FRANKLIN CRUISES FR 8/90, 5/92 AND 8/93 DATA DOCUMENTATION JGOFS WESTERN EQUATORIAL PACIFIC PROCESS STUDY

[1] General:

Parameter: Level 1 Principal Investigate Institute Address: E-Mail Address:	Phytoplankton pigments detemined by HPLC: Cruises FR 9008 and FR 9205. Yes Harry Higgins CSIRO Division of Marine Research Harry.Higgins@marine.csiro.au
List of Parameters:	Phytoplankton pigments:
Cli a Chl c_3 Chl c_1+c_2 PERI CPERI 19BUT FUCO c19BUT NEO 19HEX CFUCO c19HEX PRAS Pb a VIOL Pb a like 1 DINO cPRAS Pb a like 2 DDX DDC ANTH ALLO MON DIAT LUT ZEA cZEA CANT SIPN Chl b + dvChl b Chl a' Chl a + dvChl a eChl a ECHN Ph b	hlorophyllide a hlorophyll c_3 hlorophyll c_1+c_2 eridinin s-peridinin 9'-butanoyloxyfucoxanthin icoxanthin s-19'-butanoyloxyfucoxanthin eoxanthin s-19'-hexanoyloxyfucoxanthin rasinoxanthin heophorbide a olaxanthin heophorbide a olaxanthin heophorbide a like 1 inoxanthin s-prasinoxanthin heophorbide a like 2 iadinoxanthin iadinochrome ntheraxanthin loxanthin szeaxanthin szeaxanthin szeaxanthin horophyll b + divinyl-chlorophyll b hlorophyll a + divinyl-chlorophyll a hlorophyll a epimer chinenone heophytin b

Ph a ßΨCA εεCA ßεCA ßßCA pPh a cßεCA cßεCA	pheophytin <i>a</i> βΨ-carotene εε-carotene βε-carotene ββ-carotene pyro-pheophytin <i>a</i> cis-ßε-carotene cis-ßβ-carotene			
List of Units:	µg m	μg m ⁻³		
[2] Sampling:				
Gear (e.g. CTD, pump, etc.): Standard Depths: Chemicals used: Special Procedures:		CTD; 10 litre niskin bottles Hydrochemistry depths: see Hydrochemistry data none Niskins with silicone rubber o-rings and closure rubbers. Began pressure filtration through Whatman GFF filers as soon as CTD on deck. Filters blotted dry and stored in liquid nitrogen until analysed.		
Comments and Notes:		Sampled in dim light.		
[3] Analysis:				
Instrument: Method: Precision: Comments:	gradic coeffi for tri (1) FF • • • • • • • • • • • • • • • • • •	C ction of pigments from filters followed by ternary ent HPLC cient of variation estimated as 17% over all pigments plicate samples from FR 9205 R 9205: Duplicate extract from station 42, 75.1 m Duplicate extract from station 51, 96 m Triplicate samples from station 45, 67 m 147 ⁰ E transect and 155 ⁰ E, 3 ⁰ S samples not worked up R 9308: ue to loss of all pigment samples on FR 9308, lorophyll <i>a</i> data can be estimated using fluorescence ofiles from FR 9308 and fluorometer calibration from R 9205		
[4] Results:				

Quality of Data: FR 9008 and FR 9205: good. FR 9308: loss of HPLC pigment samples; chlorophyll *a* can be calculated from fluorometric data

(calibrated using FR 5/92 data; see methods for a full description of the calibration procedures).Known Problems: Loss of pigment samples for FR 8/93.

[5] Brief description of analytical methods

Chl a estimation from in situ fluorescence

During FR05/92, the fluorometer was calibrated against measurements of extracted ChI *a* (actually chlorophyll *a* plus divinyl-chlorophyll *a* - see Mackey *et al.*, 1995) determined by HPLC with diode array detection. The relationship was:

Chl $a (\mu g l^{-1}) = 0.01204 \text{ x Seatech}(\%) + 0.026$ ($r^2 = 0.698, n = 94$)

with a standard error in Chl *a* of 0.06 μ g l⁻¹. During FR08/90, the instrument was calibrated against Chl *a* determined spectrophotometrically and the correlation was:

Chl
$$a (\mu g l^{-1}) = 0.01239 \text{ x Seatech}(\%) + 0.0142$$
 ($r^2 = 0.848, n = 174$)

with a standard error in ChI *a* of $0.05 \ \mu g \ l^{-1}$. Between the two cruises, the slope had changed by only 3% and the difference in intercept was less than 20% of the standard error in the calculated concentration of ChI *a*. Unfortunately, samples collected for calibration of the fluorometer on FR08/93 had decomposed because of a faulty Dewar before they could be analysed. We therefore assumed that the calibration for FR08/93 was unchanged from that found in 1992.

Reference: see Mackey et al., Deep-Sea Research, 44, 1951-1978.

Pigment calibration

Water samples (10 L) were generally collected at 25 m intervals to 150 m from Niskin bottles attached to the CTD rosette. The sampling depth closest to the DCM, determined from the *in situ* fluorescence profile, was moved so that samples were always collected from the DCM. The samples were pressure-filtered (5 psi) through Whatman GF/F filters which were blotted dry and stored in liquid nitrogen. In contrast to FR08/90 where pigment analyses of samples was carried out post-cruise in Hobart within 1 - 3 months of collection, pigment samples from FR05/92 were analysed on-board within 24 hours of sampling.

The pigment filters were extracted with acetone (Carpenter *et al.*, 1991) and analysed by HPLC based on the ternary gradient method of Wright *et al.*, (1991) as described in Mackey *et al.*, (1995). Pigments were detected at 436 nm and identified by their retention time and spectra. Calibration standards of Chl a_1 and Chl b_1 , and carotenoids from the SCOR-recommended algal cultures (Jeffrey and Wright, 1997) were kindly made available by S. W. Wright. HPLC response factors were determined by the method of external standards (Mantoura and Repeta, 1997) using data provided by (Jeffrey, *et al.*, 1997) and S. W. Wright (personal communication).

Reference: see Higgins, H. W. and Mackey, D. J. (2000) *Deep-Sea Research*, **47**, 1461-1483.

References:

- Carpenter, P.D., Butler, E.C.V., Higgins, H.W., Mackey, D.J., and Nichols, P.D. (1991) Chemistry of trace elelments, humic substances, and sedimentary organic matter in Macquarie Harbour, Tasmania. *Australian Journal of Marine and Freshwater Research* **42**, 625-654.
- Higgins, H. W. and Mackey, D. J. (2000) Algal class abundances, estimated from chlorophyll and carotenoid pigments, in the western Equatorial Pacific under El Niño and non-El Niño conditions. *Deep-Sea Research*, **47**, 1461-1483.
- Jeffrey, S.W. and Wright, S.W. (1997). Qualitative and quantitative analysis of SCOR reference algal cultures. In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Eds.), Phytoplankton pigments in Oceanography: Guidelines to Modern Methods. SCOR-UNESCO Paris, pp 343-360.
- Mackey, D. J., Higgins, H. W., Mackey, M. D. and Holdsworth, D. (1998) Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. *Deep-Sea Research*, **45**, 1441-1468.
- Mackey, D. J., Parslow, J. S., Griffiths, F. B., Higgins, H. W. and Tilbrook, B. (1997) Phytoplankton productivity and the carbon cycle in the western equatorial Pacific under ENSO and non-ENSO conditions. *Deep-Sea Research*, 44, 1951-1978.
- Mantoura, R.F.C. and Repeta, D.J. (1997) Calibration methods for HPLC. In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Eds.), Phytoplankton pigments in Oceanography: Guidelines to Modern Methods. SCOR-UNESCO Paris, pp 407-428.
- Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjornland, T., Repta, D., Welschmeyer, N. (1991) Improved HPLC mehtod for the analysis of chlorophylls and carotenoids from marine phytoplankton. *Marine Ecology Progress Series* 77, 183-196.

[6] Comments: