

Methods

Results

Spatiotemporal variations of benthic bacterial communities in the German Bight

Impact of ocean dumping on benthic bacterial communities

Conclusions

Future perspectives

Motivation: Ocean dumping

- deposition of waste at sea
- waste includes:
 - liquid wastes (dilute acid, sludge)
 - construction waste
 - dredged material (harbours, rivers)

Threat for ecosystems

Motivation: Ocean dumping

Overview of the number and distribution of dumpsites within the OSPAR area

4

Motivation

- monitoring focuses on macrozoobenthic communities and flatfishes
- *"Progress on investigating biological responses to the disposal of dredged material has been slow in OSPAR and more effort is needed for a wider and more systematic application of bioassays in the testing of dredged sediments." (OSPAR 2009b)*
- bacterial community structure affected by
 - physical disturbance (Findlay et al 1990)
 - heavy metal and oil contamination
 (Gremion *et al* 2004, dos Santos *et al* 2011)

Motivation

- benthic bacterial communities:
 - largest variety of metabolic types
 - heterotrophic, phototrophic and lithotrophic bacteria
 - highly abundant: $10^8 10^{11}$ cells per ml

Are bacterial community analyses a useful supplement for monitoring programs at dumping sites?

Problem: sublittoral benthic bacterial communities uncharacterised in the German Bight

German Bight

- hydrographic regime predominantely influenced by discharges of Elbe and Weser River
- most euthrophied region in the North Sea
- shallow part of the North Sea with max. dephts ~ 50 m
- Helgoland

Sediments in the German Bight

- Grain size fractions
 - Clay particles < 4 μ m
 - Silt particles 4 63 μm
 - Fine sand particles $63 200 \ \mu m$
 - Medium sand particles $200 630 \,\mu\text{m}$
 - Coarse sand particles $630 2000 \, \mu m$
 - Gravel particles 2000 6000 μm
- Proportion of each grain size fraction determines the classification into sandy or muddy sediments

Environmental gradients

Spatial gradients

Temporal gradients

Characterising sublittoral benthic bacterial communities

- I: Spatiotemporal variations influencing benthic bacterial communities in the German Bight
- II: Impact of ocean dumping on benthic bacterial communities
 - a) Community structure
 - b) Community function

Data analysis

- Bacterial community analysis
 - ARISA fingerprinting
 - 16S pyrosequencing
 - functional gene arrays
- Environmental data (additional data provided by Prof. Karen Wiltshire and HPA)
 - CHN analysis
 - particle size analysis
- Statistical analysis
 - univariate and multivariate statistics
 - Geostatistics

Characterising sublittoral benthic bacterial communities

- I: Spatiotemporal variations influencing benthic bacterial communities in the German Bight
- Impact of ocean dumping on benthic bacterial communities

 a) Community structure
 b) Community function

Results

- monthly sampling from September 2010 to August 2011
- three replicates for bacterial community analysis (ARISA)
- environmental data includes:
 - temperature
 - salinity
 - chl a
 - CHN
 - particle size of the sediments

Results

Results

I: Spatiotemporal variations influencing benthic bacterial communities

Fingerprinting via Automated Ribosomal Intergenic Spacer Analysis (ARISA)

Ribosomal Operon of Bacteria

red of tag

Conversion of community profiles into numeric data

Sample	262	265	268	271	274	277	280
1	1	1	1	1	1	1	1
3	1	0	1	1	1	1	0
5	0	1	1	1	1	1	1
7	0	0	0	0	0	0	1
9	0	1	0	0	1	0	1
10	0	1	0	0	1	0	1
11	0	0	1	0	0	0	1
12	0	1	0	0	1	0	1
13	0	1	0	0	1	0	1
14	0	1	1	1	1	1	1
15	0	0	0	0	0	0	1
16	1	1	1	1	1	1	1
18	1	1	1	1	1	1	0
20	0	1	1	1	1	0	1
21	1	1	1	0	0	1	1
25	1	1	1	0	1	0	1
28	0	1	1	0	1	0	1
33	0	0	0	0	0	0	1
37	1	1	1	1	0	1	1
41	1	1	1	0	1	0	1
45	1	1	1	1	1	1	1
48	0	0	0	0	0	0	1
53	0	0	0	0	0	0	1
55	0	0	0	0	0	1	0

I: Spatiotemporal variations influencing benthic bacterial communities

Distance based multivariate multiple regression model (DISTLM)

Marginal test

Sequential test

			Proportion of				Proportion of	
Variable	Pseudo-F	Р	variance	Variable	Pseudo-F	Р	variance	
Coarse gravel	0	1	0.000	Temperature	47.382	0.0001	0.114	
Medium gravel	0	1	0.000	Fine sand	30,272	0.0001	0.069	
Fine gravel	0	1	0.000	Chlorophyll a	20,515	0.0016	0.045	
Coarse sand	15,685	0.0425	0.041	Salinity	16,793	0.0132	0.036	
Medium sand	2,362	0.0021	0.060	Hydrogen	13,296	0.1106	0.029	
Fine sand	26,317	0.0007	0.066	Coarse silt	11,434	0.2703	0.024	
Coarse silt	26,109	0.0012	0.066	Medium sand	12,879	0.1348	0.027	
Medium silt	25,044	0.001	0.063	Coarse sand	10,608	0.3847	0.022	
Fine silt	23,395	0.0024	0.060	Fine silt	0.92303	0.5777	0.020	
Clay	22,599	0.0035	0.058	Medium silt	12,812	0.1628	0.027	
Temperature	47,382	0.0001	0.114	Clay	10,797	0.3552	0.023	
Salinity	24,043	0.0007	0.061	Nitrogen	0.77095	0.7846	0.016	
Nitrogen	16,197	0.0468	0.042	TOC	0.67199	0.8882	0.014	
TOC	17,895	0.0219	0.046					
Hydrogen	19,452	0.0106	0.050					
Chlorophyll a	38,587	0.0001	0.094			p < 0	.01 19	

Results

I: Spatiotemporal variations influencing benthic bacterial communities

Distribution of operational taxonomic units (OTUs)

OTUs defined according to ITS fragment lenghts

I: Spatiotemporal variations influencing benthic bacterial communities

Main findings

- amplitude of environmental gradients determines the bacterial community structure
- temporal variations affect bacterial community structure and diversity

Characterising sublittoral benthic bacterial communities

- I: Spatiotemporal variations influencing benthic bacterial communities in the German Bight
- II: Impact of ocean dumping on benthic bacterial communities
 - a) Community structure
 - b) Community function

Timeline sampling campaigns

- sampling campaigns in August 2009 and April and August 2010
- each campaign comprises 125 ۲ sampling sites
- three replicates for bacterial ۲ community analysis (ARISA)

Grain size fractions	Sum Hexachlorocyclohexane (HCH)
< 20µm	alphaHCH
20-63µm	betaHCH
63-100µm	gammaHCH
100-200µm	deltaHCH
200-630µm	
630-1000µm	Sum Dichlorodiphenyldichloroethane (DDT) and metabolites
1000-2000µm	ppDDE
	opDDD
S, N, P, C	ppDDD
TOC (C)	opDDT
nitrogen (N)	ppDDT
sulphur (S)	
phosphor (P)	Sum Organotin Compounds
	monobuty/tin (MBT)
Hydrocarbons	dibuty/tin (DBT)
-	tributy/tin (TBT)
Sum Polycyclic Aromatic Hydrocarbons (PAH)	tetrabutyltin
naphthaline	
fluorene	Heavy Metals
phenanthrene	arsenic
anthracene	lead
fluoranthene	cadmium
pyrene	chrome
benz(a)anthracene	copper
chrysene	nickel
benzo(b)fluoranthene	mercury
benzo(k)fluoranthene	zinc
benzo(a)pyrene	
dibenz(ah)anthracene	
benzo(ghi)perylene	
indeno(1.2.3cd)pyrene	
Sum Chlorinated Diphenyls (PCB)	
PCB28	
PCB52	
PCB101	
PCB118	
PCB138	
PCB153	
PCB180	

(A)	6.		-)(-))(- Int	
				10		

) (O) (O) (O)		Contextual data	Re
I	Grain size fractions		Sum Hexachlorocyclohexane (HCH)	
I	< 20µm		alphaHCH	
I	20-63µm		betaHCH	
I	63-100µm		gammaHCH	
I	100-200µm		deltaHCH	
I	200-630µm			
I	630-1000µm		Sum Dichlorodiphenyldichloroethane (DDT) and met	abolites
I	1000-2000µm		ppDDE	
ŕ			opDDD	
I	S, N, P, C		ppDDD	
I	TOC (C)		opDDT	
I	nitrogen (N)		ppDDT	
I	sulphur (S)			
I	phosphor (P)		Sum Organotin Compounds	
Ľ			monobutyltin (MBT)	
	Hydrocarbons		dibutyltin (DBT)	
			tributyltin (TBT)	
	Sum Polycyclic Aromati	c Hydrocarbons (PAH)	tetrabutyltin	
	naphthaline		· · ·	
	fluorene		Heavy Metals	
	phenanthrene		arsenic	
	anthracene		lead	
	fluoranthene		cadmium	
	pyrene		chrome	
	benz(a)anthracene		copper	
	chrysene		nickel	
	benzo(b)fluoranthene		mercury	
	benzo(k)fluoranthene		zinc	
	benzo(a)pyrene			
	dibenz(ah)anthracene			
	benzo(ghi)perylene			
	indeno(1.2.3cd)pyrene			
	, ,,,,			
	Sum Chlorinated Dipher	nyls (PCB)		
	PCB28			
	PCB52			
PCB101				
PCB118				
PCB138				
	PCB153			
	PCB180			

Results

II: Impact of ocean dumping on benthic bacterial communities

OTUs = sequence similarity > 97 % Singletons (n=1) were removed prior to the analysis

singletons (n=1) were removed prior to the analysis

Betaproteobacteria

singletons (n=1) were removed prior to the analysis

Deltaproteobacteria

singletons (n=1) were removed prior to the analysis

Characterising sublittoral benthic bacterial communities

- I: Spatiotemporal variations influencing benthic bacterial communities in the German Bight
- II: Impact of ocean dumping on benthic bacterial communities
 - a) Community structure
 - b) Community function

GeoChip analysis

- GeoChip 4.2 (functional gene array) (He *et al* 2007, Lu *et al* 2012)
- contains 103 666 probes encoding for functional genes involved in biogeochemical key processes
- genes are categorised according to these processes e.g. sulphur cycling, heavy metal resistance, organic remediation

Results

37

II: Impact of ocean dumping on benthic bacterial communities

Distribution of functional genes of the gene category "organic remediation"

а

С

II: Impact of ocean dumping on benthic bacterial communities

Hierachical clustering based on Euclidean distance for the gene category "organic remediation"

b

38

d

Main findings

- similar results for all gene categories
- no accumulation of genes involved in pollution related processes at the dumping centre detectable
- significant lower functional diversity at the dumping centre
- differences among detected gene groups based on phylogenetic background

Main conclusions

- most pronounced environmental gradients affect the bacterial community structure significantly
- bacterial community structure at the dumping site was significantly influenced by the dumping activity
 - lower alpha and functional diversity
 - mix-community containing fresh water and adapted marine bacteria
- bacterial community analysis represent a useful supplement for monitoring programs
- But: further elaboration is needed!!

Future perspectives

- deepening the knowledge about benthic bacterial communities in the German Bight
 - identifying community composition and function "Metagenomic approaches"
 - simultaneous investigation of pelagic and benthic bacteria "Benthopelagic coupling"
- adaptation of monitoring conditions and experimental set up for the inclusion of bacterial community analysis
 - controlled experiments focusing on the impact of relevant pollutants on the bacterial communities
 - identifying indicator organisms
 - inclusion of physicochemical parameters such as pH, oxygen penetration, bioavailability of pollutants

Acknowledgement

This research was only possible with the help of all of you!!! Many thanks to:

Dr. Antje Wichels and Dr. Gunnar Gerdts My committee: Prof. Dr. Wolfgang Streit, PD Dr. Andreas Pommerening, Prof. Dr. Friedrich Buchholz and Jun. Prof. Dr. Mirjam Perner Hamburg Port Authority (Dr. Maja Karrasch und Rolf Lüschow) MIUR NIWKN BafG POLMAR graduate school Prof. Dr. Karen Wiltshire Dr. Jörg Peplies Dr. Christian Hass Julia Haafke and Bettina Oppermann Kristine Carstens and Sylvia Peters Mathis van Ahnen all my colleagues and friends at the BAH