Sea ice variability and trends in the Weddell Sea for 1979 - 2006

Sandra Schwegmann¹, R. Timmermann¹, R. Gerdes^{1,3}, P. Lemke^{1,2}

¹Alfred Wegener Institute for Polar and Marine Research ²University of Bremen ³Jacobs University

SCAR and Open Science conference Portland, 18. July 2012

Outline

Background

Changes in sea ice extent & Sea ice concentration

Ice-atmosphere interactions

Temperature Wind

Drift and deformation Volume changes

Summary and Outlook

Summary of interactions Outlook on further needs

Sea ice extent changes

GEMEINSCHAFT

The Weddell Sea

Sea ice extent anomalies in the Weddell Sea.

Seasonal trends in % per decade.

NSIDC bootstrap sea ice concentration data (Comiso, 1999) vs. FESOM model simulation.

- Largest sea ice extent in the Southern Ocean
- Special sea ice drift regime due to the Antarctic Peninsula
- Occurrence of second year ice
- Areas of potential deep and bottom water formation
- High data coverage

Sea ice concentration, 1979-2006

>

Mean SIC

Data from NSIDC (Comiso, 1999).

Sea ice concentration, 1979-2006

Mean SIC

Data from NSIDC (Comiso, 1999).

Monthly sea ice concentration trends

Trends in % per decade. Period: 1979 to 2006. Data source: NSIDC (Comiso, 1999)

Sea ice concentration (SIC)

- decreases near the Antarctic Peninsula
- increases in the central and eastern marginal sea ice zone

- Connection between air temperature/ wind forcing and sea ice concentration variability and trends
- Do sea ice drift and deformation changes support connections?
- Impact on sea ice growth changes
- Impact on sea ice volume

SIC correlated with SAT

Monthly correlation between detrended anomalies of bootstrap sea ice concentrations (SIC) and surface air temperatures (SAT) from NCEP, from 1979 to 2006.

SAT trends

SAT trends in $\degree~$ C per decade. Period: 1979 to 2006. Data source: NCEP Reanalysis Data

Wind speeds

Wind speed trends

Trend of wind speed (in m/s per decade). Black arrows: statistically significant trends at the 95% level.

Data source: NSIDC, Polar Pathfinder sea ice motion vectors (Fowler, 2003)

Sea ice divergence

Data source: NSIDC, Polar Pathfinder sea ice motion vectors (Fowler, 2003)

Dynamical sea ice growth

- Sea ice thicknesses influenced by deformation at the Antarctic Peninsula
- Trends indicate increased sea ice growth by deformation in this region

Freeze rates from FESOM

- Reduced freeze rates in the north-western Weddell Sea
- Enhanced freezing in the south-western Weddell Sea

Sea ice volume

- Increase of modeled sea ice thickness by few cm per decade
- Overall increasing sea ice volume
- Highest trends occur in summer and fall
- High interannual variability

Summary

Outlook

- Sea ice thickness measurements are needed
 - In different seasons
 - In different regions
 - Continuation of ULS measurements in the central Weddell Sea
 - Planned sea ice thickness surveys in winter 2013

• Refinements of grid resolution in FESOM simulations

Deformation processes might be better resolved

Comparison with model runs forced by ECMWF data

Higher resolution of atmospheric forcing

