

Theme 4: Project 4.1:

Species interactions and community structure in a changing ocean OA impacts on interactions in and structure of benthic communities Sub-Project 4.1.1 Effects of ocean acidification on trophic interactions in coastal seaweed and seagrass ecosystems

Combined effects of temperature and CO₂ on the growth performance of three intertidal red macroalgae (Rhodophyta)

I Bartsch, MdY Sarker, M Teegen, M Babuder, J-M Seliger, M Olischläger, L Gutow, C Wiencke

Hypothesis

Most marine macroalgae possess carbon concentrating mechanisms (CCMs). The CCM performance probably influences the relative sensitivity of the species to CO₂. Published data suggest that the CCM activity changes with habitats and taxonomic classes¹⁻³. Furthermore, it has been discussed that elevated CO_2 may act through a release of energy saved from reduced CCM activity. As our experimental material possesses major differences in their CCM performance acc. to published evidence¹⁻³, we hypothesized (1) that growth increments at elevated CO_2 are species-specific and (2) that the energetic benefit induced by a better CO₂ supply will become more pronounced under sub-optimal growth conditions but again with differences between species. (References: 1:Giordano and Maberly 1989, 2: Murru and Sandgren 2004, 3: Moulin et al. 2011). Fig

Methods: We investigated growth of three intertidal red algae (Mastocarpus stellatus – high to mid intertidal, Chondrus crispus – mid to low intertidal, Palmaria palmata – low intertidal to subtidal) in pertubation experiments (N=5-6) (Fig 1) during 9-18 days at different CO_2 target concentrations (280 / 700 or 800 / 1200 ppm) and optimal vs. suboptimal growth temperatures. The experiments were performed under saturating light conditions for growth.

SPONSORED BY TH

and Research

3°C

10 °C

15-

10-

Growth response of benthic red algae to CO_2 is species specific: the three investigated species which grow along an intertidal shore gradient, represent three different CO₂ response types:

Mastocarpus is insensitive towards CO₂ variations irrespective of temperature

RGR (%d⁻¹)

15⁻

10

5

- Chondrus ameliorates its performance under sub-optimum temperature conditions only
- Palmaria generally benefits from enhanced CO₂ but to a varying degree depending on the temperature

%)

RGR

10-