
EUMELI Seite 1 von 3

CONTINUOUS PCO2 MEASUREMENTS

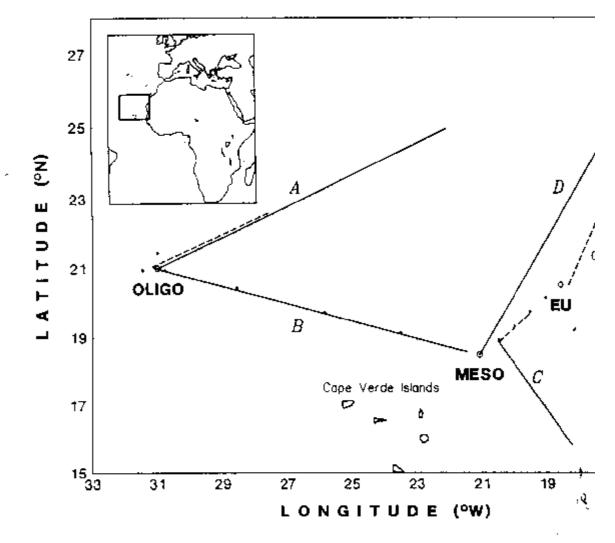


Fig. 1. Location of the CO₂ measurements during the Eumeli 3 Cruise in September-Octobe and during the Eumeli 4 Cruise in May-June 1992 (transects A, B, and E).

EUMELI Seite 2 von 3

Eau pompée à l'avant du bateau, dirigée vers un "debubbler" puis dans l'appareil de mesures.

Les mesures et méthodes d'acquisition

Ont été décrites dans Copin-Montegut and Raimbault, 1994.

Fluorescence mesurée avec le fluorimetre TURNER DESIGN Fluorometer Mesures de pCO₂ effectuées selon la méthode Copin-Montegut (1985) en utilisant un analyseur a infrarouge MAIHAK INFRARED ANALYSER pour CO₂, modèle DEFOR

Calibrations

- CO₂: Réalisées avec 350⁺_ 0.15 ppmv, 213+/- 0.15 ppmv et 490 +/- 0.25 ppmv de CO₂ dans l'air, air fourni par Air combination electrode (Orion 8102).
- mesures de pH: pHmetre et radiometre 84 et Ross combination electrode ORION

Articles

Tellus (1995) 47B, 86-92 "Continuous pCO₂ measurements in surface water of the Northeastern tropical Atlantic

METHODS

The measurements were performed on water pumped at the bow to supply the shipboard thermosalinometer. The water flow was directed to a debubbler and then to the various measurements systems. The measurements and acquisition methods have been previously described in detail (Copin-Montegut and Raimbault, 1994).

The chlorophyll fluorescence was measured with a Turner Design fluorometer, the pCO₂ measurements were performed according to the method of Copin-Montegut(1985), using a Maihak Infrared Analyser for CO₂ model Defor, witha barometric pressure compensation.

Calibrations were made with mixtures of 350+/-0.15ppmv, 213+/-0.15ppmv, and 490+/-0.25ppmv of CO₂ in air manufactured by Air Liquide.

The pH measurements were made with a Radiometer 84 pHmeter and a Ross

As the calibrations and the pH measurements were not performed exactly at the same temperature, a correction for the variation of the liquid junction potential of the electrode with temperature was made. The signal of the quartz temperature probe located at the ship bow was calibrated by comparison with the temperature signal of the CTD Sea Bird probe used during the cruises.

The same procedure was used to correct the salinity given by the thermosalinometer. The data were logged at 1-min intervals. The precisions on the pCO₂ and pH measurements were better than 1 μ atm for pCO₂ and 0.001 units for pH, but the accuracies were lower. They may be estimated to be close to 2 µatm for pCO $_2$ and 0.010 units for pH.

The simultaneous measurements of pCO₂ and pH permit the validation of the results. From the alkalinity measurements on discrete samples along transec D (using the method described by Copin-Montegut, 1993), a linear relationship between total alkalinity (TA) and salinity (S) was established:

 $TA=42.41 \times S + 858.4+/-2.0 \mu mole kg^{-1}$, at

EUMELI Seite 3 von 3

the 95% confidence level.

Then pCO₂ was calculated from pH and TA (deduced from salinity) using the dissociation constants of Goyet and Poisson (1989) for carbonic acid, that of Dickson (1990) for boric acid, the Weiss (1974) equation for the solubility of CO₂, and the ionic product of water determined by Dickson and Riley (1979).

The standard deviation between the measured and calculated values was 1.2 µatm for 2283 samples along transect D.

From Tellus (1995), 47B, 86-92 article " Continuous pCO₂ measurements in surface water of the Northeastern tropical Atlantic"