Untersuchung des Massenhaushalts am Mullwitzkees, im NP Hohe Tauern

Glaziologische Massenbilanz 2006 - 2009 Längen-, Flächen- und Volumsänderung 1850 - 2009

Eine Diplomarbeit eingereicht am INSTITUT FÜR METEOROLOGIE UND GEOPHYSIK, UNIVERSITÄT INNSBRUCK

zur Erlangung des akademischen Grades MAGISTER DER NATURWISSENSCHAFTEN

> von MARTIN STOCKER-WALDHUBER

> > INNSBRUCK, MÄRZ 2010

Meinen Eltern

Blick von Pegel 17 über das Mullwitzkees $\left(01.10.2009\right)$

"Jeder, der unsere Alpen bereist und besonders in die abgelegeneren Theile derselben eindringt, weiss, dass man mit der Benennung der Berge, wie man zu sagen pflegt, sein "wahres Kreuz" hat. Theils erhält man auf die Frage, wie der Berg heisse, von dem Anwohner entweder gar keine Auskunft, oder hört allenfalls eine allgemeine Bezeichnung wie Keeskogel, schwarzer oder grauer Kopf, Gamsbirg, Gewände u.s.f.; oder endlich, was das Schlimmste ist, es werden in einem und demselben Thale so widersprechende Angaben gemacht, dass man erst recht nicht weiss, wie der Berg wirklich heisst. Dazu kommt noch der für den Uneingeweihten sehr schwer verständliche und abweichende Dialekt, den in unserer Gruppe der Tiroler, mehr noch der Oberpinzgauer spricht, sowie der Umstand, dass oft gerade die routinirtesten Führer gerne neue Namen aus dem Stehgreife schaffen, um den neugierigen Frager zu befriedigen, oder auch aus blosser Lust dem Fremden einen "Bären" anzuhängen. Darin leisten besonders die Tyroler Ausserordentliches."

(F. Keil 1866)¹

¹(Keil, 1866) Ein Beitrag zur Kenntnis der Venedigergruppe. Jahrbuch des österreichischen Alpenvereins, **2**, S. 101 f.

Diese Arbeit wurde unterstützt durch:

- den Hydrographischen Dienst der Abteilung Wasserwirtschaft am Amt der Tiroler Landesregierung
 - den Nationalpark Hohe Tauern

weitere Unterstützung durch:

- den Österreichischen Alpenverein
- den Österreichischen Touristenklub

Abstract

This work aims at the measurement and interpretation of mass balance 2006/07, 2007/08 and 2008/09 and changes in length, area and volume of the Mullwitzkees since 1850. The results are compared with climate data of the HISTALP project and other monitoring programs of glacier mass balance. The mass balance measurements, using the direct glaciological method with fixed dates, are part of a five years project at the IMGI (Institute of Meteorology and Geophysics, University of Innsbruck) on Mullwitzkees. The mass balance monitoring network was set up in September 2006 and includes 14 ablation stakes, several snow pits, a rain gauge and an automatic weather station. The project is funded by the HT NP (Hohe Tauern National Park) and the Hydrological Service of Tyrol. Mullwitzkees is situated in the Venediger Massive within the core zone of the HT NP. The upper part is exposed to the south and is confined by a ridge with the highest point Hoher Zaun at an altitude of $3457 \ m \ a.s.l.$ The snout is exposed to the southwest and reaches down to an elevation of 2695 m a.s.l. in 2009. Since 1850 the glacier is in recession, except the period between 1980 and 1985 with an advance of 18 m due to positive mass balances of previous years. In 1850, Mullwitzkees covered an area of 5.49 km^2 and diminished to 3.03 km^2 in 2009, with a change in length of -2660 m. Within the period 1850 to 1998 the glacier lost about 73% (0.3 km^3 ice) of its volume. In the year 2006/07 Mullwitzkees suffered a mass loss of $4.46 \cdot 10^6 m^3$ water equivalent (w.e.) and a specific mass balance of $-1447 \ mm \ w.e.$ Within the following years the mass balance was closer to zero with specific values of $-642 \ mm \ w.e.$ in 2007/08 and $-487 \ mm \ w.e.$ in 2008/09. Therefore Mullwitzkees reached the less negative mass balance compared to Hintereisferner, Kesselwandferner, Jamtalferner and Hallstätter Glacier, caused by high precipitation rates during the winter. The accumulation area is displaced from the ridge to lower elevations due to wind drift during the winter and therefore negative values of mass balance are found at the highest elevations. It would be very interesting to continue with mass balance measurements on Mullwitzkees, because of its location at the south side of the main Alpine crest, the exposure to the south and the particularly shape at the plateau, to find a relationship between the appearance of the glacier and changes in climate. It is the ambition to find the answers to questions like, how long the glaciers of the HT NP tend to exist in different climate scenarios described in the IPCC Report 2007.

Kurzfassung

Ziel dieser Arbeit ist die Messung und Interpretation der Massenbilanz 2006/07, 2007/08 und 2008/09 und der Längen-, Flächen- und Volumsänderung am Mullwitzkees seit 1850, sowie der Vergleich der Ergebnisse mit den Klimadaten des Projektes HISTALP und Massenhaushaltsuntersuchungen auf anderen Gletschern. Die Untersuchung des Massenhaushalts, mittels der glaziologischen Methode mit fixem Datum, ist Teil eines fünfjährigen Projektes des IMGI (Institut für Meteorologie und Geophysik, Universität Innsbruck) am Mullwitzkees. Das Netzwerk des Untersuchungsprogramms besteht aus 14 Ablationspegeln, mehreren Schneeschächten, einem Niederschlagsmesser und einer automatischen Wetterstation, und wurde im September 2006 installiert. Das Projekt wird durch den Hydrographischen Dienst der Abteilung Wasserwirtschaft des Amtes der Tiroler Landesregierung und dem NP HT (Nationalpark Hohe Tauern) finanziert. Das Mullwitzkees liegt in der Venedigergruppe in der Kernzone des NP HT, wobei der obere Teil des Gletschers nach Süden ausgerichtet und durch einen Grat mit dem Hohen Zaun (3457 m) als höchstem Punkt begrenzt ist. Die Zunge des Gletschers ist nach Südwesten exponiert und lag 2009 auf 2695 m Seehöhe. Seit 1850 zieht sich der Gletscher zurück mit der einzigen Ausnahme eines Vorstoßes von 18 m zwischen 1980 und 1985 aufgrund positiver Massenbilanzen der Vorjahre. 1850 bedeckte das Mullwitzkees eine Fläche von 5.49 km^2 und verkleinerte sich auf 3.03 km^2 im Jahr 2009, mit einer Längenänderung von -2660 m. Während der Periode von 1850 bis 1998 verlor der Gletscher 73% ($0.3 \ km^3$ Eis) seines Volumens. Im Jahr 2006/07 betrug der Massenverlust $4.46 \cdot 10^6 m^3$ Wasserwert (WW) bei einer spezifischen Bilanz von $-1447 \ mm \ WW$. Während der folgenden Jahre tendierte die Massenbilanz zu positiveren Werten mit einer spezifischen Bilanz von -642 mm WW (2007/08) und -487 mm WW(2008/09). Das Mullwitzkees erreichte 2008/09 die beste Jahresbilanz verglichen mit Hintereisferner, Kesselwandferner, Jamtalferner und Hallstätter Gletscher, verursacht durch hohe Niederschlagsmengen während des Winters. Eines der auffälligsten Ergebnisse ist die Verschiebung der Akkumulationszone in tiefere Lagen durch Winddrift während des Winters, wodurch negative Bilanzen in den höchsten Bereichen des Gletschers verursacht werden. Es wäre interessant, die Massenhaushaltsuntersuchungen am Mullwitzkees aufgrund der Lage auf der Alpensüdseite, der südseitigen Ausrichtung und der besonderen Form des Plateaus fortzuführen, um die Beziehung zwischen dem Erscheinungsbild des Gletschers und klimatischen Schwankungen zu untersuchen. Ziel ist es, die Frage zu beantworten: Wie lange werden die Gletscher des NP HT in verschiedenen Klimaszenarien existieren, wie sie im IPCC Bericht 2007 beschrieben werden.

Inhaltsverzeichnis

Abstract							
Kι	Kurzfassung						
In	halts	verzeio	chnis	XI			
1	Einl	eitung		1			
	1.1	Ziel un	nd Struktur der Arbeit	. 4			
	1.2	Die Ro	olle der Gletscher im Nationalpark Hohe Tauern	. 4			
	1.3	Das M	ullwitzkees	. 5			
		1.3.1	Bildervergleich	. 9			
	1.4	Wisser	nschaftliche Untersuchungen	. 14			
2	Met	hode o	ler Massenbilanzbestimmung	15			
	2.1	Definit	ionen und Einschränkungen	. 17			
	2.2	Die dir	rekte glaziologische Methode	. 18			
		2.2.1	Arbeitsweise	. 20			
		2.2.2	Fehlerquellen und Fehlervermeidung	. 21			
	2.3	Berech	unung der Massenbilanz	. 21			
		2.3.1	Auswertung und Berechnung mit GIS	. 23			
		2.3.2	Berechnung mit Matlab	. 24			
3	Erge	ebnisse	e der Massenbilanz	25			
	3.1	Das hy	vdrologische Jahr 2006/07	. 29			
		3.1.1	Auswertung Totalisator 2007	. 29			
		3.1.2	Pegel 2007	. 30			
		3.1.3	Frühjahrs- und Herbstbegehung 2007	. 30			
		3.1.4	Winter-, Sommer- und Jahresbilanz 2007	. 33			
3.2		Das hydrologische Jahr 2007/08					
		3.2.1	Auswertung Totalisator 2008	. 37			
		3.2.2	Pegel 2008	. 38			
		3.2.3	Frühjahrs- und Herbstbegehung 2008	. 39			
		3.2.4	Winter-, Sommer- und Jahresbilanz 2008	. 41			
	3.3	Das hy	vdrologische Jahr 2008/09	. 45			

		3.3.1 Auswertung Totalisator 2009	45	
		3.3.2 Pegel 2009	46	
		3.3.3 Frühjahrs- und Herbstbegehung 2009	47	
		3.3.4 Winter-, Sommer- und Jahresbilanz 2009	49	
4	Län	gen-, Flächen- und Volumsänderung 1850 – 2009	55	
	4.1	Datengrundlage	57	
	4.2	Längenänderung (1896 – 2009) \ldots	58	
		4.2.1 Bestimmung der Längenänderung	58	
		4.2.2 Ergebnisse	60	
	4.3	Bestimmung der Flächenänderung (1850 – 2009) $\ldots \ldots \ldots \ldots \ldots \ldots$	61	
		4.3.1 Ergebnisse	61	
	4.4	Bestimmung der Volumsänderung $(1850 - 1998) \dots \dots \dots \dots \dots \dots$	63	
		4.4.1 Ergebnisse	64	
	4.5	Fehlerabschätzung	65	
5	5 Interpretation 6			
	5.1	HISTALP	69	
	5.2	Vergleich verschiedener Bilanzen	72	
6	\mathbf{Zus}	ammenfassung und Ausblick	75	
6 A	Zus Tab	ammenfassung und Ausblick bellen, Abbildungen und Publikationen	75 (111	
6 A	Zus Tab A.1	ammenfassung und Ausblick Dellen, Abbildungen und Publikationen	75 XIII XV	
6 A	Zus Tab A.1 A.2	cammenfassung und Ausblick cellen, Abbildungen und Publikationen > Totalisatoreichung . Ablationsverläufe .	75 XIII XV XIX	
6 A	Zus Tab A.1 A.2 A.3	ammenfassung und Ausblick bellen, Abbildungen und Publikationen D Totalisatoreichung . Ablationsverläufe . Klimakarten .	75 XIII XV XIX XXII	
6 A	Zus Tab A.1 A.2 A.3 A.4	ammenfassung und Ausblick > bellen, Abbildungen und Publikationen > Totalisatoreichung . Ablationsverläufe . Klimakarten . Eisdicken und Volumsänderungen .	75 XIII XV XIX XXII XXIII XXVIII	
6 A	Zus Tab A.1 A.2 A.3 A.4 A.5	ammenfassung und Ausblick > bellen, Abbildungen und Publikationen > Totalisatoreichung . Ablationsverläufe . Klimakarten . Eisdicken und Volumsänderungen . Publikationen .	75 XIII XV XIX XXII XXVIII XXVIII XXXVI	
6 A A	Zus Tab A.1 A.2 A.3 A.4 A.5	ammenfassung und Ausblick pellen, Abbildungen und Publikationen Totalisatoreichung Totalisatoreichung Ablationsverläufe Klimakarten Klimakarten Eisdicken und Volumsänderungen Publikationen zungsverzeichnis	75 XIII XV XIX XXII XXVIII XXVIII XXXVI XXXVI	
6 A A	Zus Tab A.1 A.2 A.3 A.4 A.5 bkür bbild	ammenfassung und Ausblick pellen, Abbildungen und Publikationen Totalisatoreichung Totalisatoreichung Ablationsverläufe Klimakarten Klimakarten Eisdicken und Volumsänderungen Publikationen Zungsverzeichnis XI Iungsverzeichnis	75 XIII XV XIX XXII XXVIII XXVIII XXXVI CIII	
6 A A Ta	Zus Tab A.1 A.2 A.3 A.4 A.5 bkür bbild	ammenfassung und Ausblick bellen, Abbildungen und Publikationen Totalisatoreichung Totalisatoreichung Ablationsverläufe Ablationsverläufe Klimakarten Eisdicken und Volumsänderungen Publikationen Zungsverzeichnis XI hungsverzeichnis XI enverzeichnis	75 XIII XV XIX XXII XXVIII XXVIII XXVVIII XIII XIII	
6 A A Ta Li	Zus Tab A.1 A.2 A.3 A.4 A.5 bkür bbild abello abello	ammenfassung und Ausblick bellen, Abbildungen und Publikationen Totalisatoreichung Ablationsverläufe Ablationsverläufe Klimakarten Eisdicken und Volumsänderungen Publikationen Zungsverzeichnis XI enverzeichnis XI turverzeichnis	75 XIII XV XIX XXII XXVIII XXVIII XXVIII XXVIII XIII XIII XIII XIII XIII XIII XIII XIII	
6 A A Ta Li D	Zus Tab A.1 A.2 A.3 A.4 A.5 bkür bbild abelle terat	ammenfassung und Ausblick Pellen, Abbildungen und Publikationen Totalisatoreichung Ablationsverläufe Klimakarten Klimakarten Publikationen Vaungsverzeichnis Kungsverzeichnis Kurverzeichnis	75 XIII XV XIX XXII XXVIII XXVIII XXVIII XXVVIII XXVVI LII LI LV	

Kapitel 1

Einleitung

Das Erscheinungsbild eines Gletschers wird durch seine Reaktion auf klimatische Änderungen geprägt. Bei gleichbleibenden klimatischen Bedingungen erreicht ein Gletscher den Zustand des Gleichgewichts zwischen Massengewinn und Massenverlust. Ändern sich die klimatischen Randbedingungen, so ändert sich auch der Gleichgewichtszustand des Gletschers. Während eines einzelnen Jahres ist somit seine Bilanz aus Massengewinn und Verlust die direkte Folge der Witterung im selben Zeitraum. Über einen längeren Zeitraum betrachtet kommt es durch die Fließdynamik des Eises zu einem Vorstoß oder durch verstärkte Abschmelzung zu einem Rückzug des Gletschers als Reaktion auf die mehrjährige Massenbilanz. Die wichtigsten klimatischen Parameter sind die Temperatur und der Niederschlag. Dabei sind, speziell in den Alpen vor allem die Niederschlagsmenge während des Winters, die Temperatur während des Sommers und die Anzahl der Neuschneefälle während des Sommers von ausschlaggebender Bedeutung, da beispielsweise durch einen Neuschneefall während des Sommers durch Erhöhung der Albedo die Abschmelzung für mehrere Tage verhindert bzw. reduziert wird.

Gletscher sind Wasserspeicher und verzögern somit den Abfluss des Niederschlags. So wird der Niederschlag des Winters in Form von Schnee und Eis gespeichert und im Laufe des Sommers durch Abschmelzung dem Abfluss eines Einzugsgebietes zugeführt. Aufgrund der Eisschmelze am Gletscher an einem Sommertag, unterliegt der Pegel des Abflusses einer tageszeitlichen Schwankung, mit einem Maximum am Nachmittag zeitlich verzögert zum höchsten Sonnenstand. Ein Abschmelzen der Gletscher führt zu einem Anstieg des Meeresspiegels. Dabei liefert die Antarktis mit 56.6 m den potentiell größten Anteil weltweit (Lemke et al., 2007). Darüber hinaus wirken Gletscher und besonders Permafrost als "Klebstoff" eines Gebirges. So kommt es durch den Rückzug der Gletscher und dem Auftauen des Permafrostbodens zu Hangrutschungen und Felsstürzen, was vor allem für den Alpintourismus eine steigende Gefahr darstellt. Der Zusammenhang zwischen Klimaänderungen und Gletschern ist unter anderem in "The Physics of Glaciers" (Paterson, 1994) zusammengefasst. Die theoretische Beziehung zwischen Änderungen meteorologischer Parameter und der Fließdynamik von Gletschern bzw. deren Modellierung gibt Oerlemans (2001). Zemp (2006) beschreibt die Schwankungen der Gletscherausdehnung der europäischen Alpen im klimatischen Zusammenhang und gibt einen Einblick in mögliche Zukunftsszenarien.

Seit dem Ende der kleinen Eiszeit um 1850 sind die Gletscher der Alpen, bis auf kurze Perioden mit Vorstößen, im Rückzug. 1850 betrug die Fläche der österreichischen Gletscher 1011 km^2 und veränderte sich bis 1969 um -46% (Groß, 1987). Bis 1998 verringerte sich die Fläche der österreichischen Gletscher auf 471 km^2 (Lambrecht und Kuhn, 2007). Daraus ergibt sich eine Flächenänderung von ca. -50% von 1850 bis 1998. Bereits seit dem Jahr 1952/53 werden am IMGI (Institut für Meteorologie und Geophysik, Universität Innsbruck) Massenhaushaltsuntersuchungen am HEF (Hintereisferner) in den Ötztaler Alpen durchgeführt. Das ist somit eine der längsten Zeitreihen weltweit. Da sich alle Massenhaushaltsuntersuchungen des IMGI auf die Nordseite der Alpen beschränken, wurde zur Ergänzung und zum besseren Verständnis der Reaktion südseitig exponierter Gletscher auf der Südseite das Alpenhauptkamms auf klimatische Änderungen, ein neues Projekt der Massenhaushaltsuntersuchung am äußeren Mullwitz- und Zettalunitzkees gestartet. Das Projekt mit einer Laufzeit von fünf Jahren wird vom hydrographischen Dienst der Abteilung Wasserwirtschaft des Amtes der Tiroler Landesregierung und dem Nationalpark Hohe Tauern finanziert.

1.1 Ziel und Struktur der Arbeit

Die Gletscherzungen auf der Südseite des Alpenhauptkamms sind im Vergleich zu denen der Nordseite nicht so stark ausgeprägt. Da die größten Eisverluste auf den Zungen der Gletscher beobachtet werden sind die Ergebnisse bestehender Massenhaushaltsuntersuchungen auf den nordseitig gelegenen Gletschern nicht auf die der Südseite übertragbar, und es stellt sich die Frage: Wie verhalten sich die Gletscher südlich des Alpenhauptkamms? Der Beginn sowie die Durchführung und die Auswertung der ersten drei Jahre der Massenhaushaltsuntersuchung am äußeren Mullwitz- und Zettalunitzkees liegen dieser Arbeit zu Grunde. Ziel ist es, die Ergebnisse 2006/07, 2007/08 und 2008/09 darzustellen und zu interpretieren. Darüber hinaus wurde die Flächen- und Volumsänderungen des äußeren Mullwitz- und Zettalunitzkeeses seit seinem Hochstand um 1850/55 rekonstruiert und berechnet. Diesem wurden zur Vervollständigung und zum besseren Verständnis die Daten der Längenänderungsmessungen des DuÖAVs (Deutscher und Österreichischer Alpenverein) seit 1896 gegenübergestellt.

In den folgenden Abschnitten werden das Mullwitzkees und seine Besonderheiten erläutert (Abschn. 1.3), und ein Überblick über bisherige Untersuchungen gegeben (Abschn. 1.4). In Kapitel 2 werden die glaziologischen Begriffe und Einschränkungen zur Massenbilanzbestimmung eines Gletschers angeführt, sowie die direkte glaziologische Methode und die Berechnung der Massenbilanz beschrieben. Eine Abhandlung der Ergebnisse der ersten drei Jahre der Massenhaushaltsuntersuchungen am äußeren Mullwitz- und Zettalunitzkees ist Thema von Kapitel 3. Die Längen-, Flächen- und Volumsänderungen des Gletschers seit 1850/55 sind in Kapitel 4 angegeben. Dabei wird die Datengrundlage erläutert, die Längen-, Flächen und Volumsänderungen bestimmt sowie eine Fehlerabschätzung durchgeführt. Im Anschluss wird ein Zusammenhang zur Klimadatenreihe des Projektes HISTALP gegeben, und die Ergebnisse der Massenhaushaltsuntersuchungen mit denen anderer Gletscher verglichen (Kap. 5). Themen von Kapitel 6 sind die Schlussfolgerungen sowie ein kurzer Ausblick.

1.2 Die Rolle der Gletscher im Nationalpark Hohe Tauern

Das größte Naturschutzgebiet in Österreich mit einer Fläche von 1.834 km^2 ist der NPHT (Nationalpark Hohe Tauern), wobei knapp 180 km^2 bzw. 10% seiner Fläche vergletschert sind (Quelle: NPHThttp://www.hohetauern.at/). Die Landschaft wurde zum einen durch die eiszeitlichen Gletscher und zum anderen durch den letzten großen Vorstoß der Gletscher mit dem Hochstand um 1850 geformt. Die Moränen dieser Zeit sind in fast allen Gletschervorfeldern zu finden. Auch heute noch dominieren die Eisflächen das Erscheinungsbild der Hochtäler und Gipfel und sind neben ihrer Bedeutung für den Alpintourismus wichtige Forschungsgebiete im Nationalpark. Durch die steigende Sensibilisierung der Bevölkerung zu Themen wie Klimawandel und Schwinden der Gletscher stellen sich verschiedene Fragen, zu deren Beantwortung die vorliegende Diplomarbeit einen Beitrag liefert.

Wie reagieren unsere Gletscher auf geänderte Umweltbedingungen?

Werden die Gletscher verschwinden?

Wenn ja, wie lange wird es dauern?

1.3 Das Mullwitzkees

Abbildung 1.1: Übersichtskarte Österreich und Lage des Mullwitzkeeses (Quelle: Google Earth).

Die Lage des Mullwitzkeeses ist in den Übersichtskarten der Abbildungen 1.1 (Lage in Österreich) und 1.3 (Lage in der Venedigergruppe) zu sehen. Das Mullwitzkees setzt sich aus dem inneren- und äußeren Mullwitzkees und dem Zettalunitzkees zusammen. In der Literatur und in geografischen Karten finden sich unterschiedliche Namen, was schon zu Beginn der Erforschung der Gletscher zu Problemen und Verwirrungen führte (siehe Zitat von F. Keil (1866), S. III). Das innere Mullwitzkees ist das Rainerkees, nach dem Rainerhorn benannt. Der Name Mullwitzkees stand ursprünglich nur für das Firnfeld des Zettalunitzkeeses. In dieser Arbeit wird jedoch das äußere Mullwitzkees mit dem Zettalunitzkees als Mullwitzkees bezeichnet, da es einen selbständigen Gletscher darstellt und im ersten österreichischen Gletscherinventar 1969 unter Mullwitzkees zu finden ist (Patzelt, 1978, 1980). Dieser Gletscher liegt südlich des Alpenhauptkamms in der Kernzone des Nationalparks Hohe Tauern, südöstlich des Großvenedigers und orographisch rechts des Defreggerhauses

Abbildung 1.2: Flächen- Höhenverteilung des Mullwitzkeeses 2009.

Höhenstufe $[m]$	Fläche $[km^2]$
2675	0.000
2725	0.033
2775	0.068
2825	0.119
2875	0.203
2925	0.275
2975	0.259
3025	0.286
3075	0.257
3125	0.235
3175	0.294
3225	0.370
3275	0.293
3325	0.193
3375	0.114
3425	0.027
Gesamt	3.026

Tabelle 1.1: Tab. der Flächen-Höhenverteilung 2009.

(Abb. 1.3). Der größte Flächenanteil ist nach Süden ausgerichtet, nur kleinere Gebiete im unteren Bereich sind nach Westen und Südosten bzw. die Zunge nach Südwesten und Westsüdwesten exponiert. Darüber hinaus ist das Mullwitzkees sowohl ein Plateau- als auch ein Talgletscher. Die Eismassen am große Plateau zwischen Mullwitzaderl, Hoher Zaun und Kristallwand fließen zum einen zum Rainerkees, zum Schlaatenkees und zum Frosnitzkees und zum anderen der flächenmäßig größte Teil ins Zettalunitzach, dem Tal nach Süden in Richtung Johannishütte. Die Gletschergrenze des Mullwitzkeeses am Plateau wurde daher entlang der Eisscheiden gezogen, welche die Grenze nach Norden mit dem höchsten Punkt, dem Hohen Zaun (3457 m) darstellen. Somit entwässert das Mullwitzkees in den Dorferbach und in weitere Folge in die Isel. Das Plateau des Mullwitzkeeses ist Teil der großen Hochflächen der Venedigergruppe die als "Dach Gottes" bezeichnet werden. Die Gletscherzunge lag im Jahr 2009 auf 2695 m Seehöhe bei einer Gesamtfläche des Gletschers von $3.03 \ km^2$. Die Flächen- Höhenverteilung des Mullwitzkeeses in km^2 pro 50 m Höhenstufe des DGMs (Digitales Geländemodell) von 1998 mit der Gletschergrenze von 2009, ist in Abbildung 1.2 aufgezeichnet und in Tabelle 1.1 aufgelistet. Die Höhenstufe zwischen 3200 und 3250 m war im Jahr 2009 mit 0.37 km^2 die Flächenmäßig größte des Gletschers.

Abbildung 1.3: Ausschnitt der Alpenvereinskarte Nr. 36 (Venedigergruppe) des DuÖAVs von 2003, Stand der Karte 1998 mit Gletscherstand von 1991; D=Defreggerhaus, G=Großvenediger, J=Johannishütte, M=Mullwitzkees (Äußeres Mullwitzkees und Zettalunitzkees), R=Rainerkees (Inneres Mullwitzkees).

Abbildung 1.4: Gletschergrenzen der österreichischen Gletscherinventare 1969 und 1998 im Venedigergebiet im Koordinatensystem Gauß-Krüger M31.

Zum Zeitpunkt der ersten Inventarisierung österreichischer Gletscher im Jahr 1969 (Patzelt, 1978, 1980) war das Mullwitzkees mit einer Fläche von $3.52 \ km^2$ unter den 30 größten Gletschern der insgesamt ca. 950 Gletscher in Österreich. In Abbildung 1.4 sind die Gletschergrenzen von 1969 (blau) und 1998 (rot) der Gletscher der Venedigergruppe aus den österreichischen Gletscherinventaren im Koordinatensystem Gauß-Krüger M31 aufgezeichnet. Die Fläche des Mullwitzkeeses ist für beide Jahre farbig markiert. Die Ergebnisse der Änderungen zwischen 1969 und 1998 sind in Tabelle 1.2 aufgelistet (Kuhn et al., 2008). In dieser Periode verloren die Gletscher der Venedigergruppe 13% ihrer Fläche und ca. $0.855 \ km^3$ des Volumens.

Venedigergruppe				
Flä	che	Veränderungen seit 1969		
A 1969 $[km^2]$	A 1998 $[km^2]$	ΔA	$\Delta V \ [10^3 \ m^3]$	$\Delta E \ [m]$
93.4	81	-13%	-854890	-11

Tabelle 1.2: Flächen (A) 1969 und 1998, Flächen- und Volumsänderung ($\Delta A, \Delta V$) und Änderung der Eisdicke (ΔE) der Gletscher der Venedigergruppe (Kuhn et al., 2008).

1.3.1 Bildervergleich

Die Fotos des Mullwitzkeeses (Abb. 1.5 bis 1.8) zeigen den Rückzug des Gletschers von 1927 bis 2009. In Abbildung 1.5 sind der steile Anstieg der Gletscherzunge von 1927 (oben) und die im Gegensatz dazu relativ flache Zunge 1939 (unten) zu sehen. Abbildung 1.6 zeigt die Gletscherzunge des Mullwitzkeeses der Jahre 1950 (oben) und 1972 (unten). Die Aufnahmen von 1927, 1939, 1950 und 1972 wurden vom ÖAV zur Verfügung gestellt. In Abbildung 1.7 ist eine Luftaufnahme des Mullwitzkeeses von 1982 (oben) und ein Ausschnitt des Orthofotos von 1998 (unten) zu sehen. Die Luftaufnahme von 1982 wurde von H. Slupetzky erstellt und zur Verfügung gestellt. Das Orthofoto von 1998 stammt aus dem österreichischen Gletscherinventar. Die Fotos von 2006 (oben) und 2009 (unten) in Abbildung 1.8 wurden vom IMGI im Rahmen der Massenhaushaltsuntersuchungen aufgenommen. Im Vergleich aller Bilder ist der Rückzug des Gletschers mit wechselnden Steilheiten der Zunge sehr deutlich zu sehen. Bei einem Vergleich der Fotos von 2006 und 2009 ist der Volumsverlust der Zunge als starke Höhen- und Breitenänderung deutlich zu erkennen.

Abbildung 1.5: Zunge des Mullwitzkeeses von 1927 (oben) und 1939 (unten). Archivbilder des DuÖAVs, zur Verfügung gestellt vom ÖAV.

Abbildung 1.6: Zunge des Mullwitzkeeses von 1950 (oben) und 1972 (unten). Archivbilder des DuÖAVs, zur Verfügung gestellt vom ÖAV.

Abbildung 1.7: Luftaufnahme des Mullwitzkeeses von 1982 von H. Slupetzky (oben) und Orthofoto von 1998 (unten).

Abbildung 1.8: Aufnahmen des Mullwitzkeeses am 04.09.2006 (oben) und am 01.10.2009 (unten) des IMGI im Rahmen der Massenhaushaltsuntersuchungen.

1.4 Wissenschaftliche Untersuchungen

Die wissenschaftliche Erforschung der Venedigergruppe begann Mitte des 19. Jhdts. Eine erste ausführliche Beschreibung des Gletschergebietes um den Großvenediger geben Kürsinger und Spitaler (1843) im Buch zur Erstbesteigung des Großvenedigers am 3. September 1841. Die ältesten schriftlichen Hinweise zur Vergletscherung der Venedigergruppe werden in einem Grenzbegehungsprotokoll aus dem Pinzgau 1553, und der Grenzbeschreibung des Gerichtes Virgen 1583 gegeben (Patzelt, 1967). 1857 gibt A. v. Ruthner in den "Mittheilungen der kaiserlich-königlichen geographischen Gesellschaft" eine Beschreibung der Gletscher der österreichischen Alpen und somit auch über die Gletscher der Venedigergruppe (Ruthner, 1857). Einen genaueren Überblick über "Das Eisgebiet der Hohen Tauern" gibt Sonklar 1863, und 1866 erscheint das Werk "Die Gebirgsgruppe der Hohen Tauern" (Sonklar, 1866). Im selben Jahr erscheint die Karte der Großvenedigergruppe im Maßstab 1:84000 von F. Keil mit Begleitwort zur Karte (Keil, 1866). Der Karte liegen Beschreibungen der Venedigergruppe der Vorjahre zu Grunde (Keil, 1865; Simony, 1865). Ausführliche Angaben zu Flächen und Höhen der Gletscher des Venedigergebietes geben Brückner (1886) und Richter (1888).

1896 beginnt der DuÖAV mit den Messungen der Längenänderungen am Mullwitzkees (Fritzsch, 1898), die seit 1963 jährlich gemessen werden. Bis 2005 wurden die Ergebnisse in den "Mitteilungen des österreichischen Alpenvereins" (Patzelt, 2005) veröffentlicht, und seit 2006 in der Zeitschrift "Bergauf" (Patzelt, 2006). Weitere Informationen zu den Gletschern der Venedigergruppe, und insbesondere zu den Gletscherschwankungen im Laufe der Geschichte gibt Kinzl (1928a,b, 1929). 1969 erscheint die Dissertation von G. Patzelt, "Die Gletscher der Venedigergruppe. Die Geschichte ihrer Schwankungen seit dem Beginn der postglazialen Wärmezeit" (Patzelt, 1967, 1973), worin auch die Geschichte der gletscherkundlichen Erforschung sehr ausführlich beschrieben ist.

Direkte Messungen am Mullwitzkees neben denen der Bestimmung der Längenänderung der Gletscher des ÖAVs gab es bis 2006 keine. Wichtige Informationen zum Mullwitzkees geben jedoch die österreichischen Gletscherinventare von 1969 (Patzelt, 1978, 1980), und 1998 (Lambrecht und Kuhn, 2007), sowie die Radarmessungen der Eisdicke (Span et al., 2005; Fischer et al., 2007). Mit dem Projekt Massenhaushaltsuntersuchungen des Mullwitzkeeses wurde im September 2006 erstmals mit direkten glaziologischen Untersuchungen am Gletscher begonnen. Kapitel 2

Methode der Massenbilanzbestimmung

Der Massenhaushalt bzw. die Massenbilanz eines Gletschers ergibt sich aus der Gegenüberstellung von Massengewinn, in Form von Schnee, und dem Verlust von Schnee und Eis über einen bestimmten Zeitraum. Zur Bestimmung des Massenhaushalts gibt es die geodätische-, die hydrologische- und die direkte glaziologische Methode (Hoinkes, 1970). Bei der geodätischen Methode wird die Volumsänderung des Gletschers zwischen unterschiedlichen Karten oder Höhenmodellen ermittelt und somit die Massenbilanz bestimmt. Da jedoch bei dieser Methode Akkumulation und Ablation nicht aufgelöst werden, kann über einzelne Punkte oder Gebiete des Gletschers keine Aussage über den Massenhaushalt getroffen werden (Meier, 1963; Hoinkes, 1970). Somit ist diese Methode zur Kontrolle (Kap. 4) der direkten glaziologischen Methode (Abschn. 2.2) sehr hilfreich. Bei der hydrologischen Methode wird aus Niederschlag, Abfluss und Verdunstung eines Einzugsgebietes die Speicherung, welche der Rücklage am Gletscher entspricht, berechnet. Zum Vergleich der Ergebnisse von Massenhaushaltsuntersuchungen auf Gletschern muss neben der Methode auch der Zeitraum, zum Beispiel das hydrologische Jahr mit fixem Datum, übereinstimmen. Schwankungen des Massenhaushalts sind die direkte Folge von Änderungen der klimatischen Bedingungen (Hoinkes, 1964). Diese Schwankungen ergeben eine komplexe Veränderung der Eisdynamik, welche sich schlussendlich auf die Position der Gletscherzunge auswirkt (Paterson, 1994).

In diesem Kapitel werden zunächst die wichtigsten Begriffe der Massenbilanz definiert und deren Einschränkungen erläutert (Abschn. 2.1). Weiters werden die direkte glaziologische Methode, die durchgeführten Arbeiten am Mullwitzkees (Abschn. 2.2) und die Berechnung der Massenbilanz (Abschn. 2.3) beschrieben.

2.1 Definitionen und Einschränkungen

S	gesamte Gletscherfläche	В	Gesamtjahresbilanz
b	spezifische Massenbilanz	S_a	Fläche des Ablationsgebietes
B_a	Gesamtbilanz der Ablation	b_a	spezifische Bilanz der Ablation
S_c	Fläche des Akkumulationsgebietes	B_c	Gesamtbilanz der Akkumulation
b_c	spezifische Bilanz der Akkumulation	wi	als Index bedeutet Winter
SO	als Index bedeutet Sommer	ELA	Höhe der Gleichgewichtslinie
AAR	Akkumulationsflächenverhältnis	WW	Wasserwert

 Tabelle 2.1: Notationen die in dieser Arbeit verwendet werden.

In dieser Arbeit werden im Allgemeinen die Definitionen von Meier (1962, 1963), Anonym (1969) und Paterson (1994) verwendet. Die *Akkumulation* bezeichnet den gesamten Massengewinn des Gletschers, in Form von festem Niederschlag (Schneefall, Graupel oder Hagel), Aufeis oder Reif. Dem entgegen steht die *Ablation*, die den gesamten Massenverlust (Schmelzen, Verdunstung, Sublimation und Kalbung) umfasst. Die Rücklage des Gletschers besteht aus Neuschnee, dem Winterschnee und dem Firn. Als Firn bezeichnet man den Schnee, der mindestens eine ganze Ablationsperiode überstanden hat. Da sich der zeitliche Rahmen dieser Prozesse jährlich ändert, wird um die Vergleichbarkeit der einzelnen Jahre zu gewährleisten, das hydrologische Jahr mit fixem Datum verwendet. Das hydrologische Jahr beginnt am 01. Oktober und endet am 30. September des Folgejahres. Da speziell in den Alpen während der sieben Monaten von Oktober bis einschließlich April mit einem Massengewinn, und von Mai bis September mit einem Massenverlust zu rechnen ist, wird das hydrologische Jahr in Akkumulationsperiode (01.10 - 30.04) und Ablationsperiode (01.05 – 30.09) unterteilt. Während über das hydrologische Jahr die Jahresbilanz bestimmt wird, gelten für die Akkumulationsperiode die Winterbilanz und die Sommerbilanz für die Ablationsperiode. Die Nettobilanz entspricht der Jahresbilanz und setzt sich aus der Summe von Winter- und Sommerbilanz zusammen (Hooke, 2005). Im Gegenzug dazu gilt für einen bestimmten Ort des Gletschers die spezifische Bilanz. Die Bilanzterme werden üblicherweise als WW (Wasserwert) oder w.e. (Wasseräquivalent) in kg m^{-2} bzw. mm angegeben und entsprechen somit dem Gewicht bzw. der Höhe der Wassersäule pro Quadratmeter.

Die Flächen der Rücklage am Gletscher am Ende des Jahres werden als Akkumulationsgebiet (engl. accumulation area) und die Flächen des Massenverlustes als Ablationsgebiet (engl. ablation area) bezeichnet. Zwischen diesen Gebieten befindet sich die Gleichgewichtslinie (engl. equilibrium line). Durch die Höhenänderung der Gleichgewichtslinie über den Gletscher ergibt sich als Mittel die Höhe der Gleichgewichtslinie (engl. equilibrium line altitude). Ein weiterer hilfreicher Parameter ist das Akkumulationsflächenverhältnis (engl. accumulation area ratio). Mit diesem Parameter wird das Verhältnis des Akkumulationsgebietes zum Gesamtgebiet angegeben und ist somit ein wichtiger Faktor zum Vergleich der Massenbilanzen unterschiedlicher Gletscher. In Abbildung 2.1 sind die Beziehungen der einzelnen Massenbilanzterme zueinander grafisch nach Paterson (1994) dargestellt.

Die mathematischen Beziehungen zwischen den oben genannten Parametern werden im Abschnitt 2.3 (Berechnung der Massenbilanz) dargestellt. Die Notationen, die in dieser Arbeit verwendet werden, sind in Tabelle 2.1 aufgelistet.

2.2 Die direkte glaziologische Methode

Die direkte glaziologische Methode setzt sich aus der Bestimmung der Ablation und Akkumulation mit Hilfe von Pegeln und Schächten zusammen. Aus den gewonnenen Daten wird somit die Massenbilanz direkt an der Oberfläche des Gletschers bestimmt (Ahlmann, 1948; Hoinkes, 1970). Es ist jedoch zu beachten, dass der basale Massenverlust des Gletschers, durch Reibung und Druckschmelze, bei dieser Methode nicht berücksichtigt wird. Der Betrag des basalen Massenverlustes liegt allerdings innerhalb der Fehlergenauigkeit und kann somit vernachlässigt werden.

Der Vorteil dieser Methode liegt zum einen darin, dass sie im Vergleich zu anderen Methoden kostengünstig ist, und zum anderen, dass die Änderungen am Gletscher aufgrund

Abbildung 2.1: Definitionen der Massenbilanzterme nach Paterson (1994).

der häufigen Begehungen sehr gut beobachtet werden können. Der Nachteil liegt jedoch im hohen zeitlichen und personellen Aufwand der Begehungen. Weiters handelt es sich nur um eine Bestimmung der Oberflächenmassenbilanz des Gletschers.

Abbildung 2.2: Bohren von Pegel 6 am 05.09.2006.

2.2.1 Arbeitsweise

Innerhalb des Ablationsgebietes werden an einzelnen Punkten, die für möglichst große Flächen repräsentativ sind, mit Hilfe eines Dampfbohrers Pegel zur Messung der Ablation installiert (Abb. 2.2). Dabei wird ein 4 - 12 m tiefes Loch ins Eis gebohrt um einen ebenso langen Pegel zu platzieren. Im Akkumulationsgebiet werden am Ende der Akkumulationsperiode, um den 30. April, und am Ende des hydrologischen Jahres, um den 30. September, Schneeschächte gegraben und mit Lawinensonden Sondierungen durchgeführt, um die Dichte der Schneerücklage und die Verteilung der Schneehöhe zu bestimmen. Die Positionsbestimmung der Sondierungen, Pegel und Schächte erfolgt mit Hand GPS bzw. DGPS (Differential Global Positioning System).

2.2.1.1 Pegel

Die Pegel bestehen aus jeweils 2 m langen und 2 cm dicken, mit Schlauchstücken verbundenen Hartholzstangen, an denen das eisfreie Ende abgemessen wird. Im Verlauf der Ablationsperiode wird diese Arbeit nach Möglichkeit alle drei Wochen durchgeführt, um den Ablationsverlauf aufzeichnen zu können. Die Berechnung des Wasserwertes erfolgt über die Höhe der Abschmelzung und der Dichte des Eises (Abschn. 2.3). Das Neubohren der Pegel muss vor Beginn des völligen Ausaperns oder des möglichen Einschmelzens ins Eis durch Wärmeleitung (Hoinkes, 1970) erfolgen. Ein Zurücksetzen der Pegel in regelmäßigen Abständen, abhängig von der Fließgeschwindigkeit des Gletschers, kompensiert die Gletscherbewegung. Dies geschieht zum Beispiel alle fünf oder zehn Jahre, um die Vergleichbarkeit der Abschmelzung während einzelner Jahre an einem bestimmten Pegel zu gewährleisten.

2.2.1.2 Schächte und Sondierungen

Am Ende der Akkumulationsperiode und am Ende des hydrologischen Jahres werden Schneeschächte gegraben. Dabei ist wichtig, besonders am Beginn einer Massenbilanzreihe wie etwa am Mullwitzkees, geeignete Stellen zu finden, und in den Folgejahren dieselben Schächte bis zur Schicht des Vorjahres zu graben. Die Grenzschichten in der Schneedecke zwischen den einzelnen Jahren zeichnen sich meist durch einen Schmutzhorizont aus, der im Laufe der jeweiligen Ablationsperiode durch Staub- und Schmutzablagerung an der Schneeoberfläche entsteht, und bzw. oder einer Tiefenreifschicht durch aufbauende Schneemetamorphose. Die Schmutzhorizonte sind jedoch nicht immer gleich stark ausgeprägt und können sich auch durch synoptische Phänomene wie dem Transport von Wüstenstaub bis in die Alpen auch während der Akkumulationsperiode bilden. Die Schwierigkeit besteht daher darin, den richtigen Horizont zu finden und dann den Wasserwert der Schneedecke zu ermitteln. Mit Hilfe eines Zylinders erfolgt der Abstich, wobei aus dem Gewicht des Abstichs und dem Volumen des Zylinders die Dichte bestimmt wird. Durch die einzelnen Abstiche über die Tiefe des Schneeschachts ergibt sich ein Dichteprofil mit dessen Mittelwert und der Höhe der Schneerücklage der Wasserwert berechnet wird (Abschn. 2.3). Um die Verteilung der Schneehöhe zwischen den Schächten und speziell im Ablationsgebiet zu erhalten, werden ergänzend entlang mehrerer Quer- und Längsprofile Sondierungen durchgeführt, deren Schneehöhen mit der mittleren Dichte der Schächte in $mm \ WW$ bzw. $cm \ WW$ umgerechnet werden.

2.2.2 Fehlerquellen und Fehlervermeidung

Bevor die gewonnen Daten der Feldarbeiten interpretiert und ausgewertet werden können, müssen sie auf Fehler untersucht, und eventuell korrigiert werden. Fehler entstehen zum einen aufgrund ungenauer oder falscher Arbeitsweise und zum anderen durch äußere Einflüsse. Fehler ungenauer oder falscher Arbeitsweise können im Gegensatz zu zufälligen Fehlern leicht vermieden und korrigiert werden, wie etwa das falsche Ablesen des Meterstabes oder der Waage, Verwechslungen der Pegelnummern, ungenaues Abstechen mit dem Dichtezylinder oder einfache Schreibfehler und Zahlendreher in den Feldarbeitsprotokollen.

Schwieriger hingegen gestalteten sich die Erkennung und Korrektur der zufälligen Fehler. Das Aufschwimmen eines Pegels kann nur durch die häufigen Ablesungen während der Ablationsperiode und dem Vergleich zum Ablationsverlauf anderer Pegel korrigiert werden. Da am Mullwitzkees ausschließlich Hartholzpegel verwendet werden, kommt in dieser Arbeit dem Aufschwimmen eine größere Bedeutung zu als dem Einschmelzen des Pegels durch Wärmeleitung. Bei der Verwendung von Aluminiumpegeln hingegen wäre vermehrtes Augenmerk auf das Einschmelzen zu legen. Im Laufe einer Ablationsperiode kann es vorkommen, dass einzelne Stangen eines Pegels ausschmelzen, aus dem Verbindungsschlauch fallen und in einer Gletscherspalte verschwinden oder in steilen Hängen verloren gehen, auch brechen in steilen Gletscherflanken Pegel während der Akkumulationsperiode aufgrund des Schneedrucks oft ab und sind somit schwer zu rekonstruieren.

Die Genauigkeit der direkten glaziologischen Methode beträgt $\pm 100 \ mm \ WW$ (Kuhn et al., 1999). Selbst durch eine geringfügige Verschiebung der Gleichgewichtslinie durch die händische Interpolation beim Zeichnen der Massenbilanzkarte wird dieser Wert nicht überschritten.

2.3 Berechnung der Massenbilanz

Die Berechnungen und Formeln der Massenhaushaltsbestimmung wurden von Hoinkes (1970) und Paterson (1994) übernommen. Die mathematische Berechnung des Massenhaushalts, aus Akkumulation und Ablation, muss sowohl über einen bestimmten Zeitraum (t_1 bis t_2) als auch über eine bestimmte Fläche (S) erfolgen. Wobei t_1 dem 01. Oktober und t_2 dem 30. September des Folgejahres entsprechen. S ist die Bezeichnung für die Gesamtfläche des Gletschers, während S_a und S_c für das Ablations- und Akkumulationsgebiet stehen. Berechnet werden Akkumulation (c) und Ablation (a) durch die zeitliche Integration über die Akkumulations- und Ablationsraten \dot{c} und \dot{a} . Somit lautet die Beziehung:

$$b = c + a = \int_{t_1}^t (\dot{c} + \dot{a}) dt$$
 (2.1)

Angewandt auf die Jahresbilanz des hydrologischen Jahres bestehend aus Winter-

 (b_{wi}) und Sommerbilanz (b_{so}) , getrennt durch den Messzeitpunkt der Frühjahrsbegehung (t_m) , ergibt sich die Nettomassenbilanz b_n . Wobei für das Ablationsgebiet $b_n < 0$, für das Akkumulationsgebiet $b_n > 0$ und somit für die Gleichgewichtslinie $b_n = 0$ gelten. Das Integral von t_1 bis t_2 ergibt die gesamte Akkumulation (c_t) und die gesamte Ablation (a_t) . In Gleichung 2.2 setzt sich somit die Nettobilanz (b_n) aus Sommer- und Winterbilanz (b_{so}, b_{wi}) , die aus Sommerakkumulation und Ablation (c_{so}, a_{so}) und Winterakkumulation und Ablation (c_{wi}, a_{wi}) bestehen, und in weiterer Folge aus den jeweiligen Integralen zusammen.

$$b_n = b_{wi} + b_{so} = c_t + a_t = c_{wi} + a_{wi} + c_{so} + a_{so} = \int_{t_1}^{t_m} (\dot{c} + \dot{a}) \, dt + \int_{t_m}^{t_2} (\dot{c} + \dot{a}) \, dt \quad (2.2)$$

Um nun den Nettogewinn oder Verlust eines Gletschers zu berechnen, muss über die Gesamtfläche des Gletschers (S), bestehend aus Akkumulationsgebiet (S_c) und Ablationsgebiet (S_a) , integriert werden (Gl. 2.3).

$$B_n = \int_{S_c} b_n \, dS + \int_{S_a} b_n \, dS \tag{2.3}$$

Aufgrund der zeitlichen Integration ergeben sich die spezifischen Bilanzen, meist in Millimeter Wasserwert (mm WW), welche jedoch nur für einen bestimmten Ort gültig sind. Nach einer räumlichen Integration, beispielsweise über die Gletscherfläche, werden die Variablen der Bilanz mit der Einheit eines Volumens (m^3) groß geschrieben. Der Massengewinn oder Verlust eines Gletschers wird häufig mit der mittleren spezifischen Bilanz oder mittleren spezifischen Nettobilanz ($\overline{b_n}$) in mm WW beschrieben (Gl. 2.4).

$$\overline{b_n} = B_n / S \tag{2.4}$$

Wenn die Nettobilanz eines Gletscher über mehrere Jahre null ist, befindet sich der Gletscher im Gleichgewicht. Es geht somit im Laufe eines hydrologischen Jahres die gleiche Masse im Ablationsgebiet des Gletschers verloren wie im Akkumulationsgebiet gewonnen wird. Das Akkumulationsflächenverhältnis (AAR) gibt Aufschluss über die Größenordnung des Akkumulationsgebietes im Gegensatz zur Gesamtfläche ($AAR = S_c/S$) und ist somit ein guter Indikator für den "Gesundheitszustand" eines Gletschers. Je höher dieses Verhältnis ist, desto positiver fällt die Massenbilanz eines Gletschers aus und umgekehrt. Ebenso wichtig ist die mittlere Höhe der Gleichgewichtslinie (ELA). Sie beschreibt in welcher Höhe sich der Gletscher im Mittel über die Fläche im Gleichgewicht befindet. Die mittlere Höhe der Gleichgewichtlinie ergibt sich aus dem Übergang der Bilanz-Höhenverteilung, in m^3 pro Höhenstufe, des Gletschers von negativen zu positiven Werten.

Aus den Gleichungen 2.1, 2.2 und 2.3 ergeben sich mehrere Beziehungen (Tab. 2.2, Gl. 2.5 bis Gl. 2.12) die zur Massenhaushaltsbestimmung verwendet werden.

Die Berechnung der Schneedichte und Wasserwerte der Schächte und Pegel wird mit Excel durchgeführt. Aus dem Gewicht des Abstichs abzüglich des Leergewichts, durch das Volumen des Zylinders aus Länge und Durchmesser, ergibt sich die Dichte des jeweiligen Abstichs. Weiters ergibt sich der Wasserwert pro Einheitsfläche aus Multiplikation der Dichte mit der Höhe des Abstichs. Die Bestimmung des Wasserwertes der Eisablation
$$S = S_c + S_a$$
 (2.5) $B = B_c + B_a$ (2.6)

Für die spezifischen Bilanzen gelten folgende Beziehungen:

$$b = b_{wi} + b_{so}$$
 (2.7) $b_{so} = b - b_{wi}$ (2.8)

$$b_{wi} = B_{wi}/S$$
 (2.9) $b_{so} = B_{so}/S$ (2.10)

$$b_c = B_c/S_c$$
 (2.11) $b_a = B_a/S_a$ (2.12)

Tabelle 2.2: Zur Massenhaushaltsbestimmung gültige Beziehungen.

erfolgt über Multiplikation einer angenommen Dichte von Eis ($\rho = 900 \ kg \ m^{-3}$) mit der akkumulierten Höhe der Eisablation aus den Abmessungen des freien Endes der Pegel.

2.3.1 Auswertung und Berechnung mit GIS

Ziel der Auswertung mit der Software ArcGIS ist es, Massenbilanzkarten und Tabellen zu erstellen. Zu Beginn wird ein neues Projekt erstellt, ein Koordinatensystem definiert, das Orthofoto und die Gletschergrenzen in das Programm geladen. Die GPS Punkte werden als Shapefile importiert und mit einer geeigneten Koordinatentransformation georeferenziert. Zur Auswertung der Massenbilanz am Mullwitzkees wurde das Gauß-Krüger Koordinatensystem M31 verwendet. Die GPS Punkte wurden in UTM Koordinaten WGS 1984 aufgezeichnet und mit der Transformation "MGI_To_WGS_1984_3" umgerechnet. Den jeweiligen Punkten, wird der errechnete Wasserwert zugeschrieben und somit eine Karte bestehend aus Gletschergrenze, 50 m Höhenschichtlinien aus dem digitalen Höhenmodell und Wasserwerte der Pegel, Schächte und Sondierungen erstellt. Auf dieser Karte werden, durch händische Interpolation, Isolinien des Wasserwertes gezeichnet und so die Massenbilanzkarten erstellt. Für die Jahresbilanz werden, beginnend mit der Gleichgewichtslinie (WW = 0), die Isolinien im 50 cm WW Intervall im Ablationsgebiet und im 25 cm WW Intervall im Akkumulationsgebiet gezeichnet. Im Gegensatz dazu wird bei der Winterbilanz ein 20 cm WW Intervall verwendet.

Zur Berechnung der Massenbilanztabelle werden aus den Höhenschichtlinien mit dem Befehl "Feature to Polygon" Flächen erstellt, die wiederum mit der Gletschergrenze, mit dem Befehl "Clip", ausgeschnitten werden. Den so entstandenen Polygonen wird, zur weiteren Berechnung, der Mittelwert der Höhe zugewiesen. Ebenso wird mit den händisch interpolierten Isolinien der Wasserwerte verfahren und somit Flächen gleichen Wasserwertes erstellt. Im nächsten Schritt werden die Isoflächen der Höhe mit denen des Wasserwertes mit dem befehl "Union" vereinigt und es entstehen Polygone eines bestimmten Wasserwertes zwischen den Höhenschicht- und Wasserwertlinien und der Gletschergrenze. Die so entstandene "Attribute Table" wird mit "Table to dBASE" als "dbf-Tabelle" exportiert und zur weiteren Berechnung mit Matlab verwendet. Diese Arbeitschritte werden für die Bestimmung der Jahresbilanz und der Winterbilanz durchgeführt.

2.3.2 Berechnung mit Matlab

Zur Berechnung der Massenbilanz mit Matlab muss neben der Tabelle im Format [b in cm], [Höhenzone in m] und [Fläche in m^2] auch die Zonenzahl eingegeben werden. Die Zonenzahl ist die Anzahl der 50 m Höhenstufen, über die sich der Gletscher erstreckt. Im ersten Schritt der Berechnung wird über die einzelnen Flächen aufsummiert und somit die Gesamtfläche bestimmt. Zusätzlich wird das Volumen der Bilanz aus Multiplikation der Fläche mit dem Wasserwert errechnet.

In den weiteren Schritten werden Akkumulationsgebiet und Ablationsgebiet sowie das Gesamtvolumen der Ablation und Akkumulation und das Akkumulationsflächenverhältnis berechnet. In einer zonalen Statistik wird jeweils die Fläche m^2 , das Volumen der Bilanz m^3 und die spezifische Bilanz mm WW pro Höhenstufe ermittelt. Weiters wird eine zonale Statistik über die Akkumulation und Ablation berechnet. Dabei werden jeweils das Gesamtvolumen, die Flächen und die spezifischen Bilanzen aufgeteilt und in Akkumulation und Ablation pro Höhenstufe ausgegeben. Zusätzlich werden ein Diagramm der Bilanz und Flächen Höhenverteilung in m^3 und m^2 pro Höhenstufe und ein Diagramm der spezifischen Bilanz Höhenverteilung in mm WW pro Höhenstufe erstellt.

Kapitel 3

Ergebnisse der Massenbilanz

Tabelle 3.1 gibt eine Übersicht über die Kennzahlen der Massenbilanz der hydrologischen Jahre 2006/07, 2007/08 und 2008/09, wobei die Notationen in Tabelle 2.1 zu finden sind. Aus dem Pegelplan (Abb. 3.1) ist die Verteilung der Ablationspegel am Mullwitzkees zu entnehmen, wobei die roten Punkte für das Jahr 2007 und 2008, und die schwarzen Punkte für das Jahr 2009 gültig sind, weiters wurde die Gletschergrenze für das Jahr 2009 DGPS (Differential Global Positioning System) korrigiert.

	2006/2007	2007/2008	2008/2009	Einheit
S_c	0.639	1.22	1.11	km^2
B_c	0.44	0.93	0.45	$10^6 m^3 WW$
b_c	682	764	408	$mm \ WW$
S_a	2.444	1.864	1.916	km^2
B_a	-4.9	-2.91	-1.92	$10^6 m^3 WW$
b_a	-2004	-1562	-1005	$mm \ WW$
S	3.083	3.084	3.026	km^2
В	-4.46	-1.98	-1.47	$10^6 m^3 WW$
b	-1447	-642	-487	$mm \ WW$
B_{wi}	2.08	4.35	4.59	$10^6 m^3 WW$
b_{wi}	674	1410	1519	$mm \ WW$
B_{so}	-6.54	-6.33	-6.06	$10^6 m^3 WW$
b_{so}	-2121	-2052	-2006	$mm \ WW$
ELA	3163	3115	3116	m
AAR	0.207	0.396	0.367	

Tabelle 3.1: Übersichtstabelle der Massenbilanzkennzahlen 2006 – 2009.

Die spezifische Bilanz 2007 war mit $-1447 \ mm \ WW$ mehr als doppelt so negativ als im Folgejahr 2008 mit $-642 \ mm \ WW$. Im Vergleich zur spezifischen Bilanz im Jahr 2009 mit $-487 \ mm \ WW$ sogar ca. dreimal so negativ. Grund dafür waren die schneereichen Winter der Bilanzjahre 2008 und 2009 im Gegensatz zum schneearmen Winter 2006/07, was sich auch an den spezifischen Winter und Sommerbilanzen ablesen lässt. Ausgedrückt als Volumen des Verlustes am Mullwitzkees stehen $-1.98 \cdot 10^6 \ m^3$ für 2008 und $-1.47 \cdot 10^6 \ m^3$ für 2009, $-4.46 \cdot 10^6 \ m^3$ im ersten Jahr der Massenhaushaltsuntersuchungen 2007 gegenüber. Dementsprechend gering war das Akkumulationsflächenverhältnis von 0.2 im Jahr 2007 im Gegensatz zu nahezu dem Doppelten in den folgenden Jahren 2008 und 2009. Auffallend ist jedoch die geringe Änderung der mittleren Höhe der Gleichgewichtslinie. Grund dafür ist die Verschiebung des Akkumulationsgebietes am Mullwitzkees in tiefere Lagen, verursacht durch Winddrift während der Akkumulationsperiode.

Die Ungenauigkeiten in der Fläche der Jahre 2007 und 2008 resultieren aus den händischen Korrekturen des Inventars von 1998 anhand von Begehungen und Fotos. Die Fläche im Jahr 2009 von 3.026 km^2 ergab sich aus der Korrektur der Gletschergrenze des Inventars 1998 mit Hilfe von DGPS wobei die horizontale sowie vertikale Punktgenauigkeit < 10 cm beträgt. Es wurden sowohl die Gletscherzunge und Felsinseln als auch alle Pegel mit dieser Methode vermessen (Kap. 4).

In den folgenden Abschnitten findet sich eine ausführliche Aufstellung der Ergebnisse der einzelnen hydrologischen Jahre, wobei die Jahreszahlen 2007, 2008 und 2009 für die jeweiligen hydrologischen Jahre 2006/07, 2007/08 und 2008/09 stehen. Da die Wetterhütte im Laufe der ersten drei Jahre der Massenhaushaltsuntersuchung mehrmals aufgebrochen wurde, und somit die Temperaturaufzeichnung sehr lückenhaft sind, werden für die Beschreibung des Witterungsverlaufes der hydrologischen Jahre 2007 bis 2009 die Temperaturabweichungen und Prozent des Niederschlagsnormalwertes der einzelnen Monate vom langjährigen Mittelwert (1971 – 2000) verwendet. Die dazugehörigen Grafiken werden von der ZAMG (www.zamg.ac.at) im Internet zur Verfügung gestellt. Die Zahlenwerte der Temperatur und des Niederschlags wurde diesen Grafiken entnommen und sind jeweils für das nordwestliche Osttirol gültig (Abschn. 3.1, 3.2 und 3.3; A. Abschn. A.3).

Abbildung 3.1: Pegelplan 2008 und 2009 am Mullwitzkees mit DGPS korrigierter Gletschergrenze 2009.

3.1 Das hydrologische Jahr 2006/07

Für das hydrologische Jahr 2006/07 sind die Monatswerte aus den Abbildungen A.4 und A.7 im Anhang zu entnehmen. Nach der Installation des Netzwerks der Massenbilanzmessungen vom 04. – 06. September 2006 begann das hydrologische Jahr 2007 mit einem für einen Gletscher ungünstigen Start. Von Oktober bis Dezember 2006 betrug die Temperaturabweichung zum langjährigen Mittelwert (1971 – 2000) +2.5 bis +3.5°C im nordwestlichen Osttirol. Im Jänner wurde der Mittelwert durchschnittlich um +4.5 bis +5.5°C, und im April um +3.5 bis +4.5°C überschritten. Die Niederschlagswerte während der Akkumulationsperiode lagen im Durchschnitt, nur im Jänner wurden 125 bis 175% des Niederschlagsnormalwertes erreicht. Im Gegensatz dazu war der April mit 0 bis 25% des Niederschlagsnormalwertes deutlich zu trocken.

Während der Ablationsperiode waren die Monate Mai, Juni und Juli mit +0.5 bis $+3.5^{\circ}C$ im Vergleich zum langjährigen Mittelwert (1971 – 2000) zu warm. Der August lag im Durchschnitt, während es im September 2007 um -1.5 bis $-0.5^{\circ}C$ zu kalt war. Das gesamte hydrologische Jahr war somit deutlich zu warm mit durchschnittlichem Niederschlag, was im Vergleich zu den Folgejahren eine stark negative Massenbilanz zur Folge hatte.

3.1.1 Auswertung Totalisator 2007

Aus Tabelle 3.2 sind die Werte der Totalisatorablesungen am Defreggerhaus, sowie der daraus gebildete Mittelwert und die Niederschlagssummen der Ablesezeiträume Oktober 2006 bis 0ktober 2007 zu entnehmen. Die Niederschlagssummen wurden der Totalisatorkalibrierungstabelle A.1 entnommen und für den Gesamtzeitraum aufsummiert. Es ergibt sich somit ein Jahresniederschlag von 1368 mm im hydrologischen Jahr 2007, wobei nur 45% (613 mm) während der sieben Monate der Akkumulationsperiode fielen.

Ablesungsdatum	Mes	sung 1	. – 4 [1	Mittel	NS $[mm]$	
02.10.2006	522	521	521	520	521	
31.10.2006	501	502	503	503	502	64
30.11.2006	458	458	459	457	458	152
31.12.2006	445	445	446	444	445	45
01.05.2007	341	342	342	341	342	352
02.07.2007	247	248	248	247	248	322
29.07.2007	212	213	213	212	213	122
06.10.2007	103	102	102	103	103	311
					Summe	1368

Tabelle 3.2: Totalisator Defreggerhaus 2006 – 2007; NS=Niederschlag.

3.1.2 Pegel 2007

Vom 04. – 06. September 2006 wurden am Mullwitzkees 14 Pegel zur Messung der Ablation installiert. Da es sich um das erste Jahr dieser Messungen am Mullwitzkees handelte und es zu Beginn einer Massenbilanzreihe immer schwierig ist geeignete Stellen zur Ablationsmessung zu finden, wurden im Sommer 2007 trotz GPS nur zehn der ursprünglich 14 Pegel wiedergefunden. Grund dafür waren die Dynamik des Gletschers und die damit verbundene Bildung von Spalten und die Verteilung des Akkumulationsgebietes. Die Werte der akkumulierten Ablation in *cm Eis* und die neuschneekorrigierten Wasserwerte der jeweiligen Pegel sind in Tabelle 3.3 zu finden. Aufgrund des warmen und niederschlagsarmen Winters 2006/07 kam es sogar während der Akkumulationsperiode in den unteren Spaltenzonen und am Zungenende zur Eisablation. Mit dem darauffolgenden warmen Sommer ergaben sich somit Ablationswerte von über 400 *cm WW* auf der Zunge bei Pegel 7, bei Pegel 5 und im steilen mittleren Bereich bei Pegel 15. Der relativ kalte und niederschlagsreiche September 2007 beendete die Ablationsperiode. Der Verlauf der Eisablation während der Ablationsperiode 2007 an den einzelnen Pegeln ist in Abbildung A.1 aufgezeichnet, wobei die akkumulierte Ablation zur jeweiligen Ablesung markiert ist.

		Neuschnee korr.			
Pegelnr.	02.10.2006	29.07.2007	19.09.2007	06/07.10.2007	WW $[cm]$
8	0	91	206	206	163
9			nicht gefu	ınden	
10	0	101	206	206	170
11			nicht gefu	ınden	
12			nicht gefu	unden	
13			nicht gefu	ınden	
6	0	137	251	251	212
5	0	322	474	474	410
4		313	426	426	365
15	0	340	500	500	440
3	0	104	224	224	186
2	0	94	214	214	182
1	0	232	360	360	313
7	0	320	473	473	422

Tabelle 3.3: Ablationstabelle und Wasserwerte der Pegel 2007.

3.1.3 Frühjahrs- und Herbstbegehung 2007

Am 30. April und 01. Mai 2007 wurde die Frühjahrsbegehung am Mullwitzkees durchgeführt. Dabei wurden sechs Schneeschächte gegraben, mehrere Quer- und Längsprofile sondiert und der Totalisator am Defreggerhaus abgelesen. Im gesamten Gebiet lag, für die Jahreszeit ungewöhnlich wenig Schnee und es waren sogar blanke Stellen am Gletscher und besonders auf der Zunge sichtbar. Da es sich um die erste Frühjahrsbegehung handelte wurden, zur besseren Erfassung der Schneedichten und Schneehöhenverteilung, sechs Schneeschächte zwischen 26 cm und 406 cm gegraben. Tabelle 3.4 gibt eine Zusammenfassung der Ergebnisse aller Frühjahrsschächte, wobei jeweils der Wasserwert, die Dichte (ρ), sowie die mittlere Dichte ($\bar{\rho}$) aller Schächte angeführt sind. Die mittlere Dichte aller Schächte ergab einen Wert von 468 kg m⁻³. Der Wasserwert der Winterschneedecke zum Zeitpunkt der Frühjahrsbegehung variierte zwischen 548 und 2164 mm bei den Schneeschächten. Abbildung 3.2 zeigt das Dichteprofil aller Frühjahrsschächte, wobei die Änderung der Dichte in g cm⁻³ zur Schachttiefe in cm aufgetragen sind. Null entspricht der Schneeoberfläche und das Ende des Dichteprofils der jeweiligen Tiefe der Grenzschicht zwischen Firn und Winterschnee. Besonders deutlich zu sehen sind die Maxima im Dichteprofil des dritten Schachtes, verursacht durch größere Eislinsen mit einer Dichte von 900 kg m⁻³.

	F	Einheit					
WW	697	1064	2164	548	101	741	mm
ρ	463	471	561	447	389	477	$kg m^{-3}$
		$\overline{\rho}$ aller	Frühjal	nrsschä	ächte	468	$kg m^{-3}$

Tabelle 3.4: Wasserwert und Dichte, sowie mittlere Dichte aller Frühjahrsschächte 2007.

Abbildung 3.2: Dichteprofile aller Frühjahrsschächte 2007.

Am 06. und 07. Oktober 2007 wurde die Herbstbegehung am Mullwitzkees durchgeführt. Aufgrund der Schneefälle im September war es möglich, die Herbstbegehung mit Schi durchzuführen. Auf der Zunge lagen zwischen 10 cm und 15 cm und im oberen Bereich des Gletschers ca. 50 cm Neuschnee. Im Rahmen der Herbstbegehung wurden alle Pegel abgelesen, zwei Schneeschächte gegraben und mehrere Quer- und Längsprofile sondiert. Weiters wurde der Temperaturfühler in der Wetterhütte ausgetauscht, der Totalisator abgelesen, entleert und neu befüllt. In Tabelle 3.5 sind jeweils Wasserwert, Dichte und die mittlere Dichte der Herbstschächte angeführt. Bei einer mittleren Dichte von 528 kg m⁻³ ergaben sich Wasserwerte der Schneerücklage von 874 mm WW bei Schacht 1 und 1372 mm WW bei Schacht 2. Das Profil der jeweiligen Schneedichte der Rücklage als Änderung der Dichte mit der Schachttiefe ist in Abbildung 3.3 aufgezeichnet. Auffällig ist das Maximum der Dichte von 900 kg m⁻³ im zweiten Schacht, verursacht durch eine mächtige Eislinse.

	Herbstschacht 1	Einheit	
WW	874	1372	mm
ρ	537	518	$kg \ m^{-3}$
$\overline{\rho}$ aller	Herbstschächte	528	$kg m^{-3}$

Tabelle 3.5: Wasserwert und Dichte, sowie mittlere Dichte aller Herbstschächte 2007.

Abbildung 3.3: Dichteprofile aller Herbstschächte 2007.

3.1.4 Winter-, Sommer- und Jahresbilanz 2007

Die Ergebnisse der Frühjahrsbegehung 2007 sind in Abbildung 3.4 grafisch dargestellt. Dabei sind die Flächen gleichen Wasserwertes der Winterbilanz gültig für den 30.04.2007 und die Gletschergrenze 1998, sowie die Frühjahrssondierungen und Schächte aufgezeichnet. Die Gletschergrenze 2007 wurde anhand von Fotos und Begehungen korrigiert. Auffällig sind die Flächen mit negativen Werten auf der Zunge und in den Spaltenzonen, verursacht durch die geringen Neuschneefälle während der Akkumulationsperiode. Auch das Maximum der Akkumulation, durch Winddrift in tiefere Höhenstufen des Gletschers verschoben, ist ein besonderes Merkmal am Mullwitzkees, wie sich in den folgenden Jahren herausstellte. In Abbildung 3.5 ist der dazugehörige Verlauf der Nettobilanz und der spezifischen Bilanz pro Höhenstufe sowie die Flächenhöhenverteilung dargestellt.

Abbildung 3.4: Flächen gleichen WW der Winterbilanz gültig für den 30.04.2007 und Gletschergrenze von 1998 und 2007, Frühjahrssondierungen und Schächte; Koordinatensystem: Gauß-Krüger M31.

Abbildung 3.5: Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (**links**) und mittlere spezifische Bilanz [mm WW] der Höhenstufen (**rechts**) gültig für die Winterbilanz des hydrologischen Jahres 2006/07 am Mullwitzkees.

Aus den Daten der Feldmessungen bestehend aus den akkumulierten Ablationswerten der Pegel (Tab. 3.3), den Schächten (Tab. 3.5) und den Sondierungen der Herbstbegehung wurde die Massenbilanzkarte (Abb.3.6) gültig für das hydrologische Jahr 2006/07 erstellt. Die farblichen Abstufungen von rot, Maximum der Ablation, bis blau, Maximum der Akkumulation, entsprechen jeweils dem Wasserwert in cm und erstrecken sich von $-475 \ cm \ WW$ auf der Zunge bis 137.5 $cm \ WW$ im Akkumulationsgebiet. Das Akkumulationsgebiet am Mullwitzkees ist aufgrund von Winddrift während der Akkumulationsperiode in tiefere Lagen verschoben. Die dazugehörige Höhenverteilung der Nettobilanz, der Fläche und der spezifischen Bilanz ist aus Abbildung 3.7 zu entnehmen. Dabei ist zu sehen, dass im Mittel über die jeweiligen Höhenstufen nur zwischen 3200 m und 3250 m positive Bilanzwerte erreicht wurden. Es ist jedoch auch zu beachten, dass diese Höhenstufe den größten Flächenwert von 0.37 km^2 darstellt. In Tabelle 3.6 ist die jeweilige Fläche, Bilanz und der Wasserwert pro Höhenstufe, gültig für das hydrologische Jahr 2007 aufgeschlüsselt.

Abbildung 3.6: Flächen gleichen WW der Jahresbilanz gültig für den 30.09.2007 und Gletschergrenze von 1998 und 2007, Gleichgewichtslinie, Herbstsondierungen und Schächte; Koordinatensystem: Gauß-Krüger M31.

Abbildung 3.7: Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (**links**) und mittlere spezifische Bilanz [mm WW] der Höhenstufen (**rechts**) gültig für das hydrologische Jahr 2006/07 am Mullwitzkees.

Höhenstufe $[m]$	Fläche $[km^2]$	Bilanz $[10^3 m^3]$	Wasserwert $[mm]$
2675	0.008	-33	-4138
2725	0.053	-217	-4091
2775	0.074	-252	-3409
2825	0.141	-393	-2784
2875	0.221	-678	-3067
2925	0.273	-893	-3271
2975	0.262	-659	-2516
3025	0.289	-621	-2148
3075	0.259	-470	-1815
3125	0.232	-220	-948
3175	0.294	-39	-131
3225	0.370	147	397
3275	0.293	-48	-164
3325	0.187	-31	-165
3375	0.105	-38	-362
3425	0.022	-17	-759
Gesamt	3.083	-4462	-1447

Tabelle 3.6: Mittlere Höhe, Fläche, Bilanz und Wasserwert der jeweiligen Höhenstufe gültig für
das hydrologische Jahr 2006/07.

Die Sommerbilanz wird aus der Winter- und Jahresbilanz, wie in Kapitel 2 Abschnitt 2.3 Gleichung 2.8, berechnet. Für das Jahr 2007 ergab sich somit eine spezifische Sommerbilanz von -2121 mm WW. Die Kennzahlen der Jahres-, Winter- und Sommerbilanz sind in Tabelle 3.7 aufgelistet.

Jahres	sbilanz	Winter	Winterbilanz So		merbilanz	Einheit
S_c	0.639	$S_{c(wi)}$	3.040			km^2
B_c	0.44	$B_{c(wi)}$	2.08			$10^6 m^3 WW$
b_c	682	$b_{c(wi)}$	684			$mm \ WW$
S_a	2.444	$S_{a(wi)}$	0.043			km^2
B_a	-4.90	$B_{a(wi)}$	-0.0004			$10^6 m^3 WW$
b_a	-2004	$b_{a(wi)}$	-10			$mm \ WW$
S	3.083	S	3.083	S	3.083	km^2
B	-4.46	B_{wi}	2.08	B_{so}	-6.54	$10^6 m^3 WW$
b	-1447	b_{wi}	674	b_{so}	-2121	$mm \ WW$
AAR	0.207	AAR_{wi}	0.986			
ELA	3163					m

Tabelle 3.7: Kennzahlen der Jahres-, Winter- und Sommerbilanz des hydrologischen Jahres2006/07.

3.2 Das hydrologische Jahr 2007/08

Für den Witterungsverlauf des hydrologischen Jahres 2007/08 sind die Monatswerte der Temperaturabweichung vom langjährigen Mittel (1971 – 2000) und die Prozent des Niederschlagsnormalwertes aus den Abbildungen A.5 und A.8 zu entnehmen. Nachfolgende Werte beziehen sich auf die Region nordwestliches Osttirol. Die Temperaturabweichung lag während der Monate Oktober bis Dezember im Durchschnitt, während es im Jänner 2008 im Mittel um -1.5 bis $-2.5^{\circ}C$ zu kalt war. In den Monaten April und Mai, Juli, August und September war es zu warm, wobei die Abweichung im Mai mit $> 2.5^{\circ}C$ am höchsten war. Alle übrigen Monate lagen im langjährigen Durchschnitt.

Zu Beginn der Akkumulationsperiode lagen die Niederschlagsmengen unter dem Durchschnitt, wobei der Dezember mit < 25% des Niederschlagsnormalwertes deutlich zu trocken war. Während die Monate Januar und März im Durchschnitt lagen, war es im Februar etwas zu trocken. Im April fielen 125 bis 175% des Niederschlagsnormalwertes und es ergab sich somit ein deutlicher Neuschneezuwachs auf den Gletschern. Während der Ablationsperiode ergaben sich leicht unterdurchschnittliche Niederschlagsmengen, nur im Juli 2008 fielen 125 bis 175% des Niederschlagsnormalwertes.

3.2.1 Auswertung Totalisator 2008

Aus Tabelle 3.8 sind die Werte der Totalisatorablesungen am Defreggerhaus, sowie der daraus gebildete Mittelwert und die Niederschlagssummen der Ablesezeiträume Oktober 2007 bis Oktober 2008 zu entnehmen. Die Niederschlagssummen wurden der Totalisatorkalibrierungstabelle A.1 und A.2 entnommen und für den Gesamtzeitraum aufsummiert. Somit ergibt sich ein Niederschlagswert von 1607 mm für den angegebenen Zeitraum, wobei ca. 54% während der Akkumulationsperiode in Form von Schnee fielen. Bis zum 25.10.2007 wurde der Totalisatorkübel Nummer 54 verwendet. Aufgrund der reflektierten Sonnenstrahlung am Verwirbelungsring des Totalisators nach dem Prinzip eines Parabolspiegels, verformte sich der Zylinder des Totalisators und musste daher durch Kübel Nummer 37 ausgetauscht werden. Um einer erneuten Verformung des Totalisators vorzubeugen, wurde der Verwirbelungsring zusätzlich an seiner Innenseite schwarz lackiert, um die Reflexion der kurzwelligen Sonnenstrahlung zu verhindern bzw. zu minimieren.

Ablesungsdatum	Ν	lessun	ıg 1 –	$5 \ [mm]$	<i>i</i>]	Mittel	NS $[mm]$
06.10.2007	528	529	529	528		529	
25.10.2007	506	506	507	507		507	75
25.10.2007	592	592	593	594	592	593	
26.12.2007	494	496	496	495	495	495	321
26.01.2008	473	475	475	474	474	474	67
29.03.2008	409	409	409	408	408	409	212
26.04.2008	346	347	348	348	347	347	203
28.06.2008	293	292	292	293	294	293	177
09.07.2008	267	268	268	269	267	268	81
28.07.2008	222	221	221	222	223	222	147
28.07.2008	323	324	324	323	324	324	
26.08.2008	260	262	260	261	262	261	206
18.09.2008	230	229	231	229	230	230	102
08.10.2008	224	225	223	224	223	224	16
						Summe	1607

Tabelle 3.8: Totalisator Defreggerhaus 2007 – 2008; NS=Niederschlag.

3.2.2 Pegel 2008

Nachdem im Vorjahr nur zehn der ursprünglich 14 Pegel wieder gefunden wurden, wurde im Sommer 2008 Pegel 11 erneuert, und die übrigen Pegel am 09.- und 28. Juli, bzw. am 26. August mit jeweils acht Meter neu gebohrt. Zusätzlich wurde im obersten Bereich des Gletschers am Plateau Pegel 16 und im steilen Bereich unterhalb des Wallhorner Törls Pegel 17 neu installiert. Somit wurde das Pegelnetz auf 13 Pegel aufgestockt. Aus Tabelle 3.9 sind die Eisablation in *cm* sowie der Wasserwert in *cm* aller Pegel zu entnehmen, wobei die akkumulierten Werte pro Messung eingetragen sind. Dem Wasserwert der Ablation wurde der Wasserwert des Neuschnees bis inkl. 30. September als Akkumulation gegengerechnet. Der dazugehörige Verlauf der Ablation ist in Abbildung A.2 aufgezeichnet.

Besonders auffällig ist der unterschiedliche Beginn der Ablation an den einzelnen Pegeln. Während bei Pegel 7 bis zum 28. Juni bereits 68 cm Eis abschmolzen, begann die Ablation beim Großteil der Pegel erst zwischen dem 28. Juli und 26. August. Somit ergab sich das Maximum auf der Zunge mit einem Verlust von 450 cm WW bei Pegel 7. Im Gegensatz dazu wurde bei Pegel 11 mit 68 cm WW die geringste Ablation gemessen. Aufgrund der Verschiebung des Akkumulationsgebietes in tiefere Lagen durch Winddrift, ergab sich ein Massenverlust von 81 cm WW am Plateau des Gletschers bei Pegel 16 auf ca. 3400 m Seehöhe.

		Neuschnee korr.					
Pegelnr.	28.06.2008	09.07.2008	28.07.2008	26.08.2008	18.09.2008	08.10.2008	WW $[cm]$
1	0	0	58	183	250	250	225
2	0	0	0	93	171	177	159
3	0	0	0	95	163	167	150
4	0	0	0	123	204	207	186
5	0	0	84	229	315	320	288
6	0	0	10	146	237	244	220
7	68	135	225	399	501	500	450
8	0	0	0	97	175	182	164
10	0	0	0	88	166	174	157
11	0	0	0		72	75	68
15	0	0	65	185	268	270	243
16	0	0	66		90	90	81
17	0	0	0	114	174	174	157

Tabelle 3.9: Ablationstabelle und Wasserwerte der Pegel 2008.

3.2.3 Frühjahrs- und Herbstbegehung 2008

Im Rahmen der Frühjahrsbegehung 2008 am 26.- und 27. April wurden zur Bestimmung der Schneedichte und Schneehöhenverteilung vier Schneeschächte gegraben, mehrere Längs- und Querprofile am Gletscher sondiert und der Totalisator am Defreggerhaus abgelesen. Aufgrund der starken Niederschläge im April lag für die gesamte Region ungewöhnlich viel Schnee, was vor allem bei den Sondierungen zu Problemen führte. Zur Verifikation der Sondierungen wurden am 09. Juli erneut Sondierungen durchgeführt und die Schneehöhen mit den bekannten Abschmelzbeträgen auf das Ende der Akkumulationsperiode rückgerechnet.

Die Wasserwerte aller Frühjahrsschächte und die dazugehörige Dichte sowie mittlere Dichte der Winterschneedecke ist in Tabelle 3.10 aufgelistet. Die Änderung der Dichte mit der Tiefe der jeweiligen Schneeschächte ist in Abbildung 3.8 aufgezeichnet. So ergaben sich bei den Frühjahrsschächten Wasserwerte zwischen 557 mm bei Schacht 2 und 1820 mm bei Schacht 4. Die mittlere Dichte der Schneedecke betrug 385 $kg m^{-3}$.

	Frühja	Einheit			
WW	1637	557	1131	1820	mm
ρ	402	332	372	433	$kg m^{-3}$
$\overline{\rho}$ aller	: Frühja	hrssch	nächte	385	$kg m^{-3}$

Tabelle 3.10: Wasserwert und Dichte, sowie mittlere Dichte aller Frühjahrsschächte 2008.

Abbildung 3.8: Dichteprofile aller Frühjahrsschächte 2008.

Am 18.- und 19. September 2008 wurde die Herbstbegehung am Mullwitzkees durchgeführt. Dabei wurden drei Schneeschächte gegraben, mehrere Quer- und Längsprofile sondiert, alle Pegel abgemessen und der Totalisator am Defreggerhaus ausgelesen. Da die Frühjahrsbegehung elf Tage vor Ende des hydrologischen Jahres durchgeführt wurde, wurden alle Pegel am 08.10 erneut abgemessen, der Totalisator neu befüllt und die Werte auf den 30. September interpoliert. Die Wasserwerte beider Herbstschächte sowie deren Dichte und die mittlere Dichte sind in Tabelle 3.11 aufgelistet. Bei einer mittleren Dichte von 587 kg m⁻³ ergaben sich Wasserwerte von 1428 mm bei Schacht 1 und 1814 mm bei Schacht 2. Die dazugehörigen Dichteprofile sind in Abbildung 3.9 aufgezeichnet, wobei die Eislinsen in beiden Schächten mit einer Dichte von 900 kg m⁻³ besonders auffällig sind.

	Herbstschacht 1	Einheit	
WW	1428	1814	mm
ρ	578	595	$kg m^{-3}$
$\overline{\rho}$ aller	r Herbstschächte	587	$kg m^{-3}$

Tabelle 3.11: Wasserwert und Dichte, sowie mittlere Dichte aller Herbstschächte 2008.

Abbildung 3.9: Dichteprofile aller Herbstschächte 2008.

3.2.4 Winter-, Sommer- und Jahresbilanz 2008

Aus den Ergebnissen der Frühjahrsbegehung wurde die Winterbilanzkarte in Abbildung 3.10 erstellt. Dabei sind die Flächen gleichen Wasserwertes, im Intervall von 20 cm, gültig für den 30.04.2008 und die Gletschergrenze 1998, sowie die Frühjahrssondierungen und Schächte dargestellt. Die Gletschergrenze wurde wie im Vorjahr anhand von Fotos und Begehungen für das Jahr 2008 korrigiert. Gut zu sehen ist der Einfluss der Winddrift auf die Schneehöhenverteilung. So wurde entlang der Geländekuppe am Plateau der größte Massengradient gefunden und es ergaben sich für den obersten Bereich des Gletschers sowie für die Zunge ein Massengewinn von nur 50 cm WW im Gegensatz zu 190 cm WW im Bereich des Akkumulationsgebietes. In Abbildung 3.11 sind die dazugehörige Nettobilanz, die Fläche und die mittlere spezifische Bilanz pro Höhenstufe gültig für die Winterbilanz des hydrologischen Jahres 2007/08 aufgezeichnet.

Abbildung 3.10: Flächen gleichen WW der Winterbilanz gültig für den 30.04.2008 und Gletschergrenze von 1998 und 2008, Frühjahrssondierungen und Schächte; Koordinatensystem: Gauß-Krüger M31.

Abbildung 3.11: Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (**links**) und mittlere spezifische Bilanz [mm WW] der Höhenstufen (**rechts**) gültig für die Winterbilanz des hydrologischen Jahres 2007/08 am Mullwitzkees.

In Abbildung 3.12 sind die Flächen gleichen Wasserwertes gültig für den 30.09.2008 und die Gletschergrenze von 1998, sowie die Gleichgewichtslinie und die Herbstsondierungen und Schächte aufgezeichnet. Erstellt wurde die Karte mit den Daten der Herbstschächte (Tab. 3.11), den Sondierungen der Herbstbegehung sowie den akkumulierten Ablationswerten der Pegel (Tab. 3.9). Die Abstufungen des Wasserwertes erstrecken sich von (blau) 187.5 cm WW im Akkumulationsgebiet, im 20 cm Intervall bis zur Gleichgewichtslinie, und im Ablationsgebiet im 50 cm Intervall bis zur Zunge, mit dem Maximum der Ablation (rot) von -475 mm WW. Die Verteilung der Nettobilanz, der Fläche und der mittleren spezifischen Bilanz pro Höhenstufe gültig für das hydrologische Jahr 2007/08 ist aus Abbildung 3.13 zu entnehmen. Auffällig ist der negative Bereich im höchstgelegenen Teil des Gletschers sowie das Maximum der Akkumulation im Bereich der flächenmäßig größten Höhenstufe zwischen 3200 und 3250 m. Die Werte dieser Abbildung sind in Tabelle 3.12 als mittlere Höhe der Höhenstufe, Fläche, Bilanz sowie Wasserwert der Höhenstufe aufgeschlüsselt.

Abbildung 3.12: Flächen gleichen WW der Jahresbilanz gültig für den 30.09.2008 und Gletschergrenze von 1998 und 2008, Gleichgewichtslinie, Herbstsondierungen und Schächte; Koordinatensystem: Gauß-Krüger M31.

Abbildung 3.13: Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere spezifische Bilanz [mm WW] der Höhenstufen (rechts) gültig für das hydrologische Jahr 2007/08 am Mullwitzkees.

Höhenstufe $[m]$	Fläche $[km^2]$	Bilanz $[10^3 m^3]$	Wasserwert $[mm]$
2675	0.006	-29.3	-4750
2725	0.052	-216.9	-4203
2775	0.074	-199.6	-2679
2825	0.141	-294.2	-2080
2875	0.221	-455.8	-2060
2925	0.278	-574.5	-2068
2975	0.261	-443.5	-1697
3025	0.288	-371.1	-1290
3075	0.259	-159.0	-613
3125	0.236	37.5	159
3175	0.290	219.6	757
3225	0.370	281.6	761
3275	0.293	127.3	435
3325	0.187	106.6	570
3375	0.105	8.3	79
3425	0.022	-16.7	-750
Gesamt	3.083	-1980	-642

Tabelle 3.12: Mittlere Höhe, Fläche, Bilanz und Wasserwert der jeweiligen Höhenstufe gültigfür das hydrologische Jahr 2007/08.

Durch Subtraktion der Winterbilanz von der Jahresbilanz wird, wie in Kapitel 2, Abschnitt 2.3, Gleichung 2.8, die Sommerbilanz berechnet. Somit ergab sich für das hydrologische Jahr 2008 eine spezifische Sommerbilanz von -2052 mm WW aus der spezifischen Winterbilanz von 1410 mm WW und der spezifischen Jahresbilanz von -642 mm WW. Die Kennzahlen der Massenbilanz des gesamten hydrologischen Jahres sind in Tabelle 3.13 aufgelistet, wobei die jeweiligen Notationen in Tabelle 2.1 zu finden sind.

Jahres	sbilanz	Wint	erbilanz	Sommerbilanz		Einheit
S_c	1.220					km^2
B_c	0.93					$10^6 \ m^3 \ WW$
b_c	764					$mm \; WW$
S_a	1.864					km^2
B_a	-2.91					$10^6 m^3 WW$
b_a	-1562					$mm \; WW$
S	3.084	S	3.084	S	3.084	km^2
В	-1.98	B_{wi}	4.35	B_{so}	-6.33	$10^{6} m^{3} WW$
b	-642	b_{wi}	1410	b_{so}	-2052	$mm \; WW$
AAR	0.396					
ELA	3115					m

 Tabelle 3.13: Kennzahlen der Jahres-, Winter- und Sommerbilanz des hydrologischen Jahres

 2007/08.

3.3 Das hydrologische Jahr 2008/09

Die Temperaturabweichungen und Prozent des Niederschlagsnormalwertes vom langjährigen Mittelwert (1971 – 2000) der einzelnen Monate des hydrologischen Jahres 2008/09 sind in den Abbildungen A.6 und A.9 aufgelistet. Während der Akkumulationsperiode lagen die Temperaturen in den Monaten Oktober bis Dezember, Februar und März im langjährigen Durchschnitt. Nur die Monate Jänner und April waren um -2.5 bis $-1.5^{\circ}C$ zu kalt bzw. um +1.5 bis $+2.5^{\circ}C$ zu warm. Für die gesamte Akkumulationsperiode lag der Niederschlag deutlich über dem Normalwert, was für die Massenbilanz des Gletschers besonders günstig war. So fielen im Dezember 175 bis 225% des Niederschlagsnormalwertes und im März 125 bis 175%. Nur im April war es mit 25 bis 75% deutlich zu trocken. Im Gegensatz dazu war es während der Ablationsperiode etwas zu warm, besonders im Mai lag die Durchschnittstemperatur mit $> 2.5^{\circ}C$ deutlich über dem Normalwert. Auch im August und September wurde der langjährige Mittelwert um +1.5 bis $+2.5^{\circ}C$ überschritten. Während es im Mai mit < 75% noch deutlich zu trocken war, wurden die Niederschlagsmengen im September um 125 bis 175% überschritten. Die Niederschläge in den Monaten Juni, Juli und August lagen im Durchschnitt. Alle Angaben sind für das nordwestliche Osttirol gültig.

3.3.1 Auswertung Totalisator 2009

Aus Tabelle 3.14 sind die Werte der Totalisatorablesungen am Defreggerhaus, sowie der daraus gebildete Mittelwert und die Niederschlagssummen der Ablesezeiträume Oktober 2008 bis Oktober 2009 zu entnehmen. Die Niederschlagssummen wurden der Totalisatorkalibrierungstabelle A.2 entnommen und für den Gesamtzeitraum aufsummiert. Für das gesamte hydrologische Jahr wurde am Defreggerhaus ein Niederschlag von 1624 mm

Ablesungsdatum	Messung $1-5 \ [mm]$				Mittel	NS $[mm]$	
08.10.2008	612	611	610	612	611	611	
06.04.2009	385	386	386	387	385	386	733
13.05.2009	352	349	353	355	352	352	111
27.06.2009	272	273	273	274	274	273	259
12.07.2009	259	257	257	256	259	258	49
01.08.2009	219	220	219	219	220	219	123
01.09.2009	171	171	172	173	172	172	150
19.09.2009	82	83	83	83	82	83	192
01.10.2009	79	79	79	78	78	79	7
	Summe	1624					

gemessen, wobei ca. 52% während der Akkumulationsperiode in Form von Schnee fielen, und somit für eine, für diese Region ungewöhnlich mächtige Winterschneedecke sorgte.

Tabelle 3.14: Totalisator Defreggerhaus 2008 – 2009; NS=Niederschlag.

3.3.2 Pegel 2009

Alle Pegel des Vorjahres wurden im Sommer 2009 wieder gefunden und mehrmals abgemessen. In Tabelle 3.15 sind die akkumulierten Ablationswerte der einzelnen Pegel aufgelistet, sowie deren Ablationsverlauf in Abbildung A.3. Besonders auffällig sind die negativen Werte im Juni bei Pegel 7 bzw. bis zum August bei den meisten Pegeln verursacht durch Aufeis. Aufeis entsteht durch das Wiedergefrieren von Schmelzwasser an der Eisoberfläche. So wurde ein Massenzuwachs von bis zu $26 \ cm$ Eis bei Pegel 10 bis zum 01.08.2009 gemessen. Eine weitere Besonderheit des hydrologischen Jahres 2009 ist der späte Ablationsbeginn. Bei einem Großteil der Pegel begann die Ablation erst im August, verursacht durch Aufeis und die mächtige Winterschneedecke. Durch vereinzelte Schneefälle während des Sommers, bei denen die Schneefallgrenze im unteren Bereich der Zunge lag, bildete sich ein relativ starker Ablationsgradient auf der Zunge aus. Bei Pegel 7 wurde ein akkumulierter Ablationswert von 429 cm WW gemessen. Dieser Wert wurde jedoch auf 325 cm WW korrigiert, da die Steigung der Geraden im Ablationsverlauf (Abb. A.3), verursacht durch Aufschwimmen des Pegels zu steil war. Die Korrektur erfolgte durch Anpassung der Ablationskurve zwischen Ablesung vier und sechs. Weiters wurde Pegel 3 und 7 am 01.09.2009 1200 cm neu gebohrt, wobei Pegel 7 um ca. 120 m zurückgesetzt wurde. Es ergaben sich Ablationswerte zwischen $81 \ cm \ WW$ am Plateau des Gletschers bei Pegel 16 und 325 cm WW bei Pegel 7 im untersten Bereich der Zunge. Zur genaueren geographischen Verortung der Pegel, wurden diese am 01.09.2009 mittels DGPS und einer horizontalen sowie vertikalen Punktgenauigkeit von $< 10 \ cm$ eingemessen. Somit besteht die Möglichkeit die Fließgeschwindigkeit des Gletschers an den Pegeln mit einer Genauigkeit von $\pm 20 \ cm$ in den Folgejahren zu bestimmen.

		Neuschnee korr.					
Pegelnr.	27.06.2009	12.07.2009	01.08.2009	01.09.2009	19.09.2009	30.09.2009	WW $[cm]$
1	0	0	24	94	130	144	130
2	0	0	-7	58		108	97
3	0	0	0	73	93	94	85
4	0	0	-3	97		136	122
5	0	0	0	139	176	220	198
6	0	0	-8	140	177	201	181
7	-10	51	141	408	445	477	429 (325)
8	0	0	-25	122	142	165	149
10	0	0	-26	91		118	106
11	0	0	-10	83	117	117	105
15	0	0	8	159		183	165
16	0	-14	28	113		129	98
17	0	0	0	102	123	130	114

Tabelle 3.15: Ablationstabelle und Wasserwerte der Pegel 2009; negative Werte durch Aufeis.

3.3.3 Frühjahrs- und Herbstbegehung 2009

Zur Bestimmung der Schneerücklage am Ende der Akkumulationsperiode wurde vom 12. bis 14. Mai 2009 die Frühjahrsbegehung am Mullwitzkees durchgeführt. Es wurden drei Schneeschächte gegraben, mehrere Quer- und Längsprofile sondiert und der Totalisator am Defreggerhaus ausgelesen. In Tabelle 3.16 sind die Ergebnisse der Frühjahrsschächte aufgelistet, sowie die dazugehörigen Dichteprofile in Abbildung 3.14. Der Wasserwert der Frühjahrsschächte lag zwischen 1203 mm und 2082 mm bei einer mittleren Schneedichte von 462 kg m⁻³. Besonders auffallend ist der relativ homogene Verlauf der Dichte ab einer Tiefe von ca. 100 cm bei allen Schächten.

	Frühja	Einheit		
WW	2082	1982	1203	mm
ρ	464	479	444	$kg m^{-3}$
$\overline{\rho}$ aller	r Frühjε	ahrsschächte	462	$kg m^{-3}$

Tabelle 3.16: Wasserwert und Dichte, sowie mittlere Dichte aller Frühjahrsschächte 2009.

Abbildung 3.14: Dichteprofile aller Frühjahrsschächte 2009.

Am 19. und 20. September 2009 wurde die Herbstbegehung durchgeführt. Dabei wurden zu Bestimmung der Dichte der Schneerücklage drei Schneeschächte gegraben und zur Bestimmung der Schneehöhenverteilung mehrere Quer- und Längsprofile sondiert. Weiters wurden alle Pegel abgemessen und der Totalisator am Defreggerhaus abgelesen. Die Sondierungen, Pegelabmessungen, und das Ablesen und Wiederbefüllen des Totalisators wurde am 01.10.2008 erneut durchgeführt um das hydrologische Jahr abzuschließen. In Tabelle 3.17 sind die Wasserwerte, die Dichte der Schächte sowie die mittlere Dichte aller Herbstschächte angeführt, bzw. deren Dichteprofil mit der Tiefe in Abbildung 3.15. Bei einer mittleren Dichte von 545 $kg m^{-3}$ ergaben sich Wasserwerte zwischen 345 mm und 1253 mm für die Schneerücklage an den Herbstschächten.

	Herbs	Einheit		
WW	1253	345	637	mm
ρ	595	512	528	$kg m^{-3}$
$\overline{\rho}$ aller	Herbs	tschächte	545	$kg m^{-3}$

Tabelle 3.17: Wasserwert und Dichte, sowie mittlere Dichte aller Herbstschächte 2009.

Abbildung 3.15: Dichteprofile aller Herbstschächte 2009.

3.3.4 Winter-, Sommer- und Jahresbilanz 2009

Mit den Werten der Frühjahrsbegehung wurde die Karte der Winterbilanz gültig für den 30.04.2009 in Abbildung 3.16 erstellt, wobei jeweils die Flächen gleichen Wasserwertes zwischen 50 und 230 cm, sowie die Gletschergrenze 1998 und 2009 und die Frühjahrssondierungen und Schächte eingetragen sind. Die Gletschergrenze wurde mittels DGPS und einer Punktgenauigkeit von < 10 cm an der Gletscherzunge und um die Felsinseln für das hydrologische Jahr 2009 korrigiert. Wie bereits in den Vorjahren ergab sich für die Winterbilanz ein ähnliches Muster mit dem Maximum der Schneerücklage knapp unterhalb des Plateaus im konkaven Gelände. Die Flächenhöhenverteilung, sowie die Verteilung der Nettobilanz und der mittleren spezifischen Bilanz pro Höhenstufe gültig für die Winterbilanz 2009 sind in Abbildung 3.17 aufgezeichnet. Für die Winterbilanz ergab sich somit ein Massengewinn am Gletscher von $4.59 \cdot 10^6 m^3$, was einer mittleren spezifischen Winterbilanz von 1519 mm WW entspricht.

Abbildung 3.16: Flächen gleichen WW der Winterbilanz gültig für den 30.04.2009 und Gletschergrenze von 1998 und 2009, Frühjahrssondierungen und Schächte; Koordinatensystem: Gauß-Krüger M31.

Abbildung 3.17: Nettobilanz [10⁵ m^3] und Fläche [10⁵ m^2] der Höhenstufen (**links**) und mittlere spezifische Bilanz [mm WW] der Höhenstufen (**rechts**) gültig für die Winterbilanz des hydrologischen Jahres 2008/09 am Mullwitzkees.

Die Massenbilanzkarte in Abbildung 3.18 wurde mit den Daten der Herbstbegehung und den Pegelmessungen erstellt. Dabei sind die Flächen gleichen Wasserwertes, zwischen $-325 \ cm$ im 50 cm Intervall im Ablationsgebiet, bis 112.5 cm im 25 cm Intervall im Akkumulationsgebiet, gültig für den 30.09.2009, sowie die Gleichgewichtslinie und die Herbstsondierungen und Schächte aufgezeichnet. In Abbildung 3.19 ist der zur Jahresbilanz 2009 passende Verlauf der Nettobilanz, der mittleren spezifischen Bilanz sowie der Fläche pro Höhenstufe aufgetragen, bzw. deren Werte in Tabelle 3.18. Für das hydrologische Jahr 2009 ergab sich somit im Vergleich zu den Vorjahren ein relativ geringer Massenverlust von $-1.47 \cdot 10^6 \ m^3$, was einer spezifischen Massenbilanz von $-487 \ mm \ WW$ entspricht.

Abbildung 3.18: Flächen gleichen WW der Jahresbilanz gültig für den 30.09.2009 und Gletschergrenze von 1998 und 2009, Gleichgewichtslinie, Herbstsondierungen und Schächte; Koordinatensystem: Gauß-Krüger M31.

Abbildung 3.19: Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere spezifische Bilanz [mm WW] der Höhenstufen (rechts) gültig für das hydrologische Jahr 2008/09 am Mullwitzkees.

Höhenstufe $[m]$	Fläche $[km^2]$	Bilanz $[10^3 m^3]$	Wasserwert $[mm]$
2675	0.000	-0.7	-3250
2725	0.033	-90.2	-2772
2775	0.068	-104.7	-1537
2825	0.119	-123.2	-1032
2875	0.203	-265.4	-1308
2925	0.275	-392.2	-1426
2975	0.259	-302.0	-1166
3025	0.286	-229.4	-803
3075	0.257	-63.5	-247
3125	0.235	11.5	49
3175	0.294	41.2	140
3225	0.370	91.6	247
3275	0.293	-21.6	-74
3325	0.193	44.0	228
3375	0.114	-36.4	-319
3425	0.027	-32.4	-1211
Gesamt	3.026	-1473.6	-487

Tabelle 3.18: Mittlere Höhe, Fläche, Bilanz und Wasserwert der jeweiligen Höhenstufe gültigfür das hydrologische Jahr 2008/09.

Mit der Gleichung 2.8, Kapitel 2, Abschnitt 2.3, wird durch Subtraktion der Winterbilanz von der Jahresbilanz die Sommerbilanz berechnet. Daraus ergab sich eine mittlerer spezifischer Bilanzwert von $-2006 \ mm \ WW$ gültig für die Ablationsperiode 2009 am Mullwitzkees, was einem Massenverlust von $-6.06 \cdot 10^6 \ m^3$ während dieser Periode entspricht. Eine Zusammenfassung der Kennzahlen der Gletschermassenbilanz am Mullwitzkees für das hydrologische Jahr 2009 gibt Tabelle 3.19.

Jahres	sbilanz	Wint	erbilanz	Sommerbilanz		Einheit
S_c	1.110					km^2
B_c	0.45					$10^6 m^3 WW$
b_c	408					$mm \; WW$
S_a	1.916					km^2
B_a	-1.92					$10^6 m^3 WW$
b_a	-1005					$mm \; WW$
S	3.026	S	3.026	S	3.026	km^2
В	-1.47	B_{wi}	4.59	B_{so}	-6.06	$10^{6} m^{3} WW$
b	-487	b_{wi}	1519	b_{so}	-2006	$mm \; WW$
AAR	0.367					
ELA	3116					m

Tabelle 3.19: Kennzahlen der Jahres-, Winter- und Sommerbilanz des hydrologischen Jahres
 2008/09.

Kapitel 4

Längen-, Flächen- und Volumsänderung 1850 – 2009

Um den Zusammenhang zwischen klimatischen Änderungen und dem Massenhaushalt eines Gletschers besser verstehen zu können, ist es wichtig, seine Geschichte d. h. die Längen-, Flächen- und Volumsänderungen der Vergangenheit zu kennen. Am Mullwitzkees kann die Volums- und Flächenänderung bis zur kleinen Eiszeit um 1850 mit Hilfe von früheren Untersuchungen und Karten zurückverfolgt werden. Die Messungen der Längenänderungen des DuÖAVs (Deutscher und Österreichischer Alpenverein) am Mullwitzkees gehen bis ins Jahr 1896 zurück (Fritzsch, 1898). Die Bestimmung des Massenverlustes erfolgt mit Hilfe von DGMs (digitales Geländemodell), wobei für die Region Venedigergruppe das DGM aus dem österreichischen Gletscherinventar 1998 das aktuellste ist. Es wäre sinnvoll, bis zum Ende des Projektes Massenhaushaltsuntersuchungen am Mullwitzkees (2011) mit Hilfe eines aktuellen DGMs die Volumsänderungen zu berechnen und somit die Zeitreihe zu vervollständigen. Im folgenden Kapitel werden die Datengrundlagen, die Methoden der Bestimmung der Längen-, Flächen- und Volumsänderung am Mullwitzkees und deren Ergebnisse abgehandelt.

4.1 Datengrundlage

Zur Bestimmung der Längen-, Flächen- und Volumsänderung eines Gletschers werden verschiedene Datengrundlagen benötigt. Die Längenänderungen des Zettalunitzkeeses, der Zunge des Mullwitzkeeses werden bereits seit 1896 (Fritzsch, 1898) im Auftrag des Du-ÖAVs, später ÖAVs gemessen. Die Ergebnisse der Längenänderungen wurden bis 2005 in den "Mitteilungen des österreichischen Alpenvereins" (Patzelt, 2005), und seit der Umbenennung der Zeitschrift in "Bergauf" 2006 (Patzelt, 2006) veröffentlicht. Der Bestimmung der Flächen- und Volumsänderung des Mullwitzkeeses liegen historische Karten, die österreichischen Gletscherinventare von 1969 und 1998, sowie Messungen mittels DGPS im Jahre 2009 zu Grunde. Die Gletschergrenze und Höhenschichtlinien zum Gletscherhochstand von 1850 wurden der Karte der Großvenedigergruppe von F. Keil 1866 im Maßstab 1:84000 (Keil, 1866) bzw. den Gletscherrändern 1850 von K. Nicolussi entnommen. Die Karte von F. Keil wurde mit Hilfe der Aufzeichnungen von F. Simony 1865 erstellt (Simony, 1865). Aus der Karte der Venedigergruppe des DuÖAVs von 1960 im Maßstab 1:25000 wurde die Ausdehnung des Mullwitzkeeses für das Jahr 1930 entnommen. Der Stand der Gletscher dieser Karte ist für den Zeitraum von 1927 bis 1934 mit Hilfe der Landesaufnahmen des kartografischen (früher militärgeographischen) Institutes angegeben. Für das Jahr 1969 wurde ein österreichisches Gletscherinventar mit photogrammetrischer Auswertung von Luftaufnahmen erstellt (Patzelt, 1978, 1980). Die Daten wurden erneut von Würländer und Eder (1998) ausgewertet. In gerasterten DGMs mit einer Auflösung von fünf mal fünf Metern sind die Flächen- und Höheninformationen sowie die Gletschergrenzen gespeichert. Ebenso wurde für die Jahre 1995 bis 1998 ein österreichisches Gletscherinventar erstellt (Lambrecht und Kuhn, 2007), worin zusätzliche Informationen über die Eisdicken der Gletscher enthalten sind (Span et al., 2005; Fischer et al., 2007). 2009 wurden am Mullwitzkees erstmals Messungen mittels DGPS durchgeführt, wodurch die Gletschergrenze von 1998 für das Jahr 2009 im Bereich der Felsinseln und der Gletscherzunge angepasst werden konnte. Die geodätische Datengrundlage ist in Tabelle 4.1 chronologisch aufgelistet und der Gletscherstand des Mullwitzkeeses (MW) angegeben. Die Karte der Venedigergruppe von 1969 ist eine unveränderte Auflage der Karte von 1938.

	Titel	Herausgeber	Maßstab	Gletscherstand MW
1866	Großvenedigergruppe	ÖAV	1:84000	1865
1938	Venedigergruppe	ÖAV	1:25000	1930
1960	Venedigergruppe	ÖAV	1:25000	1930
1969	Erstes österreich	1969		
1995 bis 1998	Zweites österreic	1998		
2009	DGPS korrigierte Glet	Mullwitzkeeses	2009	

Tabelle 4.1: Übersichtstabelle der geodätischen Datengrundlage; MW=Mullwitzkees.

4.2 Längenänderung (1896 – 2009)

Bereits seit 1896 werden die Längenänderungen des Zettalunitzkeeses, die Zunge des Mullwitzkeeses im Auftrag des DuÖAVs gemessen. Besonders zu Beginn der Messungen ist die Zeitreihe der Längenänderung von größeren Lücken geprägt. So wurde die erste Messung der Änderung 1901, fünf Jahre nach der Installation der ersten Messmarke im Jahr 1896 (Fritzsch, 1898), durchgeführt. Auch in der Zeit von 1901 bis 1923 wurden die Längenänderungen des Zettalunitzkeeses nur viermal ermittelt. Ab 1923 erfolgten die Messungen im zweijährigen Zyklus mit kleineren Lücken um 1944/45, 1955 bis 1957 und 1961/62. Seit 1963 stehen jährliche Ergebnisse der Längenänderung mit Ausnahme des Jahres 1998 zur Verfügung (Abb. 4.1).

4.2.1 Bestimmung der Längenänderung

Bei der Bestimmung der Längenänderung eines Gletschers wird der Abstand (a) bekannter Messmarken im unmittelbaren Gletschervorfeld, bis zum Zungenende mittels Maßband abgemessen, wobei der Abstand zwischen Messmarke und Gletscherzunge maximal 50 m beträgt. Aus der Differenz des vorjährigen Abstandes (a_1) zwischen Messmarke und Gletscherzunge und dem neuen Abstand (a_2) ergibt sich die Längenänderung Δl (Glg. 4.1). Mit dem arithmetischen Mittelwert aller Abstandsänderungen wird die durchschnittliche Längenänderung $(\overline{\Delta l})$ der Gletscherzunge ermittelt (Glg. 4.2), wobei n für die Anzahl der Messungen und i für die jeweilige Messung stehen.

$$\Delta l = a_1 - a_2 \tag{4.1}$$

$$\overline{\Delta l} = \frac{1}{n} \sum_{i=1}^{n} \Delta l_i = \frac{\Delta l_1 + \Delta l_2 + \dots + \Delta l_n}{n}$$
(4.2)

Abbildung 4.1: Kumulative Längenänderung (oben) und Längenänderung der Einzeljahre (unten) des Zettalunitzkeeses von 1896 – 2009 (Quelle: ÖAV).

4.2.2 Ergebnisse

Die ersten Messmarken im Gletschervorfeld des Zettalunitzkeeses wurden von M. Fritzsch gesetzt und beschrieben (Fritzsch, 1898). In der Abbildungen 4.1 sind die Ergebnisse der Längenänderung des Zettalunitzkeeses grafisch dargestellt, wobei der gesamte Rückzug der Gletscherzunge als akkumulierte Längenänderung, und die Längenänderung der einzelnen Messungen aufgezeichnet ist. Beim Vergleich der Einzeljahre ist darauf zu achten, dass sich der Wert der Längenänderung immer auf den Gesamtzeitraum zwischen zwei Messungen bezieht. So bezieht sich beispielsweise die Längenänderung des Jahres 1901 auf einen Zeitraum von fünf Jahren. Auffallend ist der Gletschervorstoß zwischen 1980 und 1985 von insgesamt 18 m. Dieser Vorstoß war der Einzige beobachtete während der Periode 1850 bis 2009. Der stärkste Rückzug eines Einzeljahres hingegen wurde im hydrologischen Jahr 1968/69 mit -76 m beobachtet. Der größte Wert in Abbildung 4.1 ist für das Jahr 1923 mit -103 m angegeben. Dieser ist jedoch für einen Zeitraum von elf Jahren (1911/12 bis 1922/23) gültig.

Der akkumulierte Wert aller Längenänderungen des Zettalunitzkeeses seit Beginn der Messungen von 1896 bis 2009 ergibt eine gesamte Längenänderung von -1573 m. In der Beschreibung von Fritzsch (1898), wird der Rückzug des Mullwitzkeeses seit seinem Hochstand von 1850/55 bis 1896 mit 1077 m angegeben. Daraus ergibt sich für die Periode 1850 bis 2009 eine Längenänderung von -2650 m, und geteilt durch 159 Jahre eine mittlere jährliche Änderung von -16.7 m. In Abbildung 4.2 sind die Gletschergrenzen der Jahre 1850, 1930, 1969, 1989 und 2009 zu sehen. Der Abstand zwischen den einzelnen Zungenenden, mit der Software ArcGis abgemessen, ergibt einen Gesamtwert von -2660 m. Somit wird der Wert der tatsächlichen Messung des ÖAV von -2650 m mit einer Abweichung von 10 m bzw. 0.4% bestätigt.

Abbildung 4.2: Rückzug des Zettalunitzkeeses mit Längenangabe durch Abmessung der projizierten Flächen mit der Software *ArcGis* in Metern von 1850, 1930, 1969, 1998 und 2009.

4.3 Bestimmung der Flächenänderung (1850 – 2009)

Die Flächenänderung des Gletschers wurde aus der Differenz der unterschiedlichen Gletschergrenzen der Jahre 1850, 1930, 1969, 1998 und 2009 errechnet. Mit der Software *ArcGis* wurden die Karten von 1850 und 1930 georeferenziert und die Gletschergrenze sowie die Höhenschichtlinien nachgezeichnet, wobei die Gletschergrenze am Plateau entlang der Wasserscheide an die der Gletscherinventare 1969 bzw. 1998 angepasst wurde. Für die Jahre 1969 und 1998 wurden die Gletschergrenzen aus den österreichischen Gletscherinventaren entnommen. Zusätzlich wurde die DGPS korrigierte Gletschergrenze des Inventars von 1998 für 2009 ausgewertet. Zur Bestimmung der Flächenänderungen des Mullwitzkeeses wurden die Differenzen der jeweiligen Flächen ermittelt und mit der Software *ArcGis* grafisch dargestellt (Abb. 4.3).

4.3.1 Ergebnisse

In Tabelle 4.2 sind die Flächen der einzelnen Jahre, sowie die Flächenänderungen in km^2 angegeben. Zum Hochstand am Ende der kleinen Eiszeit um 1850/55 (keine genaue Jahresangabe möglich) betrug die Ausdehnung des Mullwitzkeeses 5.49 $\cdot 10^6 \ km^2$ und verlor

bis 2009 45% der Fläche auf $3.03 \cdot 10^6 \ km^2$, wobei 36% bis zum ersten österreichischen Gletscherinventar von 1969 verloren gingen. In Abbildung 4.3 sind die Gletscherflächen des Mullwitzkeeses der Jahre 1850, 1930, 1969, 1998 und 2009 auf dem Orthofoto von 1998 dargestellt. Eine Fehlerabschätzung wird in Abschnitt 4.5 durchgeführt.

Abbildung 4.3: Flächenänderungen des Mullwitzkeeses von 1850 – 2009.

Jahr	1850	1930	1969	1998	2009
Fläche $[km^2]$	5.49	4.52	3.52	3.24	3.03
%der Fläche von 1850	100%	82%	64%	59%	55%
Zeitraum	1850-1930	1930-1969	1969 - 1998	1998-2009	1850-2009
Flächenänderung $[km^2]$	-0.97	-1.00	-0.28	-0.22	-2.47

Tabelle 4.2: Flächenänderung Zettalunitzkees 1850 – 2009.

4.4 Bestimmung der Volumsänderung (1850 – 1998)

Die Bestimmung der Volumsänderung eines Gletschers erfolgte auf Grundlage der geographischen Karten von 1866 und 1960 (Stand der Gletscher 1930) sowie den Gletscherinventaren von 1969 und 1998. Aus den Gletschergrenzen und Höhenschichtlinien der Jahre 1850 und 1930 wurden mit der Software ArcGis mit "Topo to Raster" DGMs erzeugt und mit "Focal Statistics" und der Funktion "mean" die Abstufungen zwischen den Höhenstufen geglättet. Dabei wurde der Mittelwert zwischen drei benachbarten Zellen gebildet, was einem Mittelwert über 15 m entspricht. Durch Subtraktion der Geländemodelle von 1850, 1930 1969 und 1998 wurde die relative Höhenänderung der Perioden 1850 bis 1930, 1930 bis 1998, 1969 bis 1998 und 1850 bis 1998 berechnet.

Abbildung 4.4: Aus SSW beleuchtetes Modell des Untergrundes des Mullwitzkeeses mit der Gletschergrenze von 2009.

Die Eisdicke am Mullwitzkees wurde mittels GPR (Ground Penetrating Radar) ermittelt (Span et al., 2005; Fischer et al., 2007). Bei der Verwendung von GPR wird der Laufzeitunterschied zwischen direktem Signal (zwischen Sender und Empfänger) und dem am Gletscheruntergrund reflektierten Signal gemessen, und mit der bekannten Ausbreitungsgeschwindigkeit der Weg und somit die Eisdicke berechnet. Eine genaue Beschreibung der Methode, dem Messgerät und der Auswertung ist in Span et al. (2005) zu finden. Durch Messungen entlang mehrerer Quer- und Längsprofile konnte die Eisdickenverteilung und somit ein DGM des Gletscheruntergrundes erstellt werden. Durch Subtraktion des Untergrundes von den Geländemodellen der Jahre 1850, 1930 und 1969 wurden die Eisdickenverteilungen berechnet und Karten erstellt. Abbildung 4.4 zeigt den von SSW beleuchteten Untergrund des Mullwitzkeeses mit der Gletschergrenze von 2009.

4.4.1 Ergebnisse

In Tabelle 4.3 sind die Kennzahlen der Eisdicken sowie deren Änderungen seit 1850 zusammengefasst. Die Volumina wurden aus den mittleren Eisdicken und den Flächenwerten der Tabelle 4.2 berechnet. 1850 betrug das Volumen des Gletschers 403.68 · 10⁶ m^3 , bei einer mittleren Eisdicke von 74 m. Bis 1998 verlor der Gletscher ca. 73% seines Volumens, was einer Volumsänderung von $-295.76 \cdot 10^6 m^3$ oder einem Verlust von rund 0.3 km^3 entspricht. In Abschnitt 4.5 wird eine Fehlerabschätzung der Ergebnisse der Volumsänderung durchgeführt.

Jahr	1850	1930	1969	1998
mittlere Eisdicke $[m]$	74	50	38	33
maximale Eisdicke $[m]$	195	116	83	75
Volumen $[10^6 m^3]$	404	228	135	108
%des Volumens von 1850	100	57	33	27
Zeitraum	1850-1930	1930-1969	1969-1998	1850-1998
Volumsänderung $[10^6 m^3]$	-176	-94	-26	-296

Tabelle 4.3: Eisdicke, Volumen und Volumsänderung des Mullwitzkeeses von 1850 – 1998.

Die Eisdicken des Mullwitzkeeses der Jahre 1850, 1930, 1969 und 1998 im Intervall von 10 *m* sind in den Abbildungen A.18 und A.19 grafisch dargestellt. Die Konturlinien im Abstand von 50 *m* stammen aus den DGM der einzelnen Jahre. Aufgrund von ungenauen Karten und daher fehlerhaften Geländemodellen ergeben sich, speziell an den Gletscherrändern, größere Fehler von bis zu 40 *m*. Diese Gebiete sind in den Karten als Graustufen markiert. Die Fehler werden erst während der Auswertung sichtbar. Zu Beginn wird der Untergrund aus dem DGM von 1998 abzüglich der Eisdicken konstruiert. Die Differenz zwischen den einzelnen Höhenmodellen (1850, 1930, 1969 und 1998) und dem Untergrund ergibt das Volumen des Gletschers. Liegen die Höhenschichtlinien des Untergrundes über denen des Oberflächenmodells so ergeben sich negative Eisdicken. Besonders deutlich wird dies in Abbildung A.18 (rechts) im obersten Bereich des Gletscherplateaus, da das DGM von 1930 besonders in diesem Bereich mit nicht korrigierbaren Fehlern behaftet ist.

Für die Perioden 1850 bis 1930, 1930 bis 1998, 1969 bis 1998 und 1850 bis 1998 sind die Eisdickenänderungen in den Abbildungen A.20 und A.21 mit farblichen Abstufungen im Intervall von 10 m grafisch dargestellt. Die größten Eisdickenverluste seit 1850 ergaben sich im Bereich des Zungenendes von 1998 mit bis zu 200 m. Beim Vergleich der Eisdickenänderungen der Jahre 1850 bis 1930 (Abb. A.20) und 1930 bis 1998 (Abb. A.21) sind die wechselnden Muster von Eisdickenzunahme und Abnahme am Plateau des Gletschers besonders auffällig. Der Grund dafür liegt in den Unsicherheiten bzw. Fehlern der DGM von 1850 und 1930 (Abschn. 4.5). Die Abbildungen der Eisdickenänderungen wurden aus den Differenzen zwischen den einzelnen DGMs berechnet. Durch Fehler in der Datengrundlage kann es vorkommen, dass einzelne Bereiche eines DGMs höher liegen, als die eines früheren DGMs, wodurch sich positive Eisdickenänderungen ergeben.

4.5 Fehlerabschätzung

Um die Größenordnung der Fehler der Ergebnisse abschätzen zu können, müssen zum einen die Unsicherheiten der Datengrundlage und zum anderen die Fehlerfortpflanzung erfasst werden. In Tabelle 4.4 sind Unsicherheiten (u) in horizontaler Richtung (xy) und vertikaler Richtung (z), sowie die daraus berechneten Unsicherheiten für die Fläche (u_A) , die Höhe (u_H) und das Volumen (u_V) der einzelnen Jahre zusammengefasst. Die Berechnung erfolgte mit der Gauß'schen Fehlerfortpflanzung (Glg. 4.3).

$$u_y = \sqrt{\left(\frac{\partial y}{\partial x_1} \cdot u_1\right)^2 + \left(\frac{\partial y}{\partial x_2} \cdot u_2\right)^2 + \dots}$$
(4.3)

Die Unsicherheit (u) einer bestimmten Größe (y) wird dabei aus den jeweiligen Ausgangsgrößen (x_i) und deren Unsicherheiten (u_i) berechnet. Für die Unsicherheit des Volumens (u_V) beispielsweise werden die Fläche (A) (Tab. 4.2), die mittlere Eisdicke (H) (Tab. 4.3) sowie die geschätzten Unsicherheiten (u_{xy}) und (u_z) (Tab. 4.4) betrachtet. Aufgrund der relativ großen mittleren Fehler ergeben sich maximale relative Unsicherheiten von bis zu 22.2%.

Jahr	1850	1930	1969	1998	2009	Einheit
u_{xy}	± 10	± 10	± 2	±1	±1	m
u_z	± 10	± 10	± 2	± 0.75		m
A	5.493	4.525	3.521	3.244	3.026	km^2
u_A	± 0.033	± 0.030	± 0.005	± 0.003	± 0.002	km^2
u_A	± 0.6	± 0.7	± 0.2	± 0.1	± 0.1	%
Н	74	51	38	33		m
u_H	± 11.2	± 11.2	± 5.4	± 5.1		m
u_H	± 15.2	± 22.2	± 14.1	± 15.2		%
V	404	228	135	108		$10^6 m^3$
u_V	± 61.5	± 50.6	± 19.0	± 16.4		$10^{6} m^{3}$
u_V	± 15.2	± 22.2	± 14.1	± 15.2		%

Tabelle 4.4: Kennzahlen der Unsicherheiten der Flächen-, Höhen- und Volumsangaben.

Bei der Erstellung der Gletschergrenzen und des DGMs zum Gletscherhochstand um 1850 wurde die geographische Karte von Keil (1866) ausgewertet. In den Beschreibungen zur Karte (Simony, 1865; Keil, 1866) finden sich jedoch keine genauen Fehlerangaben. Auch in den Ausführungen von Arnberger (1970) zur Kartographie im Alpenverein heißt es zu dieser Karte: "Die Karte zeichnet sich durch ein hohes Maß an Anschaulichkeit und

eine für die damalige Zeit erstaunliche Genauigkeit der Höhenlinienführung aus"¹. Über die genaue Lage der Gletscherzunge zum Hochstand um 1850 finden sich in der Literatur unterschiedliche Angaben (Sonklar, 1866; Fritzsch, 1898). In der Dissertation von Patzelt (1967) werden die Angaben von Richter (1888) als "erste verlässliche Nachricht über den Gletscherzustand"² angegeben. Daher wurde in dieser Arbeit die Zunge auf ca. 2250 m eingezeichnet, die Gletschergrenzen entlang der Moränen von 1850 gezogen und die Höhenschichtlinie am Gletscher zur Erstellung des DGMs händisch interpoliert. Am Plateau des Gletschers wurden, zur besseren Vergleichbarkeit, die Grenzen der österreichischen Gletscherinventare 1969, 1998 übernommen. Das Einzeichnen der Gletschergrenzen entlang der Moränen birgt jedoch auch die Gefahr eines großen Höhenfehlers durch das Absinken bzw. der Erosion dieser steilen Moränen über 150 Jahre bis zur Aufnahme des Orthofotos von 1998. Aufgrund fehlender Zahlen wurde die mittlere Unsicherheit in x-, y- und z-Richtung für das Jahr 1850 auf $\pm 10 \ m$ geschätzt. Es ist zu beachten, dass es sich bei diesen Werten um geschätzte mittlere Abweichungen handelt, die auch maximale Fehler, die um ein Vielfaches größer sind, enthalten können.

Der Erstellung der Gletschergrenzen und des DGMs von 1930 lag die geographische Karte der Venedigergruppe des DuÖAVs von 1960 (unveränderte Karte von 1938) mit dem Stand der Gletscher für den Zeitraum 1927 bis 1934 durch die staatliche Landesaufnahme zu Grunde. Die Lücken der Karten durch terrestrische Photogrammetrie wurden dabei durch die Aerophotogrammetrie ergänzt (Arnberger, 1970). Da auch zu dieser Karte keine Größenordnung des Fehlers angegeben wird, muss der mittlere Fehler in horizontaler sowie in vertikaler Richtung wie für das Jahr 1850 auf $\pm 10 m$ geschätzt werden.

Die DGM der österreichischen Gletscherinventare 1969 (Patzelt, 1978, 1980), und 1998 (Lambrecht und Kuhn, 2007) wurden mit photogrammetrischen Auswertungen von Luftaufnahmen erstellt (Würländer und Eder, 1998) und zielt auf eine Genauigkeit von $\pm 75 \ cm$ als mittlerer Fehler der Höhe ab (Kuhn et al., 2008). Am Mullwitzkees beträgt der Schätzwert der Unsicherheit in x- und y-Richtung $\pm 2 \ m$ für das Jahr 1969 und $\pm 1 \ m$ für 1998. Zu den Messungen der Eisdicke und dem daraus resultierenden DGM des Untergrundes am Mullwitzkees kann der mittlere Fehler mit einer Genauigkeit von $\pm 5 \ m$ angenommen werden. Dieser Fehler setzt sich aus den Fehlern der Messungen der Eisdicken und aus deren Auswertungen zusammen. So sind in dieser Ungenauigkeit Fehler interner Reflexionen, ungünstiger Untergrundsgeometrie, unbekannter Dicke der Firn- und Schneeschicht und Fehler durch Vernachlässigungen der Hangneigung enthalten (Span et al., 2005).

¹(Arnberger, 1970) Die Kartographie im Alpenverein. S. 64

²(Patzelt, 1967) Die Gletscher der Venedigergruppe. S. 91

Kapitel 5

Interpretation

Zur Interpretation des Gletscherrückzugs seit dem Hochstand um 1850 wurden die Ergebnisse der Flächen- und Volumsänderungen mit den Ergebnissen des Projektes HISTALP (Abschn. 5.1) und die Ergebnisse der Massenhaushaltsuntersuchungen mit denen anderer Gletscher verglichen (Abschn. 5.2). Beim Vergleich der Klimareihen mit den Änderungen des Gletscherzustandes muss jedoch beachtet werden, dass sich die Reaktionszeiten verschiedener Gletscher auf Veränderungen des Klimas sehr stark unterscheiden können (Kuhn et al., 1985), und bei der Vernachlässigung der Reaktionszeit die Möglichkeit einer Fehlinterpretation steigt. Für das Mullwitzkees sind keine Reaktionszeiten bekannt, wodurch bei der Interpretation besondere Vorsicht geboten ist.

5.1 HISTALP

Bei dem Projekt HISTALP handelt es sich um eine Rekonstruktion und Homogenisierung von Langzeitdatensätzen von Temperatur, Niederschlag, Luftdruck, Sonnenschein und Bewölkung für den Großraum Alpen. Das Projekt, die Ergebnisse und Daten sind auf der Homepage der ZAMG veröffentlicht (www.zamg.ac.at/histalp) (Auer et al., 2007; Böhm et al., 2009). Da das Mullwitzkees auf der Südseite des Alpenhauptkamms liegt, wurden die homogenisierten Temperatur- und Niederschlagsdaten der Station Lienz betrachtet (Abb. 5.1). Die Zeitreihen beginnen um 1854, also zur Zeit des Hochstandes des Mullwitzkeeses. Zur besseren Vergleichbarkeit der Ergebnisse sind in Tabelle 5.1 die mittleren jährlichen Änderungen der einzelnen Perioden aufgelistet. Die jährliche Flächenänderung (ΔA) und die jährliche Volumsänderung (ΔV) wurde in Kapitel 4 berechnet. Die mittleren Jahrestemperaturen (\overline{T}) und die mittleren Jahresniederschläge (\overline{N}) der Station Lienz wurde dem Datensatz des Projektes HISTALP entnommen. Als $\Delta \overline{T}$ und $\Delta \overline{N}$ sind die Abweichungen der Temperatur in °C und Prozent des Niederschlags zur Gesamtperiode von 1854 bis 2008 angegeben.

	1850-1930	1930-1969	1969-1998	1998-2009	1850-1998	1850-2009	Einheit
ΔA	-12.10	-25.75	-9.54	-19.77	-15.20 -15.51		$10^3 m^2 a^{-1}$
ΔV	-2.195	-2.405	-0.910		-1.998		$10^6 m^3 a^{-1}$
	1854 - 1930	1930-1969	1969-1998	1998-2008	1854-2008		
\overline{T}	6.2	6.6	6.9	8.0	6	.6	$^{\circ}C$
$\Delta \overline{T}$	-0.4	0	+0.3	+1.4	°C zu	r Periode 185	4-2008
\overline{N}	988	979	879	947	965		mm
$\Delta \overline{N} \%$	+2	+1	-9	-2	% zu	r Periode 185	4–2008

Tabelle 5.1: Mittlere jährliche Flächen- (A) und Volumsänderungen (V) des Mullwitzkeeses 1850 – 2009 und Temperatur- (T) und Niederschlagsänderungen (N) der Station Lienz 1854 – 2008.

Abbildung 5.1: Homogenisierte Jahresmitteltemperatur (oben) und Niederschlagsjahreswerte (unten) der Station Lienz mit linearem Trend über den Gesamtzeitraum. Daten des Projektes HISTALP (Quelle: www.zamg.ac.at/histalp).

Die mittlere jährliche Flächenänderung während der Periode 1850 bis 1930 betrug $-12.10 \cdot 10^3 m^2 a^{-1}$ und eine mittlere jährliche Volumsänderung von $-2.195 \cdot 10^6 m^3 a^{-1}$ Eis. Im Vergleich zur Periode 1930 bis 1969 fallen die Werte der Änderung relativ gering aus. Ein Grund dafür ist der leichte Temperaturabfall bis zum Ende des 19. Jhdts mit gleichzeitigem Niederschlagsanstieg (Abb. 5.1), der auf anderen Gletscher zu kleineren Vorstößen um 1890 und 1920 führte, die jedoch am Mullwitzkees nicht beobachtet wurden (Patzelt, 1967). Die kurzen Phasen der Erwärmung, um 1920 und 1940-50 mit einhergehenden leichten Rückgängen der Niederschläge stehen in Verbindung mit den erhöhten Werten des Gletscherrückzugs während der Periode 1930 bis 1969. In die Zeit von 1969 bis 1998 fallen die Jahre des Gletschervorstoßes 1980 bis 1985 am Mullwitzkees, wodurch die mittleren jährlichen Änderungen der Fläche $(-9.54 \cdot 10^3 \ m^2 \ a^{-1})$ und des Volumens $(-0.910 \cdot 10^6 \ m^3 \ a^{-1})$ deutlich verringert werden. Der Vergleich zu anderen Gletschern, mit beginnenden Vorstößen ab 1960 (Patzelt, 1985) verdeutlicht die unterschiedlichen Reaktionszeiten der Gletscher auf Klimaschwankungen und zeigt, dass der Vorstoß am Mullwitzkees sehr spät erfolgte. Für das gesamte Venedigergebiet betrug die Flächenänderung -13%bei einer Volumsänderung von $-0.855 \ km^3$ Eis im Zeitraum von 1969 bis 1998 (Kuhn et al., 2008). Somit liegt das Mullwitzkees mit einer Flächenänderung von -7.9% im selben Zeitraum deutlich unter dem Durchschnitt aller Gletscher im Venedigergebiet und ist daher nicht als direkter Maßstab für das Verhalten der Gletscher der gesamten Venedigergruppe auf klimatische Schwankungen geeignet, sondern nur für die Gletscher der Südseite des Großvenedigers deren Zungen sich aufgrund hoher Abschmelzung bereits stark oder ganz zurückgezogen haben. Die erhöhten mittleren jährlichen Flächen- und Volumsänderungen des Mullwitzkeeses nach der Zeit des letzten Vorstoßes bzw. die Flächenänderungen in der Periode 1998 bis 2009 ergaben sich als Folge einer stetigen Temperaturzunahme mit relativ geringen Niederschlägen seit den 1980er Jahren. Über den gesamten Zeitraum von 1850 bis 1998 ergaben sich Mittelwerte von $-15.20 \cdot 10^3 m^2$ Flächenänderung und $-1.998 \cdot 10^6 m^3$ Volumsänderung pro Jahr.

Die mittlere Volumsänderung pro Jahr (1850–1998) von $-1.998 \cdot 10^6 m^3$ Eis kann mit den Untersuchungen des Massenhaushalts der Jahre 2006/07, 2007/08 und 2008/09 (Kap. 3) verglichen werden. Dabei ist jedoch darauf zu achten, dass bei der direkten glaziologischen Methode (Kap. 2) nur die Oberflächenbilanz des Gletschers bestimmt wird und beispielsweise der basale Massenverlust und die Dynamik des Gletschers nicht berücksichtigt werden. So ergibt sich die Massenbilanz des Gletschers als direkte Folge des Klimazustandes eines bestimmten Jahres während sich der Vorstoß bzw. Rückzug eines Gletschers als Folge mehrjähriger Bilanzen, zeitverzögert durch die Dynamik des Eises ergibt. Bei einem Vergleich sind auch die Einheiten zu beachten, da die Volumsänderungen zwischen 1850 und 1998 in m^3 Eis und die Ergebnisse der Jahre 2006/07, 2007/08 und 2008/09 als Wasserwert angegeben werden. Darüber hinaus sind die Unsicherheiten der mittleren Volumsänderung (Kap. 4, Abschn. 4.5) und der Einfluss des Gletschervorstoßes am Mullwitzkees 1980 bis 1985 auf den Mittelwert der Volumsänderung zu beachten. Im hydrologischen Jahr 2006/07 lag die Jahresbilanz mit einem Wasserwert von $-4.46 \cdot 10^6 m^3$ deutlich über dem Mittelwert ($m^3 Eis$) 1850 bis 1998, während die Jahre 2007/08 und 2008/09 mit Wasserwerten von $-1.98 \cdot 10^6 m^3$ und $-1.47 \cdot 10^6 m^3$ um den langjährigen Mittelwert lagen. Ein Grund dafür ist auch der Flächenverlust, besonders an der Zunge des Gletschers, wodurch die Gebiete mit großen Ablationswerten immer kleiner werden bzw. ganz verschwinden. Um eine Aussage darüber treffen zu können, ob das Mullwitzkees heute stärker im Rückzug ist als früher müssen die mittleren spezifischen Bilanzen unter Berücksichtigung des Flächenrückgangs verglichen werden. Darüber hinaus kann die Frage, ob das Mullwitzkees im Vergleich zu anderen Gletschern besonders stark im Rückzug ist, erst nach mehrjährigen Untersuchungen beantwortet werden. Daher ist es wichtig, die bestehenden Messreihen fortzuführen.

Der klimatologische Vergleich der monatlichen Temperaturabweichungen und Prozent des Niederschlagsnormalwertes zum langjährigen Mittel (1971–2000) der ZAMG (Wetterrückblick der ZAMG, www.zamg.ac.at) zeigt, dass die Jahre 2007/08 und 2008/09 um den langjährigen Mittelwert lagen (A. Abschn. A.3), und ist somit dem Ergebnis der Massenhaushaltsuntersuchungen ähnlich.

Jahr		HEF	KWF	JAM	HSG	MW	Einheit
	b	-1798	-836	-1440	-376	-1447	$mm \ WW$
2006/07	В	-12.96	-3.19	-4.94	-1.18	-4.46	$10^6 m^3 WW$
2006/07	AAR	0.000	0.220	0.060	0.476	0.207	
	ELA	>GN	3280	>GN	2583	3163	m
	b	-1235	-444	-981	-700	-642	$mm \ WW$
2007/02	В	-8.77	-1.68	-3.25	-2.13	-1.98	$10^6 m^3 WW$
2007/08	AAR	0.220	0.420	0.085	0.490	0.396	
	ELA	3276	3224	>GN	2592	3115	m
	b	-1182	-795	-953	-924	-487	$mm \ WW$
2008/09	В	-8.23	-2.95	-3.10	-2.79	-1.47	$10^6 m^3 WW$
	AAR	0.250	0.280	0.098	0.341	0.367	
	ELA	3257	3252	3113	2616	3116	m

5.2 Vergleich verschiedener Bilanzen

Tabelle 5.2: Gegenüberstellung der Massenbilanzkennzahlen verschiedener Gletscher der Jahre 2006/07, 2007/08 und 2008/09; HEF=Hintereisferner, KWF=Kesselwandferner, JAM=Jamtalferner, HSG=Hallstätter Gletscher, MW=Mullwitzkees.

Weitere Gletscher, deren Massenhaushalt vom IMGI untersucht werden, sind der Hintereisferner, der Kesselwandferner, der Jamtalferner und der Hallstätter Gletscher (Fischer et al., 2009; Helfricht, 2009). Die spezifischen Bilanzen in *mm WW* dieser Gletscher sind zum Vergleich mit denen des Mullwitzkeeses in Abbildung 5.2 grafisch dargestellt. Die Zeitreihen des Hintereisferners und des Kesselwandferners beginnen bereits 1953. Deutlich zu sehen sind die Jahre positiver Bilanzen Mitte der 1960er und 70er Jahre, die ein Vorstoßen der Gletscher verursachten. Besonders auffallend sind die stark negativen spezifischen Bilanzen der Gletscher von 2003 aufgrund des heißen Sommers 2003 (Kuhn und Lambrecht, 2006). Eine Gegenüberstellung der spezifischen Bilanz (b), der Nettobilanz (B), dem Akkumulationsflächenverhältnis (AAR) und der Höhe der Gleichgewichtslinie (ELA) zwischen HEF (Hintereisferner), KWF (Kesselwandferner), JAM (Jamtalferner), HSG (Hallstätter Gletscher) und MW (Mullwitzkees) ist in Tabelle 5.2 zu finden, wobei > GN für die Angabe der ELA über Gipfelniveau steht. Der Vergleich der spezifischen Bilanzen der Gletscher zeigt, dass die spezifische Bilanz des Mullwitzkeeses zwischen denen von Hintereisferner, Jamtalferner und Kesselwandferner liegt. Nur im hydrologischen Jahr 2008/09 war die spezifische Bilanz des Mullwitzkeeses nicht so negativ wie auf den anderen Gletschern. Der Grund dafür waren die starken Niederschläge auf der Alpensüdseite während des Winters (Kap. 3, Abschn. 3.3). Während der Hintereisferner, der Jamtalferner und das Mullwitzkees eine Tendenz zu positiveren Bilanzen von 2007 bis 2009 zeigten, verzeichnete der Hallstätter Gletscher von Jahr zu Jahr immer negativere Bilanzen aufgrund seiner topografischen Lage im Nordstau und seiner relativ geringen Meereshöhe (Helfricht, 2009). Die Höhe der Gleichgewichtslinie 2006/07 lag am Hintereisferner und Jamtalferner über Gipfelniveau, am Mullwitzkees auf 3163 m und am Hallstätter Gletscher mit 2583 m am tiefsten. Bei der Änderung der Höhe der Gleichgewichtslinie der einzelnen Gletscher in den Jahren 2007 bis 2009 ist die geringe Schwankung am Mullwitzkees besonders auffallend. Die geringe Variation ist bedingt durch eine Verschiebung des Akkumulationsgebietes in tiefere Lagen aufgrund von Winddrift während des Winters (Kap. 3).

Abbildung 5.2: Zeitreihen der spezifischen Bilanzen in *mm WW* am HEF (Hintereisferner), KWF (Kesselwandferner), JAM (Jamtalferner), HSG (Hallstätter Gletscher) und MW (Mullwitzkees).

Kapitel 6

Zusammenfassung und Ausblick

Das Ziel dieser Arbeit war die Durchführung und Auswertung von Massenhaushaltsuntersuchungen der Jahre 2006/07, 2007/08 und 2008/09 am Mullwitzkees im Nationalpark Hohe Tauern sowie die Rekonstruktion und Interpretation der Längen-, Flächen- und Volumsänderungen seit 1850, zur Beantwortung und als Grundlage zur Beantwortung folgender Fragen:

Wie hat sich das Mullwitzkees seit dem letzten Hochstand um 1850 verändert?

In welcher Beziehung stehen die Änderungen des Mullwitzkeeses zu den klimatischen Bedingungen und anderen Gletschern mit Massenhaushaltsstudien?

Wie verhält sich die Massenbilanz des Gletschers als Folge der Witterung?

Wie repräsentativ sind die Ergebnisse der Untersuchungen am Mullwitzkeeses für andere Gletscher der Alpensüdseite?

Dabei wurde mit Hilfe der direkten glaziologischen Methode die Massenbilanz des Mullwitzkeeses der Jahre 2006 bis 2009 im Rahmen des Projektes Massenhaushaltsuntersuchungen am Mullwitzkees bestimmt, ausgewertet und mit anderen Gletschern verglichen. Die Bestimmung der Änderungen seit 1850 erfolgte mittels geodätischer Datengrundlage der österreichischen Gletscherinventare von 1969 und 1998, historischen Aufzeichnungen in Berichten, geographischen Karten und den Daten der Längenänderungsmessungen des DuÖAVs. Zur Interpretation der Flächen- und Volumsänderungen des Mullwitzkeeses 1850 bis 2009, wurden die Ergebnisse mit den Klimareihen des Projektes HISTALP, und die Ergebnisse der Massenhaushaltsuntersuchungen am Mullwitzkees 2006/07 bis 2008/09 mit denen anderer Gletscher mit Massenhaushaltsstudien des IMGI verglichen.

Seit dem letzten Gletscherhochstand des Mullwitzkeeses um 1850 (1850/55), ist der Gletscher im stetigen Rückzug. Einzige Ausnahme bildete die Periode 1980 bis 1985 mit einem Vorstoß von 18 m aufgrund positiver Bilanzen der Vorjahre. Für die Jahre 1890 und 1920 wurde am Mullwitzkees im Gegensatz zu anderen Gletschern kein Vorstoß beobachtet, was durch ein Fehlen von Moränen bestätigt werden kann. Über den Gesamtzeitraum 1850 bis 2009 betrachtet zog sich das Mullwitzkees um 2660 m zurück, somit lag die Zunge 2009 auf 2695 m Seehöhe. In diesem Zeitraum wurde der Gletscher um 2.47 km^2 kleiner und hatte 2009 eine Fläche von 3.03 km^2 , was einen Flächenverlust von 45% seit 1850 entspricht. In der Periode 1850 bis 1998 ging ein Volumen von 0.3 km^3 Eis bzw. 73% verloren, somit betrug das Volumen 0.1 km^3 im Jahr 1998.

Die Längen-, Flächen- und Volumsverluste sind die Folge negativer Jahresbilanzen, verursacht durch einen mittleren Temperaturanstieg von ca. $2.5^{\circ}C$ seit 1890, bei einem leichten Rückgang der Jahresniederschläge. Die direkt gemessenen Bilanzen der Jahre 2006/07 bis 2007/08 lagen im Vergleich zu anderen Gletschern mit Massenhaushaltsuntersuchungen mit spezifischen Bilanzen von $-1447 \ mm \ WW$ und $-642 \ mm \ WW$ im Durchschnitt. Im hydrologischen Jahr 2008/09 betrug die Bilanz des Mullwitzkeeses trotz der südseitigen Ausrichtung $-487 \ mm \ WW$ und stellte somit die positivste Bilanz aller am IMGI untersuchten Gletscher dar. Grund dafür waren die großen Neuschneemengen

während des Winters durch die Lage des Mullwitzkeeses im Nordstau. Auch das Fehlen einer relativ großen Gletscherzunge in tiefen Lagen mit stark negativen Bilanzen kommt dem Mullwitzkees zugute. Die Flächen der Gletscherzunge des Mullwitzkeeses sind im Vergleich zur Gesamtfläche sehr klein und wirken sich trotz der starken Abschmelzbeträge nur geringfügig auf die Gesamtbilanz aus. Da auf vielen südseitig exponierten Gletschern die Zungen zu großen Teilen bzw. vollständig abgeschmolzen sind, kann das Mullwitzkees mit seinem Verhalten auf Klimaschwankungen für diese Kategorie der Gletscher repräsentativ sein. Um dies zu bestätigen, müssen die Untersuchungen fortgeführt werden.

Die Frage, wie sich die Massenbilanz des Gletsches als Folge der Witterung verhält, und wie ein südseitig exponierter Gletscher der Alpensüdseite auf Klimaschwankungen reagiert, kann erst nach mehrjährigen Untersuchungen ausreichend beantwortet werden. Aufgrund der Lage des Mullwitzkeeses und seinem Plateau mit verschobenem Akkumulationsgebiet durch Winddrift während des Winters ist daher die Fortführung der Untersuchungen des Massenhaushalts und seine Reaktion auf regionale klimatische Änderungen sehr interessant. Zur besseren Interpretation der Änderungen der Bilanz des Mullwitzkeeses als direkte Folge der Witterung eines Jahres müssen neben mehrjährigen Massenhaushaltsuntersuchungen auch Aufzeichnungen der Temperatur und des Niederschlags vor Ort zugrunde liegen. Daher ist es besonders wichtig, dass in den kommenden Jahren die Aufzeichnungen der Temperatur, sei es durch Sicherung der Wetterhütte oder durch Verlegung des Standortes, sichergestellt werden und so neuerlichen mutwilligen Beschädigungen der Wetterhütte und der Temperaturaufzeichnungen vorgebeugt werden kann.

Die Ergebnisse der Massenhaushaltsuntersuchungen am Mullwitzkees der hydrologischen Jahre 2006/07 und 2007/08 wurden bereits in Form eines Posters (Abb. A.22) bei dem 13ten AGM (Alpine Glaciology Meeting) 2009 in Innsbruck und dem vierten Symposium des NP HT zu wissenschaftlichen Untersuchungen in geschützten Gebieten in Kaprun 2009 präsentiert und in Form einer ausführlichen Zusammenfassung veröffentlicht (A. Abschn. A.5) (Stocker-Waldhuber et al., 2009). Anhang A

Tabellen, Abbildungen und Publikationen

A.1 Totalisatoreichung

	Nieder	schlags	höhe [n	nm] in	Abhäng	gigkeit	der Abs	stichhöl	ne [cm]	
[cm]	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	2080	2078	2077	2076	2075	2074	2073	2072	2071	2070
1	2069	2067	2066	2065	2064	2063	2062	2061	2060	2059
2	2057	2056	2055	2055	2053	2052	2051	2050	2049	2047
3	2046	2045	2044	2043	2042	2040	2039	2037	2036	2035
4	2033	2032	2030	2029	2028	2026	2025	2024	2022	2021
5	2019	2018	2017	2015	2014	2013	2011	2010	2008	2007
6	2006	2004	2003	2001	2000	1999	1997	1996	2000	1997
7	1994	1992	1989	1986	1984	1981	1979	1976	1973	1971
8	1968	1966	1963	1960	1958	1955	1952	1946	1944	1943
9	1941	1939	1938	1936	1935	1933	1931	1930	1928	1927
10	1925	1923	1922	1920	1918	1917	1915	1914	1912	1910
11	1909	1907	1906	1904	1902	1901	1899	1898	1900	1897
12	1895	1892	1890	1887	1885	1882	1880	1877	1875	1872
13	1870	1867	1865	1862	1860	1857	1855	1852	1852	1849
14	1846	1843	1840	1837	1834	1831	1828	1825	1822	1819
15	1816	1814	1811	1808	1805	1803	1799	1796	1793	1790
16	1787	1784	1781	1778	1775	1772	1768	1765	1762	1759
17	1756	1753	1750	1747	1744	1740	1737	1734	1731	1728
18	1725	1722	1719	1716	1712	1709	1706	1706	1702	1698
19	1695	1691	1687	1683	1679	1675	1672	1668	1664	1660
20	1655	1652	1648	1645	1641	1637	1634	1630	1627	1623
21	1620	1616	1613	1609	1605	1602	1598	1595	1591	1588
22	1584	1581	1577	1573	1570	1566	1563	1559	1555	1552
23	1548	1545	1542	1538	1535	1531	1528	1525	1521	1518
24	1514	1511	1508	1504	1501	1497	1494	1491	1487	1484
25	1480	1477	1474	1470	1467	1464	1460	1457	1453	1450
26	1447	1443	1440	1436	1433	1430	1426	1423	1419	1416
27	1413	1409	1406	1403	1399	1396	1392	1389	1386	1382
28	1379	1375	1372	1369	1365	1362	1358	1355	1352	1348
29	1345	1341	1338	1335	1331	1328	1325	1321	1318	1314
30	1311	1308	1304	1301	1297	1294	1291	1287	1284	1280
31	1277	1274	1270	1267	1264	1260	1257	1254	1250	1247
32	1243	1240	1236	1233	1229	1225	1222	1218	1215	1211
33	1208	1204	1201	1197	1193	1190	1186	1183	1179	1176
34	1172	1169	1165	1161	1158	1154	1151	1147	1144	1140
35	1137	1133	1130	1126	1122	1119	1115	1112	1107	1104

		Fe	ortsetzu	ıng der	Tabell	e der vo	origen S	Seite		
36	1101	1097	1094	1091	1087	1084	1081	1077	1074	1071
37	1067	1064	1061	1058	1054	1051	1048	1044	1041	1038
38	1034	1031	1028	1024	1021	1018	1014	1011	1008	1004
39	1001	998	995	991	988	985	981	978	975	971
40	968	965	961	959	955	952	948	945	941	938
41	934	931	927	924	921	917	914	910	907	903
42	900	896	893	889	886	882	879	875	872	868
43	865	862	858	855	851	848	844	841	837	834
44	830	827	823	820	816	813	810	806	803	799
45	796	792	789	785	782	778	775	771	768	764
46	761	757	754	751	747	744	740	737	733	730
47	726	723	719	716	712	709	705	702	698	695
48	692	688	685	681	678	674	671	667	664	660
49	657	653	650	646	643	640	636	633	629	626
50	623	619	616	613	609	606	602	599	596	592
51	589	585	582	579	575	572	568	565	562	558
52	555	552	548	545	541	538	535	531	528	524
53	521	518	514	511	507	504	501	497	494	490
54	487	484	480	477	474	470	467	463	460	457
55	453	450	446	443	440	436	433	429	426	423
56	419	416	413	409	406	402	399	396	392	389
57	385	382	379	375	372	368	365	363	359	355
58	352	348	344	341	337	334	330	326	323	319
59	315	312	308	304	301	297	294	290	286	283
60	279	275	272	268	264	261	257	253	250	246
61	243	239	235	232	228	224	221	217	212	209
62	206	202	199	196	192	189	186	182	179	176
63	172	169	166	162	159	155	152	149	146	143
64	140	137	134	131	127	124	121	118	115	114
65	110	107	103	99	96	92	89	85	82	78
66	75	71	62	60	57	60	56	52	48	42
67	39	36	33	30	19	18	17	16	15	14
68	13	12	11	10	9	7	6	5	4	3
69	2	1	0							

Tabelle A.1: Totalisatorkalibrierung von Gefäß Nummer 54 am 21.6.2006

	Nieder	schlags	höhe [n	nm] in	Abhäng	gigkeit	der Abs	stichhöl	ne [cm]	
[cm]	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	2157	2156	2155	2154	2152	2151	2150	2149	2148	2147
1	2146	2145	2144	2143	2141	2140	2139	2138	2137	2136
2	2135	2134	2133	2132	2131	2130	2128	2127	2126	2125
3	2124	2123	2121	2120	2119	2119	2118	2116	2115	2114
4	2112	2111	2110	2108	2107	2106	2104	2103	2102	2100
5	2099	2098	2096	2095	2094	2092	2091	2090	2088	2087
6	2086	2084	2083	2082	2080	2079	2078	2076	2075	2074
7	2072	2071	2072	2070	2068	2067	2065	2063	2061	2060
8	2058	2056	2054	2053	2051	2049	2047	2046	2044	2042
9	2040	2039	2037	2035	2033	2031	2030	2028	2026	2024
10	2024	2022	2020	2018	2016	2014	2012	2010	2008	2006
11	2004	2002	2000	1998	1996	1993	1991	1989	1987	1985
12	1983	1981	1979	1977	1976	1974	1972	1969	1967	1965
13	1963	1960	1958	1956	1954	1951	1949	1947	1945	1943
14	1940	1938	1936	1934	1931	1929	1929	1926	1923	1921
15	1918	1916	1913	1911	1908	1905	1903	1900	1898	1895
16	1892	1890	1887	1885	1882	1881	1878	1875	1872	1869
17	1867	1864	1861	1858	1855	1852	1849	1846	1843	1841
18	1838	1835	1833	1830	1827	1824	1821	1817	1814	1811
19	1808	1805	1802	1799	1796	1793	1790	1787	1787	1783
20	1780	1776	1772	1768	1765	1761	1757	1753	1749	1746
21	1742	1734	1731	1728	1725	1722	1719	1716	1713	1711
22	1708	1705	1702	1699	1696	1693	1690	1687	1686	1683
23	1680	1677	1673	1670	1667	1664	1660	1657	1654	1650
24	1647	1644	1641	1637	1634	1631	1628	1624	1621	1618
25	1614	1611	1608	1605	1601	1598	1595	1592	1588	1585
26	1582	1578	1575	1572	1569	1565	1562	1559	1555	1552
27	1549	1546	1542	1539	1536	1533	1529	1526	1523	1519
28	1516	1513	1510	1506	1503	1500	1497	1493	1490	1487
29	1483	1480	1477	1474	1470	1467	1464	1461	1457	1454
30	1451	1447	1444	1441	1438	1434	1431	1428	1425	1421
31	1418	1415	1411	1408	1405	1402	1398	1395	1392	1388
32	1385	1382	1379	1375	1372	1369	1366	1362	1359	1356
33	1352	1349	1346	1343	1339	1336	1333	1330	1326	1323
34	1320	1316	1313	1310	1307	1303	1300	1297	1294	1290
35	1287	1284	1280	1277	1274	1271	1267	1264	1261	1257
36	1254	1251	1248	1244	1241	1238	1235	1231	1228	1225
37	1221	1218	1215	1212	1208	1205	1202	1199	1195	1192
38	1189	1185	1182	1179	1176	1172	1169	1166	1163	1159

		Fo	ortsetzu	ıng der	Tabelle	e der vo	origen S	Seite		
39	1156	1153	1149	1146	1143	1140	1136	1133	1130	1127
40	1123	1120	1117	1113	1110	1107	1104	1100	1097	1094
41	1090	1087	1084	1081	1077	1074	1071	1068	1064	1061
42	1058	1054	1051	1048	1045	1041	1038	1035	1032	1028
43	1025	1022	1018	1015	1012	1009	1005	1002	999	996
44	992	989	986	982	979	976	973	969	966	963
45	959	956	953	949	946	943	940	936	933	930
46	927	924	920	917	914	911	908	904	901	898
47	895	892	888	885	882	879	876	872	869	866
48	863	860	856	853	850	847	844	840	837	834
49	831	828	824	821	818	815	812	808	805	802
50	799	796	792	789	786	783	779	776	773	770
51	766	763	760	756	753	750	747	743	740	737
52	734	730	727	724	720	717	714	711	707	704
53	701	698	694	691	688	684	681	678	675	671
54	668	665	661	658	655	652	648	645	642	639
55	635	632	629	625	622	619	616	612	609	606
56	603	599	596	593	589	586	583	580	576	573
57	570	567	563	560	557	553	550	547	544	540
58	537	534	531	527	524	521	517	514	511	508
59	504	501	498	494	491	488	485	481	478	475
60	472	468	465	462	458	455	452	449	445	442
61	439	436	432	429	426	422	419	416	413	409
62	406	403	400	396	393	390	386	383	380	377
63	373	370	367	363	360	357	353	350	347	344
64	341	337	334	331	328	325	321	318	315	312
65	309	305	302	299	296	293	289	286	283	280
66	277	273	270	267	264	261	257	254	251	248
67	245	241	238	235	232	229	225	222	219	216
68	213	210	206	203	200	196	193	190	187	183
69	180	177	174	170	167	164	160	157	154	151
70	147	144	141	138	134	131	128	124	121	118
71	115	111	108	105	102	98	95	92	88	85
72	82	79	75	72	69	64	61	58	55	52
73	49	46	43	33	31	29	28	26	25	23
74	21	20	18	16	15	13	11	10	8	7
75	5	3	2	0						

 Tabelle A.2:
 Totalisatorkalibrierung von Gefäß Nummer 37 am 23.8.2007

A.2 Ablationsverläufe

Ablationsverlauf 2007

Abbildung A.1: Ablationsverlauf der einzelnen Pegel am Mullwitzke
es 2006/07.

Ablationsverlauf 2008

Abbildung A.2: Ablationsverlauf der einzelnen Pegel am Mullwitzke
es 2007/08.

Ablationsverlauf 2009

Abbildung A.3: Ablationsverlauf der einzelnen Pegel am Mullwitzkees 2008/09.

A.3 Klimakarten

Abbildung A.4: Temperaturabweichungen der einzelnen Monate im hydrologischen Jahr 2006/07 (Abb. der ZAMG, www.zamg.ac.at).

Temperaturabweichung November 2007

Temperaturabweichung März 2008

Temperaturabweichung Mai 2008

Temperaturabweichung Juli 2008

Abbildung A.5: Temperaturabweichungen der einzelnen Monate im hydrologischen Jahr 2007/08 (Abb. der ZAMG, www.zamg.ac.at).

Abbildung A.6: Temperaturabweichungen der einzelnen Monate im hydrologischen Jahr 2008/09 (Abb. der ZAMG, www.zamg.ac.at).

Abbildung A.7: Prozent des Niederschlagsnormalwertes der einzelnen Monate im hydrologischen Jahr 2006/07 (Abb. der ZAMG, www.zamg.ac.at).

Abbildung A.8: Prozent des Niederschlagsnormalwertes der einzelnen Monate im hydrologischen Jahr 2007/08 (Abb. der ZAMG, www.zamg.ac.at).

XXVII

Abbildung A.9: Prozent des Niederschlagsnormalwertes der einzelnen Monate im hydrologischen Jahr 2008/09 (Abb. der ZAMG, www.zamg.ac.at).

A.4 Eisdicken und Volumsänderungen

Abbildung A.10: Gletscherstand des Mullwitzkeeses von 1850 und Orthofoto 1998 auf dem DGM von 1850.

Abbildung A.11: Gletscherstand des Mullwitzkeeses von 1930 und Orthofoto 1998 auf dem DGM von 1930.

Abbildung A.12: Gletscherstand des Mullwitzkeeses von 1969 und Orthofoto 1998 auf dem DGM von 1969.

Abbildung A.13: Gletscherstand des Mullwitzkeeses und Orthofoto auf dem DGM von 1998.

Abbildung A.14: Von SSW beleuchtetes Oberflächenmodell von 1998 und Stand des Mullwitzkeeses 1850.

Abbildung A.15: Von SSW beleuchtetes Oberflächenmodell von 1998 und Stand des Mullwitzkeeses 1930.

Abbildung A.16: Von SSW beleuchtetes Oberflächenmodell von 1998 und Stand des Mullwitzkeeses 1969.

Abbildung A.17: Von SSW beleuchtetes Oberflächenmodell und Stand des Mullwitzkeeses 1998.

Abbildung A.20: Eisdickenänderung 1850 bis 1998 (links) und 1850 bis 1930 (rechts), im Intervall von 10 m am Mullwitzkees und Gletschergrenzen (GG) der Jahre 1850, 1930, 1969 und 1998; Koordinatensystem: Gauß-Krüger M31.

Abbildung A.21: Eisdickenänderung 1930 bis 1998 (links) und 1869 bis 1998 (rechts), im Intervall von 10 m am Mullwitzkees und Gletschergrenzen (GG) der Jahre 1850, 1930, 1969 und 1998; Koordinatensystem: Gauß-Krüger M31.

A.5 Publikationen

In: 4th Symposium of the Hohe Tauern National Park for research in protected areas-Conference Volume 4, 295-298.

Monitoring of glacier mass balance on Mullwitzkees, Hohe Tauern

Martin Stocker-Waldhuber¹, Andrea Fischer¹, Josef Lang², Wolfgang Gattermayr³, Florian Jurgeit⁴

Institute of Meteorology and Geophysics, University of Innsbruck, Austria
Central Institute for Meteorology and Geodynamics (ZAMG), Austria
Hydrological Service at the government of Tyrol (HZB), Austria
4 Hohe Tauern National Park, Austria

Martin. Stocker-Waldhuber@student.uibk.ac.at

Since 2006, the Mullwitzkees, situated in the Venediger Massive within the core zone of the Hohe Tauern National Park, is subject to mass balance monitoring program. In contrast to other glaciers currently observed in monitoring programs, the glacier is located south of the main Alpine crest and also exposed to the south. The highest point of the glacier is Hoher Zaun (3450 m), the lowest part of the snout called Zettalunitzkees reaches down to an elevation of 2690 m. The mass balance of Mullwitzkees and the data of the Austrian glacier inventories allow gaining new insights in processes governing melt, hydrology and glacial recession for these types of glaciers. The monitoring network includes about 15 ablation stakes, several snow pits, a rain gauge and an automatic weather station. The mass balance of the glacier is measured using the direct glaciological method with fixed date. In the year 2006/07 the Mullwitzkees experienced a specific mass balance of -1447 mm. In the year 2007/08 the specific mass balance was -642 mm. In both years, therefore the mass loss was lower than the specific balance of the mass balance glaciers Hintereisferner (Ötztal) and Jamtalferner (Silvretta) although these are exposed to the north. The project is funded by the Hohe Tauern National Park and the Hydrological Service at the government of Tyrol.

Keywords: glacier, mass balance, Mullwitzkees, Venediger

Aims and duration of the project

The project aims at the measurement and interpretation of mass balance and climate data and the interpretation of the relationship of these measured parameters with respect to the current glacial recession and hydrology as well as for the development of future glacier scenarios for the both. The project is funded by the Hohe Tauern National Park and the Hydrological Service started in 2006 and is planned for five years at a first glance.

Area of study

The Mullwitzkees is situated in the Venediger Massive within the core zone of the Hohe Tauern National Park and is divided into the "innere" and "äußere" Mullwitzkees. Glacier fluctuations since the end of the Little Ice Age are summarised by Patzelt 1973. In the following only the "äußere" Mullwitzkees is regarded and therefore denoted as Mullwitzkees. The upper part of the glacier is exposed to the south and is confined by a ridge with the highest point Hohe Zaun at an elevation of $3450 \ m$. The snout called Zettalunitzkees is exposed to the south-west and reaches down to an elevation of $2690 \ m$. In 1998, Mullwitzkees (and Zettalunitzkees) covered an area of $3.24 \ km^2$. The glacier area diminished to $3.08 \ km^2$ in 2007. The glacier boundaries in Figure 1 and Figure 2 originate from the Austrian glacier inventory 1998. For 2007 the glacier boundaries were reduced on the basis of photos and inspections. Zettalunitzkees is also subject to measurements of glacier length by the glacier survey of the Austrian Alpine Club (e.g. Patzelt 2005, Patzelt, 2006). There are several glaciers along the alpine crest where mass balance measurements take place but the Mullwitzkees is the only one on the southern side of the main ridge of the Alps.

Method

To determine the mass balance of this glacier the direct glaciological method with fixed dates is used (Hoinkes, 1970). Tough the mass gain and loss of the glacier within one year is detected. The year is divided into the accumulation period from the 1^{st} of October to 30^{th} of April were a mass gain of the glacier is expected and the ablation period from the 1^{st} of May to 30^{th} of September were the glacier experiences a mass loss. Ablation is measured with ablation stakes in the ablation area. During the summer, the free ends of the stakes are measured several times. At the 30^{th} of April multiple snow pits are dug to measure the height and density of the accumulated snow cover and at the 30^{th} of September this work is repeated to determine the mass gain of the glacier within the hydrological year. The direct glaciological method is described in Paterson 1994.

Results

In the year 2006/07 the Mullwitzkees experienced a mass loss of $4.46 \cdot 10^6 \ m^3 \ w.e.$ (water equivalent) and a specific mass balance of $-1447 \ mm$. The AAR (accumulation area ratio) of 0.2 is low. Wind drift near the ridge causes the mass balance to be negative at high altitudes. Therefore the accumulation area is concentrated to mid-elevations of the glacier. The ELA (equilibrium line altitude) 2006/07 was 3160 m. In the year 2007/08 the mass loss devoted $1.98 \cdot 10^6 \ m^3 \ w.e.$ and a specific mass balance of $-642 \ mm$, caused by high precipitation rates in winter, delaying the beginning of the ablation season. In Table 1 the characteristic numbers of the mass balance measurements on Mullwitzkees of both years are summarised and separated into terms of accumulation and ablation, as well as the AAR, the ELA and precipitation. The distribution of the mean specific mass balance on Mullwitzkees in centimeter water equivalent for the hydrological years 2006/07 and 2007/08 can be seen in Figure 1 and 2. The plot of specific mass balance (Figure 3) for HEF (Hintereisferner), KWF (Kesselwandfer), JAM (Jamtalferner), HSG (Hallstätter Gletscher) and MW (Mullwitzkees) shows that the mass balance tends to be less negative on Mullwitzkess compared to e.g. Hintereisferner, although it is exposed to the south. Further investigations are needed to prove these first results.

Discussion

Comparing the first two years of mass balance measurements on Mullwitzkees one of the most conspicuous results is the position of the accumulation area, which is displaced from the ridge to lower elevations due to wind drift during the winter. The ice thickness is decreasing at the highest elevations of this glacier (Span et. al., 2005, Fischer et. al., 2007). A relationship between the local climate and the appearance of this glacier can be found at the earliest after five years. These investigations do not relate to the status of protection but the Mullwitzkees is a glacier located in a protected area. Nevertheless mass balance measurements are the coherency between glacier and climate and therefore it is important to observe the actual conditions, to answer questions which are anchored in the minds of the general public, especially with regard to protected areas, as for example the questions how long the glaciers of the Hohe Tauern National Park tend to exist in different climate scenarios described in the IPCC Report 2007.

References

Fischer, A., N. Span, M. Kuhn, M. Butschek, 2007: Radarmessungen der Eisdicke Österreichischer Gletscher. Band II: Messungen 1999 bis 2006. Österreichische Beiträge zu Meteorologie und Geophysik, **39**, 142 S.

Hoinkes, H., 1970: Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern. Zeitschrift für Gletscherkunde und Glazialgeologie, **6**, 37 - 90.

Paterson, W., 1994: The physics of Glaciers. Pergamon Press, 84p.

Patzelt, G., 1973: Die neuzeitlichen Gletscherschwankungen in der Venedigergruppe (Hohe Tauern, Ostalpen). Zeitschrift für Gletscherkunde und Glazialgeologie, **9**, 5-57.

Patzelt, G., 2005: Gletscherbericht 2003/2004. Sammelbericht über die Gletschermessungen des Oesterreichischen Alpenvereins im Jahre 2004. *Mitteilungen des Oesterreichischen Alpenvereins*. Jg. 60 (130), Heft 2/05, 24-31.

Patzelt, G., 2006: Gletscherbericht 2004/2005. Sammelbericht über die Gletschermessungen des Oesterreichischen Alpenvereins im Jahre 2005. *Bergauf* 2/2006, 6-11.

Span, N., A. Fischer, M. Kuhn, M. Massimo, M. Butschek, 2005: Radarmessungen der Eisdicke Österreichischer Gletscher. Band I: Messungen 1995 bis 1998. Österreichische Beiträge zu Meteorologie und Geophysik, 33, 145 S.

Figure 1 and 2: Distribution of the mean specific mass balance on Mullwitzkees in centimeter water equivalent for the hydrological years 2006/07 and 2007/08. The mass balance is colored gradually into 50 cm intervals within the ablation areas and into 25 cm intervals within the accumulation areas, the equilibrium line is plotted as a gray line.

	2006/07	2007/08	
Sc (accumulation area)	0.639	1.22	km^2
Bc (total accumulation)	0.44	0.93	$10^{6} m^{3}$
bc (mean specific accumulation)	682	764	mm
Sa (ablation area)	2.444	1.864	km^2
Ba (total ablation)	-4.90	-2.91	$10^{6} m^{3}$
ba (mean specific ablation)	-2004	-1562	mm
S (glacier area)	3.083	3.084	km^2
B (total mass balance)	-4.46	-1.98	$10^{6} m^{3}$
b (mean specific mass balance)	-1447	-642	mm
AAR (accumulation area ratio)	0.207	0.396	
ELA (equilibrium line altitude)	3163	3115	m
P (precipitation)	1358	1553	mm

Table 1: Characteristic numbers of the mass balance and climate observations on Mullwitzkees for the hydrological years 2006/07 and 2007/08, separated into terms of accumulation and ablation, as well as the accumulation area ratio, the equilibrium line altitude and precipitation.

Figure 3: Time series (1953 - 2008) of the specific glacier mass balance in millimeter w.e. on HEF (Hintereisferner), KWF (Kesselwandferner), JAM (Jamtalferner), HSG (Hallstätter Gletscher) and MW (Mullwitzkees).

IMGI

M. Stocker-Waldhuber^{1*}, A. Fischer¹ J. Lang², W. Gattermayr³, F. Jurgeit⁴ *Martin, Stocker-Waldhuber@student.uibk.ac.at

entral Institute for Meteorology and Geodynamics (ZAMG), Austria ydrological Service at the government of Tyrol (HZB), Austria ohe Tauern National Park, Austria

Nationalpark

INTRODUCTION

The Mullwitzkees is situated in the Venediger Massive within the core zone of the Hohe Tauern National Park. The upper part of the glacier is exposed to the south and is confined by a ridge with the highest point Hohe Zaun at an altitude of 3450 m. South-westerly exposed is the snout called Zettalunitzkees which reaches down to an elevation of 2690 m. In 1998, the Mullwitzkees covered an area of 3.24 km². The glacier area diminished to 3.08 km² in 2007. To calculate the mass balance the direct glaciological method with fixed date is used. A monitoring network was set up on the Mullwitzkees in September 2006 and includes about 15 ablation stakes, several snow pits, a rain gauge and an automatic weather station, where the temperature is measured. The ambition of this project is to detect the gain and loss of a southern exposed glacier and to find a correlation between climate conditions and the results after five years of mass balance measurements. At this point the results of the first two years are presented. The project is funded by the Hohe Tauern National Park and the Hydrological Service at the government of Tyrol.

Results	2006/2007	2007/2008
Results	2000/2007 -	- 2001/2000

	2006/2007	2007/2008	
Sc (accumulation area)	0.639	1.22	km²
Bc (total accumulation)	0.44	0.93	10 ⁶ m ³
bc (mean specific accumulation)	682	764	mm
Sa (ablation area)	2.444	1.864	km²
Ba (total ablation)	-4.90	-2.91	10 ⁶ m
ba (mean specific ablation)	-2004	-1562	mm
S (glacier area)	3.08	3.08	km²
B (total mass balance)	-4.46	-1.98	10 ⁶ m
b (mean specific mass balance)	-1447	-642	mm
AAR (accumulation area ratio)	0.207	0.396	
ELA (equilibrium line altitude)	3163	3115	m

Table 1: Characteristic numbers of the mass balance measurements on Mullwitzkees for the hydrological years 2006/07 and 2007/08, separated into terms of accumulation and ablation, as well as the accumulation area ratio and the equilibrium line altitude.

Figure 1: a. c.) Allocation of the total mass balance (blue bars) and area (blue lines) and b. d.) the distribution of the mean specific mass balance (blue bars), as a function of the elevation on Mullwitzkees for the hydrological years 2006/07 and 2007/08.

Figure 2: Distribution of the mean specific mass balance on Mulwitzkees in centimeter water equivalent for the hydrological years 2006/07 and 2007/08 (a. c.) and the corresponding winter balance for each year (b. d.). The mass balance is colored gradually into 50 on intervals within the addition area and into 25 cm intervals within the accumulation area, the equilibrum line is plotted as a red line (a. c.). The gradually colored interval of 20 cm is valid for each winter mass balance (b. d.). The glacier boundary is shown for the years 1996, 2007 and 2008, where I was reduced on the basis of photos and GPS.

Conclusions

Comparing the first two years of mass balance measurements on Mullwitzkees one of the most conspicuous results is the position of the accumulation area, which is displaced from the ridge to lower elevations due to wind drift during the winter. Therefore the ice thickness is even decreasing at the highest elevations of this glacier.

the Location of the witzkees.

Abbildung A.22: Dieses Poster wurde im Rahmen des 13ten Alpine Glaciology Meetings (AGM) (26./27.02.2009, Innsbruck) und dem 4th Symposium of the Hohe Tauern National Park for Research in Protected Areas (17.–19.09.2009, Kaprun) präsentiert.

Abkürzungsverzeichnis

Α	Anhang A
a.s.l	above sea level
Abb	Abbildung
Abschn	Abschnitt
AGM	Alpine Glaciology Meeting
$d.h. \ \ldots \ldots \ldots$	das heißt
DAV	Deutscher Alpenverein (http://www.alpenverein.de/)
DGM	Digitales Geländemodell
DGPS	Differential Global Positioning System
DuÖAV	Deutscher und Österreichischer Alpenverein
GIS	Geographisches Informationssystem
$\operatorname{Glg}\ \ldots\ldots\ldots$	Gleichung
GN	Gipfelniveau
GPR	Ground Penetrating Radar
HD	Hydrographischer Dienst Tirol
	(http://www.tirol.gv.at/themen/umwelt/wasser/)
HEF	Hintereisferner
HSG	Hallstätter Gletscher
HZB	Hydrographisches Zentralbüro
	(http://www.wassernet.at/)
IMGI	Institut für Meteorologie und Geophysik, Universität Innsbruck
	(http://imgi.uibk.ac.at/)
IPCC	Intergovernmental Panel on Climate Change
JAM	Jamtalferner
Jhdt	Jahrhundert
Кар	Kapitel
KWF	Kesselwandferner
MW	Mullwitzkees
NP HT	Nationalpark Hohe Tauern (http://www.hohetauern.at/)
Tab	Tabelle
ZAMG	Zentralanstalt für Meteorologie und Geodynamik (www.zamg.ac.at)
ÖAV	Österreichischer Alpenverein (http://www.alpenverein.at)
ÖTK	Österreichischer Touristenklub (http://www.oetk.at/)

Abbildungsverzeichnis

1.1	Übersichtskarte Österreich und Lage des Mullwitzkeeses (Quelle: Google Earth).	5
1.2	Flächen- Höhenverteilung des Mullwitzkeeses 2009.	6
1.3	Ausschnitt der Alpenvereinskarte Nr. 36 (Venedigergruppe) des DuÖAVs von	
	2003, Stand der Karte 1998 mit Gletscherstand von 1991; D=Defreggerhaus,	
	G=Großvenediger, J=Johannishütte, M=Mullwitzkees (Äußeres Mullwitzkees und	
	Zettalunitzkees), R=Rainerkees (Inneres Mullwitzkees).	7
1.4	Gletschergrenzen der österreichischen Gletscherinventare 1969 und 1998 im Venedi-	
	gergebiet im Koordinatensystem Gauß-Krüger M31.	8
1.5	Zunge des Mullwitzkeeses von 1927 (oben) und 1939 (unten). Archivbilder des Du-	
	ÖAVs, zur Verfügung gestellt vom ÖAV.	10
1.6	Zunge des Mullwitzkeeses von 1950 (oben) und 1972 (unten). Archivbilder des Du-	
	ÖAVs, zur Verfügung gestellt vom ÖAV.	11
1.7	Luftaufnahme des Mullwitzkeeses von 1982 von H. Slupetzky (oben) und Orthofoto	
	von 1998 (unten)	12
1.8	Aufnahmen des Mullwitzkeeses am 04.09.2006 (oben) und am 01.10.2009 (unten)	
	des IMGI im Rahmen der Massenhaushaltsuntersuchungen.	13
2.1	Definitionen der Massenbilanzterme nach Paterson (1994)	19
2.2	Bohren von Pegel 6 am 05.09.2006	19
31	Pegelplan 2008 und 2000 am Mullwitzkoos mit DCPS korrigierter Cletschergrenze	
0.1	2009	28
32	Dichtenrofile aller Frühjahrsschächte 2007	31
3.3	Dichteprofile aller Herbstschächte 2007	32
3.4	Flächen gleichen WW der Winterhilanz gültig für den 30.04 2007 und Gletschergren-	02
0.1	ze von 1998 und 2007 Frühährssondierungen und Schächte. Koordinatensystem:	
	Gauk-Krüger M31	33
3 5	Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere	00
0.0	spezifische Bilanz $[mm WW]$ der Höhenstufen (rechts) gültig für die Winterbilanz	
	des hydrologischen Jahres 2006/07 am Mullwitzkees	34
36	Flächen gleichen WW der Jahresbilanz gültig für den 30.09.2007 und Gletscher-	01
0.0	grenze von 1998 und 2007 Gleichgewichtslinie Herbstsondierungen und Schächte:	
	Koordinatensystem: Gauk-Krijger M31	35
3.7	Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere	00
0.1	spezifische Bilanz $[mm WW]$ der Höhenstufen (rechts) gültig für des hydrologische	
	Jahr 2006/07 am Mullwitzkees	35
3.8	Dichteprofile aller Frühjahrsschächte 2008	- <u>4</u> 0
0.0		-10

3.9	Dichteprofile aller Herbstschächte 2008.	41
3.10	Flächen gleichen WW der Winterbilanz gültig für den 30.04.2008 und Gletschergren-	
	ze von 1998 und 2008, Frühjahrssondierungen und Schächte; Koordinatensystem:	
	Gauß-Krüger M31.	42
3.11	Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere	
0.11	spezifische Bilanz [mm WW] der Höhenstufen (rechts) gültig für die Winterbilanz	
	dos hydrologischen Jahros 2007/08 am Mullwitzkoos	49
9 10	Elächen gleichen WW den Jahresbileng gültig für den 20.00 2009 und Cletachen	42
3.12	Flachen gleichen www der Jahresblanz gultig für den 50.09.2008 und Gletscher-	
	grenze von 1998 und 2008, Gleichgewichtslinie, Herbstsondierungen und Schächte;	
	Koordinatensystem: Gauß-Krüger M31.	43
3.13	Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere	
	spezifische Bilanz $[mm WW]$ der Höhenstufen (rechts) gültig für das hydrologische	
	Jahr 2007/08 am Mullwitzkees	44
3.14	Dichteprofile aller Frühjahrsschächte 2009.	48
3.15	Dichteprofile aller Herbstschächte 2009.	49
3.16	Flächen gleichen WW der Winterbilanz gültig für den 30.04.2009 und Gletschergren-	
	ze von 1998 und 2009. Frühjahrssondierungen und Schächte: Koordinatensystem:	
	Gauß-Krüger M31	50
3 17	Nettopilang $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere	00
0.17	specificado Bilong [mm WW] der Höhenstufen (neghta) gültig für die Winterbilong	
	spezifische Dhanz $[mm \ w \ w]$ der Hohenstulen (rechts) guitig für die winterbinanz	50
0.10	des nydrologischen Jahres 2008/09 am Mullwitzkees.	50
3.18	Flachen gleichen WW der Jahresbilanz gultig für den 30.09.2009 und Gletscher-	
	grenze von 1998 und 2009, Gleichgewichtslinie, Herbstsondierungen und Schächte;	
	Koordinatensystem: Gauß-Krüger M31.	51
3.19	Nettobilanz $[10^5 m^3]$ und Fläche $[10^5 m^2]$ der Höhenstufen (links) und mittlere	
	spezifische Bilan z $[mm \; WW]$ der Höhenstufen (rechts) gültig für das hydrologische	
	Jahr 2008/09 am Mullwitzkees.	52
4.1	Kumulative Längenänderung (oben) und Längenänderung der Einzeljahre (unten)	
	des Zettalunitzkeeses von 1896 – 2009 (Quelle: ÖAV).	59
4.2	Rückzug des Zettalunitzkeeses mit Längenangabe durch Abmessung der projizierten	
	Flächen mit der Software $ArcGis$ in Metern von 1850, 1930, 1969, 1998 und 2009.	61
4.3	Flächenänderungen des Mullwitzkeeses von 1850 – 2009.	62
4.4	Aus SSW beleuchtetes Modell des Untergrundes des Mullwitzkeeses mit der Glet-	
	schergrenze von 2009.	63
5.1	Homogenisierte Jahresmitteltemperatur (oben) und Niederschlagsjahreswerte (un-	
	ten) der Station Lienz mit linearem Trend über den Gesamtzeitraum. Daten des	
	Projektes HISTALP (Quelle: www.zamg.ac.at/histalp)	70
5.2	Zeitreihen der spezifischen Bilanzen in <i>mm WW</i> am HEF (Hintereisferner). KWF	
	(Kesselwandferner), JAM (Jamtalferner), HSG (Hallstätter Gletscher) und MW	
	(Mullwitzkees)	74
		11
A.1	Ablationsverlauf der einzelnen Pegel am Mullwitzkees 2006/07	XIX
A.2	Ablationsverlauf der einzelnen Pegel am Mullwitzkees 2007/08	XX
A.3	Ablationsverlauf der einzelnen Pegel am Mullwitzkees 2008/09.	XXI
A.4	Temperaturabweichungen der einzelnen Monate im hydrologischen Jahr 2006/07	
	(Abb. der ZAMG. www.zamg.ac.at).	XXII

A.5	Temperaturabweichungen der einzelnen Monate im hydrologischen Jahr 2007/08	
	(Abb. der ZAMG, www.zamg.ac.at)	XXIII
A.6	Temperaturabweichungen der einzelnen Monate im hydrologischen Jahr 2008/09	
	(Abb. der ZAMG, www.zamg.ac.at)	XXIV
A.7	Prozent des Niederschlagsnormalwertes der einzelnen Monate im hydrologischen	
	Jahr 2006/07 (Abb. der ZAMG, www.zamg.ac.at)	XXV
A.8	Prozent des Niederschlagsnormalwertes der einzelnen Monate im hydrologischen	
	Jahr 2007/08 (Abb. der ZAMG, www.zamg.ac.at)	XXVI
A.9	Prozent des Niederschlagsnormalwertes der einzelnen Monate im hydrologischen	
	Jahr 2008/09 (Abb. der ZAMG, www.zamg.ac.at)	XXVII
A.10	Gletscherstand des Mullwitzkeeses von 1850 und Orthofoto 1998 auf dem DGM von	
	1850	XXVIII
A.11	Gletscherstand des Mullwitzkeeses von 1930 und Orthofoto 1998 auf dem DGM von	
	1930	XXVIII
A.12	Gletscherstand des Mullwitzkeeses von 1969 und Orthofoto 1998 auf dem DGM von	
	1969	XXIX
A.13	Gletscherstand des Mullwitzkeeses und Orthofoto auf dem DGM von 1998	XXIX
A.14	Von SSW beleuchtetes Oberflächenmodell von 1998 und Stand des Mullwitzkeeses	
	1850	XXX
A.15	Von SSW beleuchtetes Oberflächenmodell von 1998 und Stand des Mullwitzkeeses	
	1930	XXX
A.16	Von SSW beleuchtetes Oberflächenmodell von 1998 und Stand des Mullwitzkeeses	
	1969	XXXI
A.17	Von SSW beleuchtetes Oberflächenmodell und Stand des Mullwitzkeeses 1998.	XXXI
A.18	Eisdickenverteilung berechnet aus dem jeweiligen DGM der Oberfläche abzüglich	
	des DGMs des Untergrundes im Intervall von $10 m$ am Mullwitzkees und $50 m$ Kon-	
	turlinien des DGM 1850 (links) und 1930 (rechts): Fehler der DGMs in Graustufen:	
	GG=Gletschergrenze: Koordinatensystem: Gauß-Krüger M31	XXXII
A.19	Eisdickenverteilung berechnet aus dem jeweiligen DGM der Oberfläche abzüglich	
	des DGMs des Untergrundes im Intervall von $10 m$ am Mullwitzkees und $50 m$ Kon-	
	turlinien des DGM 1969 (links) und 1998 (rechts): Fehler der DGMs in Graustufen:	
	GG=Gletschergrenze: Koordinatensystem: Gauß-Krüger M31	XXXIII
A 20	Fisdickenänderung 1850 bis 1998 (links) und 1850 bis 1930 (rechts) im Intervall von	212121111
11.20	10 m am Mullwitzkees und Gletschergrenzen (GG) der Jahre 1850–1930–1969 und	
	1998: Koordinatensystem: Gaug-Krüger M31	XXXIV
A 21	Fisdickenänderung 1930 bis 1998 (links) und 1869 bis 1998 (rechts) im Intervall von	111111 V
11.21	10 m am Mullwitzkees und Gletschergrenzen (GG) der Jahre 1850–1930–1969 und	
	1098: Koordinatensystem: Gauk-Krüger M31	XXXV
Δ 22	Dieses Poster wurde im Rahmen des 13ten Alpine Claciology Meetings (ACM)	777777 V
11.44	$(26/27.02.2009$ Innsbruck) und dem A^{th} Symposium of the Hohe Tayorn Natio	
	nal Park for Research in Protected Areas $(17-10.00.2000)$ Kaprun) presentient	XLI
	1 a r a r a r a r a r a r a r a r a r a	1111

XLVIII

Tabellenverzeichnis

1.1 1 2	Tab. der Flächen- Höhenverteilung 2009	6
1.2	rung der Eisdicke (ΔE) der Gletscher der Venedigergruppe (Kuhn et al., 2008).	9
2.1	Notationen die in dieser Arbeit verwendet werden.	17
2.2	Zur Massenhaushaltsbestimmung gültige Beziehungen.	23
3.1	Übersichtstabelle der Massenbilanzkennzahlen 2006 – 2009	27
3.2	Totalisator Defreggerhaus 2006 – 2007; NS=Niederschlag	29
3.3	Ablationstabelle und Wasserwerte der Pegel 2007.	30
3.4	Wasserwert und Dichte, sowie mittlere Dichte aller Frühjahrsschächte 2007	31
$3.5 \\ 3.6$	Wasserwert und Dichte, sowie mittlere Dichte aller Herbstschächte 2007 Mittlere Höhe, Fläche, Bilanz und Wasserwert der jeweiligen Höhenstufe gültig für	32
	das hydrologische Jahr 2006/07	36
3.7	Kennzahlen der Jahres-, Winter- und Sommerbilanz des hydrologischen Jahres	
	2006/07	36
3.8	Totalisator Defreggerhaus 2007 – 2008; NS=Niederschlag	38
3.9	Ablationstabelle und Wasserwerte der Pegel 2008.	39
3.10	Wasserwert und Dichte, sowie mittlere Dichte aller Frühjahrsschächte 2008	39
3.11	Wasserwert und Dichte, sowie mittlere Dichte aller Herbstschächte 2008	40
3.12	Mittlere Höhe, Fläche, Bilanz und Wasserwert der jeweiligen Höhenstufe gültig für	
	das hydrologische Jahr 2007/08	44
3.13	Kennzahlen der Jahres-, Winter- und Sommerbilanz des hydrologischen Jahres	
	2007/08	45
3.14	Totalisator Defreggerhaus 2008 – 2009; NS=Niederschlag.	46
3.15	Ablationstabelle und Wasserwerte der Pegel 2009; negative Werte durch Aufeis	47
3.16	Wasserwert und Dichte, sowie mittlere Dichte aller Frühjahrsschächte 2009	47
3.17	Wasserwert und Dichte, sowie mittlere Dichte aller Herbstschächte 2009	48
3.18	Mittlere Höhe, Fläche, Bilanz und Wasserwert der jeweiligen Höhenstufe gültig für	
	das hydrologische Jahr 2008/09	52
3.19	Kennzahlen der Jahres-, Winter- und Sommerbilanz des hydrologischen Jahres	50
	2008/09	53
4.1	Übersichtstabelle der geodätischen Datengrundlage; MW=Mullwitzke es	58
4.2	Flächenänderung Zettalunitzkees 1850 – 2009	62
4.3	Eisdicke, Volumen und Volumsänderung des Mullwitzkeeses von 1850 – 1998. 	64
4.4	Kennzahlen der Unsicherheiten der Flächen-, Höhen- und Volumsangaben	65

5.1	Mittlere jährliche Flächen- (A) und Volumsänderungen (V) des Mullwitzkeeses 1850	
	– 2009 und Temperatur- (T) und Niederschlagsänderungen (N) der Station Lienz	
	1854 – 2008	69
5.2	Gegenüberstellung der Massenbilanzkennzahlen verschiedener Gletscher der Jah-	
	re 2006/07, 2007/08 und 2008/09; HEF=Hintereisferner, KWF=Kesselwandferner,	
	$JAM = Jamtal ferner, HSG = Hallst \ddot{a}tter Gletscher, MW = Mullwitzkees$	72
A.1	Totalisatorkalibrierung von Gefäß Nummer 54 am 21.6.2006	XVI
A.2	Totalisatorkalibrierung von Gefäß Nummer 37 am 23.8.2007	XVIII

Literaturverzeichnis

- Ahlmann, H.W., 1948: Glaciological Research on the North Atlantic Coasts. Number 1 in Research Series. Royal Geographical Society, 83 S.
- Anonym, 1969: Mass-Balance Terms. Journal of Glaciology, 8, 3–7.
- Arnberger, E., 1970: *Die Kartographie im Alpenverein*. Herausgegeben vom Deutschen Alpenverein und vom Österreichischen Alpenverein.
- Auer, I., R. Böhm, A. Jurkovic, W. Lipa, A. Orlik, R. Potzmann, W. Schöner, M. Ungersböck, C. Matulla, K. Briffa, P. Jones, D. Efthymiadis, M. Brunetti, T. Nanni, M. Maugeri, L. Mercalli, O. Mestre, J.M. Moisselin, M. Begert, G. Müller-Westermeier, V. Kveton, O. Bochnicek, P. Stastny, M. Lapin, S. Szalai, T. Szentimrey, T. Cegnar, M. Dolinar, M. Gajic-Capka, K. Zaninovic, Z. Majstorovicp, und E. Nieplovaq, 2007: HISTALP historical instrumental climatological surface time series of the Greater Alpine Region. *International Journal of Climatology*, 27, 17–46.
- Böhm, R., I. Auer, W. Schöner, M. Ganekind, C. Gruber, A. Jurkovic, A. Orlik, und M. Ungersböck, 2009: Eine neue Website mit Instrumentellen Qualitäts-Klimadaten für den Großraum Alpen bis 1760. Wiener Mitteilungen: Hochwässer: Bemessung, Risikoanalyse und Vorhersage, 216, 7–20.
- Brückner, E., 1886: Die Hohen Tauern und ihre Eisbedeckung. Zeitschrift des österreichischen Alpenvereins, 17, 163–187.
- Fischer, A., G. Markl, M. Olefs, K. Reingruber, K. Helfricht, und M. Stocker-Waldhuber, 2009: Untersuchungen des Massenhaushalts der Jahre 2006/07 und 2007/08. Hintereisferner, Kesselwandferner, Jamtalferner, Mullwitzkees, Hallstätter Gletscher. Institut für Meteorologie und Geophysik, Universität Innsbruck.
- Fischer, A., N. Span, M. Kuhn, und M. Butschek, 2007: Radarmessungen der Eisdicke österreichischer Gletscher. Band 2: Messungen 1999 bis 2006. Österreichische Beiträge zur Meteorologie und Geophysik, 39, 142 S.
- Fritzsch, M., 1898: Verzeichnis der bis zum Sommer 1896 in den Ostalpen gesetzten Gletschermessmarken. Verlag des deutschen und österreichischen Alpenvereins.
- Groß, G., 1987: Der Flächenverlust der Gletscher in Österreich 1850 1920 1969. Zeitschrift für Gletscherkunde und Glazialgeologie, 23, 131–141.
- Helfricht, K., 2009: Veränderungen des Massenhaushaltes am Hallstätter Gletscher seit 1856. Master's thesis, Institut für Meteorologie und Geophysik, Universität Innsbruck.
- Hoinkes, H., 1964: Glacial Meteorology. Research in Geophysics, 2, 391–416.

- Hoinkes, H., 1970: Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern. Zeitschrift für Gletscherkunde und Glazialgeologie, 6, 37–90.
- Hooke, R.L., 2005: Principles of Glacier Mechanics. Cambridge University Press.
- Keil, F., 1865: Aus den Tauern. Jahrbuch des österreichischen Alpenvereins, 1, 320-323.
- Keil, F., 1866: Ein Beitrag zur Kenntnis der Venedigergruppe. Jahrbuch des österreichischen Alpenvereins, 2, 99–113.
- Kinzl, H., 1928a: Gletscherschwankungen in der Venedigergruppe während der letzten 100 Jahre. Der Bergkamerad, 26, 206–208.
- Kinzl, H., 1928b: Gletscherschwankungen in der Venedigergruppe während der letzten 100 Jahre. Der Bergkamerad, 27, 213–216.
- Kinzl, H., 1929: Beiträge zur Geschichte der Gletscherschwankungen in den Ostalpen. Zeitschrift für Gletscherkunde, 17, 66–121.
- Kürsinger, I.v., und F. Spitaler, 1843: Der Groß-Venediger in der norischen Central-Alpenkette, seine erste Besteigung 3. Sept. 1841 und sein Gletscher in seiner gegenwärtigen und ehemaligen Ausdehnung. Wagner 'sche Buchhandlung.
- Kuhn, M., E. Dreiseitl, S. Hofinger, G. Markl, N. Span, und G. Kaser, 1999: Measurements and Models of the Mass Balance of Hintereisferner. *Geografiska Annaler*, 81, 659–670.
- Kuhn, M., und A. Lambrecht, 2006: Änderung von Gletschern in Österreich im 20. Jahrhundert. Hydrologischer Atlas Österreichs, Blatt 4.3, 3 S.
- Kuhn, M., A. Lambrecht, J. Abermann, G. Patzelt, und G. Groß, 2008: Die österreichischen Gletscher 1998 und 1969, Flächen- und Volumenänderung., Volume Projektbericht 10. Verlag der österreichischen Akademie der Wissenschaften.
- Kuhn, M., G. Markl, G. Kaser, U. Nickus, F. Obleitner, und H. Schneider, 1985: Fluctuations of climate and mass balance: Different responses of two adjacent glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 409–416.
- Lambrecht, A., und M. Kuhn, 2007: Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Annals of Glaciology, 46, 177–184.
- Lemke, P., J. Ren, R.B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas, und T. Zhang, 2007: Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Meier, M.F., 1962: Proposed Definitions for Glacier Mass Budget Terms. *Journal of Glaciology*, 4, 252–261.
- Meier, M.F., 1963: Proposed definitions for glacier mass budget terms. *Journal of Glaciology*, 4, 648–649.
- Oerlemans, J., 2001: Glaciers and Climate Change. A. A. Balkema Publishers, Lisse / Abington / Exton (PA) / Tokyo.

Paterson, W.S.B., 1994: The physics of Glaciers. (3rd ed.). Pergamon Press.

- Patzelt, G., 1967: Die Gletscher der Venedigergruppe. Ph. D. thesis, Universität Innsbruck.
- Patzelt, G., 1973: Die neuzeitlichen Gletscherschwankungen in der Venedigergruppe (Hohe Tauern, Ostalpen). Zeitschrift für Gletscherkunde und Glazialgeologie, 9, 5–57.
- Patzelt, G., 1978: Der Österreichische Gletscherkataster. Almanach '78 der österreichischen Forschung, 129–133.
- Patzelt, G., 1980: The Austrian glacier inventory: status and first results. IAHS Publication (Riederalp Workshop 1978 – World Glacier Inventory), 126, 181–183.
- Patzelt, G., 1985: The period of glacier advances in the Alps, 1965 to 1980. Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 403–407.
- Patzelt, G., 2005: Gletscherbericht 2003/2004. Sammelbericht über die Gletschermessungen des Oesterreichischen Alpenvereins im Jahre 2004. Mitteilungen des Oesterreichischen Alpenvereins, 2, 24–31.
- Patzelt, G., 2006: Gletscherbericht 2004/2005. Sammelbericht über die Gletschermessungen des Oesterreichischen Alpenvereins im Jahre 2005. *Bergauf*, **2**, 6–11.
- Richter, E., 1888: Die Gletscher der Ostalpen. Verlag von J. Engelhorn.
- Ruthner, A.v., 1857: Über die Verbreitung von Gletschern in den österreichischen Alpen. Mittheilungen der kaiserlich-königlichen geographischen Gesellschaft, 1, 32–34.
- Simony, F., 1865: Aus der Venedigergruppe. Jahrbuch des österreichischen Alpenvereins, 1, 1–32.
- Sonklar, K.v., 1863: Das Eisgebiet der Hohen Tauern. Mittheilungen der kaiserlich-königlichen geographischen Gesellschaft, 7, 12–30.
- Sonklar, K.v., 1866: Die Gebirgsgruppe der Hohen Tauern. Beck'sche Universitäts-Buchhandlung.
- Span, N., A. Fischer, M. Kuhn, M. Massimo, und M. Butschek, 2005: Radarmessungen der Eisdicke österreichischer Gletscher. Band 1: Messungen 1995 bis 1998. Österreichische Beiträge zur Meteorologie und Geophysik, 33, 145 S.
- Stocker-Waldhuber, M., A. Fischer, J. Lang, W. Gattermayr, und F. Jurgeit, 2009: Monitoring of glacier mass balance on Mullwitzkees, Hohe Tauern. In: Conference Volume, 4th Symposium of the Hohe Tauern National Park for research in protected areas, Volume 4, S. 295–298.
- Würländer, R., und K. Eder, 1998: Leistungsfähigkeit aktueller photogrammetrischer Auswertemethoden zum Aufbau eines digitalen Gletscherkatasters. Zeitschrift für Gletscherkunde und Glazialgeologie, 34, 167–185.
- Zemp, M., 2006: Glacier and Climate Change. Spatio-temporal Analysis of Glacier Fluctuations in the European Alps after 1850. Ph. D. thesis, Geographisches Institut der Universität Zürich.

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich bis zum Abschluss des Studiums unterstützt haben.

Allen voran natürlich bei meinen Eltern, die immer an mich geglaubt haben und ohne deren finanzielle Unterstützung das Studium nicht möglich gewesen wäre. Für die Antworten auf viele Fragen, geistreiche Gespräche, die Durchsicht der Arbeit und die Nachhilfe in deutscher Grammatik: Danke MaPa!

Besonderer Dank gilt Frau Dr. Andrea Fischer, die mich bei dieser Arbeit betreut hat. Danke Andrea für deine unkomplizierte Unterstützung, deine guten Ideen und kompetenten Antworten auf alle meine Fragen und deine Geduld, wenn ich mal wieder unangemeldet im Türrahmen stand. Ebenso gilt mein Dank Dr. Marc Olefs, der wie ein zweiter Betreuer immer ein offenes Ohr für mich hatte. Danke euch beiden für die vielen schönen Feldarbeitstage, Hubschrauberflüge und gemütlichen Hüttenabende. Danke Marc fürs Schifahren, Volleyballspielen und was dazugehört und die ausgedehnten Kaffeepausen mit interessanten Gesprächen.

Für die Hilfe während des Studiums und die Lerneinheiten, ohne die ich niemals bis zum Abschluss gekommen wäre, sei vielen Studienkollegen gedankt (Ihr wisst wen ich meine!). Danke Bärnd, Mawdee und Kay für die gemeinsame Zeit, die hoffentlich nicht so schnell enden wird!!! Es würde den Rahmen sprengen mich bei allen Gletscherknechten, es waren nicht nur Studenten, sondern auch Freunde, Verwandte und Bekannte, zu bedanken, die mich auf den vielen Feldarbeiten begleitet haben, doch diese Zeiten werde ich gerne in Erinnerung behalten. Ohne Mag. Josef Lang wäre ich wohl nie zu dieser Arbeit am Mullwitzkees gekommen! Danke Josef, dass du mich bereits als Studienanfänger auf Feldarbeiten mitgenommen, und mir den Arbeitsplatz und die Arbeit am Institut vermittelt hast. Hier darf ich mich auch bei der Fam. Klaunzer für die gute Zusammenarbeit, die logistische Unterstützung und die freundliche Bewirtung am Defreggerhaus bedanken.

Und nun die Beste zum Schluss: Meine Freundin Viktoria! Danke Viki, dass du mir immer zur Seite gestanden bist und für dein Verständnis, wenn ich mal wenig Zeit hatte.

Lebenslauf

Persönliche Angaben:

Name:	Martin Stocker-Waldhuber
Geburtsdatum:	16. August 1984, Lienz, Tirol
Adresse:	A-9972 Virgen, Honiggasse 18
	A-6020 Innsbruck, Innstrasse $37/5$

AUS- UND WEITERBILDUNG:

09.1990 - 07.1994	Volksschule Virgen, Tirol				
09.1994 – 07.1998	Hauptschule Virgen, Tirol				
09.1998 - 06.2003	Bundes-Oberstufenrealgymnasium Lienz unter besond	erer			
	Berücksichtigung der sportlichen Ausbildung, Tirol				
Seit 10.2004	Diplomstudium Meteorologie und Geophysik, Univers	sität			
	Innsbruck, Tirol				

MILITÄRDIENST:

10.2003-05.2004	Präsenzdienst	beim	Österreichischen	Bundesheer,	Kufstein,
	Saalfelden, Kra	nebittei	n, Absam, Tirol un	nd Salzburg	

Berufliche Tätigkeiten am Institut für Meteorologie und Geophysik, Universität Innsbruck:

Seit 05.2005	Eisdickenmessungen mit geodätischem Radar
Seit 09.2006	Massenhaushaltsuntersuchungen verschiedener Gletscher
Seit 06.2007	Wissenschaftlicher Mitarbeiter, Drittmittelprojekt (Teilzeit):
	Massenhaushaltsuntersuchungen am Mullwitzkees, Hohe Tauern
0809.2008	Messungen mit terrestrischem Laser Scanner

TEILNAHME AN WISSENSCHAFTLICHEN TAGUNGEN:

26./27.02.2009	Posterpräsentation: 13^{th} Alpine Glaciology Meeting (AGM),
	Innsbruck, Tirol; Monitoring of glacier mass balance on
	Mullwitzkees, Hohe Tauern
1719.09.2009	Posterpräsentation: 4^{th} Symposium of the Hohe Tauern National
	Park for Research in Protected Areas, Kaprun, Salzburg;
	Monitoring of glacier mass balance on Mullwitzkees, Hohe Tauern

VERÖFFENTLICHUNGEN:

Stocker-Waldhuber, M., A. Fischer, J. Lang, W. Gattermayr, und F. Jurgeit, 2009: Monitoring of glacier mass balance on Mullwitzkees, Hohe Tauern. In: 4th Symposium for Research in Protected Areas–Conference Volume, 4, 295-298