandy silt with a mean grain size between 64 and 

137 µm and a sorting degree of 2.8 to 5.3 (Figure 3-6b). A noticeable change occurs in the 

OM characteristics at 100 cm depth. The profile is therefore divided into the lower unit I and 

the upper unit II. TOC contents and C/N ratios are considerably higher in unit I (6.8 to 

25.4 wt% and 15.0 to 21.1, respectively) than in unit II (1.6 to 12.2 wt% and 10.4 to 16.8, 

respectively). δ13C values are slightly more negative in the lower than in the upper part of 

the profile (-28.3 to -27.8 ‰ and -28.1 to -26.9 ‰, respectively). TIC contents vary 

throughout the whole profile between 0.6 and 2.2 wt%. Radiocarbon dates show increasing 

middle to late Holocene ages from 5440 ± 50 to 5015 ± 35 to 4240 ± 30 a BP at 149, 113, and 

55 cm depth, respectively. 

 

Figure 3-8. Outcrops studied for stratigraphical reconstructions. (a) Outcrop OC-A at the southern shore of 

Lake 3. The 160 cm deep profile is composed of two overlapping sections and was accessible from the shallow 

water. (b) Outcrop OC-B in the neighboring alas. The 320 cm deep profile is located at the upper slope of a 

thermo-erosional valley, which cuts about 10 m deep into the alas floor and drains the alas into the 

Olenyokskaya Channel. The lower part of the profile (115 to 320 cm) was perennially frozen with the 

permafrost table bending subparallel to the slope angle. Yellow stars indicate the location of samples with AMS 

dates used for geochronological interpretation, numbers correspond to No. in second column of Table 3-1. 

Outcrop OC-B exposed unfrozen deposits in the upper 115 cm, while the lower section down 

to 320 cm depth diagonally followed the permafrost table (Figure 3-8b). The fine layering of 

darker and lighter sediments could not be resolved in the sampling process. Therefore, the 

results of the laboratory analyses (Figure 3-6b) represent the integral characteristics of 
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several layers. The deposits consist of sandy silt and silty sand with a mean grain size 

between 35 and 236 µm and a sorting degree of 1.4 to 4.1. TOC and TIC contents are 

constantly low (0.2 to 6.9 wt% and 0.1 to 0.9 wt%), but the C/N ratios and δ13C values vary 

greatly (between 12.4 and 22.8 and between -26.9 and -24.3 ‰, respectively). Radiocarbon 

dating results show Lateglacial/early-Holocene ages at the 231.5 and 137 cm depths (9930 ± 

50 and 9980 ± 50 a BP, respectively), a mid-Holocene age at the 167.5 cm depth (6570 ± 40 a 

BP), and a late-Holocene age at the 65.5 cm depth (635 ± 39 a BP) (Table 3-1). The fine 

layering of the deposits and the position of the outcrop at the slope of a valley cutting into 

the alas floor indicate the lacustrine origin of the deposits. 

Short lake cores LC-1, LC-2, and LC-3 

The sediments of Lake 1 are characterized by silt and fine sandy silt with a mean grain size 

between 14 and 37 µm and a sorting degree of 2.6 to 3.3 (Figure 3-6c). MS increases from 

25 SI at the bottom to 37 SI at the top of the short core. TOC content and the C/N ratio vary 

between 0.7 and 4.9 wt% and 2.3 and 16.9, respectively. TIC content shows a high variability 

between 0.1 and 3.0 wt%. δ13C values gradually decrease from -28.1 ‰ at the bottom 

to -29.8 ‰ at the top. Radiocarbon dates reveal a late Holocene age of the deposits (1515 ± 

35 and 795 ± 30 a BP at the 25.4 and 13.9 cm depths, respectively) (Table 3-1). 

The short core of Lake 2 reveals slightly coarser sediments (predominantly sandy coarse silt) 

with mean grain sizes between 17 and 49 µm and a sorting degree of 2.7 to 3.9 (Figure 3-6c). 

Magnetic susceptibility is comparatively high (between 54 and 70 SI). TOC contents and C/N 

ratios vary between 2.8 and 8.6 wt% and 8.9 and 15.2, respectively. TIC contents are 

constantly low (0.2 to 0.9 wt%). δ13C values are higher than in Lake 1 (between -29.3 

and -26.9 ‰). Radiocarbon ages are late Holocene (1645 ± 30 and 1280 ± 30 a BP at the 30.5 

and 14.4 cm depths, respectively) (Table 3-1). 

Sediments of Lake 3 are composed of sandy silt with mean grain sizes between 24 and 34 µm 

and a sorting degree of 2.7 to 3.3 (Figure 3-6c). MS shows little variation and ranges from 30 

to 51 SI. TOC contents and C/N ratios are the highest among all three lake cores (6.6 to 

9.7 wt% and 13.2 to 16.0, respectively) and δ13C values are constantly low (-29.6 to -28.1 ‰). 

TIC contents are between 0.1 and 1.1 wt%. Radiocarbon datings at the 25.4 and 12.4 cm 

depths show similar late Holocene ages (1660 ± 30 and 1230 ± 30 a BP) as retrieved from 

Lake 2 (Table 3-1). 
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3.6 Discussion 

3.6.1 Morphostratigraphy 

The different relief levels with their specific surface characteristics and periglacial 

morphostructures (chapters 3.5.1 and 3.5.2, Table 3-3) provide the basis for a 

morphostratigraphical classification of the considered thermokarst landscape (Figure 3-9). 

 

Figure 3-9. Morphostratigraphical levels of the thermokarst landscape on the basis of relief profiles through the 

alas (for position see Figure 3-5a). The surface profile lines were derived from the alas DEM. Lake profiles are 

schematic with maximum depths from bathymetric measurements. The position of the permafrost table is 

hypothetical, based on modeling studies in similar thermokarst lake environments (West and Plug, 2008). 

The highest and oldest level is the surface of the Yedoma uplands, which has elevations 

between 36 and 55 m asl around the alas, but declines down to 20 m asl at the western and 

northern margins of the Ice Complex extent on Kurungnakh Island. This level represents the 

erosional remnants of a former accumulation plain in front of the Chekanovsky Ridge 

(Schirrmeister et al., 2011a). This slightly inclined plain is considered to be the initial 

situation of the regional thermokarst history. The next morphostratigraphical level is the alas 

floor at about 25 to 32 m asl outside the lake terraces (Figure 3-3). It represents the lake 

bottom of the initial thermokarst lake, which resulted from thawing and subsidence of the 

Ice Complex surface and created a uniform closed basin. Lake 2 is also located on this level. 

The terraces around Lake 1 and Lake 3 as well as the current Lake 1, Lake 2, and Lake 3 with 



Evolution of thermokarst in East Siberian ice-rich permafrost: A case study  Chapter 3 
Geomorphology, under review 
   

 

 
 

61 

their lake floors reflect further thermokarst stages that proceeded on the initial alas floor 

and led to a stronger differentiation of the thermokarst basin. Each terrace is indicative of a 

separate thermokarst lake stage. Therefore, the terrace around Lake 3 (24.2 to 25.0 m asl), 

the upper terrace of Lake 1 (21.8 to 24.1 m asl), the lower terrace of Lake 1 (21.0 to 21.7 m 

asl), and Lake 1 itself (21.0 m asl) can be considered the second, third, fourth, and fifth alas 

floor levels, respectively. Lake 3 (24.0 m asl), its drainage channels, and the lower areas 

adjacent to these channels are located at the same level as the upper terrace of Lake 1 

(Figure 3-3) and can thus be assigned to the third alas floor level. 

Further morphostratigraphical relief forms concern the stronger dissection of the alas floor 

levels as well as the wide dry alas slope zone along the southern and eastern alas rim by 

drainage pathways and thermo-erosional gullies. They are easily distinguishable by their wet 

floors (Figure 3-5b). The degrading lake shorelines and the active retrogressive thaw slump 

north of Lake 2 (Figure 3-4f) also belong to the modern morphostratigraphical class, which 

reflects local permafrost degradation. Micro-relief structures like ice-wedge polygon systems 

on each terrace level as well as the small pingo elevation on the lake terrace of Lake 3 

represent the youngest structures that are connected with modern permafrost aggradation. 

3.6.2 Lithostratigraphy 

A general stratigraphy including source deposits and thermokarst derivatives will be 

established using core records and exposure studies on Kurungnakh Island inside and 

outside of the alas area (Figure 3-3). The records from the K2 permafrost core, two outcrop 

sequences (OC-A, OC-B), and three short cores of lake deposits (LC-1, LC-2, LC-3) (chapter 

3.5.3) completed by published data sets cover several stages of thermokarst history. 

The late Pleistocene Ice Complex unit with its high ice content provided the preconditions 

for the extensive thermokarst processes that led to the formation of the large and deep 

alasses on Kurungnakh Island. This Ice Complex is still present in the inter-alas areas above 

heights of 15 to 20 m asl and was investigated in detail at the eastern margin of the Island 

where it is exposed at a steep cliff (Schwamborn et al., 2002b; Schirrmeister et al., 2003, 

2011a, 2011c; Wetterich et al., 2008). The Ice Complex deposits consist of poorly-sorted silt 

to fine sand, peat, and peaty paleosol layers with a mean grain size between 35 and 175 µm. 

They have a high gravimetric ice content (38 to 133 wt%) and contain syngenetic ice wedges, 

which are several meters wide and up to 20 m tall. The deposits show highly varying TOC 

contents (1.1 to 11.7 wt%), C/N ratios (5.2 to 23.2), and δ13C values (-29.5 to -25.1 ‰). The 

wide range in the latter two reflects variable degrees of OM decomposition and changes in 

vegetation composition. In general, lower C/N ratios in combination with higher δ13C values 

are indicative of a higher degree of OM decomposition (Pfeiffer and Janssen, 1994). 
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Radiocarbon datings from Kurungnakh Island revealed a continuous Ice Complex deposition 

between about 50 and 32 ka BP (interstadial) and a second accumulation period around 17 

ka BP (stadial). 

The mineral and organic components of the late Pleistocene Ice Complex unit are the 

sediment source for the deposits that accumulate in the thermokarst depression. Due to 

thawing and ground-ice loss during the initial thermokarst development, the Ice Complex 

sediments were compacted and partly deformed at the bottom of the developing depression 

and form the lowest lithostratigraphical thermokarst unit (Kaplina, 2009; Wetterich et al., 

2009). These so-called taberites can be several meters thick depending on their original ice 

content and the basin depth (Ulrich et al., 2010). Unfortunately, they are not captured in the 

records of this study; neither is the base of the overlying lithostratigraphical unit of 

Lateglacial to early Holocene thermokarst lake deposits. 

With the formation of the initial thermokarst lake, lacustrine sediments started to 

accumulate on the lake floor on top of the taberites. The lacustrine lithostratigraphical unit 

also incorporates reworked Ice Complex material, because sedimentation in growing 

thermokarst lakes occurs to a large degree due to the abrasion of lake shores (Romanovskii, 

1961). This is reflected in the fine-layered deposits of outcrop OC-B (Figure 3-8b). Despite 

the fact that they are completely assigned to the lacustrine lithostratigraphical unit, they 

show highly variable sedimentological and biogeochemical characteristics (chapter 3.5.3, 

Figure 3-6b) that are partly comparable to those of the Ice Complex deposits. The high sand 

content of OC-B compared to all other records is consistent with the mean grain-size values 

found in the lower Ice Complex deposits by Wetterich et al. (2008), but the very high mean 

grain size and the sand fraction of the lowest OC-B sample is more likely to have originated 

from the fluvial sand unit below the Ice Complex (chapter 3.3, Figure 2-2). According to DEM 

analyses, the floor of this alas and the valley with the OC-B outcrop are located at the same 

relief heights as the boundary between fluvial sands and overlying Ice Complex deposits as 

reported from a cliff section further north (e.g., Wetterich et al., 2008). 

The incorporation of older material from the surrounding Ice Complex into the lake 

sediments can also lead to biased radiocarbon ages in the lacustrine records. The oldest age 

for the OC-B section of 9980 ± 50 a BP was obtained for the sample at 137 cm depth and 

does not fit into the chronology of the profile (Table 3-1, Figure 3-6b). It was sampled from a 

dark layer with the highest TOC content (Figure 3-6b, 3-8b), which could have originated 

from peat inclusions in the Ice Complex that would yield older radiocarbon dates than the 

date of the actual deposition time in the lake profile. However, the early Holocene dates at 

231.5 and 167.5 cm depths (9930 ± 50 and 6570 ± 40 a BP) are consistent with other reports 
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on thermokarst dates in north Siberian coastal lowlands (e.g. Kaplina, 2009). The 

radiocarbon age at 65.5 cm depth indicates that the lake had existed during the Holocene at 

least until 635 ± 39 a BP before it rapidly drained into the Olenyokskaya Channel. 

For the studied alas basin, the Lateglacial/early Holocene lacustrine lithostratigraphical unit 

is disclosed in the lower part of the K2 permafrost core. While units A and B (and pollen 

zones PZ 1 and 2) are interpreted to be lake deposits, probably with changing accumulation 

conditions in unit B, the organic-rich upper part (unit C, PZ 3) is considered to be subaerial 

boggy deposits. The strong shift in TOC contents, C/N ratios, and δ13C values at 155 cm 

depth points to an abrupt change in depositional conditions, from lacustrine to terrestrial. 

The radiocarbon age of 5660 ± 50 a BP at 154 cm depth suggests that the change from 

lacustrine to terrestrial depositional conditions occurred prior to this time. In a terrestrial 

environment, OM is produced mainly by vascular plants that have high C/N ratios; the 

presence of nonvascular aquatic plant material with low C/N values lowers the overall C/N 

signal in the lacustrine sediments (Meyers, 1994). The δ13C values of terrestrial and aquatic 

plant material are similar in permafrost regions, because the terrestrial vegetation is 

composed mainly of C3 plants, which have similar δ13C values as lacustrine algae (Meyers, 

1994). Therefore, a change in δ13C values in permafrost environments is attributed to a 

changing amount of decomposition (Pfeiffer and Janssen, 1994). Consistently lower TOC 

contents and higher δ13C values in the lower core can be explained by less accumulation of 

OM in the center of a deep thermokarst lake in relation to terrestrial or littoral environments 

and more continuous decomposition of the available biomass, because the lake bottom 

stays unfrozen year-round. Under subaerial conditions, the produced OM is available for 

decomposition only during the short summer in the active layer. During syngenetic 

permafrost aggradation on the alas floor and the rising of the permafrost table, the lower 

parts of the terrestrial deposits also become perennially frozen, thereby preserving the OM 

from further decomposition. The pollen and non-pollen composition supports this change 

from a lacustrine to a terrestrial environment, because of the high abundance of green algae 

in PZ 1 and PZ 2 that are absent above 155 cm depth and which reflect lake conditions. In 

addition, the high abundances of non-aquatic grass instead of sedge pollen in the upper 

zone can be indirect evidence of the change from lacustrine to terrestrial conditions. The 

occurrence of Ephippia and lacustrine ostracods at 346 and 370 cm depth also supports the 

presence of a large thermokarst lake during the deposition of the lower core sediments. The 

considerably varying grain-size parameters in the middle part of the core reflect bedded 

deposits formed by varying sediment input during the lake phase, which could indicate 

strong variations of hydrological conditions. 
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The earliest phase of thermokarst initiation in North Siberian coastal lowlands has been 

assigned to the 13 to 12 ka BP interval (Bølling interstadial) (Romanovskii et al., 2000; 

Kaplina, 2009). The radiocarbon age from unit A of 12,640 ± 80 a BP fits into this interval. 

The older ages of units A and B (17,340 ± 100 and 17,390 ± 100 a BP) are interpreted to 

result from the relocation of older material from the adjacent Ice Complex deposits during 

active thermokarst development and lateral expansion of the initial lake as described above 

for outcrop OC-B in the neighboring alas. The thickness of the lake sediments and the size of 

the alas, which is much larger than the neighboring alas where outcrop OC-B is located and 

the lowest sample is dated 9930 ±50 a BP, indicate that the onset of the thermokarst process 

of the main alas falls into the starting phase of the regional thermokarst development at 13 

to 12 ka BP. 

The stronger variations in the sediment characteristics of the OC-B outcrop compared to the 

lacustrine part of the K2 permafrost core can be explained not only by higher variation of the 

surrounding Ice Complex deposits, but also by the position of the sample sites in the 

corresponding alas. While outcrop OC-B is located very close to the alas margin, the K2 core 

is situated in the central part of the alas (Figure 3-3). During phases of active abrasion, the 

deposits surrounding the alas were eroded and accumulated on the lake floor. The high 

wave activity, which occurs in large lakes, led to the redistribution of the accumulating 

sediments on the lake floor (Simova, 1964), resulting in a mixing of sediments from different 

sources, which should be more pronounced in the lake center, thereby leveling strong 

differences in sediment characteristics. 

The next lithostratigraphical unit is made up of mid-to-late-Holocene boggy deposits, and is 

represented in unit C of the K2 core and in unit II of the OC-A outcrop at the southern shore 

of Lake 3. In the K2 core, the terrestrial record continues up to the top of the core. This and 

the covering peat layer indicate that at the position of the core the alas floor has been 

continuously exposed since at least 5660 ± 50 a BP. In contrast, the profile of the OC-A 

outcrop is interpreted to reveal boggy deposits in lower unit I and lacustrine sediments in 

upper unit II. The OM characteristics of unit I (higher TOC contents and C/N ratios and lower 

δ13C values) reflect a higher bioproductivity, plant composition with a higher amount of 

vascular plants, and a lower degree of decomposition of the OM compared to the upper unit 

II. In analogy to the K2 core, a change from terrestrial in the lower to lacustrine depositional 

conditions in the upper part of the profile is inferred from the change in OM characteristics 

at 100 cm depth. The considerable variations of sediment and OM characteristics within 

both units of OC-A can be explained by the position of the outcrop at the present shore of 

Lake 3 and very close to the southern alas slope, which suggests a dynamic environment 
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involving sediment input due to slope processes and possibly a changing moisture regime 

during boggy conditions. The radiocarbon ages retrieved from the OC-A outcrop are all 

younger than the drainage time of the alas prior to 5660 ± 50 a BP, which was inferred from 

the K2 core. Therefore, the two mid-Holocene ages of the terrestrial unit I (5440 ± 50 and 

5015 ± 35 a BP) in OC-A show that the drainage of the alas also affected the southern part of 

the alas basin where the outcrop is located. However, the alas floor was only exposed for 

several hundred years or a millennium at most here, because the terrestrial deposits are 

overlain by the lacustrine deposits of unit II, which yielded a late Holocene radiocarbon age 

of 4240 ± 30 a BP at 55 cm depth. 

Late Holocene lake deposits can therefore be distinguished as the youngest 

lithostratigraphical unit. In addition to unit II in outcrop OC-A, they are also represented in 

the three short cores of Lake 1, Lake 2 and Lake 3. The short lake cores have a maximum 

depth of 31 cm and do not reach the base of the lacustrine deposits. However, the similar 

radiocarbon ages for the lowest core sections of about 1.5 ka BP (Table 3-1) prove the 

continuous existence of these lakes at least during this time period. The lake phase 

surrounding the modern Lake 3, which is represented in the lacustrine deposits in outcrop 

OC-A, must have started between 5015 ± 35 and 4240 ± 30 a BP. 

The three lake cores and the lacustrine unit II of outcrop OC-A show large differences in 

sediment and OM characteristics (Figure 3-6). Unit II reveals much coarser grain sizes than 

the lake sediment cores, and among the present lakes, Lake 2 shows coarser grain sizes than 

Lake 1 or Lake 3. This might be explained by the close proximity of the outcrop and Lake 2 to 

the alas slope and their erosional impact on the Ice Complex deposits, which contain silty 

sands. The cores of Lake 1 and Lake 3 are situated further away from the alas margins. 

Coarser grain sizes are not transported as far as fine sediment particles and therefore the 

coarser material is less represented in the LC-1 and LC-3 cores. The OM characteristics of 

Lake 3 significantly differ from the other late Holocene lacustrine records. Lake 3 shows 

consistently higher TOC contents and C/N ratios and lower δ13C values, which reflect a 

higher bioproductivity and a lower degree of decomposition of the OM. LC-1 shows 

decreasing δ13C values from bottom to top while TOC contents and C/N ratios stay relatively 

constant throughout the core, which might indicate a shift in the plant association 

composing the OM. LC-2 reveals the highest δ13C values of all late Holocene lacustrine 

records while TOC contents and C/N ratios are in similar ranges as in LC-1. This again could 

be due to a different plant association compared to the vegetation that composes the OM of 

the other two lakes.   
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3.6.3 Thermokarst evolution 

The morphostratigraphical levels and lithostratigraphical units reflect different stages of 

thermokarst development (Figure 3-10). 

 

Figure 3-10. Stages of thermokarst lake and basin development (color scale represents relative terrain 

gradient). 1 Formation of initial thermokarst lake in Ice Complex deposits. 2 Primary thermokarst lake has 

reached its maximum extent. 3 Partial drainage of the primary thermokarst lake through thermo-erosional 

valley. Two smaller lakes remain in the western basin part; permafrost starts to aggrade on the alas floor. 4 

Expansion of the residual lakes and modification of northwestern alas slope. 5 Partial drainage of residual lakes 

and formation of lake terraces. 6 The evolved modern alas morphometry resulted from a further modification 

of the northwestern alas slope, another partial drainage of Lake 1 and the exposure of its lower terrace, and 

the formation of Lake 2 and the small pingo. 
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The beginning of thermokarst evolution in the region was triggered by a significant change 

to warmer and moister climate conditions around the late Pleistocene/Holocene boundary 

(Kuzmina and Sher, 2006; Kaplina, 2009). This regional change was locally expressed in the 

formation of a primary thermokarst lake on the Yedoma surface during that time  

(Figure 3-10.1). This lake expanded in area and depth, and lacustrine sediments started to 

accumulate on the lake floor. When the lake depth exceeded the thickness of the winter ice 

cover, a talik developed underneath the lake. The lake floor subsided by more than 20 m 

into the Ice Complex deposits, because these were thawed completely, and the previous 

high ice content of the deposits led to a large volume loss. Modeling results showed that Ice 

Complex deposits of 40 m thickness will completely thaw in 1600, 2050, or 2300 years 

depending on their volumetric ice content of 60, 80, or 90 %, respectively (Tumskoy, 2002). 

The lateral expansion of the initial lake was more pronounced in the NNE-SSW direction, 

which led to its elongation in the N-S extent of the present day alas (Figure 3-10.2). 

About 5.7 ka BP the primary thermokarst lake partially drained and thereby formed the alas 

basin (Figure 3-10.3). The drainage occurred through a large thermo-erosional valley in the 

southwest that discharges into the Olenyokskaya Channel. The drainage path can be 

dissected into three valley sections from the alas margin to the Olenyokskaya Channel. The 

first section is about half a kilometer long and is directed from ENE to WSW (Figure 3-3). The 

second section is a valley, which is about 3.8 km long and follows a straight course from SE 

to NW (Figure 3-1b). It encounters the third section at a 90 degree angle. The third section 

belongs to a large valley, which is directed from NE to SW and drains into the Olenyokskaya 

Channel. The second section probably evolved independently from the thermokarst lake as a 

branch of the large valley due to retrogressive erosion of the polygonal Yedoma surface 

along ice-wedges in the direction of the southern lake margin. The lake itself may have 

experienced outflow via small outflow bands over the Yedoma surface in the direction of the 

relief gradient during times of high lake water. Simova (1964) describes outflow through 

such bands that are only slightly incised into the surface and function mainly during snow 

melt. One of these bands probably existed at the position of the current first valley section. 

The drainage of the alas probably happened catastrophically at a time of summer water 

surplus, when the connection between the lake and the second valley section was 

established through the outflow band. Warm lake water is reported to be capable of 

creating deep new outlet channels due to ice-wedge erosion, which can lead to complete 

lake drainage within a few hours (Marsh and Neumann, 2001). The primary thermokarst lake 

drained rapidly and transformed the outflow band into the deep thermo-erosional valley 

which is now the described first section. The drainage supposedly did not occur completely, 

but a large residual lake remained in the northwest of the alas and a smaller one in the 
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southwest (Figure 3-10.3). The position of the residual lakes in the western part of the 

drained basin and the declined exposed alas floor (Figure 3-9a) show that the bathymetric 

profile of the initial thermokarst lake was asymmetric. The decline of the basin floor from 

east to west is consistent with the overall inclination of the surface of Kurungnakh Island, 

which is reflected in higher absolute relief heights of the upper alas slopes in the east 

compared to the west. The asymmetric basin floor profile suggests that the base of the Ice 

Complex deposits is also declined in this direction. 

After drainage, permafrost started to aggrade in the talik and the lake sediments 

accompanied by ground-ice accumulation. The refreezing of the talik occurred at a much 

faster rate than the complete thawing of the initial Ice Complex deposits. Modeling studies 

showed a complete refreezing within decades depending on talik depth and initial ground 

temperature conditions (Ling and Zhang, 2004). On the exposed alas floor, ice-rich boggy 

deposits accumulated and ice-wedge polygons evolved. Terrestrial deposition, peat growth, 

and ice accumulation led to the elevation of the alas floor. 

The residual lake in the northwest of the alas, which is now Lake 1, was situated at the alas 

margins that still consisted of ice-rich Ice Complex deposits. The lake continued thawing the 

ice-rich permafrost at this alas slope section, expanded into the alas slope, and thereby 

modified the initial alas outline (Figure 3-10.4). This lateral lake expansion was supported by 

two phases of high water availability due to increasing precipitation between 5 and 3 ka BP 

in the region as inferred from pollen-based climate reconstructions (Andreev et al., 2004). 

The lakes on the alas floor respond quickly to changes in the hydrological regime with lake 

area changes, which was also observed during field work (chapter 3.5.1). The wet climate 

phases are furthermore reflected in the southern part of the alas. The lacustrine deposits of 

outcrop OC-A were dated to fall into this interval, which indicates that wetter climate 

conditions also led to the expansion of the southern residual lake to the position of outcrop 

OC-A after 5 ka BP (Figure 3-10.4). It can therefore be concluded that the upper terrace of 

Lake 1 and the terrace of Lake 3 were formed due to maximum lake level stands during the 

late Holocene wet climate phases. 

Subsequently, both residual lakes drained partially and exposed first the lake terrace around 

Lake 3 and then the upper terrace of Lake 1 (Figure 3-10.5). The drainage could have 

resulted from a lowering of the base level of erosion. This lowering could be caused by 

thermo-erosional valley sections cutting deeper into the sediments or by the Olenyokskaya 

Channel eroding the island so that the base of erosion moves inland. On the exposed 

terraces, permafrost started to aggrade, and between the two lakes a small pingo evolved 

(Figure 3-10.6). Its present position close to the outflow streams of Lake 1 and Lake 3 
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prevents the pingo from further growth, because any excess water at that location will 

promptly be discharged by the streams. Lake 1 continued eroding the adjacent alas slopes in 

northwestern directions until they reached their present position (Figure 3-10.6). Then it 

experienced another partial drainage that exposed the modern lower terrace of Lake 1. 

In contrast to Lake 1 and Lake 3, Lake 2 is supposed to be a secondary thermokarst lake. Its 

high relief position, small size, and the absence of lake terraces indicate that it has evolved 

during the late Holocene on the perennially frozen alas floor. Its thermokarst process was 

probably initiated by the drainage of a small thermokarst lake, which was situated on the 

Yedoma surface close to the upper alas slope (Figure 3-10.5). This small lake created the 

depression east of modern Lake 2. It eventually drained via a thermo-erosional gully into the 

alas, and the draining water ponded on the ice-rich alas floor very close to the alas slope at 

least 1.7 ka BP. When the pond expanded laterally, it continued to erode the alas slope 

north and south of the thermo-erosional gully. The depression on the Yedoma surface 

thereby deepened and its western margin eroded completely. 

The other alas slope sections, which were not being eroded by the lakes in the alas basin, 

stabilized. Hence, they are characterized by more moderate gradients than the slope 

sections that are still geomorphologically active today (Figure 3-5a). With the last partial 

drainage of Lake 1, the Lake 1 shore retreated from the northwestern alas slope and the 

erosional activity of Lake 1 on this slope section stopped. The currently steep gradient will 

therefore flatten as it stabilizes, whereas the steep slope sections east of Lake 2 will 

continue to be eroded by the expanding lake. 

The morphometric description of the alas in its present appearance corresponds to the 

“complex alas” stage in the classification of Soloviev (1962). This stage is characterized by 

differences in alas floor height with lakes often covering the lower parts. Around the lakes, 

terraces are slightly expressed and the surface elevates. Because of the directional 

expansion of the alas basins, the asymmetry of the slopes as well as the elongation of the 

basin increases. 

The reconstructed evolution of the investigated thermokarst basin is characterized by an 

alternation of stages with high and low thermokarst intensity (Figure 3-11). High 

thermokarst intensity is connected to thermokarst lake expansion and permafrost 

degradation, whereas during stages of low thermokarst intensity permafrost can aggrade in 

drained areas. The first stage of very high thermokarst intensity represents the lake phase of 

the primary thermokarst lake. It coincides with the phase of intensive thermokarst 

development in the East Siberian arctic lowlands with lateral and vertical lake expansion, 
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which lasted until the end of the Boreal period (9-7.5 ka BP) (Romanovskii et al., 2004; 

Kaplina, 2009). However, the regional cessation of thermokarst activity 7 to 6 ka BP 

(Romanovskii et al., 2004; Kaplina, 2009) is not to be equated with the local sharply 

decreasing thermokarst intensity from about 5.7 ka BP (Figure 3-11), which resulted from 

the drainage of the primary thermokarst lake. The unidirectional two-phased concept of 

thermokarst evolution with an active thermokarst phase between 13 and 7 ka BP and a 

stable situation after that (Romanovskii et al., 2004; Kaplina, 2009) has to be understood as a 

regional concept on a large landscape scale. It means that a fundamental change in climate 

conditions led to the formation of large thermokarst basins throughout the East Siberian 

arctic lowlands, which have not changed significantly in their overall areal extent since 7 to 6 

ka BP. In contrast, the timing of drainage of the primary thermokarst lakes is controlled by 

the local topographical and hydrological conditions and can differ throughout the region. 

After drainage, the thermokarst evolution within the alasses can be more dynamic than 

during the first phase as is shown by the investigated alas (Figure 3-11), even though the 

overall areal extent of the primary basins does not change significantly. Furthermore, the 

impact of thermokarst processes in existing alas basins on the alteration of permafrost 

deposits is much less intense than the impact of initial thermokarst lake development on the 

Ice Complex surface (Morgenstern et al., 2011). 

 

Figure 3-11. Thermokarst intensity of the investigated basin over time. Numbers in the graph correspond to the 

stages in Figure 3-10. 

It is possible that on the floor of the drained initial thermokarst basin cycles of secondary 

thermokarst lake evolution occur, meaning the repeated formation, growth, and drainage of 

secondary lakes on the alas floor, and subsequent permafrost aggradation with sufficient 
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ground-ice content to allow for renewed thermokarst processes. However, a full thaw lake 

cycle in the strict sense of Jorgenson and Shur (2007), which would require the surface to 

return to its original conditions, is not possible in Ice Complex deposits because of their high 

original ice content and the significant subsidence during thermokarst formation. The 

resulting basins are several meters, sometimes 20 to 30 m, deep. Subsequent syngenetic 

permafrost aggradation will not lead to an uplifting of the basin floor or an infilling of the 

basin up to the original Yedoma surface.  

3.7 Conclusion 

The evolution of the investigated alas proceeded in two phases. The first phase was the 

continuous development of the primary thermokarst lake. It was initiated on the Ice 

Complex surface probably at the transition between Pleistocene and Holocene (13 to 12 ka 

BP) and continued until the drainage of the lake about 5.7 ka BP, which was triggered by the 

breaching of the formerly closed basin contour by a thermo-erosional valley. The second, 

late Holocene phase comprised different concurrent processes and events that were 

connected with stepwise lake drainage and lake expansion within the alas basin, 

accompanied by permafrost aggradation and degradation. Permafrost aggradation is 

reflected in polygonal ice-wedge growth and pingo formation on the exposed alas floor and 

lake terraces. Degradational processes include the expansion of residual and the formation 

of secondary thermokarst lakes in the alas, the modification of the initial alas contour by 

lake expansion, and the formation of drainage channels. The interplay between 

aggradational and degradational processes reflects changes in regional climate as well as 

local relief conditions and resulted in the strongly differentiated modern thermokarst 

landscape with five morphostratigraphic levels within the alas. 

In contrast to the first phase of thermokarst evolution, which comprised only one 

continuous stage of high thermokarst intensity, the second phase since about 5.7 ka BP 

includes several stages of higher and lower thermokarst intensity and can therefore be 

considered more dynamic on the local scale. However, on the regional scale, the changes 

that occurred during the second evolutionary phase after drainage of the initial thermokarst 

lakes are less intense than the extensive thermokarst development that affected vast areas 

of East-Siberian coastal lowlands during the early Holocene. The massive early Holocene 

thermokarst activity led to a profound alteration of Ice Complex deposits and permafrost 

landscapes and formed the setting for smaller scale late Holocene and modern thermokarst 

dynamics. Future thermokarst activity will be influenced by the existing thermokarst terrain 

and will occur mainly in basins of older-generation thermokarst rather than affecting large 

portions of undisturbed late Pleistocene Ice Complex deposits. 
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4.1 Abstract 

Siberian coastal lowlands underlain by ice-rich permafrost often feature streams, valleys, 

and valley networks that have formed under the influence of thermal erosion. This study 

conducts an inventory of streams and valleys in three ice-rich lowland areas adjacent to the 

Laptev Sea using remote sensing, GIS, and field investigations. The calculated total stream 

length is 4,153 km in the Cape Mamontov Klyk area, 1,541 km in the Lena River Delta area, 

and 2,047 km in the Buor Khaya Peninsula area; valley densities are 1.8, 0.9, and 1.0 km/km², 

respectively. Strong variations in the morphology and spatial distribution of streams and 

valleys are observed and can be attributed to differences in the size, relief characteristics, 

and previous degradation of the study areas by thermokarst. Based on the results, the 

evolution of different valley types is discussed. The current valley pattern is the result of the 

late Holocene evolution of the hydrological system that is strongly connected to the 

degradation of ice-rich permafrost by thermal erosion. 

4.2 Introduction 

Climate warming in the Arctic is occurring at a much faster rate than the global average 

(AMAP, 2011), which has a significant impact on polar permafrost regions. Permafrost 

warming and permafrost degradation have been reported throughout the northern high-

latitudes (AMAP, 2011; Romanovsky et al., 2010). Thermokarst and thermal erosion are two 

major types of permafrost degradation in periglacial landscapes. They are capable of 

releasing fossil organic carbon pools to the atmosphere and the hydrological system (Zimov 

et al., 1996; Walter et al., 2006; Schuur et al., 2008; Grosse et al., 2011) and may 

substantially alter the water and energy balances of affected regions (Chapin et al., 2005; 

Osterkamp et al., 2009). 
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Thermokarst is defined as the process by which characteristic landforms result from the 

thawing of ice-rich permafrost or the melting of massive ice. Thermal erosion means the 

erosion of ice-bearing permafrost by the combined thermal and mechanical action of moving 

water (van Everdingen, 2005). While thermokarst is an in situ process including thermal 

melting of ground ice followed by surface subsidence but without hydraulic transport of 

earth materials, thermal erosion is a dynamic process involving the wearing away by thermal 

means (i.e., the melting of ice), and by mechanical means (i.e., hydraulic transport). Two 

types of thermal erosion can be distinguished: linear thermal erosion, which acts into depth, 

and lateral thermal erosion, which acts sideways (Czudek and Demek, 1973; Yershov, 2004). 

Thermokarst processes occur mostly in flat lowland relief with inhibited drainage; resulting 

landforms are thermokarst lakes, thermokarst depressions (alasses), and thermokarst 

mounds. Thermal erosion can take place at river banks and coastlines (Costard et al., 2003; 

Gavrilov et al., 2003; Dupeyrat et al., 2011), at the shores of lakes with significant wave 

activity (Jones et al., 2011), but also in ice-rich lowlands with sufficient relief gradients to 

allow for significant surface water flow. Here, it can result in the formation of thermo-

erosional gullies (Fortier et al., 2007; Godin and Fortier, 2012) or even large thermo-

erosional valleys and valley systems. Both processes and landforms interact with each other, 

because thermo-erosional gullies and valleys can supply water to thermokarst lakes and 

basins (Grosse et al., 2006, 2007) and enlarge thermokarst depressions (Toniolo et al., 2009) 

as well as inhibit thermokarst activity by drainage of thermokarst lakes (Marsh and 

Neumann, 2001; Morgenstern et al., 2011, 2012b). 

While thermokarst lakes have been investigated in numerous studies, for example as 

sources of carbon release to the atmosphere (Zimov et al., 1997; Walter et al., 2006) or as 

indicators of a changing water balance in permafrost regions by analyzing changes in 

thermokarst lake area using remote-sensing methods (Smith et al., 2005; Kravtsova and 

Bystrova, 2009), there is very few literature available on thermo-erosional gullies and valleys 

in ice-rich permafrost landscapes. Thermo-erosional valleys have been described for 

example in the Lena River Delta (Grigoriev, 1993) and mapped in two regions of East Siberian 

coastal lowlands in the context of an overall quantification of thermokarst-affected terrain 

types (Grosse et al. 2005, 2006). Other studies reveal local increasing and rapid formations 

of thermo-erosional gullies due to thawing permafrost (Fortier et al., 2007; Bowden et al., 

2008; Godin and Fortier, 2012). Thermo-erosional gullies and valleys can deeply erode ice-

rich deposits, increase sediment and nutrient delivery to rivers, lakes, and the sea (Bowden 

et al., 2008; Toniolo et al., 2009), and restructure arctic drainage networks, thereby leading 

to greatly changing runoff volumes and timings (Rowland et al., 2010). Thermo-erosional 

gullies and valleys extend over vast parts of the arctic landscape, act as important snow 



The role of thermal erosion in the degradation of Siberian ice-rich permafrost  Chapter 4  
In preparation for Journal of Geophysical Research 
   

 

75 

accumulation areas, and have been proven to significantly alter the water, sediment, and 

organic matter transport from permafrost to coastal waters at the local scale. However, 

there is no systematic study available to quantify these impacts at the artic scale. As a first 

step to fill this gap, this study provides a comprehensive inventory of thermo-erosional 

valleys in one of the most sensitive ice-rich permafrost lowland regions of the eastern 

Siberian Arctic. It will answer the key question how important is thermal erosion for the 

degradation of ice-rich permafrost. The specific objectives of this study are: 1) to analyze 

patterns of thermo-erosional gullies and valleys using remote sensing data and 

geoinformation techniques, 2) to characterize their morphometry and spatial distribution, 

and 3) to relate the identified spatial patterns to topographical and cryolithological settings. 

4.3 Regional setting 

This study focuses on three lowland sites underlain by ice-rich permafrost of the Yedoma-

type Ice Complex at the Siberian Laptev Sea coast (Figure 4-1). The western site, Cape 

Mamontov Klyk, belongs to the Lena-Anabar coastal lowland. It is bordered by the 

Pronchishchev Ridge to the south and slightly declines from this hill range in NNE direction 

towards the Laptev Sea (Grosse et al., 2006). The central site, the third geomorphological 

main terrace of the Lena River Delta, is composed of insular remnants of Ice Complex 

 

 

Figure 4-1. Regional setting of the study areas (Landsat-7 ETM+ mosaic; GeoCover
TM

 2000). White outlines 

mark the spatial extent of individual study areas, yellow outlines the location of the Lena Delta DEMs. 1 – Ebe-

Basyn Island, 2 – Khardang Island, 3 – Kurungnakh Island. 
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deposits (Grigoriev, 1993; Schwamborn et al., 2002b; Morgenstern et al., 2011). The eastern 

site, the Buor Khaya Pensinula, is the westernmost part of the Yana-Indigirka coastal 

lowland. All three sites are situated in the continuous permafrost zone with several 

hundreds of meters permafrost depths and mean annual ground temperatures from -9 to 

< -11 °C (Yershov, 2004) and in the arctic tundra zone (Walker et al., 2005). 

The stratigraphical composition of exposed frozen deposits in the three study areas is 

comparable, consisting of Ice Complex deposits of up to several tens of meters thickness 

underlain by fluvial sandy deposits and covered by Holocene deposits (Schirrmeister et al., 

2003, 2008, 2011c; Schwamborn et al., 2002b; Wetterich et al., 2008, 2011). On the Buor 

Khaya Pensinsula, the base of the Ice Complex deposits and underlying deposits have not 

been revealed, but during a coring campaign about 500 m off the western shore sands were 

reached in the depth of 30 m below sea level (P. Overduin, unpublished data, 2012). The 

lowest sandy deposits in the Cape Mamontov Klyk and the Lena Delta study areas are of 

middle to late Pleistocene age. Ice Complex deposits of all sites were polygenetically formed 

during the late Pleistocene (Schirrmeister et al., 2003, 2008, 2011a, 2011c; Schwamborn et 

al., 2002b; Wetterich et al., 2008, 2011). The Ice Complex deposits consist of ice-

supersaturated silty to sandy sediments and buried cryosols with large syngenetic ice 

wedges. The total ice volume in the Ice Complex deposits can therefore reach up to 80 %. 

Thin Holocene deposits cover the Ice Complex deposits and are also found in thermokarst 

depressions and river and thermo-erosional valleys. They consist of peat as well as silty to 

sandy sediments with high organic matter and ice content (Schirrmeister et al., 2011b). 

The high ice content of the Ice Complex deposits provided the conditions for widespread 

terrain subsidence and surface changes due to thermokarst and thermal erosion since the 

Pleistocene/Holocene transition about 12 to 10 ka BP. For all study sites, high areal 

percentages of permafrost degradation landforms have been reported. Of the Cape 

Mamontov Klyk area, 78 % was estimated to be affected by permafrost degradation (Grosse 

et al., 2006). This percentage is composed of slopes (29 %) and flat surfaces of thermokarst 

lakes and alasses and valley floors (48.7 %). The coverage of degradation landforms 

increases from north to south. Of the Lena Delta site, 22.2 % is covered by thermokarst lakes 

and alasses (Morgenstern et al., 2011). The total area affected by permafrost degradation 

landforms is much higher when thermo-erosional valleys are included. This was 

demonstrated for Kurungnakh Island in the central Lena Delta, where only 33.7 % represent 

flat Yedoma surfaces were found unaffected by thermokarst or thermal erosion 

(Morgenstern et al., 2011). On the Buor Khaya Peninsula, only 10 % were classified as 
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undisturbed Yedoma, which implies that 90 % of the site is affected by permafrost 

degradation (Arcos, 2012).  

4.4 Material and methods 

Thermo-erosional landforms were manually digitized as line features and subsequently 

analyzed in a Geographic Information System (GIS) using the software package 

ArcGISTM 10.0. The mapping included the whole surficial hydrological discharge system of the 

study areas, i.e. thermo-erosional gullies and valleys as well as streams and rivers, 

hypothesizing that all these elements have potentially formed involving thermo-erosional 

processes. 

For the Cape Mamontov Klyk site, data from Grosse et al. (2006) that had been digitized 

from 1:100,000 topographic map sheets were used and clipped to the Ice Complex extent of 

Cape Mamontov Klyk, which excludes the hill range in the southwest with outcropping 

bedrock and rocky slope debris, coastal barrens, and a large sandy floodplain area in the 

southeast. The mapped features (streams, intermittent streams) were visually compared 

with panchromatic Landsat-7 ETM+ satellite data (4 August 2000, 15 m spatial resolution) 

and panchromatic Hexagon data (14 July 1975, 10 m spatial resolution). Because smaller 

valleys and gullies were not captured in the maps, they were subsequently digitized on the 

basis of the satellite data. The criterion for the mapping of linear features as thermo-

erosional valleys and gullies was their clear incision into the surface with visible slopes. 

Thermo-erosional features of the Lena Delta site were mapped on the basis of a Landsat-7 

ETM+ image mosaic (2000 and 2001, 30 m spatial resolution) (Schneider et al., 2009) and a 

Hexagon satellite image mosaic (1975, 10 m spatial resolution) (G. Grosse, unpublished data) 

of the Lena River Delta within the extent of the Lena Delta Ice Complex (Morgenstern et al., 

2011). For the Buor Khaya Peninsula, data from Arcos (2012), which had been digitized 

based on RapidEye satellite data (8 August 2010, 6.5 m spatial resolution) in comparison 

with 1:100,000 topographic map sheets, were completed for smaller thermo-erosional 

features using the same RapidEye scene as a mapping basis. The spatial resolution, 

acquisition date, time of the day, and viewing geometry of the satellite data used (Table 4-1) 

may have an influence on the identification of thermo-erosional landforms in the images. 

For Cape Mamontov Klyk and the Lena Delta we therefore used a combination of Hexagon, 

Landsat, and DEM data that corroborated each other in the degree of detail versus the up-

to-date spatial extent of single features that had laterally expanded between 1975 and 2000 

by decameters. 
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Table 4-1. Overview of the satellite data, maps, and DEMs used in this study. 

Location Data type Year Equidistance of 
contour lines / 

Ground resolution 

Cape Mamontov Klyk Landsat-7 ETM+, pan 2000 15 m 
 Hexagon 1975 10 m 
 DEM from topographic mapsa  10 m / 30 m 

Lena River Delta Landsat-7 ETM+ mosaicb 2000, 2001 30 m 
 Hexagon mosaicc 1975 10 m 

Parts of Ebe-Basyn and 
Khardang Islands 

DEM from topographic mapsd  10 m / 30 m 

Kurungnakh Island DEM from topographic mapse  10 m / 30 m 

Buor Khaya Peninsula RapidEyef 2010 6.5 m 
 DEM from topographic mapsc,g  10 m / 30 m 

a
 Grosse et al. (2006) 

b
 Schneider et al. (2009) 

c
 G. Grosse (unpublished data) 

d
 M. Ulrich (unpublished data) 

e
 Roessler (2009) 

f
 Guenther et al. (2012) 

g
 Arcos (2012) 

We calculated the drainage density and the valley density as measures of the degree to 

which the study areas are dissected by streams and valleys, respectively. The drainage 

density is defined as the total length of streams divided by the area of their drainage basin 

(Horton, 1932, 1945). On Cape Mamontov Klyk and on the Buor Khaya Pensinsula, some of 

the streams and valleys and their catchment areas are truncated in the south of the study 

areas because of the definite study area extent. We still included them in our calculations, 

because our focus are the characteristics of Ice Complex degradation in the study areas 

rather than the hydrogeographical characteristics of their whole watersheds. In this study, 

we therefore calculated the drainage density of each study area as the total length of all 

streams and rivers divided by the total area. In addition, the valley density was calculated, 

because large valleys often have well developed floodplains, i.e. broad floors with strongly 

meandering streams, and a meandering stream has a greater length than its valley. These 

valley floodplains were delineated as polygon features along the valley floor margins (for 

Cape Mamontov Klyk we used the data from Grosse et al., 2006) and their center line was 

digitized to determine the valley length in comparison to the stream length. The valley 

density was then calculated as the sum of rivers, streams, and intermittent streams outside 

valley floodplains and the valley floodplain centerlines divided by the total area of the study 

site. 

To illustrate the spatial relation of thermo-erosional landforms to thermokarst lakes and 

basins, we used GIS datasets from previous studies on Cape Mamontov Klyk (Grosse et al., 
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2006) and in the Lena Delta (Morgenstern et al., 2011). On the Buor Khaya Peninsula, only 

thermokarst lakes could be delineated, because the area has been affected by thermokarst 

processes to an extent that does not allow for the distinction of individual alas boundaries. 

For terrain analyses and deriving valley cross profiles we used Digital Elevation Models 

(DEM) with a grid cell resolution of 30 m that were derived from the digitized topographic 

map data. For Cape Mamontov Klyk we used the DEM from Grosse et al. (2006). For the Lena 

Delta, topographic map sheets at the 1:100,000 scale and derived DEMs were available only 

for an about 35 by 35 km area in the western delta covering parts of Ebe-Basyn and 

Khardang Islands (M. Ulrich, unpublished data) and for Kurungnakh Island in the south 

central delta (Roessler, 2009) (Figure 4-1). Detailed digital terrain analyses in the Lena Delta 

were therefore confined to these key sites; relief information for the remaining delta areas 

was retrieved from topographic maps at the scale 1:200,000. For the Buor Khaya Peninsula, 

the DEM generation was done on a hybrid vector data basis in order to achieve a more up-

to-date representation of the alas and thermokarst lake dominated relief. Digitized 

topographic map contour lines with an equidistance of 10 m, together with mapped streams 

and standing water bodies that were automatically extracted on the basis of an 

orthorectified RapidEye image (Günther et al., 2012), served as input data for DEM 

interpolation. The spatial resolution of the DEMs was too coarse to allow for detailed and 

statistical analyses of valley cross profiles and further hydrological investigations within the 

GIS. 

Individual thermo-erosional and fluvial landforms were observed during field campaigns to 

Cape Mamontov Klyk in 2003 (Grosse et al., 2006; Schirrmeister et al., 2004), to the western 

Lena Delta in 2005 (Schirrmeister et al., 2007; Ulrich et al., 2009), to Kurungnakh Island in 

2008 (Morgenstern et al., 2012b; Wagner et al., 2012), and to the Buor Khaya Pensinsula in 

2010 (Wetterich et al., 2011). 

4.5 Results 

The summary characteristics of the three study sites are given in Table 4-2. Cape Mamontov 

Klyk features the most extensive coverage with valleys and streams (Figure 4-2) and has 

therefore the highest drainage density (2.0). The values for the Lena Delta and Buor Khaya 

Peninsula are similar (0.9 and 1.0, respectively). Valley densities are similar or equal to the 

drainage densities, which implies that largely meandering streams in floodplains only cover a 

small proportion of the drainage systems of each study area. 
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Table 4-2. Summary characteristics of the three study sites and their thermo-erosional and thermokarst 

landforms. 

 Cape Mamontov Klyk Lena Delta Buor Khaya Peninsula 

Study area (km²) 2,109 1,690 2,001 

Max. relief height (m asl) 75.5 66 65 

Min. relief height (m asl) 0 0 0 

Min. distance between highest and 
lowest relief parts (km) 

22 7 7 

Total stream length (km)a 4,153 1,541 2,047 

Drainage density (km/km²) 2.0 0.9 1.0 

Valley floodplains (km²) 203.8 8.2 25.6 

Maximum floodplain width (km) 4.5 1 1.5 

Total length of valley floodplain 
centerlines (km) 

199 25 38 

Max. valley depth (m) 35 35 25 

Total valley length (km)b 3,877 1,541 1,954 

Valley density (km/km²) 1.8 0.9 1.0 

Alasses (km²) 418.2d 337.7e n.d. 

Thermokarst lakes (km²) 158.2d 88.3e 192.9 

Thermokarst lakes on Yedoma 
uplands (km²) 

23.0d 37.4e n.d. 

Total area affected by thermokarst 
lakes and alasses (km²)c 

441.2d 375.1e n.d. 

Thermokarst areal percentage of 
study site (%) 

20.9d 22.2e n.d. 

a
 Calculated as the sum of all rivers, streams, and intermittent streams. 

b Calculated as the sum of rivers, streams, and intermittent streams outside valley floodplains and the valley 

floodplain centerlines. 
c Calculated as the sum of thermokarst lakes on Yedoma uplands and thermokarst basins. 
d Data based on Grosse et al. (2006). 
e Data from Morgenstern et al. (2011). 

n.d. – not determined due to lack of data for alas extent. 
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Figure 4-2. Overview of all digitized thermo-erosional and thermokarst landforms in the study areas: (a) Cape 

Mamontov Klyk (panchromatic Landsat-7 ETM+ data), (b) Lena River Delta area (Landsat-7 ETM+ mosaic, band 

2; GeoCover
TM

 2000), 1 – Ebe-Basyn Island, 2 – Khardang Island, 3 – Kurungnakh Island, (c) Buor Khaya 

Peninsula (RapidEye data, band 5). 

4.5.1 Morphological valley types 

Cape Mamontov Klyk is characterized by extensive dendritic valley networks (Figure 4-2a, 

4-3a). They start on Yedoma uplands and end at the coast. Some of them cross the whole 

study area from the Pronchishchev Ridge in the south to the Laptev Sea coast in the north. 

Smaller networks also start or end in thermokarst lakes and alasses. 
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Figure 4-3. Examples of different valley types in the study area: (a) extensive dendritic valleys, Cape Mamontov 

Klyk, (b) short parallel valleys along the Ice Complex margin, short radial valleys around thermokarst lakes and 

on alas slopes, and drainage pathways in alasses, Lena River Delta, (c) extensive longitudinal valleys with sharp 

meanders and short contributing valleys, Buor Khaya Peninsula. Scale bar in (c) applies for all; for color codes 

see Figure 4-2. 

In the Lena River Delta, large dendritic valleys occur only on Khardang Island (Figure 4-2b), 

which is the largest and highest of the third terrace islands with the greatest distance 

between the interior and the margins. Most common in the Lena Delta are short thermo-

erosional valleys (up to 2 km long, sometimes with short tributary valleys) that are parallel 

aligned along the margins of the study area, where steep cliffs form an abrupt transition 

between the Yedoma uplands of the third geomorphological main terrace and the delta 

channels and floodplains (Figure 4-3b). Longer valleys often interconnect alasses and 

discharge them into the delta channels. They can be several kilometers long and have 

several tributary valleys or streams. 

All these valley types also occur on the Buor Khaya Pensinsula, but the predominant type 

here are longitudinal valleys and streams that extend from the interior to the coasts (Figure 

4-2c, 4-3c). They do bifurcate, but at distances of several kilometers. In between they 

feature frequent, very short, parallel side valleys perpendicular to the main valley. They 

occur on Yedoma uplands as well as in the extensive lower relief areas that resulted from 

thermokarst subsidence. Sometimes they even start in low areas and then cut through 

Yedoma remnants that are elevated up to 20 m above these low areas. 

In all three study areas, straight, short gullies are often radially located around alasses and 

thermokarst lakes (Figure 4-3b). They start on the Yedoma uplands, cut into the slopes, and 

end abruptly at the foot of the alas slope or at the lake level. 

4.5.2 Valley profiles 

The valley profiles are similar in all three study areas. Short tributary valleys typically have 

straight longitudinal profiles (Figure 4-3) and V-shaped cross profiles (Figure 4-4d). Higher 
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order and main valleys mostly follow a winding course from the interior to their mouth on 

the small scale and meander on the large scale (Figure 4-3a, 4-3c). Narrow valleys with a V- 

or slightly U-shaped cross profile meander themselves (Figure 4-3a, 4-3c). The meanders 

bend in sharp angles, obviously following the ice-wedge polygonal network. Broader valleys 

with a U-shaped cross profile (Figure 4-4e) tend to straighten in their large-scale longitudinal 

course, but the streams on their floors are meandering with a high frequency. 

 

Figure 4-4. Cross profiles of different valley types (letters correspond to the categories in Table 4-3; categories 

(b) and (g) are not shown because of their shallow depth): (a) short, straight gully on alas slope, (c) V-shaped 

ravine, (d) V-shaped valley with a straight thalweg of an intermittent stream, (e) U-shaped valley with a 

meandering thalweg of a permanent stream, (f) broad valley floodplain with a large meandering river and small 

oxbow and thermokarst lakes. Profiles (a) and (c) were drawn manually based on field observations, profiles 

(d)-(e) were derived from the DEM on Mamontov Klyk. 

The broad valleys with large floodplains have a flat floor (Figure 4-4f) with a smoothly 

meandering river and oxbow and small thermokarst lakes. The maximum widths of these 

valley floodplains are 4.5, 1, and 1.5 km in the Cape Mamontov Klyk, Lena Delta, and Buor 

Khaya Peninsula study area, respectively. Streams in alasses, and on the Buor Khaya 

Peninsula also some of the rivers in the large low relief areas, are meandering and only 

slightly indented into the surface. The maximum valley depth as derived from the DEMs is 

about 35, 35, and 25 m in the Cape Mamontov Klyk, Lena Delta, and Buor Khaya Peninsula 

study area, respectively (Table 4-2). 

4.5.3 Field observations 

During several expeditions to the study region we observed numerous gullies, valleys, and 

streams (Figure 4-5), which can be assigned to different categories (Table 4-3). Short, 

straight gullies around thermokarst lakes and alasses cut up to a few meters deep into the 

slopes of the thermokarst features and mostly follow the same gradient (Table 4-3a, Figure 

4-4a). They are densely covered with fresher and higher growing vegetation than the 

surrounding slope sections. In alasses, small streams often occur as drainage pathways and 
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connect residual and secondary thermokarst lakes on the alas floor with the hydrological 

system outside the alasses (Table 4-3b). Deep V-shaped ravines (Table 4-3c, Figure 4-4c) 

were observed along the cliffs of the third Lena Delta terrace (Figure 4-5f) and along the 

coasts of the Buor Khaya Peninsula (Figure 4-5g) and Cape Mamontov Klyk. They have a 

steep to moderate gradient, because they descend from the Yedoma uplands over a 

distance of only a few tens to hundreds of meters down to almost sea level. Their lower 

slopes and floors often show a disturbed vegetation cover or are free of vegetation. Some of 

these ravines have formed due to the drainage of thermokarst lakes. Another type of V-

shaped valleys are the small tributary valleys described in section 4.2 (Table 4-3d, Figure 4-

4d). They are much wider (up to hundreds of meters) than the V-shaped ravines (up to tens 

of meters) and therefore have more gentle slopes. U-shaped valleys are widely distributed in 

the study areas (Table 3e, Figure 4-4e). In many of them the slopes end abruptly at the flat 

floor, which can be several tens of meters wide (Figure 4-5d). Permanent streams in the 

lower parts of the Cape Mamontov Klyk and Buor Khaya Peninsula study areas closer to the 

coast often have broad valleys with distinct floodplains, because they are frequently 

meandering (Table 4-3f). While their valleys are U-shaped where the meanders are small 

(Figure 4-5c), they broaden to wide, open floodplains where large streams are meandering in 

large bends (Figure 4-4f). 
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Figure 4-5. Exemplar gullies, valleys, and streams on Cape Mamontov Klyk (a-d), Kurungnakh Island, Lena Delta 

(e, f), and Buor Khaya Peninsula (g, h). (a) Gully initiation due to melting polygonal ice wedges. (b) Erosion and 

disturbed vegetation cover due to strong discharge in an intermittent stream. (c) Strongly meandering 

permanent stream that erodes the ice-rich permafrost along the outer banks. (d) U-shaped valley with a broad, 

flat, densely vegetated floor and little surface water flow.       

                  Continuation of figure caption on next page. 



The role of thermal erosion in the degradation of Siberian ice-rich permafrost  Chapter 4  
In preparation for Journal of Geophysical Research 
   

 

86 

Continuation of figure caption from previous page: (e) V-shaped valley on the floor of a large alas. It formed 

when the primary thermokarst lake was tapped by the neighboring delta channel. The lake drained 

catastrophically and washed away the unfrozen, predominantly sandy sediments from the lake bottom and 

underneath into the delta channel, whose water level was several meters below the lake floor. (f) Deep, V-

shaped valley that retrogressed into the permafrost and drained a small thermokarst lake between 1975 and 

2000. Slopes in the lower stratigraphic sand unit are much steeper and less vegetated than in the upper Ice 

Complex unit, where baydzharakhs are present. See log on valley floor for scale. (g) V-shaped valley with small 

side valleys along polygonal ice wedges and disturbed vegetation cover on the floor and lower parts of the 

slopes. Position is about 150 m from the coast. (h) Smoothly meandering valley with flat slopes. 

Table 4-3. Categories of valleys and hydrological features based on field observations in the study region. 

Category Occurrence Characteristics 
Hydrologic 

regime 

a) short, straight 
gullies 

on alas and 
thermokarst lake 
slopes 

radially arranged around lakes and 
alasses; V- to U-shaped; steep 
gradient; up to a few meters deep 
and wide; dense, fresh vegetation 

intermittent 
streams 

b) drainage pathways 
in alasses 

on alas floors connect residual and secondary 
thermokarst lakes in partly drained 
alasses with the stream network 
outside the alasses; slightly 
indented into the alas floor; low 
gradient; up to a few meters wide; 
dense, fresh vegetation 

intermittent 
and small 
permanent 
streams 

c) V-shaped ravines along steep coasts 
and cliffs; often 
due to lake 
drainage 

V-shaped; steep to moderate 
gradient, up to tens of meters deep 
and wide;  vegetation cover on 
floor and lower slopes often 
disturbed 

intermittent 
streams 

d) V-shaped valleys in upper parts of 
the watersheds on 
Yedoma uplands 

mostly tributary valleys; V-shaped; 
moderate to low gradient, up to 
tens of meters deep and hundreds 
of meters wide; intact vegetation 
cover 

Intermittent 
streams 

e) U-shaped valleys on Yedoma uplands U-shaped; low gradient, up to tens 
of meters deep and several to tens 
of meters wide;  flat valley floor 
with fresh vegetation 

intermittent 
and small 
permanent 
streams 

f) valleys of 
permanent streams 
and rivers 

lower parts of long 
streams close to 
their mouth 

U-shaped; low gradient, up to tens 
of meters deep and hundreds of 
meters to kilometers wide; broad 
floors with distinct floodplains; 
often bare sediment exposed; 
oxbow and small thermokarst lakes 

permanent, 
meandering 
streams 

g) water tracks on gently sloping 
Yedoma uplands; 
on large, slightly 
inclined alas floors 

arranged in parallel; low gradient; 
not or only slightly indented into 
the surface;  dense, fresh 
vegetation 

poorly 
developed 
runoff systems 
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Transitions between these categories down the valleys are common, but not exclusively 

unidirectional and smooth. In the Cape Mamontov Klyk area we observed, for example, a 

meandering valley with a U-shaped profile and a small stream in the upper valley section 

that transformed into a V-shaped ravine with disturbed vegetation at the location of an 

abrupt drop in elevation (Figure 4-5b). 

In addition to these valley landforms analyzed in this study, we have also observed several 

parallel water tracks on slightly inclined Yedoma uplands and alas floors (Table 4-3g). These 

water tracks are not included in our analyses, because they are not or only slightly incised 

into the surface. Similar features have been described for other regions in hill slopes and are 

sometimes referred to as dells (Mitt, 1959; Katasonova, 1963; McNamara et al., 1999; 

Grosse et al., 2007). 

4.6 Discussion 

4.6.1 Valley and stream morphology 

The morphometrical characteristics of the mapped features, and partly also the drainage 

and valley densities, differ greatly between the three study areas. Whereas the drainage 

density reflects the contemporary extent of active streams, the valley density is a 

morphometrical indicator integrating valley-forming and valley-filling processes in a study 

region over large time scales taking into account environmental conditions during the 

formation and persistence of the valleys (Schmidt, 1984; Tucker et al., 2001). 

In ice-rich permafrost lowland regions, stream and valley formation are significantly 

influenced by the occurrence and abundance of ground ice. Ground ice provides the 

conditions for thermokarst and thermal erosion, and the ice distribution in the ground can 

determine the location of stream and valley initiation and its course. Thermal erosion along 

polygonal ice-wedge systems, for example, results in the formation of zigzag-shaped streams 

(Czudek and Demek, 1973). Such linear thermal erosion also plays a significant role in the 

sediment transport down slope, even though it is accomplished by intermittent streams that 

are only active during the short summers. The large inflow of talus deposits and solifluction 

material from the slopes leads to a dominance of lateral over downcutting erosion in the 

formation of river valleys in permafrost regions and to strongly meandering rivers (Yershov, 

2004). 

In the study region, the development of the modern hydrological system began with the Late 

Pleistocene-Holocene transition period, when the accumulation of the Ice Complex deposits 

ceased and the regional climate changed to warmer and wetter conditions, promoting the 

activation of rivers and widespread permafrost degradation (Grosse et al., 2007; 
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Schirrmeister et al., 2008, 2011a, 2011c; Kaplina, 2009; Morgenstern et al., 2011). The 

coastline of the Laptev Sea was located several hundred kilometers further to the north 

during that time (Bauch et al., 2001), and extensive lowlands with low relief gradients 

provided favorable conditions for thermokarst. However, thermokarst processes massively 

occurred only until the mid-Holocene; after that the established thermokarst landscapes 

experienced minor changes (Romanovskii et al., 2004; Kaplina, 2009; Morgenstern et al., 

2012b). The formation of large valley systems presumably started only after higher relief 

gradients developed in the study region, for example due to the formation of thermokarst 

lakes and basins and to the transgressing shoreline, which reached its modern position 

about 5 cal. ka BP (Bauch et al., 2001). As a result, steep bluffs formed on lakes and coasts 

due to wave and coastal erosion and provided steep relief gradients over shorter distances. 

At the Cape Mamontov Klyk coast, for example, a steep cliff of up to 30 m height was formed 

by coastal erosion. In the Lena Delta, the Yedoma surface was cut off from the mountain 

ranges to the south as well as from the accumulation plains to the north by the large deltaic 

channels and has been eroded into small disconnected remnants, which are now elevated 

up to 66 m above deltaic streams and floodplains (Schirrmeister et al., 2002, 2011a). We 

therefore conclude that the characteristics of the present-day valley networks in the study 

region basically reflect the climate and relief conditions during the middle and late Holocene 

period, which is supported by radiocarbon age determinations of valley fillings on Cape 

Mamontov Klyk that are of late Holocene age (Schirrmeister et al., 2008). 

The modern activity of streams is reflected in the drainage density. The high number of 

intermittent streams contributes substantially to the drainage densities, which would be 

much lower if only permanent streams were mapped. Because intermittent streams all 

occupy valleys, and largely meandering rivers and streams only represent a small fraction of 

all streams mapped, the valley densities do not or only slightly differ from the drainage 

densities of the study areas. 

The high density of valleys in the Cape Mamontov Klyk area (1.8) compared to the other two 

study areas (0.9 and 1.0 in the Lena Delta and on the Buor Khaya Pensinsula, respectively) 

indicates that the fluvial and thermal erosion of the Ice Complex deposits was more effective 

here (Table 4-2). The minimum distances between the highest and lowest point in each 

study area is longest on Cape Mamontov Klyk (22 km compared to 7 km in the Lena Delta 

and on the Buor Khaya Pensinsula); it is the largest study area, and represents an integrative 

and homogenously inclined surface from the mountain ranges to the coast. These 

characteristics support the accumulation of surface water and concentrated runoff over 

distances of tens of kilometers. In addition, valley heads and their watersheds are not 

exclusively situated inside the study area, but start in the Pronchishchev Ridge, which led to 
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a considerable water supply in addition to precipitation and melt water from thawing Ice 

Complex deposits within the study area. This effect is still functioning today as evident from 

the much larger areal extent of valley floodplains with mostly meandering permanent 

streams and rivers on Cape Mamontov Klyk and from the drainage density being higher than 

the valley density (Table 4-2). 

In the Lena River Delta study area, valleys are predominantly short and rarely form dendritic 

networks. They are lined up along the steep cliffs of the small islands and cut deep into the 

Ice Complex and underlying sands along large ice wedge systems perpendicular to the 

islands’ margins. Due to the short distances between the interior of the Yedoma islands and 

their margins, the valleys follow a high relief gradient, which favors erosion. On the other 

hand, the watersheds are small and thus the supply of running surface water as eroding 

agent on the Yedoma uplands is very limited. For the same reason larger streams occur 

rarely, which is also reflected by the smallest valley floodplain area of all three study areas 

(8.2 km²) and the smallest maximum floodplain width (1 km) (Table 4-2). Modern changes in 

the thermo-erosional valleys are stimulated by the activity of the deltaic channels, because 

the base level of erosion moves inland where the channels erode the islands’ margins and 

retreats where delta floodplains accumulate. 

On the Buor Khaya Peninsula, thermokarst processes have degraded the Ice Complex 

deposits over extensive areas, leaving only a few remnants of undisturbed Yedoma uplands. 

The surface of the study area is slightly inclined from the center to the coasts; steep 

gradients are only found around the Yedoma remnants. Therefore, many of the streams do 

not occupy deep valleys in thick Ice Complex deposits, but have incised up to a few meters 

deep into the lower, degraded surfaces. Most of them probably do not indicate the location 

of former valleys that had formed on the Yedoma uplands during the Lateglacial / early 

Holocene, because they are either drainage channels of thermokarst lakes or have formed 

on the refrozen surface of extensive and nested alasses as drainage pathways through the 

low relief areas. In contrast to the Cape Mamontov Klyk area, where additional water supply 

is derived from the Pronchishchev Ridge, the discharge on the Buor Khaya Peninsula is 

derived from the local precipitation and melting ground ice only as in the Lena Delta, and the 

water supply is therefore similarly limited. However, on the Buor Khaya Peninsula longer 

permanent streams and even rivers as well as larger floodplains exist, which can be 

explained by the lower overall gradient of this study area compared to the Lena Delta that 

results from longer distances from the source of the streams and rivers in the interior to the 

coast.  
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4.6.2 Valley formation and evolution 

Based on our results from field investigations and mapping we propose conceptual models 

of formation and evolution for the different valley categories in the study areas. 

The short, straight gullies in the slopes of thermokarst lakes and alasses (Figure 4-3b,  

Table 4-3a) form due to concentrated surface runoff from the Yedoma uplands into the lakes 

and alasses. Sediments are transported down slope and can form small alluvial fans on alas 

floors (Morgenstern et al., 2012b). In the negative relief features on the slopes, snow 

preferentially accumulates and promotes further erosion, because it insulates the 

permafrost from cold temperatures during winter and supplies more water during snowmelt 

in spring. Such feedback from nivation is also highly relevant for all other valley types 

described in this study. 

The drainage pathways in alasses (Figure 4-3b, Table 4-3b) as well as a large percentage of 

the streams on the degraded surface of the Buor Khaya Peninsula (Figure 4-3c) are either 

primary pathways created during the drainage of primary thermokarst lakes or secondary 

pathways that formed after permafrost aggradation on the alas floor. Figure 4-5e shows a 

very large and deep example for the first drainage pathway type. It has formed by eroding 

the unfrozen sediments up to 10 m deep from the lake floor during catastrophic drainage of 

the large primary lake. The second type often forms along Holocene polygonal ice-wedge 

networks on alas floors when surplus water from precipitation and snowmelt collects in 

polygon troughs and discharges to lower relief parts and into larger drainage streams and 

valleys. The polygon troughs widen, and in cases where small ponds form at polygon 

junctions, beaded drainage occurs (Morgenstern et al., 2012b). Larger streams further erode 

the alas floor so that they are not confined to the polygonal pattern anymore, but evolve 

similar to the other permanent streams in the study areas as described below.  

V-shaped ravines along steep Yedoma cliffs (Figure 4-3b, Table 4-3c) mostly result from 

retrogressive, headward erosion. They initiate at small incisions in cliff edges and reinforce 

due to accumulating snow and water until they stabilize when equilibrium is reached 

between erosion and sedimentation. The retrogressive erosion can occur along ice wedges 

or independently from them and develop at rates of up to several tens of meters per year 

(Czudek and Demek, 1973). When such ravines encounter a thermokarst lake and drain it 

catastrophically, they can significantly deepen and widen by thermal erosion during a short 

amount of time (Figure 4-5f). After stabilization they become completely vegetated. 

The V-shaped valleys (Table 4-3d), U-shaped valleys (Table 4-3e), and valleys of permanent 

streams (Table 4-3f) are usually part of extensive valley networks and evolve 
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interdependently. Their development on the slightly inclined surface of the Yedoma uplands 

starts from shallow bands of concentrated, but intermittent surface runoff like water tracks 

or dells (Table 4-3g). Due to active layer deepening and sediment outwash, which can be 

significant even with the vegetation cover staying intact, the bands deepen and create V-

shaped valleys with long, slightly inclined slopes (Figure 4-4d). In areas with higher relief 

gradients valley initiation can also occur by gullying along polygonal ice-wedge systems. Due 

to the confluence of several valleys more water accumulates downstream, so that further 

valley development is characterized by an intensification of the erosion laterally as well as 

into depth, but nivation and solifluction may even play a more significant role in the lateral 

erosion and widening of the valleys. As a result, the valley shapes transform from V to U. 

Finally, when large, permanent streams become meandering rivers broad flood plains 

develop. In the case of abrupt relief changes, for example at the junctions of streams or 

valleys of different orders, valley cross profiles can change from one type to another. 

Figure 4-5b shows such an example, where a steep V-shaped ravine is retrograding into a 

small and shallow U-shaped valley. 

4.7 Conclusion 

The existing valley and stream networks in the study areas reflect the late Holocene 

development of the regional hydrological system. It was initiated in the extensive lowland 

landscapes after a more pronounced relief formed due to the eroding effects of the 

transgressed Laptev Sea, delta channels, and thermokarst subsidence. The morphology and 

spatial distribution of the valley systems vary greatly between the study areas and depend 

basically on the: 

 relief gradient, 

 size of the catchments, 

 previous degradation of the initial Ice Complex surface by thermokarst. 

In the Cape Mamontov Klyk area, extensive dendritic valley networks have formed on a 

broad Ice Complex plain between the Pronchishchev mountain range and the Laptev Sea. 

Large catchments and a water surplus from the mountain range led to the formation of large 

permanent rivers and streams. On the small Ice Complex remnants of the Lena River Delta, 

predominantly short, but deep valleys have incised into the steep cliffs, and larger networks 

occur only on the largest island Khardang. Streams and valleys on the Buor Khaya Peninsula 

mainly evolved on low surfaces that had been degraded by extensive thermokarst. Valleys 

therefore have a more longitudinal character with short tributaries. 
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The formation processes in all three study areas were strongly influenced by thermal erosion 

of the ice-rich, fine-grained permafrost deposits, on the original Ice Complex surface as well 

as in the polygonal tundra of degraded surfaces. The abundance of valleys and streams 

shows that thermal erosion, besides thermokarst, played a key role in the degradation of the 

ice-rich permafrost of the study areas in the past. Most of the valleys that developed during 

the late Holocene have stabilized, but thermal erosion continues to be active today. Under a 

continued arctic warming with increasing permafrost temperatures, active layer depths, and 

changing precipitation patterns, thermal erosion might substantially contribute to further 

degradation of ice-rich permafrost landscapes, but further investigations are needed to shed 

light on the interplay between degrading and stabilizing factors in this system. 
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5 Synthesis 

This thesis aimed at deriving new insights on the degradation of Siberian ice-rich permafrost 

by thermokarst and thermal erosion. The detailed analysis of currently existing 

degradational landforms in three lowland sites adjacent to the Laptev Sea underlain by Ice 

Complex deposits leads to a better understanding of the impact that thermokarst and 

thermal erosion have had on these sensitive landscapes since the beginning of their 

activation. Based on the results, conclusions on the potential of future permafrost 

degradation by thermokarst and thermal erosion can be drawn. 

In the frame of this thesis, detailed analyses of thermokarst have concentrated on the third 

Lena Delta terrace. Thermal erosion was studied in three areas underlain by Ice Complex 

deposits, Cape Mamontov Klyk, the third Lena Delta terrace, and the Buor Khaya Peninsula 

(Figure 1-4). This synthesis extends the results of the individual manuscripts (Chapters 2, 3, 

4) by including additional thermokarst data for the Cape Mamontov Klyk and Buor Khaya 

Peninsula areas from previous studies to provide a comprehensive discussion of permafrost 

degradation by thermokarst and thermal erosion for all three study areas. Sections 5.1 to 5.5 

directly address the thesis’ objectives stated in Section 1.2, and Section 5.6 points out 

directions for future research on the degradation of ice-rich permafrost. 

5.1 Quantification of thermokarst and thermal erosion 

All three study areas are widely affected by thermokarst and thermal erosion. GIS 

calculations of all thermokarst lakes and thermokarst basins (alasses) mapped within the Ice 

Complex extent of the Lena Delta show that 22.2 % are covered by thermokarst (Chapter 2). 

Data from Grosse et al. (2006) reveal a similar thermokarst areal percentage of 20.9 % for 

the Cape Mamontov Klyk area (Table 4-2). On the Buor Khaya Peninsula area, thermokarst 

lakes cover 9.6 % (Arcos, 2012), and the visual interpretation of the satellite data points to 

an areal percentage of alasses that by far exceeds that of the Cape Mamontov Klyk and Lena 

Delta areas. While thermokarst lake area percentages and their changes over several years 

or decades have been calculated on the basis of remote sensing analyses for various regions 

throughout the Arctic (Côté and Burn, 2002; Payette et al., 2004; Smith et al., 2005; Riordan 

et al., 2006; Labrecque et al., 2009; Kravtsova and Tarasenko, 2011), only few studies also 

provide data on drained thermokarst basin areas (Frohn et al., 2005; Hinkel et al., 2003) 

(Chapter 2), in particular for Yedoma regions. On the Bykovsky Peninsula, which is located at 

the Eastern Laptev Sea coast between the Lena Delta and the Buor Khaya Peninsula, 53 % of 

its Ice Complex area is affected by thermokarst (Grosse et al., 2005), and in the Siberian 
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Kolyma lowland, which is also situated within the area of Ice Complex distribution (Figure 

1-2), thermokarst lakes and alasses cover between <25 to >75 % of the study sites (Kaplina et 

al., 1986). 

The coverage of Yedoma regions with thermo-erosional landforms and their characteristics 

had not been investigated over large areas so far as to the author’s knowledge. In the study 

region, the abundance of thermo-erosional landforms has been measured by the valley 

density, which was calculated for each of the three study areas as the total valley length 

divided by the total area. The valley densities amount to 1.8 in the Cape Mamontov Klyk 

area, 0.9 in the Lena Delta area, and 1.0 in the Buor Khaya Peninsula area (Table 4-2). 

An assessment of the Ice Complex area that has been degraded by thermokarst and thermal 

erosion is possible with a combination of methods including DEM analyses that also account 

for the slope areas of thermo-erosional valleys and around thermokarst lakes, which are not 

captured by the linear valley digitization and the automatic water body extraction, 

respectively. On Kurungnakh Island in the Lena River Delta, the area of flat undisturbed 

Yedoma uplands outside existing thermokarst features was calculated based on a DEM and 

was found to be 33.7 % (Chapter 2). This means that 66.3 % of the Kurungnakh Island area 

has been affected by thermokarst and thermal erosion. Based on a multispectral 

classification of Landsat-7 ETM+ data including DEM derived relief characteristics, Grosse et 

al. (2006) found that 78 % of the Cape Mamontov Klyk area is affected by thermokarst, 

thermal erosion, and related slope processes. However, their study area extent also 

comprises coastal barrens and a large sandy floodplain area with numerous thermokarst 

lakes in the southwest that were excluded from the calculations within Chapter 4 of this 

thesis. The areal percentages for the thesis’ study area extent therefore might slightly 

deviate from the one given by Grosse et al. (2006). For the Buor Khaya Peninsula area, a 

similar approach, which combined a multispectral classification of RapidEye data with DEM 

derived relief characteristics, revealed a degradation of 90 % (Arcos, 2012). 

5.2 Characteristics of degradational landforms in different settings 

The previous paragraph showed great differences in the overall areal percentage of 

degradational landforms between the study areas, but also the morphometric characteristics 

and spatial distribution of thermokarst and thermo-erosional landforms vary considerably. 

On Cape Mamontov Klyk, degradational landforms are deeply incised into the Yedoma 

surface, and thermo-erosional valleys dominate the relief, even though very large 

thermokarst lakes and alasses also occur (Figure 4-2). On the Buor Khaya Peninsula, only a 

few Yedoma remnants are elevated over large areas of flat surfaces that resulted from 
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extensive degradation by thermokarst. In the Lena Delta, the situation on Khardang Island 

(western delta, for location see Figure 2-4) resembles that in the Cape Mamontov Klyk area, 

while the characteristics of Sobo Island (eastern delta, for location see Figure 2-4) are similar 

to the Buor Khaya Peninsula (Figure 4-2). 

These differences in the surface characteristics and coverage with degradational landforms 

resulted from different relief situations. Higher relief gradients are present in the western 

part of the study region due to the widespread presence of elevated Yedoma uplands, while 

lower gradients are found in the low-lying plains of the eastern part. This marked difference 

between the western and eastern region possibly also reflects neotectonic activity. The 

study region is seismotectonically very active, because it is located at the zone of intense 

deformation between the North American and Eurasian plates, which transforms from 

extension in the Laptev Sea to transpression further south (Grigoriev et al., 1996; Grachev et 

al., 2003; Fujita et al., 2009) (Figure 5-1). Modern seismicity records show particularly high 

concentrations of epicenters of earthquakes with magnitudes of up to 5 along the 

Olenyokskaya and Bykovsky channels bordering the Lena Delta to the south. In the Lena 

Delta, a dichotomy between uplift in the western and subsidence in the eastern part has 

been inferred from stratigraphical investigations (Grigoriev, 1993; Schwamborn et al., 2002). 

Tectonic movements of significant amplitudes (30 m and more) are reported for the 

Holocene (Galabala, 1987). Khardang Island, which is the largest island of the third Lena 

Delta terrace, has an elevated central part in the east originating from block uplift (Grigoriev, 

1993). Other islands of the third terrace also indicate neotectonic movements since at least 

the late Pleistocene because of their different land surface inclinations. For the original late-

Pleistocene accumulation plain a consistent inclination from the mountain ranges to the sea 

would be assumed, i.e. from SSW (high) to NNE (low). The erosional remnants of this 

accumulation plain, which today form the third Lena Delta terrace, should in general show 

the same inclination. However, the generalized surface of the Yedoma upland of Kurungnakh 

Island is inclined from SE to NW and the surface of Dzhangylakh Island (west of Kurungnakh 

Island, Figure 2-4) from NNE to SSW. Khardang Island shows an even more complex situation 

with its central block uplift in the eastern part and an inclination from N to S in the western 

part of the island. The Buor Khaya Pensinsula is situated in an area of subsidence, the Omoloi 

Graben, and therefore provides conditions similar to the eastern subsiding Lena Delta sector, 

whereas the Cape Mamontov Klyk area is situated in the Lena-Taimyr Uplift and is 

comparable to the third terrace islands in the western Lena Delta section (Drachev et al., 

1998) (Figure 5-1). 



Synthesis  Chapter 5 
 
   

 

 
 

96 

 

Figure 5-1. Tectonic context of the study region (map from Drachev et al., 1998). WLRB - West Laptev Rift 

Basin, LTU - Lena–Taimyr Uplift, SLRB - South Laptev Rift Basin, ULR - Ust' Lena Rift, UYG - Ust' Yana Graben, OG 

- Omoloi Graben, ELH - East Laptev Horst, AR - Anisin Rift, BSNR - Bel'kov-Svyatoi Nos Rift, SH - Stolbovoi Horst, 

KU - Kotel'nyi Uplift, NSR - New Siberian Rift, DLU - De Long Uplift. The grey-coloured faults are mainly 

delineated by the gravity data. 

In regions of tectonic uplift, permafrost degradation creates distinct landforms that are 

deeply incised into the ice-rich deposits, and thermal erosion prevails thermokarst, whereas 

the surface in lowered regions degrades almost completely and predominantly by 

thermokarst (Kaplina et al., 1986; Kaplina, 2009). The characteristics of the degradational 

landforms and the present-day relief confirm an uplift situation in the western part of the 

study region (including Kurungnakh Island) and a subsidence situation in the eastern part 

(east of Kurungnakh Island). The alas on Kurungnakh Island, which has been investigated in 

high detail in Chapter 3, represents a typical example of thermokarst in regions of tectonical 

uplift, because of its distinct outline, great depth, and connection to a deep thermo-

erosional valley that led to the drainage of the primary thermokarst lake and limitation of 

subsequent thermokarst activity. 

The present-day cryolithology of the study areas is also a result of the described relief 

situations. The massive thermokarst development in the lowered regions led to the thawing 
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and compaction of the Ice Complex deposits over extensive areas, which consequently 

resulted in an overall lower ice volume. Even though aggrading Holocene permafrost on 

these degraded surfaces can also be ice-rich, the large ice volume of the late Pleistocene 

deposits as well as their initial surface level is not reached. In the uplifted areas, thermal 

erosion has been the dominating type of permafrost degradation over thermokarst. In the 

valleys, the Ice Complex has been thawed and much of the sediments eroded, and in alasses, 

the Ice Complex deposits have been transformed similar to that in the lowered regions. 

Undegraded Yedoma uplands remained in some areas that still feature the original late 

Pleistocene deposits with high ice contents. 

The altered cryolithological conditions in degraded parts of the landscapes significantly 

influence the morphometric characteristics of subsequently evolving degradational 

landforms (Table 5-1). Newly developing thermokarst and thermo-erosional processes are 

generally restricted in depth because of the lower total ice volume (Chapters 2, 3, 4). 

Maximum measured depths of lakes in alasses were about 4 m, while alasses themselves are 

up to 35 m deep (Chapter 2). Similarly, thermo-erosional valleys in degraded areas are up to 

about 10 m deep, while those that have incised into Yedoma surfaces reach maximum 

depths of 35 m (Chapter 4). Thermokarst lakes that form on Yedoma uplands usually have 

smooth, circular outlines, because their lateral expansion proceeds evenly in all directions 

(Table 2-5). In contrast, the formation of lakes on degraded surfaces takes place in a setting 

that has been affected by an interplay of different, partly concurrent processes like previous 

lake expansion and stepwise drainage, permafrost aggradation and polygonal ice-wedge 

growth, and the formation of drainage channels and pingos (Chapter 3). This leads to a 

higher micro- and meso-relief differentiation and differences in ground ice distribution, 

resulting in more irregular outlines of subsequently evolving lakes. Thermo-erosional valleys 

that form on Yedoma uplands mostly follow a steeper relief gradient and develop dendritic 

networks, whereas streams that drain flat degraded surfaces follow a more longitudinal 

course over small relief gradients (Chapter 4). 

Table 5-1. Comparison between degradational landforms that have formed on undisturbed Yedoma uplands 

and those that have formed on previously degraded surfaces. 

 Yedoma uplands Degraded surfaces 
 Thermokarst Thermal erosion Thermokarst Thermal erosion 

Max. depth (m) 35 35 4 10 
Morphometry smooth, circular outlines dendritic networks irregular outlines longitudinal valleys 
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5.3 Types and developmental stages of degradational landforms 

Thermokarst and thermo-erosional landforms have been categorized into different 

morphometric types and developmental stages. Thermokarst lakes on Yedoma uplands that 

completely fill their basins represent the first stage of thermokarst development in the ice-

rich permafrost of the study region (Chapters 2, 3). After drainage of the primary lake, 

residual lakes can remain in the newly formed alas and continue to erode previously 

unaffected Ice Complex deposits by lateral expansion into the initial alas slopes (Chapter 3). 

On the exposed alas floor, permafrost starts to aggrade, providing the conditions for 

secondary thermokarst lake formation. The formation and subsequent partial or complete 

drainage of secondary thermokarst lakes can occur several times in the same area, but is 

rather limited in regions of tectonic uplift compared to regions of subsidence. In uplifted 

regions, primary thermokarst lakes form deep, distinct alasses. After their first drainage they 

are usually well connected to the hydrological network that follows a high relief gradient. 

Further water supply will therefore rather lead to the drainage of the secondary thermokarst 

lakes than to their continuing lateral expansion. As has been summarized in Section 5.2, 

substantial further subsidence of secondary thermokarst lakes in deep alasses will not occur 

because ground ice contents of underlying deposits are mostly not sufficient to sustain deep 

thermokarst development due to previous talik formation underneath the primary 

thermokarst lake. In regions of tectonic subsidence, however, several generations of 

thermokarst landforms are superimposed on each other. The original late Pleistocene 

Yedoma surface has been degraded over extensive areas, creating broad lowlands with low 

relief gradients that provide only poor drainage conditions, hence promoting the repeated 

ponding of water and formation of larger, but shallow secondary thermokarst lakes. 

Morphological types of large thermo-erosional valley systems, dendritic networks and 

longitudinal valleys, have already been discussed in the context of the different relief and 

cryolithological settings which they predominantly form in (Chapter 5.2). Furthermore, a 

categorization can be established for individual thermo-erosional landforms or sections of 

the valley systems (Table 4-3). Some of these categories, for example V-shaped valleys, U-

shaped valleys, and valleys of permanent rivers and streams, represent different 

evolutionary stages that often succeed one another in the longitudinal profile of a longer 

valley or valley system. The degree to which they develop depends mainly on the size of the 

catchment and the respective relief gradient. Only in large catchments, which accumulate 

considerable amounts of surface water to large meandering permanent streams and rivers, 

broad valleys and valley floodplains are able to form (Chapter 4). 
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Most of the thermo-erosional valleys in the study region can be considered primary thermo-

erosional landforms, no matter whether they have formed on Yedoma uplands (like V-

shaped ravines and valleys) or on surfaces that had previously been degraded by 

thermokarst (like drainage pathways in alasses). However, thermal erosion that reactivates 

on previously stabilized thermo-erosional valley floors can create secondary thermo-

erosional landforms. The secondary features can belong to a different morphometric 

category than the primary landforms which they form in, for example a V-shaped ravine can 

form on the floor of a U-shaped valley. 

The different types discussed in this chapter are the result of the different character of 

geomorphological processes that can occur simultaneously within the study region in 

dependence on relief and cryolithological conditions, but under the same climatic 

conditions. The study region has experienced climatic variations that affected the evolution 

of the degradational landforms. The onset of massive and widespread degradation of the 

ice-rich permafrost in the region at the transition from late Pleistocene to Holocene was 

triggered by a significant change to warmer and moister climate conditions (Chapter 2, 3). 

The dominating form of degradation in all three study areas during that time was 

thermokarst. After the Holocene thermal maximum, which was the period between 10,000 

and ca. 8,500-8,200 a BP (Kuzmina and Sher, 2006), thermokarst activity in the region 

decreased. The reconstruction of the evolution of an individual alas on Kurungnakh Island 

revealed that the thermokarst lakes in the alas expanded during two phases of high water 

availability between 5 and 3 ka BP that were attributed to regional variations in the 

precipitation regime (Chapter 3). Such regional climatic changes most likely influenced the 

overall thermokarst development in the study areas. The wetter phases probably also 

enhanced thermo-erosional processes that had been activated since the mid to late 

Holocene due to the formation of higher relief gradients. 

5.4 Interaction between thermokarst and thermal erosion 

The previous chapters indicate that thermokarst and thermal erosion are interrelated. 

Thermokarst, among other processes such as the transgression of the sea or the fluvial and 

deltaic erosion of the Lena Delta Ice Complex, created relief differences that initiated 

thermal erosion. Retrogressive thermo-erosional valleys can drain thermokarst lakes on 

Yedoma uplands by tapping, thereby regulating and limiting the active development of 

thermokarst (Chapter 2, 3). The drainage event itself is an interaction between the 

thermokarst lake and the thermo-erosional valley. This has been described for the drainage 

of the studied alas in Chapter 3 and is further illustrated by Figure 5-2, which shows a small 
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Figure 5-2. Thermokarst and short thermo-erosional landforms on Kurungnakh Island, Lena Delta, (a) before 

(Corona, 22 June 1964) and (b) after lake drainage (ALOS PRISM, 21 September 2006). Scale bars are 500 m, 

white patches on lake ice and in upper valley sections in (a) and at the margins of drained basin and small 

ponds in (b) indicates snow. 

thermokarst lake on Yedoma uplands and a short thermo-erosional valley before and after a 

drainage event. The draining thermo-erosional valley is one of several short V-shaped 

ravines that have incised into the about 50 m high eastern bluff of Kurungnakh Island, Lena 

Delta. Figure 5-2a shows that the valley bifurcates at a distance of about 300 m from the 

island’s margin, presumably along polygonal ice wedge systems. The thermokarst lake 

completely fills its basin, no slopes are visible around its margin. A small light-colored band 

between the southeastern shoreline of the lake and the southern valley branch in Figure 

5-2a indicates the location of overflow during times of high water availability related to a 

slight micro-topographic depression along polygonal troughs on the Yedoma surface 

(Simova, 1964). It can be assumed that during a summer with high precipitation warm water 

discharged from the lake via this outflow band and into the southern valley branch. It 

thermally eroded the ice-wedge ice, thereby eventually lowering the drainage sill of the lake 

and establishing a direct connection between the lake and the southern branch of the 

thermo-erosional valley, which triggered lake drainage. Similar processes involving channel 

headward erosion, lake bank overflow, and lake drainage have been reported for other 

regions such as the Mackenzie region (Marsh and Neumann, 2001) or the Seward Peninsula 

(Jones et al., 2011). The warm water of the draining lake further eroded the Yedoma surface 

and the lake drained rapidly. The result of this self-reinforcing process is shown in Figure 

5-2b; the lake has drained completely and a new, deep valley section has formed between 

the lake basin and the previous head of the southern valley branch. The exact date of the 

drainage event is unknown, but occurred about 20 ± 5 years after the acquisition of the 

satellite image in Figure 5-2a as inferred from the comparison of further satellite imagery 
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(Ulrich et al., 2009). The valley therefore might have retrogressed further into the direction 

of the lake before the drainage event, thereby reducing the drainage barrier, but the 

drainage process and the rapid deepening of the valley floor by thermal erosion still would 

have proceeded similar to the description presented here. 

5.5 Future development of thermokarst and thermal erosion 

The results of this thesis consistently emphasize the necessity of understanding the previous 

degradation history of ice-rich permafrost landscapes and its conditions before scenarios 

about the future development of permafrost degradation by thermokarst and thermal 

erosion and implications for its impacts can be inferred. It is particularly important to include 

both major types of permafrost degradation, thermokarst and thermal erosion, and their 

interplay in the investigation of particular landscapes. For example, calculations of Yedoma 

areas that are available for future permafrost degradation by thermokarst and the 

extrapolation of associated potential carbon release will yield significantly lower values for 

areas of tectonic uplift if thermo-erosional landforms are included compared to calculations 

that are based on thermokarst landforms only. 

In the study region, less than one third of the area represents original Yedoma surfaces 

unaffected by thermokarst and thermal erosion (Section 5.2). The future development of 

thermokarst lakes on Yedoma uplands is restricted due to the increasing proximity of 

existing degradational landforms and other topographic lows that will lead to lake drainage 

(Chapter 2). Even if the regional climate continued to change to warmer and moister 

conditions, thermokarst processes on Yedoma uplands will not lead to such a widespread 

formation of large thermokarst lakes as during the early Holocene. The degradation of the 

remaining Ice Complex deposits will continue, but lateral erosion by thermo-erosional 

landforms and by the expansion of lakes in alasses might have a more important effect than 

thermokarst subsidence. This has important implications for the mobilization of the fossil 

organic carbon that had been stored in the frozen deposits for several thousands of years 

(Tarnocai et al., 2009). While carbon from thawing organic matter underneath thermokarst 

lakes becomes available for local biogeochemical processes and can be released to the 

atmosphere as greenhouse gases, it will be at least partly transported to the fluvial system 

by thermal erosion (Grosse et al., 2011). 

Thermokarst and thermo-erosional processes evolving or reactivating on surfaces that had 

previously been affected by thermokarst activity were shown to have a smaller impact on 

the alteration of ice-rich permafrost landscapes than those occurring on undisturbed 

Yedoma uplands (Chapters 1, 2, 3). They are restricted to the Ice Complex deposits that had 
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already experienced thaw, compaction, and old carbon mobilization, and to Holocene 

deposits that have formed after the drainage of the primary thermokarst lake. 

5.6 Outlook 

The study region can be regarded a key region for the investigation of permafrost 

degradation, because it features sensitive ice-rich deposits in different relief settings and 

stages of degradation. The implications derived from this thesis can be transferred to other 

regions with similar characteristics. The Siberian Yedoma extent has been estimated to cover 

an area of about 106 km² (Zimov et al., 2006a), and similar ice-rich deposits have also been 

described for North American regions (Kanevskiy et al., 2011; Schirrmeister et al., 2013) 

(Figure 1-2). However, despite the fact that permafrost degradation and thermokarst have 

been studied for decades, many of the complex interactions between process factors and 

landscape components remain to be investigated (Jorgenson et al., 2010; Grosse et al., 2011) 

and are still not included or adequately represented in climate models (Jorgenson et al., 

2010; Burke et al., 2012). This applies in particular to thermal erosion, which is a largely 

understudied phenomenon. In Alaska, integrated investigations are underway to quantify 

landscape and biogeochemical changes related to thermo-erosional processes in permafrost 

hillslopes (Bowden et al., 2012). In Siberian ice-rich permafrost regions, however, systematic 

studies of thermo-erosional processes and landforms over large areas have been lacking. 

The investigations on the spatial characteristics of thermo-erosional landforms in different 

relief and cryolithological settings based on remote sensing and geoinformation techniques 

that were presented in Chapter 4 should therefore be extended in the future in order to 

assess the impact of thermal erosion on the degradation of Siberian ice-rich permafrost and 

to relate it to ongoing changes of the water and carbon cycle in the Arctic. In particular, 

future studies should: 

 extend the investigations of this thesis to other study areas, 

 quantify thermo-erosional landform changes over the past 60 years by means of 

multitemporal remote sensing, 

 investigate the interactions of thermal erosion, not only with thermokarst, but also 

hydrological landscape conditions, vegetation, snow cover, etc., 

 conduct water sampling as baseline for nutrient and sediment load, 

 deduce more detailed scenarios for the potential evolution of thermo-erosional 

landforms and related permafrost landscape components under a warming climate, 

 evaluate subsequent impacts on the arctic water and carbon cycle. 
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Ideally, such studies would combine remote sensing and geoinformation methods with 

detailed field investigations of exemplar sites in different environments. Furthermore, the 

acquisition of higher resolution remote sensing imagery (e.g. IKONOS, Geoeye) and DEMs 

(e.g. TanDEM-X) would allow for more precise areal quantifications and detailed hydrological 

analyses. 
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