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Abstract

Remote sensing offers great potential for detecting changes of the thermal
state of permafrost and active layer dynamics in the context of Arctic warm-
ing. This study presents a comprehensive feasibility analysis of satellite-based
permafrost modeling for a typical lowland tundra landscape in the Lena River
Delta, Siberia. We assessed the performance of a transient permafrost model
which is forced by time series of land surface temperatures (LSTs) and snow
water equivalents (SWEs) obtained from MODIS and GlobSnow products.
Both the satellite products and the model output were evaluated on the basis
of long-term field measurements from the Samoylov permafrost observatory.
The model was found to successfully reproduce the evolution of the per-
mafrost temperature and freeze-thaw dynamics when calibrated with ground
measurements. Monte-Carlo simulations were performed in order to eval-
uate the impact of inaccuracies and in model forcing and uncertainties in
the parameterization. The sensitivity analysis showed that a correct SWE
forcing and parameterization of the snow’s thermal properties are essential
for reliable permafrost modeling. In the worst case, the bias in the modeled
permafrost temperatures can amount to 5 ◦C. For the thaw depth, a maxi-
mum uncertainty of about ±15 cm is found due to possible uncertainties in
the soil composition.
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1. Introduction1

Satellite-based earth observation has become an indispensable tool for the2

investigation of climate change especially in remote areas such as the Polar3

regions (Hall, 1988). For most of the cryosphere components such as glaciers,4

ice sheets, sea ice, and snow cover satellite monitoring and change detection5

has been established for several decades (e.g. Stroeve et al., 2007; Armstrong6

and Brodzik, 2001; Rignot and Thomas, 2002). Although permafrost is one7

of the largest components of the Arctic cryosphere, satellite-based monitor-8

ing schemes do not exist. Nevertheless, numerous ecosystem processes of the9

Arctic are directly or indirectly related to the thermal state of permafrost10

and the freeze-thaw dynamics of the upper most soil (active) layer (Van11

Everdingen, 1998). This is especially true for the energy, water, and carbon12

cycles which are strongly determined by sub-surface processes that often op-13

erate on spatial scales below the grid spacing of atmospheric models (Wania14

et al., 2009a,b). If satellite-based permafrost monitoring can provide an im-15

proved spatial resolution, this would strongly improve the impact assessment16

of climate change in the Arctic (ACIA, 2004; AMAP, 2011). In addition, an17

operational scheme could be beneficial for risk analysis for infrastructure such18

as roads, pipelines, and buildings which are directly affected by the thermal19

stability of permafrost (Larsen et al., 2008).20

One of the biggest challenges is that permafrost is a subsurface thermal21

phenomenon which cannot be directly observed by remote sensing techniques.22

Thus, current approaches of permafrost monitoring make use of surface indi-23

cators such as vegetation cover (Stow et al., 2004), geomorphological units,24

or combinations of different surface features (Panda et al., 2010) in order to25

infer information about the permafrost conditions. However, these methods26

can only provide a qualitative measure of the thermal state of permafrost27

and changes are only detected when there is an impact on the surface. The28

application of land surface temperature (LST) records measured by satellites29

such as MODIS in order to retrieve freeze-thaw degree days is proposed by30

Hachem et al. (2009). In principle, such LST time series can be used to31

force a transient permafrost model that is able to reproduce the full thermal32

dynamics of the ground as proposed by Marchenko et al. (2009). Further33

studies suggest that the quality as well as the spatial and temporal resolu-34

tion of MODIS LST products would be sufficient for permafrost modeling35

in non-mountainous terrain (Langer et al., 2010; Westermann et al., 2011b).36

However, model approaches are always subject to numerous assumptions,37

2



limitations, and uncertainties resulting from e.g. neglected processes and38

uncertainties in the forcing data or parameter settings (Boike et al., 2012b).39

Especially the soil and snow properties such as water/ice content, thermal40

conductivity, heat capacity, and density are usually unknown which intro-41

duce large uncertainties in heat flow calculations (e.g. Goodrich, 1982; Rinke42

et al., 2008; Gouttevin et al., 2012).43

This study provides a proof-of-concept for a satellite-based permafrost44

monitoring and assesses its performance for a typical low land tundra site in45

NE Siberia. We (i) perform a thorough validation for the employed satellite46

data at the study site, (ii) present a thermal permafrost model forced by47

satellite data that delivers soil temperature and thaw depth, and (iii) evaluate48

the performance of the scheme and provide a sensitivity analysis for uncertain49

model parameters and inaccurate forcing data.50

2. Validation site51

The study site is located in Northern Siberia on Samoylov Island (72.4 ◦N;52

126.5 ◦ E) in the Lena-River Delta (Fig. 1). The local climate is described as53

arctic-continental with a mean annual air temperature (MAAT) of about54

−13 ◦C and a large annual air temperature amplitude ranging from about55

−45 ◦C in winter to 20 ◦C in summer (Boike et al., 2012a). The total annual56

precipitation is about 200mm of which about 25% falls as snow during winter57

(Boike et al., 2008; Langer et al., 2011a). The polar night lasts from the mid58

of November to end of January and polar day lasts from the beginning of59

May until the beginning of August. Samoylov Island features a typical tun-60

dra landscape underlain by continuous permafrost. The permafrost reaches61

depths of about 200m (Grigoriev, 1960) and features relatively cold temper-62

atures of about −9 ◦C at the depth of zero annual amplitude (20m) (Boike63

et al., 2012b). However, temperature observations indicate strong changes64

in the thermal state of permafrost which shows a steady warming of about65

1 ◦C between 2006 and 2011 at a depth of about 10m (Boike et al., 2012a).66

Samoylov Island belongs to an alluvial river terrace (Schwamborn et al.,67

2002) elevated about 20m above the normal river water level. The lower68

western part of the island constitutes a modern floodplain which is frequently69

flooded during ice break-up of the Lena River during spring. The validation70

site of this study is located on the elevated river terrace mainly characterized71

by moss and sedge vegetated tundra (Fig. 1). In addition, several lakes and72

ponds occur which make up about 25% of the surface area of Samoylov Is-73
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land (Muster et al., 2012). The land surface of the island features the typical74

micro-relief of polygonal patterned ground caused by frost cracking and sub-75

sequent ice-wedge formation (Lachenbruch, 1962). The polygonal structures76

usually consist of depressed centers which are surrounded by elevated rims.77

The polygonal structures often occur in different stages of degradation with78

partly to completely collapsed rims. The soil in the polygonal centers usually79

consists of water saturated sandy peat with the water table standing close80

to or above the surface (Langer et al., 2011a). The elevated rims are usually81

covered with a dry moss layer underlain by wet sandy peat soils featuring82

massive ice wedges. The volumetric water/ice content of the peat soils typi-83

cally ranges from 60 to 80%. The volumetric mineral content is reported to84

range from 20 to 40% while the volumetric organic content is on the order of85

5 to 10% (Kutzbach et al., 2004; Zubrzycki et al., 2012). This cryogenic soil86

complex reaches depth of 10 to 15m and is underlain by sandy to silty river87

deposits. The Lena River deposits are reported to reach depths of at least88

1 km in the delta region (Grigoriev et al., 1996).89

3. Methods90

3.1. Model description91

This study makes use of a 1D soil heat transfer model capable of rep-92

resenting the freeze-thaw cycle and a dynamic snow cover formation and93

ablation. The model is based on solving the heat transfer equation including94

a term which accounts for the phase change of soil water (Yershov, 1998),95 (
Ch + ρwLsl

∂Θw

∂T

)
∂T

∂t
− ∂

∂z

(
Kh

∂T

∂z

)
= 0, (1)

where T is the soil temperature, Ch the volumetric soil heat capacity and Kh96

the soil thermal conductivity. ∂Θw

∂T
is the change of liquid soil water content97

with temperature which in combination with the latent heat of fusion Lsl and98

the density of water ρw gives the rate of energy turnover related to soil water99

phase change. The volumetric soil heat capacity Ch can be calculated as100

sum of heat capacities of each soil component Cj weighted by its volumetric101

fraction Θj102

Ch =
∑
j

ΘjCj, (2)

where j represents each soil component (ice, water, mineral, and organic).103

The soil thermal conductivity Kh is based on a modified version of the104
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deVries-model (De Vries, 1952) applicable in frozen or partly frozen soils,105

which has been successfully employed in permafrost modeling (Westermann106

et al., 2011a; Weismüller et al., 2011). The soil heat conductivity Kh is then107

calculated as108

Kh =

∑
jΘjfjKj∑
jΘjfj

, (3)

where fj summaries soil specific parameters including shape factors for soil109

particles and threshold values for soil water circulation. A more detailed110

description of the parameterization can be found in Campbell et al. (1994).111

The volumetric content of liquid soil water with temperature Θw(T ) is the112

freeze curve of the soil and strongly depends on soil composition and struc-113

ture. This soil specific freeze curve can be parametrized by a second order114

polynomial as115

Θw(T ) =

{
Θw(min) +

Θw(max)−Θw(min)

1−aT+bT 2 forT < 0

Θw(max) forT ≥ 0
, (4)

where a and b are empirical factors, whereas Θw(max) and Θw(min) are the116

maximum and minimum liquid water content, respectively.117

For the numerical solution of the model, the heat transfer equation (Eq. 1)118

is discretized spatially with finite differences. The time derivatives are solved119

using an ordinary differential equation solver (ode15s) provided by MATLAB120

which uses a self-adaptive time integrator and is well suited for stiff problems121

(Shampine and Reichelt, 1997).122

3.2. Model setting, boundary conditions, and initialization123

The model is solved on a soil domain ranging from 0 to 600m depth124

containing 104 vertical grid cells. The size of the grid cells increases with125

depths with a minimum grid cell spacing of 2 cm at the surface and maximum126

spacing of 20m at the bottom. The uppermost soil layer can take any soil127

composition, whereas the ground below 20m depth is assumed to consist of128

fluvial sediments with uniform composition (cp. Sect. 2). Following literature129

values for sandy river deposits, the composition of the fluvial sediments is set130

to a mineral soil with 20% pore space which is fully saturated by water or131

ice (Boike et al., 2012a). The compositions of the soil grid cells between the132

variable surface layer and the static deep soil layers are linearly interpolated.133

Note that the applied model is limited to heat transfer in soils. Hence, the134

thermal dynamics underneath water bodies such as lakes is not represented135
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in the applied scheme. An additional layer of 60 grid cells with a constant136

grid cell spacing of 2 cm is stacked on top of the soil domain to represent the137

snow cover. The model is forced at the upper boundary by the land surface138

temperature LST where the surface is defined as the soil-atmosphere or the139

snow-atmosphere interface, respectively. As snow depth changes over time,140

the location of the upper boundary can be shifted dynamically on the snow141

grid (more detailed description in Westermann et al. (2011a)). For simplicity,142

the snow cover is treated as an effective snow cover with uniform and constant143

properties over depth and the entire simulation period. Following Goodrich144

(1982) the volumetric heat capacity of snow is calculated from the snow145

density ρs as146

Cs = 2.09× 103ρs. (5)

At the lower boundary of the soil domain, a constant geothermal heat flux147

Qgeo is applied. Global heat flow data are available through the International148

Heat Flow Commission (IHFC) (Pollack et al., 1993). We apply the geother-149

mal heat flux value of 0.053Wm−2 which is measured in a 600m borehole150

close to Tiksi located about 140 km east of our field site.151

3.3. Model forcing152

The forcing dataset consists of a synthesized time series of land surface153

temperatures (LST) and snow water equivalents (SWE) (Fig. 2). The entire154

forcing dataset covers a period from 1982 to 2011 which is divided into a155

target period ranging from 2002 to 2011 and a spin-up period from 1982156

to 2001. During the target period, the forcing of the permafrost model is157

exclusively based on remote sensing data including the MODIS LST, MODIS158

snow cover fraction (SFC), and GlobSnow SWE products. The spin-up of159

the model starts from an initial temperature field of the soil domain which160

is calculated assuming steady state heat flow with a constant average soil161

surface temperature T0(av). The 20 year spin-up period allows to start with162

a transient temperatures distribution down to a depth of the approximately163

20m. During the spin-up period, the surface temperature forcing is obtained164

from ERA-Interim reanalysis data, whereas SWE data are obtained from165

GlobSnow.166

3.3.1. Surface temperature167

During the spin-up period (1982-2001) satellite-based land surface tem-168

perature (LST) measurements from MODIS are not available. Therefore,169
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the required surface temperature forcing is extracted from the ERA-Interim170

reanalysis product provided by the European Centre for Medium-Range171

Weather Forecasts (ECWMF). The ERA-Interim product contains the full172

set of forecast and analyzed fields of a numerical weather model within which173

numerous meteorological observations are assimilated (Dee et al., 2011). The174

reanalysis product provides four time daily gridded surface temperatures175

since 1979 with a spatial resolution of 0.5 ◦. The ERA-Interim product is176

extensively validated and found to be in good agreement with meteorological177

observations (e.g. Simmons et al., 2010; Szczypta et al., 2011; Mooney et al.,178

2011). In contrast to the earlier version ERA-40, ERA-Interim is reported179

to provide reliable temperature values in the Arctic (Screen and Simmonds,180

2011). The coarse scale surface temperature values of the reanalysis product181

are interpolated to the location of the study site using bicubic interpolation.182

During the target period (2002-2011) the surface temperature forcing is183

based on the MODIS L3 collection 5 LST products MOD11A1 (Terra) and184

MYD11A1 (Aqua) with a spatial resolution of 1 km. The used LST products185

contain day- and night-time surface temperatures which are obtained and ra-186

diometrically corrected by the generalized split window approach (Wan and187

Dozier, 1996). From the daily tiles a time series of daily LST averages is188

compiled for the pixel encompassing the validation site. Frequent data gaps189

occur due to clouds resulting in a clustered time series with an overall data190

availability of 68%. The clustered LST time series leads to a systematic over191

representation of surface temperatures during clear sky conditions which can192

cause a cold bias during winter (Westermann et al., 2012). A number of stud-193

ies have addressed the difficulties associated with clustered LST data when194

used to derive long-term LST averages (Hachem et al., 2009; Langer et al.,195

2010; Westermann et al., 2011b). However, missing data are filled by linear196

interpolation in order to obtain a continuous data record from which weekly197

LST averages are inferred. In addition to overrepresented clear sky LST val-198

ues, erroneously measured cloud top temperatures can cause a cold-bias in199

the LST averages during summer and winter (Liu et al., 2010; Westermann200

et al., 2012). Despite the admixture of free water surfaces within the MODIS201

pixel, the obtained LST data are considered to represent the surface temper-202

ature of the land or the snow cover as appropriate. The fraction of free water203

surface within the MODIS pixel is approximately 25% (cp. Sect. 2). In addi-204

tion, strong sub-resolution land surface heterogeneities can occur during the205

snow melt period due to persistent snow patches (Westermann et al., 2011b).206

However, field observations indicate that this period is relatively short (2 - 3207
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weeks) at the study site.208

3.3.2. Snow cover209

The GlobSnow product provides longterm data on snow water equivalent210

(SWE) and snow extent (SE) across the northern hemisphere since 1979.211

GlobSnow is a hybrid product which assimilates passive microwave satellite212

measurements, as well as records from climate stations to derive daily SWE213

maps with a spatial resolution of 25 km (Takala et al., 2011). The SWE214

retrieval algorithm has been developed and validated by the Finnish Mete-215

orological Institute (FMI) for various tundra and alpine landscapes (Luojus216

et al., 2010). The average error of the GlobSnow SWE product is reported217

to be less than 35mm and even smaller for tundra landscapes. However,218

extensive field studies demonstrate that passive microwave SWE detection219

is subject to large uncertainties mainly introduced by the snow morphology,220

vegetation cover, and the presence of white (refrozen and bubble rich) ice on221

lakes and rivers (Foster et al., 2005; Derksen et al., 2005, 2011). Largest re-222

trieval errors are reported to occur during snow cover accumulation and melt.223

A comprehensive overview on satellite based snow cover monitoring and the224

potential error sources is given by Frei et al. (2012). The grid cell containing225

the validation site contains approximately 60% land surfaces similar to that226

of the validation site, 20% river arms, and 20% floodplains. Despite this227

sub-resolution landscape heterogeneity, the grid cell is considered represen-228

tative for the validation site. This is especially critical during snow fall and229

snow melt when large spatial differences in snow cover can occur between the230

different landscape units.231

In order to reduce the discrepancies in spatial resolution between MODIS232

LST (1 km) and GlobSnow SWE (25 km), additional snow cover information233

is obtained from the MODIS snow cover products (MOD10A1, MYD10A1).234

Among other information, the tiles contain daily snow cover fractions (SCF)235

at a spatial resolution of 500m. The satellite data are available during the236

entire target period (2002-2011) and are provided by the National Snow237

and Ice Data Center (NSIDC) (Hall and Riggs, 2007). The MODIS snow238

cover detection algorithm is based on the Normalized Difference Snow Index239

(NDSI) including a consistency check based on the surface temperature (Hall240

et al., 2002). The MODIS snow product is extensively validated for different241

landscape types (e.g. Salomonson and Appel, 2004; Stroeve et al., 2006; Hall242

et al., 2009). Similar to the LST product, uncertainties are introduced by243

erroneous cloud detections which potentially leads to data loss and overesti-244
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mated SCF values (Hall and Riggs, 2007). Data gaps due to clouds are filled245

by linear interpolation and weekly SCF averages are compiled afterwards.246

The MODIS SCF product provides high-resolution data on timing of snow247

cover build-up and disappearance. These additional information are used to248

enhance the GlobSnow SWE product which is subject to errors especially249

during the snow accumulation and ablation periods. A stable snow cover is250

expected to occur when two consecutive weeks feature snow cover fractions of251

larger than 10%. GlobSnow SWE values are set to zero when the stable snow252

cover criterium is not fulfilled. Conversely, linear interpolation between the253

onset of a stable snow cover and the first non-zero SWE value is applied when254

a stable snow cover is indicated by MODIS SCF but not by GlobSnow SWE.255

The enhanced SWE time series is validated by SWE field observations and256

continuous snow depth measurements at the validation site (cp. Sect. 3.4).257

3.4. Validation data sets258

All forcing data are validated by surface temperature and snow depth259

measurements at the study site which are continuously available since 2002.260

The surface temperatures are calculated from measurements of a down fac-261

ing long wave radiation sensor (CG1, Kipp & Zonen, Netherlands). The262

out going long wave radiation is converted to surface temperature by using263

Stefan-Boltzmann law assuming the surface emissivity to be unity. Under264

specific meteorological conditions this simplification can lead to overesti-265

mated surface temperatures (Westermann et al., 2011b). However, it is the266

best available estimate on the radiometric surface temperature as measured267

by MODIS and calculated by ERA-Interim. Snow depth measurements for268

a point on Samoylov Island are performed by an ultra sonic ranging sensor269

(SR50, Campbell Scientific, USA) located close to the surface temperature270

measurements.271

The performance of the model is validated by comparing the simulated272

soil temperatures to a 5 year record of ground temperatures measured in a273

borehole in 2.5m and 11m depth. The borehole is located close to the me-274

teorological station. The area around the borehole is characterized by low275

centered polygons featuring dry rims and wet centers (cp. Sect. 2). Within276

a distance of more than 100m only two polygonal ponds occur with surface277

areas less than 80m2. The borehole is equipped with a temperature chain278

(XR-420, RBR Ltd., Canada) which features an absolute accuracy of about279

0.05 ◦C. The validation depths are well suited to investigate the model per-280

formance for the annual temperature cycle and the longterm temperature281
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evolution. The borehole temperatures have been recorded with 1 h resolu-282

tion since July 2006. In addition, manual thaw depth measurements are283

used in order to validate the modeled thaw dynamics. Thaw depth measure-284

ments have been performed since 2002 on a weekly basis on a 500m2 plot285

consisting of a regular grid of 150 measurement points. The thaw depth is286

measured relative to the surface using a metal rod. These measurements are287

consistently available throughout the end of July, which is therefore used as288

reference date for the thaw depth validation. Prior to the model validation289

all required parameters are obtained by fitting the model to the borehole290

temperature measurements. This set of parameters is also used as midpoint291

for the following Monte-Carlo simulations (cp. Sect. 3.5).292

3.5. Monte-Carlo simulations293

Monte-Carlo simulations are performed in order to evaluate the sensitivity294

of the permafrost model to (i) uncertainties in the selected model parame-295

ters (in particular soil and snow thermal parameters) and (ii) inaccuracies in296

the forcing data. The uncertainties and the inaccuracies propagate through297

the model and result in uncertainties in the simulated soil temperatures and298

thaw depths. Different magnitudes and combinations of uncertainty ranges299

and accuracy levels are evaluated based on 24 Monte-Carlo simulations (cp.300

Tab.A.1) each of which involves 500 model realizations. For each model301

realization, random variations in model forcing or parameterization are gen-302

erated for the respective accuracy level and uncertainty class. The generation303

of the random values follows a uniform probability distribution.304

In a first series of simulations, only the uncertainties which are intro-305

duced by the model parameterization are considered (Tab.A.1). We assume306

different classes of uncertainty, in following denoted high, intermediate, and307

low uncertainty. The parameters are grouped into three categories (snow,308

soil, and initialization). We distinguish the following Monte-Carlo simula-309

tions: High, intermediate, and low uncertainty for all parameter categories310

(MCp1), high uncertainty for two of the categories and high, intermediate,311

and low uncertainty for the remaining category (MCp2-4). This procedure is312

applied in order to explore how much the output uncertainty can be reduced313

by enhancing the knowledge of a single parameter group. The assumed high314

uncertainty class for the snow parameters is in accordance with reported315

variabilities of snow properties in the Arctic as summarized by Sturm et al.316

(1997). Note that the thermal conductivity and density of the snow cover317

are considered to be independent from each other in the specified ranges of318
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uncertainty. This assumption is made in order to represent the full range of319

thermal conductivities (0.03 - 0.2Wm−1K−1) that is reported for densities320

between 200 and 300 kgm−3 (Sturm et al., 1997). The high uncertainty class321

assumed for the initial surface temperature T0(av) equates to the variance of322

the annual average surface temperature between 1979 and 1982 obtained from323

the ERA-Interim dataset. The assumed variation of the freeze curve covers a324

wide range of freeze characteristics from sandy to silty soils, as suggested by325

field observations (Langer et al., 2011b). The high uncertainty class of the326

soil components is assumed to realistically represent the potential variability327

of low land tundra soils which can range from medium-dry organic soils to wa-328

ter/ice saturated mineral soils (Boike et al., 2012a). For the soil constituents,329

uniform probability distributions have been chosen with the constraint, that330

the sum of all is unity. According to the applied conductivity model (cp.331

Sect. 3.1), the uncertainties in soil composition correspond to uncertainties332

in soil thermal conductivity (unfrozen soil) of about ±0.33Wm−1K−1 for333

the high uncertainty class, ±0.2Wm−1K−1 for the intermediate uncertainty334

class, and ±0.15Wm−1K−1 for the low uncertainty class. The uncertainties335

in heat capacity are ±0.8MJm−3, ±0.4MJm−3, and ±0.2MJm−3 respec-336

tively. In frozen state, the uncertainties in thermal conductivity are more337

than doubled. In contrast, the uncertainties in heat capacity are almost338

three times smaller than in unfrozen state. In general, the uncertainties in339

the soil thermal properties decrease with depth as the varying soil compo-340

sition at the surface is linearly interpolated to a fixed composition in 20m341

depth (cp. Sect. 3.2).342

The impact of inaccuracies in the LST and SWE forcing data on the343

model results are considered in similar manner as for the parameterization344

(Tab.A.1). The assumed low accuracy levels are in accordance with reported345

accuracies for the data products (cp. Sect. 3.3). The accuracy of the forcing346

data is then stepwise enhanced by a factor of two for the intermediate and347

the high accuracy simulations. At first, the accuracies are enhanced for348

both forcing datasets (LST and SWE) simultaneously (MCf1) and later for349

LST and SWE individually (MCf2-3). In contrast to the settings for the350

parameterization, the inaccuracy of the currently unprocessed forcing dataset351

is set to zero. The inaccuracies in the SWE forcing do not affect the duration352

of the snow cover which is considered to be accurately detected by the satellite353

products. Hence, a minimum snow cover of 2 cm (corresponding to one snow354

grid cell) is assumed when a snow cover is indicated by MODIS SCF but not355

by GlobSnow SWE.356
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4. Results357

4.1. Validation of the forcing data358

Daily and weekly surface temperature values from MODIS LST and ERA-359

Interim are compared with surface temperature averages obtained by radio-360

metric measurements at the Samoylov field site (Fig. 3). Despite a spread361

of about 5 ◦C, there is a coherent relationship between the field measure-362

ments and the MODIS data over the entire temperature range from -50 to363

+20 ◦C. The data are mostly well centered around the 1:1 line. On average,364

the temperature deviations between the MODIS LST data and the obser-365

vations is about ±2 ◦C which equates to an accuracy of about 3% relative366

to the entire temperature range. However, at surface temperatures between367

-10 and 10 ◦C numerous outliers are observed. The outliers are consistently368

negative and feature temperature offsets of up to 20 ◦C. The ERA-Interim369

surface temperatures show a lower spread in the range from -20 to 20 ◦C.370

However, under very cold conditions (below −20 ◦C) the reanalysis prod-371

uct shows a steadily increasing cold bias which reaches a maximum offset of372

about 10 ◦C at surface temperatures of about −40 ◦C. From daily MODIS373

LST values, weekly averages are generated after the gap filling procedure (cp.374

Sect. 3.3.1). The outliers around the freezing point disappear after averag-375

ing, but a slight cold bias of about 2 ◦C emerges. The agreement between376

ERA-Interim and field observations increases for weekly averages, but the377

characteristic temperature bias below −20 ◦C remains. However, extremely378

low surface temperatures only occur occasionally so that temperature offsets379

larger than 5 ◦C are very rare.380

The applied model scheme assumes constant and uniform snow properties381

so that GlobSnow SWE data can be directly assigned to snow depths via the382

snow density (cp. Sect. 3.3.2). A snow density of approximately 250 kgm−3 is383

found by the fitting procedure (cp. Sect. 3.4) by which the evolution of snow384

depth can be relatively well reproduced (Fig. 4). The fitted snow density is385

well within the range of snow density measurements performed at the same386

study site (Boike et al., 2012a). Using a constant snow density as a first387

order approximation, the satellite data tend to underestimate snow depths388

when the snow cover is relatively thick. However, differences in snow depth389

between field observations and satellite data are in 90% of cases less than390

5 cm. This equates to a SWE accuracy of ±13mm if a constant snow density391

is applicable to the study site. Relative to the entire SWE range (0 - 150mm)392

at the study site, this corresponds to a relative accuracy of about 10%. Note393
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that a satellite product with a resolution of 25 km is compared to snow depth394

measurements at a specific point and a perfect match can not be expected395

since spatial snow cover differences are very likely due to wind drift and396

micro topographic variations within the satellite footprint. In most cases,397

the applied correction based on the MODIS SCF product leads to a slightly398

better reproduction of the onset of snow accumulation. The uncorrected399

GlobSnow data often show a delayed snow cover build up on the order of400

about two weeks. In a few occasions, the MODIS SCF correction leads to an401

earlier snow cover build up. In contrast to snow cover build up, the timing402

of snow melt is consistent between the GlobSnow and the MODIS product403

so that a correction does not occur. In general, the timing of snow melt is404

well reproduced by the satellite data.405

4.2. Model performance and uncertainty406

The model performance with regard to temperature is shown in Fig. 5 for407

soil depths of 2.5 and 11m. The solid line indicates the result of the best pa-408

rameter setting found after the fitting procedure (cp. Sect. 3.4). At a depth409

of 2.5m the general magnitude of the annual temperature dynamics can be410

relatively well reproduced. However, a constant cold bias of about −1 ◦C is411

found for the best fit results during summer. During winter, the temperature412

differences between the model results and the borehole measurements can be413

as large as 2 ◦C, but strongly vary in magnitude and sign. After winter, a414

short delay in the rewarming of the soil occurs in the simulations. However,415

the timing of soil cooling after summer is mostly in good agreement with416

the observations. Compared to the measurements, the simulated tempera-417

tures in 11m depth are slightly too cold. The temperature offset increases418

from about 0.5 to 1 ◦C with the largest temperature differences during sum-419

mer. Hence, the measured soil warming exceeds the simulations, but the420

model reproduces a general soil warming over the entire target period. Fig. 5421

also displays the results of MCp1 (cp. Tab. 1) according to the prescribed422

classes for low, intermediate, and high uncertainty. An almost symmetric423

range of uncertainty around the median occurs around the best fit for the424

low uncertainty class. At 2.5m depth the output uncertainty is about ±1 ◦C425

during summer and ±3 ◦C during winter, whereas at 11m depth the output426

uncertainty is almost constant at around ±1 ◦C. The width of the uncer-427

tainty range slightly increases over the target period. For the intermediate428

uncertainty class, the summertime temperature uncertainty remains almost429

centered around the best fit but the range increases to ±2 ◦C. In some oc-430
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casions a slightly negative temperature shift of the uncertainty field can be431

observed. In contrast, a clear positive temperature shift occurs during win-432

ter so that the output uncertainty ranges with −4 ◦C and +5 ◦C around the433

best fit. In fact, a constant positive shift of the uncertainty fields occurs at434

a depth of 11m ranging with −1.5 ◦C and +2 ◦C around the best fit. As435

in the previous uncertainty class, the width of the uncertainty range slightly436

increases over the target period. In the high uncertainty class, the output un-437

certainty strongly increases. At 2.5m depth the uncertainty spreads around438

the best fit with −3 ◦C and +2 ◦C during summer and −3 ◦C and +13 ◦C439

during winter. The strong deviation is attributed to a strongly delayed re-440

freezing of the active layer. At a depth of 11m the uncertainty field ranges441

with −2 ◦C and +4.5 ◦C around the best fit at the beginning of the target442

period. The upper limit of the uncertainty range increases by about 0.5 ◦C443

while the lower limit stays almost constant in the course of the target period.444

In both depths, the measured soil temperatures mostly stay within the limits445

of the low uncertainty class.446

A comparison of measured and simulated thaw depths at the end of July is447

shown in Fig. 6. The thaw depth measurements show a large spatial scatter448

with a range of up to 30 cm. In most years, the distribution of the thaw449

depth is symmetric with about 50% of the values located within half of the450

range. The simulated thaw depths for the best fit are always within the451

range of the measurements. The difference between the median of the thaw452

depth measurements and the simulated (best fit) thaw depth is in most cases453

lower than 10 cm. The model usually tends to overestimate thaw depths.454

However, main features of the inter-annual thaw dynamics are to some extent455

reproduced by the model. In particular, the relatively large thaw depth in456

2005 which decreases again in 2006 and the comparatively low thaw depth457

2009 followed by a sharp increase in 2010. With low input uncertainty, the458

resulting thaw depth uncertainty is smaller than ±5 cm. The uncertainty459

bar is usually centered around the best fit. In some cases, however, the460

best fit is located at the upper edge of the uncertainty range. Since only461

completely thawed soil grid cells are considered in the uncertainty analysis,462

it is possible that the upper limit of the uncertainty range is underestimated463

at maximum by 2 cm. With intermediate input uncertainty, the uncertainty464

in thaw depth increase to about ±8 cm and reaches its maximum of about465

±15 cm in the high uncertainty class. The maximum uncertainty range agrees466

in magnitude with the observed thaw depth variability. In most cases, the467

uncertainty range is larger for years with deeper thaw depth.468
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4.3. Uncertainty due to model parameters469

As shown in Sect. 4.2, the uncertainties of the input parameters lead to470

a large spread in the soil temperature calculations. The distributions of471

the average soil temperatures in 2.5m and 11m depth as revealed from the472

Monte-Carlo simulations are displayed in Fig. 7. In each MC simulation, the473

input uncertainty of one parameter group is stepwise reduced down to a fixed474

(best fit) value with zero uncertainty (cp. Sect. 3.5). The temperature dis-475

tributions at maximum uncertainty are similar for the different simulations476

indicating a sufficient number of model runs. Almost all simulations show477

positively skewed distributions in both depth with a stronger temperature478

spread in 2.5m than in 11m depth. The positive skewness indicates that479

strong temperature biases occur more frequently in positive than in negative480

direction which is attributed to the delayed refreezing caused by the phase481

change of soil water. The median of the high uncertainty class is located482

at about −9.5 ◦C for all simulations and both depth. This is about 0.5 ◦C483

colder than expected from the best fit average. This negative bias from the484

expected best fit value is decreased by reducing the uncertainty in the soil485

parameters. For all other simulations the bias between the median and the486

best fit value remains. However, reducing the uncertainty in the soil pa-487

rameters does not affect the spread of the distributions which stays almost488

constant. Conversely, lowering the uncertainty in the snow parameters leads489

to a strong reduction in the temperature spread. Furthermore, the simula-490

tions with reduced uncertainty in snow reveal a much lower skewness. The491

bias between soil temperature measurements and best fit simulation might492

still be explained by the lowest snow uncertainty. The temperature distri-493

bution becomes completely symmetrical when zero uncertainty for the snow494

parameters is assumed. However, a temperature spread of about ±1 ◦C re-495

mains due to the uncertainties in the other parameter groups. Variations in496

the uncertainty of the initial conditions only show a minor impact on the497

resulting temperature distribution.498

In summary, the results demonstrate that the uncertainties in modeled499

soil temperatures are most strongly determined by uncertainties in the snow500

parameters. Snow cover uncertainties not only control the temperature501

spread but also the shape of the distribution. The effect of the snow thermal502

conductivity on the thermal state of permafrost is much more pronounced503

than that of the snow density which controls heat capacity and depth of the504

snow cover.505

15



The sensitivity of the modeled thaw depths to uncertainties in the param-506

eterization is exemplarily displayed for the year 2010 (Fig. 8). As discussed507

in Sect. 4.2, the maximum input uncertainty in the parameterization results508

in a thaw depth uncertainty of about ±15 cm. The thaw depth distributions509

are positively skewed with the median thaw depth about 5 cm lower than ex-510

pected from the best fit. Reducing the uncertainty in the parameter groups511

reveals that the spread in thaw depth, the skewness of the distribution, as512

well as the bias between median and best fit result are entirely governed by513

the soil parameters. The snow cover as well as the initial surface tempera-514

ture barely affect the simulated thaw depths. When the uncertainty of the515

soil parameters is reduced the uncertainty in thaw depth decreases almost516

proportional. However, a spread in thaw depths of about +10 cm and −5 cm517

remains even when the soil parameters are fixed at the best fit values. Under518

the given environmental conditions (external forcing, thermal state of the519

ground) the contribution of the freeze curve to the thaw depth uncertainty is520

almost negligible. The spread in the spatially distributed thaw depth mea-521

surements is almost similar to the spread of the modeled thaw depths. Hence,522

the variance of soil properties at the study site is well represented by the high523

uncertainty class.524

4.4. Uncertainty due to forcing data525

The sensitivities of the model to potential inaccuracies in the LST and526

SWE forcing data are illustrated in Fig. 9 and Fig. 10. Assuming a low accu-527

racy in LST and SWE leads to a strong spread in the resulting temperature528

distributions in both depths (Fig. 9). In contrast to the temperature distri-529

butions which result from uncertainties in the parameterization, the distri-530

butions according to the different accuracies in the forcing data are almost531

uniform and centered around the best fit value. A stepwise enhancement of532

the accuracy by a factor of two leads to an almost proportional decrease in the533

temperature spread. However, the bias between the temperature measure-534

ments and the best fit simulation is within the margins of the high accuracy535

level. The spread of the temperature distribution strongly decreases when536

inaccuracies in the SWE data are neglected. Close to the surface (2.5m),537

the observed temperature spread equates approximately to the correspond-538

ing LST accuracy. The temperature distribution at low LST accuracy reveals539

a positive skewness which disappears for the high accuracy level. The tem-540

perature spread caused be inaccuracies in LST decreases with depth (11m)541

while the shape of the distributions remains the same. A similar behavior can542
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be observed for the results of the SWE simulations. However, the resulting543

temperature spread is by a factor of four larger compared to the distributions544

obtained from the LST simulations. The bias between measured soil tem-545

peratures and the best fit simulation can be already explained with a high546

accuracy (±10mm) in the SWE forcing.547

The uncertainty in the modeled thaw depth is less than ±10 cm for the548

lowest accuracy level of the combined LST and SWE simulation (Fig. 10).549

For the higher accuracy levels, the uncertainty in thaw depth spreads only550

in negative direction. The median of the uncertainy distribution equates551

always to the thaw depth which is calculated in the best fit model run.552

The simulations show that inaccuracies in the SWE forcing only marginally553

contribute to the uncertainties in thaw depth.554

5. Discussion555

5.1. Applicability of the forcing data556

Extensive validation of the MODIS LST data reveals that despite out-557

liers and frequent data gaps a reliable forcing dataset of weekly surface tem-558

peratures can be generated from the satellite measurements. The observed559

quality of the MODIS LST data is comparable to accuracies reported for560

other polar regions (Koenig and Hall, 2010; Hachem et al., 2012). Similar561

to a MODIS validation study performed on Svalbard (Westermann et al.,562

2012), a lower quality of the LST data is observed for temperatures around563

the freezing point. However, the general data quality seems to be better at564

our study site which is most likely related to the lower cloudiness because565

of the more continental climate conditions. Hence, it can be assumed that566

the quality of a surface temperature forcing generated from MODIS LST567

strongly varies in different climate regions. In addition to that, it must be568

assumed that the LST quality varies throughout the annual cycle. With-569

out ground observation and validation, we estimate a maximum accuracy570

of ±2 ◦C for the generated LST forcing. With such an LST accuracy, the571

thermal state of permafrost is reproduced within a range of +1.5 and −1 ◦C572

in 11m depth. The skewness of the simulated temperature range indicates573

that LST biases have a stronger impact in positive than in negative direction574

which is most likely caused by the thermal insulation of the snow cover and575

the delayed refreezing due to the phase change of soil water (Goodrich, 1982;576

Romanovsky and Osterkamp, 2000; Smith et al., 2010). Inaccuracies in the577

LST forcing are especially critical during summer when they are not overlain578
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by the inaccuracies in the SWE forcing or uncertainties in the snow cover579

parametrization. Hence, inaccuracies in the LST forcing directly affect the580

quality of thaw depth simulations. With an LST accuracy of ±2 ◦C the thaw581

depth is reproduced with an uncertainty of about ±3 cm.582

The SWE forcing generated from the GlobSnow and MODIS SCF prod-583

ucts reproduces the evolution of the snow depth at the study site relatively584

well by assuming a constant snow density. The combination of both snow585

cover products provides a better reproduction of the onset of snow cover.586

Comparing the simulated and the measured soil temperatures reveals tem-587

perature differences especially during winter which are most likely attributed588

to a wrong representation of the insulating effect of the snow cover. This can589

result from either incorrect SWE forcing, or inappropriate snow parameteri-590

zation, or a combination of both. The MC simulations reveal a very strong591

impact of SWE inaccuracies on the model performance. The highest ac-592

curacy level assumed in the MC simulations for the SWE forcing equates593

approximately to the observed accuracy after calibration of the snow density594

with field measurements (cp. Sect. 4.1). The thermal state of permafrost595

is reproduced with an uncertainty of about ±2.5 ◦C with a SWE accuracy596

of about ±10mm. This is still below the performance that can be reached597

with a realistic LST accuracy of about ±2 ◦C. However, a much lower SWE598

accuracy level (±40mm) must be considered in regions with sparse weather599

stations (Luojus et al., 2010) and when field measurements are not available600

for calibration. Our results show that realistic permafrost simulations with601

a transient heat transfer model would be almost impossible with such low602

accuracies in the SWE forcing. In contrast to the permafrost temperatures,603

the thaw depths are found to be more or less independent from the SWE604

accuracy. However, this might be different in regions where the permafrost605

temperature is already close to the freezing point as observed by Åkerman606

and Johansson (2008). In any case, the impact of snow on the active layer607

dynamics can be very complex and dependent on regional factors (Zhang,608

2005). The performed sensitivity study demonstrates that a highly accurate609

snow cover forcing is crucial for reliable permafrost modeling.610

5.2. Applicability of the model scheme611

The results of this study demonstrate that permafrost modeling in low612

land tundra based on remote sensing data is in principle possible, provided613

that a correct snow cover forcing is available. A fairly simple model scheme614

with very coarse approximations on soil strata, snow cover properties, and615
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neglected soil water flow reasonably reproduces the temperature and freeze-616

thaw dynamics at the study site over a period of 5 years. In addition, the617

observed warming of deeper permafrost at the study site could be reproduced.618

Note that the borehole temperatures that are used for validation represent619

the specific thermal sate at one point of the study site which is unlikely to620

be exactly reproduced by the generalized soil parameterization of the model.621

Hence, it can not be expected that the model exactly reproduces the bore-622

hole measurements. However, the best fit result of this study is comparable623

in accuracy to other model studies which usually use in situ measurements624

as forcing data and feature more optimization possibilities due to a more625

complex parametrization (e.g. Jiang et al., 2012). The synthesized dataset of626

soil surface temperature and snow water equivalent has a reasonable quality627

in order to be used as forcing for a permafrost model (cp. Sect. 5.1). Despite628

the relatively good performance during summer, the applied scheme reveals629

shortcomings especially during the winter period. On one hand it is possible630

that the temperature mismatches between model and observations are at-631

tributed to inaccuracies in the SWE forcing (cp. Sect. 5.1), but on the other632

hand it is very likely that they are related to the static representation of the633

thermal snow properties. The applied scheme does not account for the natu-634

ral dynamics of the snow cover which passes through several stages of meta-635

morphisms depending on temperature, moisture, compaction, wind drift, and636

interactions with the underlaying surface or vegetation (e.g. Colbeck, 1982;637

Sturm et al., 2001). Due to these processes, the thermal conductivity of638

the snow cover can change by an order of magnitude. Parameterizations639

of snow thermal properties (e.g. Sturm et al., 1997) have not been exten-640

sively validated for arctic regions and thus involve large uncertainties. The641

performed sensitivity tests are based on reported variabilities of snow ther-642

mal properties. The resulting uncertainty in the modeled soil temperature643

clearly demonstrate the large impact of the snow properties on the thermal644

state of permafrost. This is not only critical for satellite-based permafrost645

modeling but involves permafrost modeling in general. A very recent study646

demonstrates that the oversimplification of the snow thermal properties in647

climate models strongly impacts the representation of permafrost and the648

related soil-biological processes (Gouttevin et al., 2012). An oversimplified649

snow cover parameterization becomes even more problematic as observations650

indicate that the arctic snow cover has changed strongly over the last decades651

and is expected to change even more pronounced in the future (Callaghan652

et al., 2011; Derksen and Brown, 2012).653
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The performed sensitivity analysis takes into account a wide range of soil654

types ranging from medium-dry organic soils to water/ice saturated mineral655

soils. Within the applied model, this leads to strong variations in the soil656

thermal properties of the upper meters (cp. Sect. 3.5). The large impact657

of the thermal conductivity of the uppermost organic soil layer on the re-658

gional climate and the thermal state of permafrost has been demonstrated659

in several studies (e.g. Rinke et al., 2008; Koven et al., 2009; Wisser et al.,660

2011). However, our results show that the impact of uncertainties in the soil661

thermal properties is largely overruled by the impact of uncertainties in the662

snow thermal properties. This result can be considered valid for landscapes663

that feature comparable subsurface and climate conditions and where similar664

assumptions of uncertainty are applicable.665

In contrast to the thermal state of permafrost which is almost entirely666

governed by the snow cover, the active layer dynamic is mainly determined667

by the soil composition. The uncertainty in modeled thaw depth is clearly668

reduced when some knowledge about subsurface properties is available. This669

is especially true for the soil water or ice content which mainly determines the670

thaw depth. The use of further satellite products such as surface soil mois-671

ture (e.g. Wagner et al., 2007), surface wetness classifications (e.g. Muster672

et al., 2012), and freeze-thaw status (e.g. Bartsch et al., 2007) could help673

to reduce the uncertainties in thaw depth simulations. However, the robust-674

ness of the active layer dynamics towards uncertainties in the thermal snow675

properties is misleading. The thermal state of permafrost and the active676

layer dynamics are decoupled due to the very cold permafrost temperatures.677

Previous studies show that due to the cold conditions, a large fraction of the678

summertime ground heat flux is attributed to soil warming and a relatively679

constant fraction is consumed by the thawing of ground ice (Langer et al.,680

2011b). However, this could be different in the case of warmer permafrost681

conditions when most of the ground heat flux can be used for thawing (Yer-682

shov, 1998). Thus, a correct representation of the snow cover becomes critical683

for active layer modeling when climate warming has potentially the greatest684

impact on the thaw depth. The results of this study clearly demonstrate685

that large challenges remain for operational permafrost modeling based on686

satellite data especially in terms of snow cover forcing and parameterization.687

Furthermore, we would like to point out, though, that the results of this688

study are only applicable for regions with climate forcing and soil conditions689

similar to those at the of study site in NE Siberia. In addition, the impact of690

surface heterogeneities such as ponds or lakes on the thermal ground regime691
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is not accounted for and heat transfer due to soil water convection is not692

included. Thus, further validation studies should be performed for a range of693

different climate conditions and landscape types before compiling an opera-694

tional product. In addition, further model development is necessary in order695

to represent surface heterogeneities.696

6. Conclusions697

This study highlights the potential of permafrost monitoring using read-698

ily available remote sensing products. A thermal permafrost model enables699

reconstruction of the thermal state of the subsurface, which is not directly ac-700

cessible through remote sensing. The scheme was able to reproduce the small701

warming of permafrost temperatures of about 1 ◦C that has been measured at702

about 10m depth over the past 5 years at the study site. The thermal prop-703

erties of the snow pack, and particularly its thermal conductivity, constitute704

the largest source of uncertainty.705

• The main features of permafrost dynamics, such as the inter-annual706

variations in thaw depth and the decadal warming trend, can be mod-707

eled from satellite data if the snow properties and soil compositions are708

known.709

• The accuracy of land surface temperature forcing obtained fromMODIS710

LST allows permafrost modeling with uncertainty ranges of less than711

±2 ◦C in temperature and ±3 cm in thaw depth. These uncertainties712

are found to be much smaller than uncertainties induced by other fac-713

tors such as SWE forcing and the thermal properties of the snow cover.714

• The accuracy of GlobSnow SWE data appears to be adequate for rep-715

resenting the evolution of the snow depth with an accuracy better than716

±5 cm, provided that calibration data are available. This accuracy al-717

lows permafrost modeling with a temperature uncertainty of less than718

±3 ◦C. However, the specified accuracy of the GlobSnow product would719

lead to large uncertainties of more than ±5 ◦C.720

• The largest uncertainties in permafrost modeling are induced by un-721

known thermal properties of the snow cover. Reliable permafrost mod-722

eling is not feasible in the absence of information on local snow cover723

characteristics.724
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• Uncertainties in modeling the active layer dynamics are largely at-725

tributed to uncertainties in soil compositions, especially the soil wa-726

ter/ice content. In the worst case setting for the soil composition, the727

thaw depth can be reproduced with an uncertainty of about ±15 cm.728

This permafrost monitoring scheme could be operationalized for per-729

mafrost monitoring on a pan-arctic scale, provided the range of uncertainties730

imposed by the model parameters and the available data are acceptable.731
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Figure 1: Location of the validation site on Samoylov Island. (a) Extent of permafrost in
Russia with the location of the Lena River Delta marked with a red box (after Kotlyakov
and Khromova, 2002). (b) MODIS (Terra) satellite image of the Lena River Delta obtained
in August 2012 (NASA, 2012). (c) Aerial photograph of Samoylov Island featuring a
surface area of about 4.5 km2. The location of the measurement site is marked with a red
dot.
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Figure 2: Scheme of the applied permafrost model with employed parameters. During the
target period from 2002 to 2011, the model is forced solely by the MODIS LST, MODIS
SCF, and GlobSnow SWE products. The model is run for 20 year spin-up period (1982-
2001) prior to the target period during which the LST forcing is obtained from reanalysis
data (ERA-Interim).
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Figure 3: Comparison of daily (a) and weekly (b) surface temperature averages measured
at the Samoylov field site with MODIS LST (MOD11A1, MYD11A1) and ERA-Interim
LST values. The comparison includes field measurements from 2002 to 2011.
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Figure 4: Snow depth evolution obtained from in situ measurements and GlobSnow SWE
assuming a constant snow density of approximately 250 kgm−3 .
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Figure 5: Comparing the results of the MCp1 (Tab.A.1) simulations with in-situ temper-
ature measurements at (a) 2.5 m depth and (b) 11 m depth. The shaded areas illustrate
the ranges of the resulting temperature distributions.
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Figure 6: Measured versus modeled thaw depths at the end of July. The spatial variability
of thaw depths at the study site are illustrated by the whiskers. The shaded bars show
the ranges of thaw depths as resulted from the MCp1 simulations (Tab.A.1).
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Figure 7: Uncertainty distributions of average permafrost temperatures modeled for a)
2.5m and b) 11m depth with different uncertainties on the soil, snow, and initialization
(Ini) parameters (cp. MCp2-4 Tab.A.1). The permafrost temperatures are averaged
over the validation period during which borehole temperature data are available. The
shaded bares represent the quartile and the whiskers the range of the resulting temperature
distributions.
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Figure 8: Uncertainties in modeled thaw depth associated with different ranges of uncer-
tainty on the soil, snow, and initialization (Ini) parameters (cp. MCp2-4 Tab.A.1). The
shown data depict maximum thaw depth in August 2010. The range of the thaw depth
measurements reflects the spatial variability. The bars and whiskers represent the quartile
and range of the thaw depth distributions.
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Figure 9: Uncertainty distributions of average permafrost temperatures modeled for a)
2.5m and b) 11m depth with different assumptions on accuracy in model forcing (cp.
MCf1-3 Tab.A.1). The permafrost temperatures are averaged over the validation period
during which borehole temperature data are available.
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Figure 10: Uncertainties in modeled thaw depth associated with different levels of accuracy
in model forcing (cp. MCf1-3 Tab.A.1). The shown data depict maximum thaw depth in
August 2010. The range of the thaw depth measurements reflects the spatial variability.
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