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As part of the HAUSGARTEN long-term observatory, sediment trap deployments were carried out before,
during, and after the anomalously warm Atlantic Water inflow observed from 2005 to 2007 in the eastern
Fram Strait. Downward export of particulate organic carbon (POC), zooplankton fecal pellet carbon (FPC),
and biogenic particulate silica (bPSi) were measured from August 2002 to June 2003 and from July 2004
to July 2008 to indirectly assess the impact of the warm anomaly on phytoplankton and zooplankton
communities in the region. Lower and less frequent bPSi fluxes were observed during most of the warm
anomaly period, reflecting a shift in phytoplankton community composition towards dominance of
small-sized phytoplankton under warmer conditions. Lower FPC fluxes observed concurrently with the
lower bPSi fluxes may indicate a decrease in fecal pellet production due to changing feeding conditions.
In addition, the export of smaller fecal pellets in fall 2005 and spring 2006 suggests a dominance of smal-
ler zooplankton during the warm anomaly. Nonetheless, bPSi and FPC export always increased in the
presence of ice cover in the area above the sediment trap, even during the warm anomaly period, suggest-
ing that sea ice is a key factor influencing the frequency of export events in the eastern Fram Strait. The
scarcity of ice over the sampling area in 2005 and 2006 may partly be due to the warm anomaly, although
solar radiation and ice drift due to wind stress also govern ice cover extent in the region. Overall, the
warm anomaly resulted in a shift in the composition of the export fluxes when associated with an
absence of ice cover in the eastern Fram Strait.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The HAUSGARTEN observatory, located in the eastern Fram
Strait approximately 120 km west of Spitsbergen, has been main-
tained by the Alfred Wegener Institute for Polar and Marine Re-
search for more than a decade, providing a unique long-term
dataset for this region of the Arctic Ocean (Soltwedel et al.,
2005). During this period, a warming of the Atlantic Water entering
the Arctic Ocean with the West Spitsbergen Current was recorded
in Fram Strait (Beszczynska-Möller et al., 2012). The warmer peri-
od began in late 2004, reached a peak in September 2006, and per-
sisted until a significant decrease in temperature was recorded in
2008 (Beszczynska-Möller et al., 2012). This period of increased
water temperature was defined as the warm anomaly of 2005–
2007, when temperature anomalies exceeding 1 �C were observed
in the eastern Fram Strait (Beszczynska-Möller et al., 2012). During
this period, the highest mean temperature of the West Spitsbergen
Current reached 4.4 �C, whereas the median temperature of the
Atlantic Water entering the Arctic Ocean in Fram Strait usually
ranges from 3 to 3.5 �C (Beszczynska-Möller et al., 2012). The coin-
ll rights reserved.
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nde).
cident deployment of a long-term sediment trap at the central sta-
tion of the HAUSGARTEN observatory before, during, and after that
warm anomaly period provided the opportunity to evaluate the
impact of an increase of water temperature on export fluxes in
the entrance to the Arctic Ocean.

Several studies have investigated the biological impact of war-
mer ocean conditions on marine ecosystems. In northern Chile,
the high surface temperature anomaly observed during the El
Niño episode of 1997–1998 led to lower phytoplankton biomass
and primary production (Iriarte and González, 2004), a dominance
of small-sized phytoplankton (Escribano et al., 2004; Iriarte and
González, 2004), lower diatom export fluxes (Romero et al.,
2001), an increase in small-sized zooplankton (González et al.,
2000a; Escribano et al., 2004), and reduced export of particulate or-
ganic carbon (POC) (González et al., 2000b). The 1997–1998 El
Niño event also resulted in a substantial decrease in phytoplankton
biomass and in a dominance of small-sized phytoplankton off Ore-
gon (Corwith and Wheeler, 2002) and British Columbia (Harris
et al., 2009), as well as reduced phytoplankton biomass (Chavez
et al., 2002), lower zooplankton abundance, and a shift in zoo-
plankton community composition off central California (Marinovic
et al., 2002). Similarly, anomalously warm ocean conditions off
Washington in 2005 resulted in lower phytoplankton biomass,
lower phytoplankton productivity, and dominance of small-sized
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phytoplankton (Kudela et al., 2006). Each of these observations
was made in an eastern boundary upwelling ecosystem where
the anomalously warm surface conditions inhibited the upwelling
of nutrient-rich waters, suggesting that the phytoplankton com-
munity, and indirectly the zooplankton community, were primar-
ily influenced by nutrient limitation during the warm episodes
(Kudela et al., 2006). However, recent observations suggest that
water temperature also has a direct impact on phytoplankton size
and community structure. Morán et al. (2010) observed an increas-
ing contribution of small cells to total phytoplankton biomass with
higher water temperature in the North Atlantic Ocean, whereas
Hilligsøe et al. (2011) reported an increase in the importance of
small cells in the phytoplankton community and a decrease in zoo-
plankton production with increasing temperature from a dataset
acquired in all major ocean basins. Because the fate of particulate
organic carbon in the euphotic zone depends on phytoplankton
and zooplankton communities (González et al., 2000a, b), changes
in phytoplankton and zooplankton composition during a warm
anomaly are reflected in the magnitude and composition of the ex-
port fluxes.

In contrast to warm anomalies inhibiting the main input of
nutrients in eastern boundary upwelling ecosystems, it is unlikely
that the warm anomaly episode of 2005–2007 affected nutrient
concentrations in the eastern Fram Strait, although no measure-
ments are available to support this assumption. The long-term
measurements of export fluxes at the HAUSGARTEN observatory
should therefore reflect the direct impact of an increase in temper-
ature on phytoplankton and zooplankton composition in the east-
ern Fram Strait. In the present study, fluxes of POC, zooplankton
fecal pellets and biogenic particulate silica (bPSi), a proxy for dia-
toms, were measured prior to, during, and after the anomalously
warm conditions of 2005–2007 to indirectly evaluate the impact
of the warm anomaly on the pelagic system.
2. Materials and methods

2.1. Remote sensing

Daily averaged sea ice concentration for the area above the sed-
iment trap (78�30–79�30 N; 2�30–6�30 E) was obtained by analysis
of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data
provided by the National Snow and Ice Data Centre. The 89 GHz
AMSR-E sensor and the ARTIST sea ice (ASI) algorithm were used,
yielding a spatial resolution of 6.25 � 6.25 km (Spreen et al., 2008).

Daily sea surface temperature for the area above the sediment
trap was obtained at a spatial grid resolution of 0.25� from the
NOAA Optimum Interpolation Sea Surface Temperature Version
2 (NOAA OISST v2) dataset (Reynolds et al., 2007). The daily 0.25�
sea surface temperature data were spatially re-interpolated onto
mooring positions and averaged monthly to be consistent with
the water column temperature time series obtained from the
oceanographic moorings.
2.2. Oceanographic moorings

Since 1997 an array of oceanographic moorings has measured
temperature, salinity, and ocean currents between the Greenland
and Spitsbergen shelves along 78�500N (Beszczynska-Möller
et al., 2012). In this study, water temperature data obtained at
the nominal depths of �50 m and �250 m in the partial section
from 3 to 5�E (between moorings F6 and F8 deployed south of
the sediment trap) were used (Fig. 1). Temperature data were col-
lected at 1 or 2-h intervals, despiked and low-pass filtered with a
cut-off period of 40 h to remove the tidal signal. To construct Hov-
möller diagrams, temperature data with the time step of 1 month
(averaged monthly) and the spatial step of 1 km (interpolated)
were used. Detailed description of data accuracy and treatment
can be found in Fahrbach et al. (2001) and Schauer et al. (2004).
2.3. Sediment trap

A modified automatic Kiel sediment trap with a sampling area
of 0.5 m2 and 20 collection cups (Kremling et al., 1996) was de-
ployed and recovered every year from August 2002 to July 2008
at the central station of the HAUSGARTEN observatory (Fig. 1; Ta-
ble 1). The sediment trap was located in the confluence zone of the
warm Atlantic Water with cold water masses of Arctic origin
(Fig. 1). A malfunction of the sediment trap prevented the collec-
tion of sinking material for the deployment year of 2003–2004.
The depth of the sediment trap varied between 179 and 280 m
depending on the deployment year (Table 1) and sampling cups ro-
tated at intervals ranging from 7 to 59 days depending on the sea-
son. Sampling cups were filled with filtered seawater adjusted to a
salinity of 40 with NaCl and poisoned with HgCl2 (0.14% final solu-
tion) to preserve samples during deployment and after recovery.

In the laboratory, swimmers were removed with forceps and
rinsed under a dissecting microscope and samples were split for
different measurements. Triplicate subsamples for POC measure-
ments were filtered on pre-weighed GF/F filters (pore size:
0.7 lm) pre-combusted at 500 �C for 4 h. POC filters were soaked
in 0.1 N HCl for removal of inorganic carbon and then dried at
60 �C. POC measurements conducted on a CHN elemental analyzer
were not corrected for dissolution of organic material in the sam-
pling cups and should be considered as minimum values. Subsam-
ples for bPSi were filtered on polycarbonate filters (pore size:
0.8 lm) and bPSi measurements were obtained by wet-alkaline
digestion of the samples (von Bodungen et al., 1991). Zooplankton
fecal pellets were enumerated (5–700 pellets depending on the
subsample) and measured using a dissecting scope. The length
and width of each fecal pellet (broken or intact) were measured
and pellet volumes were calculated according to the shape of the
pellets. Cylindrical pellets were attributed to calanoid copepods
and ellipsoidal pellets to appendicularians (González et al.,
2000a). Fecal pellet volumes were converted to fecal pellet carbon
(FPC) using a volumetric carbon conversion factor of
0.057 mg C mm�3 for copepod pellets and 0.042 mg C mm�3 for
appendicularian pellets (González et al., 1994; González and
Smetacek, 1994). POC fluxes were averaged for each collection per-
iod (coefficient of variation <15%), while POC, bPSi, and FPC fluxes
were converted to daily fluxes for each collection period. Pearson’s
correlation coefficient was used to measure correlation between
POC, bPSi, and FPC fluxes. A one-way analysis of variance was used
to test for the effect of deployment periods on fecal pellet size.
3. Results

3.1. Ice concentration and water temperature

Ice cover was frequently absent in the region above the sedi-
ment trap during the sampling period, and when present ice con-
centrations remained mostly <20%. Higher ice concentrations
(>40%) were observed in June 2003 and in April, May, and June
2008 (Fig. 2a). Sea surface temperature and water temperature at
�50 and �250 m displayed seasonal variation, with low values
measured in winter and spring and high temperatures observed
in summer and fall (Fig. 2b–d). The highest water temperatures
(4–5.5 �C) were observed in September 2006 at all depths investi-
gated, while the lowest temperatures (0.8–1.8 �C) were measured
in winter-spring 2003 at �50 m and �250 m and in spring 2008
at the sea surface. The study area was strongly influenced by
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Fig. 1. Location of the sediment trap (square) deployed from August 2002 to June 2003 and from July 2004 to July 2008 at the central station of the HAUSGARTEN observatory
in the eastern Fram Strait. Location of 3 oceanographic moorings (circles) near the sediment trap from which water temperatures at �50 m and �250 m were interpolated for
the deployment period. The gray lines represent branches of the West Spitsbergen Current carrying Atlantic Water in the region.

Table 1
Position, depth, sampling period, and deployment days of the sediment trap deployed at the central station of the HAUSGARTEN observatory.

Deployment year Position Depth (m) Sampling period Deployment (days)

2002–2003 79�01.04 N; 4�19.77 E 280 August 14 2002–June 10 2003 300
2004–2005 79�00.99 N; 4�20.62 E 280 July 15 2004–June 15 2005 328
2005–2006 79�01.00 N; 4�20.62 E 179 August 27 2005–July 20 2006 359
2006–2007 79�00.82 N; 4�20.50 E 230 August 26 2006–June 20 2007 335
2007–2008 79�00.82 N; 4�20.62 E 190 July 23 2007–July 15 2008 298
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Atlantic Water, as the Atlantic Water mass is defined as warmer
than 2 �C (Schlichtholz and Houssais, 2002; Beszczynska-Möller
et al., 2012).
3.2. Export fluxes

Increased POC fluxes were observed during fall and spring sea-
sons, except in spring 2005 and in fall 2006 when POC fluxes re-
mained low (Fig. 2e). POC fluxes were <30 mg C m�2 d�1 except
for 2 periods in August 2004 and in April–May 2007 during which
POC fluxes increased to almost 50 mg C m�2 d�1. The timing of the
peak in POC export varied amongst deployment period, with the
highest POC fluxes measured in May in 2002–2003 and 2006–
2007, in August in 2004–2005, in July in 2005–2006, and in April
in 2007–2008. Microscopic observation of the sediment trap mate-
rial revealed that the majority of the material contributing to the
POC flux was unidentifiable.

Export fluxes of bPSi remained <5 mg m�2 d�1 during most of
the sampling period, including the complete deployment period
of 2005–2006 (Fig. 2f). In 2002–2003, high bPSi fluxes (5–
25 mg m�2 d�1) were observed from August to October and from
April to June. In the following deployment years, bPSi fluxes mod-
erately increased (�10 mg m�2 d�1) during short periods in August
2004, May 2007, August 2007, and May 2008, except for the high-
est bPSi fluxes (>30 mg m�2 d�1) observed at the end of July/begin-
ning of August 2004. Microscopic observation of the sediment trap
material confirmed that the large majority of bPSi was associated
with diatoms rather than other Si-producing organisms. Diatoms
were observed both as intact cells and incorporated into fecal
pellets.

FPC fluxes remained <2.5 mg C m�2 d�1 during the complete
deployment period (Fig. 2g), generally contributing to less than
15% of the POC flux and to 29% of the POC flux at its highest con-
tribution in August 2002. Increases in FPC fluxes were observed
at the end of summer/beginning of fall and in spring but these in-
creases were smaller in spring 2005 and spring 2006 and nearly
absent in fall 2006. The highest FPC fluxes were measured in Au-
gust 2002 and August 2004. The majority of fecal pellets exported
every year were copepod pellets, although a higher proportion of
appendicularian fecal pellets were exported during 2002–2003
and 2007–2008 (Fig. 2h). The average volume and width of cope-
pod and appendicularian fecal pellets collected in fall and spring/
summer were similar every deployment year except in 2005–
2006 when the volume and width of exported fecal pellets were
significantly lower than in all other years sampled (p < 0.05; Fig. 3).
4. Discussion

The long-term sediment trap fluxes obtained in the eastern
Fram Strait from August 2002 to June 2003 and from July 2004
to July 2008 revealed a change in the export of biogenic matter
during the warm anomaly period of 2005–2007. These variations
in the magnitude and composition of the export flux before, during,
and after the warm anomaly reflect the impact of the rapid
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Fig. 2. (a) Satellite-derived daily sea ice concentration averaged over the sampling region (78�30–79�30 N; 2�30–6�30 E), (b) Hovmöller diagram of satellite-derived daily sea
surface temperature, (c) Hovmöller diagram of monthly averaged water temperature measured at �50 m, and (d) at �250 m, (e) POC fluxes, (f) bPSi fluxes, (g) FPC fluxes, and
(h) contribution of copepod and appendicularian fecal pellets to the FPC fluxes obtained from August 2002 to June 2003 and from July 2004 to July 2008 in the eastern Fram
Strait. The black diamonds indicate the location of the sediment trap along the oceanographic mooring transect. The light gray areas represent the mooring turnover periods.
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warming of the Atlantic Water on phytoplankton and zooplankton
communities.

4.1. Before the warm anomaly

During the first weeks of sampling in fall 2002, a decrease in
water temperature, POC export, bPSi fluxes, and FPC fluxes indi-
cated the end of the productive period and the beginning of winter.
Export fluxes remained very low until March when a small in-
crease in POC fluxes suggested the start of the productive season
in spring. An increase in bPSi fluxes at the end of April and in
May indicated the development and export of a diatom bloom,
which contributed to the highest POC export of that sampling year
at the end of May. The southward displacement of the ice edge into
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the area above the sediment trap likely triggered the onset of the
diatom bloom, as ice melt typically promotes diatom blooms in
the marginal ice zone by producing strongly stratified surface
water (Peinert et al., 2001; Fortier et al., 2002; Sakshaug, 2004;
Lalande et al., 2007). Because zooplankton fecal pellets sink rapidly
(Turner, 2002), a pronounced increase in FPC fluxes 15 days after
the increase in bPSi fluxes suggests that zooplankton biomass
was low until it rapidly increased at the end of May, most likely
indicating the seasonal ascent of copepods in the region. A similar
increase in FPC fluxes was measured at the end of May by another
sediment trap deployed at a distance of �5 km from the current
sediment trap (Lalande et al., 2011), supporting the hypothesis of
the seasonal ontogenetic migration of copepods at the end of
May in the eastern Fram Strait.

The unusual increase in ice concentration at the beginning of
June 2003 was attributed to the formation of a cyclonic eddy at
the ice-edge, a recurrent feature in the eastern Fram Strait
(Wadhams and Squire, 1983; Johannessen et al., 1987; Lalande
et al., 2011). In addition to distributing ice over an area of
30–40 km diameter for a 20–30 day period, the cyclonic motion
of an ice-edge eddy transport warm Atlantic Water beneath the
ice, creating an upwelling in the core of the eddy and downwelling
on the outer edges (Johannessen et al., 1987; Niebauer and Smith,
1989). The formation of the ice-edge eddy rapidly modified the
composition of the POC flux in June 2003 and likely contributed
to the rapid dominance of appendicularian fecal pellets in the
FPC flux (Lalande et al., 2011). Appendicularians were either ad-
vected with the Atlantic Water or were better adapted to take
advantage of a rapid change in water mass and presumably phyto-
plankton composition due to their higher rates of ingestion than
copepods (Hopcroft et al., 2005; Lalande et al., 2011). In the present
study, the FPC flux composition also shifted from a dominance of
copepod pellets to a dominance of appendicularian pellets at the
onset of the ice-edge eddy in the first week of June, providing
further support to the hypothesis that mesoscale eddies can affect
the composition of the POC flux over a large area.

An abrupt and large increase in POC, bPSi and FPC fluxes was
observed a few weeks after the beginning of the following deploy-
ment period at the end of July-beginning of August 2004. These
elevated fluxes indicated the occurrence of a diatom bloom that
was immediately grazed upon by zooplankton and contributed to
a large export of POC before the onset of the warm anomaly period.
This late summer bloom may have been the second bloom in 2004 as
repeated blooms are a common feature during spring and summer in
the marginal ice zone of Arctic seas (e.g. Arrigo and van Dijken, 2004;
Richardson et al., 2005). For example, Richardson et al. (2005)
reported a Phaeocystis bloom in June and a diatom bloom in
August in the Greenland Sea in 1999. Stratification from solar
heating rather than from ice melt likely triggered a phytoplankton
bloom earlier in the productive season in 2004, as ice was absent
in the region for the complete spring and summer period. These
results indicate that the presence of ice is not mandatory for the
occurrence of a large POC export event in the eastern Fram Strait.

4.2. During the warm anomaly

A long period without a marked increase in bPSi fluxes coin-
cided with the warm anomaly period that began in late 2004 and
peaked in September 2006, reflecting a decrease in the export
and probably in the production of diatoms with the increase in
water temperature. In fact, phytoplankton fluxes obtained from
2000 to 2005 from the same long-term sediment trap time-series
indicated that the abundance of diatoms declined considerably in
2005, leading to a dominance of coccolithophores in the last year
of sampling (Bauerfeind et al., 2009). Diatoms are cold water and
ice-associated organisms, while coccolithophores such as Emiliania
huxleyi are known to prefer warm waters (Tyrell and Merico, 2004).
E. huxleyi blooms occur during positive temperature anomalies in
the Atlantic Water inflow to the southern Barents Sea (Smyth
et al., 2004), it is therefore likely that coccolithophore blooms were
recurrent during the warm anomaly in the eastern Fram Strait. The
lack of elevated bPSi fluxes from the start of the warm anomaly up
to May 2007 concurs with the reduced importance of large phyto-
plankton cells caused by the high surface temperature anomaly
observed during the El Niño episode of 1997–1998 off Chile
(Escribano et al., 2004; Iriarte and González, 2004), Oregon
(Corwith and Wheeler, 2002), and British Columbia (Harris et al.,
2009), as well as during the warm anomaly of 2005 off Washington
(Kudela et al., 2006). A shift from a dominance of large diatom cells
to a dominance of small coccolithophore cells is also consistent
with recent observations that rising water temperature favors
the growth of small phytoplankton cells (Morán et al., 2010;
Hilligsøe et al., 2011).

Similarly to diatom fluxes, the export of fecal pellets remained
low from the start of the warm anomaly up to May 2007, except
for a short period at the end of September-beginning of October
2005 when FPC flux increased above 0.5 mg C m�2 d�1 and a simul-
taneous small increase in bPSi fluxes was observed. These in-
creases in bPSi and FPC export were likely initiated by the
advection of ice into the area during a few weeks, which may have
caused sufficient ice melt to stratify warm surface waters and trig-
ger diatom production. However, the rapid decline in sunlight at
that time of year likely prevented the occurrence of a diatom
bloom, and the increase in bPSi and FPC fluxes may instead be
attributed to the rapid sedimentation of diatoms released from
the melting sea ice and subsequently grazed upon by zooplankton
(Michel et al., 1997). This is supported by the observation of
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diatoms both as individual cells and inside fecal pellets during a
period of elevated bPSi and FPC fluxes. Although calanoid copepods
in the region normally descend for hibernation in July (Hirche,
1997; Hirche et al., 2006), Svensen et al. (2011) reported that a
large proportion of calanoid copepods of stage CIII were still pres-
ent in surface waters of the eastern Fram Strait in September, pos-
sibly due to a second spawning or to the advection of a second
generation with the Atlantic Water. The large proportion of cope-
pods in total zooplankton biomass during September explains the
increased copepod fecal pellet fluxes observed with increased bPSi
fluxes during this period. Apart from this short period of increased
fluxes, the low FPC fluxes observed during most of the warm
anomaly period may reflect a decrease in fecal pellet production
due to a decline in large diatom cells, which is in agreement with
observations of reduced zooplankton production in warmer waters
where phytoplankton cells are smaller (Hilligsøe et al., 2011).

Interestingly, the average volume of exported fecal pellets also
decreased during the warm anomaly. Fecal pellet volumes were
significantly lower in fall 2005 and spring/summer 2006 than in
other periods sampled due to significantly smaller fecal pellet
widths during these periods. The export of smaller pellets suggests
that the proportion of small-sized zooplankton increased during
the warm anomaly, similar to observations made off Chile during
the 1997–1998 El Niño event (González et al., 2000a; Escribano
et al., 2004). This higher proportion of small-sized zooplankton
may reflect a shift in the zooplankton community composition
during the warm period, comparable to the increased abundance
of warm water zooplankton species observed during the 1997–
1998 El Niño event off central California (Marinovic et al., 2002).
In the eastern Fram Strait, a shift from the dominance of the cope-
pod Calanus glacialis to a dominance of the smaller copepod
Calanus finmarchicus is probable under warmer conditions, as C.
finmarchicus is favored by higher temperature while water
temperatures >5 �C induce dormancy in C. glacialis (Hirche and
Kosobokova, 2007). The smaller copepod pellet size may therefore
reflect a dominance of C. finmarchicus during the warm anomaly.
However, because fecal pellet size also varies with food concentra-
tion and composition (Turner, 2002; Ploug et al., 2008), the
decrease in average fecal pellet sizes may instead have been caused
by the near absence of large diatom cells during the 2005–2006
deployment period, and the cause for reduced fecal pellet sizes
remains debatable. Because fecal pellet composition and size
determine their sinking velocity (Ploug et al., 2008), smaller fecal
pellets have lower sinking rates and are more easily retained in
the upper water column, further contributing to the reduction of
FPC fluxes during the warm anomaly.

An increase in bPSi and FPC export was observed in May 2007
when the water temperature was still anomalously high. For the
first time since the start of the warm anomaly, ice cover persisted
in the region above the sediment trap during April and May, pre-
sumably producing sufficient stratification to cause a short diatom
bloom, or potentially releasing diatom resting spores and diatom
cells in the water column (Michel et al., 1997; Ró _zańska et al.,
2008). The increased bPSi and FPC fluxes in the presence of ice sug-
gest that the absence of ice during the warm anomaly inhibited the
export of diatoms and fecal pellets. A second increase in bPSi and
FPC fluxes was observed before the end of the warm anomaly in
September 2007 when ice was again present in the region, further
stressing the importance of ice for the export of large phytoplank-
ton cells and fecal pellets. Overall, the increased bPSi and FPC
fluxes in May and September 2007 indicated that diatom and fecal
pellet export returned to pre-anomaly conditions once ice cover
was sufficient in the region, in accordance to the rapid recovery
in phytoplankton size structure, biomass, and productivity ob-
served following the onset of upwelling after the El Niño event
(Iriarte and González, 2004; Kudela et al., 2006).
4.3. After the warm anomaly

An increase in ice concentration when water temperature de-
clined in spring 2008 also resulted in an increase in bPSi, FPC,
and POC fluxes in May 2008. Although the warm anomaly period
was at that time over, the magnitude and duration of the increase
in bPSi and FPC export were similar to those observed during the
previous spring when the water temperature was still anomalously
high, further suggesting that the presence of ice had a larger influ-
ence on export fluxes than water temperature. The increased ice
concentration and proportion of appendicularian fecal pellets at
the end of April-beginning of May and at the end of May suggest
the onset of an ice-edge eddy when the ice edge moved southward
over the sampling area, similar to the eddy observed in June 2003.
Daily ice concentration maps from April to July 2008 showed the
intermittent presence of an ice-edge eddy in the vicinity of the sed-
iment trap (data not shown), further indicating that ice-edge ed-
dies are recurrent features in the region.

4.4. Conclusions and implications

Long-term measurements of export fluxes in the eastern Fram
Strait revealed a decrease in the export of large diatom cells during
the warm anomaly period of 2005–2007. This suggests that the
shift from a dominance of diatoms to a dominance of coccolitho-
phores observed in 2005 at the beginning of the warm anomaly
probably persisted for the rest of the warm period (Bauerfeind
et al., 2009). Lower export fluxes of smaller zooplankton fecal
pellets were also observed during the warm anomaly, either the re-
sult of the increase in water temperature inducing a shift in zoo-
plankton community composition towards a dominance of small-
sized zooplankton, or the effect of a shift in phytoplankton compo-
sition on grazing and fecal pellet production. These results are sim-
ilar to the dominance of small-sized phytoplankton, lower diatom
fluxes, and shift in zooplankton community composition observed
during the 1997–1998 El Niño event (Escribano et al., 2004; Iriarte
and González, 2004; Romero et al., 2001; Corwith and Wheeler,
2002; Harris et al., 2009). However, lower bPSi and FPC fluxes were
not associated with reduced POC export in the eastern Fram Strait,
as increases in POC fluxes were still observed during the warm
anomaly. This indicates that the warm anomaly did not lead to
intensified retention as expected by model predictions reported
by Forest et al. (2010), but rather to a change in the composition
of the material exported, with a larger proportion of unidentified
POC being exported during the warm anomaly.

A few episodes of enhanced bPSi and FPC fluxes when sea ice was
present during the warm anomaly indicated that the absence of ice
cover was a key parameter inhibiting diatom and fecal pellet export
in the eastern Fram Strait. The presence of ice cover promoted the
export of bPSi, which subsequently increased FPC and POC fluxes
and produced efficient export events, as is typical for diatom-domi-
nated ecosystems (Boyd and Newton, 1999; Buesseler et al., 2007).
The strong correlation obtained between bPSi and FPC fluxes
(r = 0.832, p < 0.01) confirms that the presence of diatoms promoted
the export of fecal pellets. Conversely, the export of bPSi was also en-
hanced by the export of diatom cells encapsulated into fecal pellets
through grazing, an export mechanism also observed off northern
Spitsbergen and in the Antarctic Polar Front region (Andreassen
et al., 1996; Dagg et al., 2003). Overall, the rapid and frequent
changes in the magnitude and composition of the export fluxes ob-
served in the eastern Fram Strait confirm that long-term measure-
ments are necessary to accurately monitor this changing ecosystem.

In addition to the 2005–2007 warm anomaly, another warm
anomaly entered the Arctic Ocean through Fram Strait in 1999–
2000, suggesting that these features are recurrent (Beszczynska-
Möller et al., 2012). Furthermore, the mean temperature of the
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Atlantic Water entering the Arctic Ocean increased at a rate of
0.06 �C/year from 1997 to 2010, implying that further warming
may be expected, should the trend continue (Beszczynska-Möller
et al., 2012). This inflow of warmer Atlantic Water is likely to con-
tribute to increased sea ice melting west and north of Svalbard,
although ice cover extent in this region is also governed by solar
radiation and ice drift due to wind stress (Walczowski and Piech-
ura, 2011). Indeed, higher southward ice drift velocities due to
stronger geostrophic winds caused an increase in ice export in
2005–2008 in the Fram Strait (Smedsrud et al., 2008; Smedsrud
et al., 2011). Therefore, whether or not the warm anomaly induced
the decline in ice cover in 2005–2006, the reduced fluxes observed
during this period represent changes to expect in Arctic ecosys-
tems under warmer conditions. This could have important implica-
tions for benthic communities, as a change in the composition of
the downward export of organic matter is likely to affect food sup-
ply to the benthic ecosystem (Klages et al., 2004; Wassmann et al.,
2004; Grebmeier et al., 2006).
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