
Data Assimilation –
Theoretical and Algorithmic Aspects

Lars Nerger
Alfred Wegener Institute for Polar and Marine Research

Bremerhaven, Germany

and
Bremen Supercomputing Competence Center BremHLR

Bremen, Germany

Lars.Nerger@awi.de

KIAPS, May 28, 2013

Overview

•  Data assimilation problem

•  Variational data assimilation

•  Sequential data assimilation

•  Ensemble Kalman Filters

•  Ensemble Square-root Filters

•  Nonlinearity & current developments

Data Assimilation algorithms –
where are we and how did we get here?

A review – with focus on ensemble data assimilation

Data Assimilation

Example: Chlorophyll in the ocean

mg/m3 mg/m3

Information: Model Information: Observation
•  Generally correct, but has errors

•  all fields, fluxes, …
•  Generally correct, but has errors

•  sparse information
 (only surface, data gaps, one field)

Data Assimilation

  Optimal estimation of system state:

•  initial conditions (for weather/ocean forecasts, …)

•  state trajectory (temperature, concentrations, …)

•  parameters (growth of phytoplankton, …)

•  fluxes (heat, primary production, …)

•  boundary conditions and ‘forcing’ (wind stress, …)
€

  Characteristics of system:

•  high-dimensional numerical model - O(107-109)

•  sparse observations

•  non-linear

Data Assimilation

Consider some physical system (ocean, atmosphere,…)

time

observation

truth

model

state
Variational assimilation

Sequential assimilation

Two main approaches:

Optimal estimate basically by least-squares fitting

Data Assimilation – Model and Observations

Two components:

1. State:

 Dynamical model

€

x 2 Rn

2. Obervations:

 Observation equation (relation of observation to state x):

y 2 Rm

y = H [x]

xi = Mi�1,i [xi�1]

Some views on Data Assimilation

Data Assimilation – an inverse problem

Model provides a background state (prior knowledge)

Observation equation (relation of observation to state x):

at some time instance

Now solve for state:

€

Issues:

•  Compute - or pseudo inverse

•  Inversion could be possible with regularization

•  This formulation ignores model and observation errors

H�1
�
HTH

��1
HT

x

b

H
⇥
x� x

b
⇤
= y �H

⇥
x

b
⇤

x = x

b +H�1
⇥
y �H

⇥
x

b
⇤⇤

Data Assimilation – least squares fitting

Background state	

Weight matrices (acknowledge different uncertainties):

 for background state

 for observations

“Cost function”:

€

x

b 2 Rn

B

R

Optimal minimizes J:	

Requiring dJ/dx = 0 leads to:

No explicit statistical assumptions required!

x̃ = x

b +BHT
�
HBHT +R

��1 �
y �Hx

b
�

x̃

J(x) = (x� x

b)TB�1(x� x

b) + (y �H [x])TR�1(y �H [x])
Background Observations

Optimal Interpolation (OI)

1.  Parameterize (prescribe) matrices and
(e.g. by using estimated decorrelation lengths)

2.  Compute the optimal (variance-minimizing) state as

OI was quite common about 20-30 years ago.

Several issues:

•  Parameterized matrices

•  Computing cost

•  Optimality of solution

€

B R

x̃ = x

b +BHT
�
HBHT +R

��1 �
y �Hx

b
�

x̃

Data Assimilation – an estimation problem

Probability density of x:

Probability density of y:

Likelihood of y given x:	

€

p (xi)

p (yi|xi)
p (yi)

p (xi|Yi) =
p (yi|xi) p (xi|Yi�1)

p (yi|Yi�1)

With prior knowledge:

Probability of xi given all observations Yi up to time i

p (xi|yi) =
p (yi|xi) p (xi)

p (yi)

Bayes law: Probability density of x given y

Data Assimilation – Probabilistic Assumptions

Assume Gaussian distributions:

(fully described by mean and variance)

€

N
�
µ,�2

�
= a e

✓
� (x�µ)2

2�2

◆

−2 0 2 4

Observations:

State: N (x,P)

N (y,R)

Posterior state distribution

With

(same as for least squares – there are statistical assumptions!)

p(xi|Yi) ⇠ ae�J(x)

J(x) = (x� x

b)TP�1(x� x

b) + (y �H [x])TR�1(y �H [x])

Variational Data Assimilation

3D-Var, 4D-Var, Adjoint Method

  Based on optimal control theory

  Examples: “adjoint method”, “4D-Var”, “3D-Var”

  Method:

  1. Formulate “cost function”

  2. Minimize cost (by variational method)

Variational Data Assimilation

x: model state
xb: background
y: observation
i: time index
C, D: weight
 matrices

 Background Observation

  3D-Var: Do this locally in time for each i

J(x) =
kX

i=1

�
xi � x

b
i

�T
C

�
xi � x

b
i

�
+ (yi �Hxi)

T
D (yi �Hxi)J(x0)

  formulate cost J in terms of “control variable”
 Example: initial state x0

  Problem:
 Find trajectory (defined by x0) that minimizes cost J while
 fulfilling model dynamics

  Use gradient-based algorithm:

  e.g. quasi-Newton

  Gradient for J[x0] is computed using adjoint
 of tangent linear model operator

  The art is to formulate the adjoint model
 (No closed formulation of model operator)

  Iterative procedure (local in control space)

Adjoint Method - 4D-Var

Adjoint method - 4D-Var algorithm

1. Initialization: Choose initial estimate of x0

2. Forward: Integrate model
start from x0; store trajectory

3. Compute cost function
exit, if cost is below limit

4. Backward: Integrate adjoint model backward in time
start from final residual (y-x); use trajectory from 2.

5. Optimizer: Update x0
with optimization algorithm

•  Coding of adjoint model

•  Computing cost

•  Method is iterative, limited parallelization possibilities

•  Storage requirements

•  Store full forward trajectory

•  Limited size of time window in case of nonlinear model

•  Parameterized weight matrices

Issues of 4D-Var/3D-Var

Sequential Data Assimilation

Kalman filters

Error propagation

Linear stochastic dynamical model

Assume that

Also assume uncorrelated state errors and model errors

Then

With model error covariance matrix

Error propagation builds the foundation of the Kalman filter

More later…

€

p(xi�1) = N
�
xi�1,P

a
i�1

�

Pf
i = Mi�1,iP

a
i�1(Mi�1,i)

T +Qi�1

Qi�1

xi = Mi�1,ixi�1 + ⌘i

⌘i

Sequential Data Assimilation

Consider some physical system (ocean, atmosphere,…)

time

observation

truth

model

Sequential assimilation: correct model state
estimate when observations are available
(analysis); propagate estimate (forecast) state

Size of correction
determined by
error estimates

3D-Var is “sequential” but usually not called like it

Probabilistic view: Optimal estimation

Consider probability distribution of model and observations

observation

time 0 time 1 time 2

analysis

forecast
Kalman Filter:
Assume Gaussian distributions

The Kalman Filter

Assume Gaussian distributions
fully described by

•  mean state estimate
•  covariance matrix

➜  Strong simplification of estimation problem

Analysis is combination auf two Gaussian distributions
computed as

•  Correction of state estimate
•  Update of covariance matrix €

−2 0 2 4 −2 0 2 4

Analysis

observation state

Kalman Filter (Kalman, 1960)
Forecast:

State propagation

Propagation of error estimate

€

xi = Mi�1,ixi�1 + ✏i

Pf
i = Mi�1,iP

a
i�1(Mi�1,i)

T +Qi�1

Analysis at time tk:

State update

Update of error estimate

with “Kalman gain”

xa
k = xf

k +Kk

⇣
yk �Hkx

f
k

⌘

Pa
k = (I�KkHk)P

f
k

Kk = Pf
kH

T
k

⇣
HkP

f
kH

T
k +Rk

⌘�1

The KF (Kalman, 1960)

Initialization: Choose initial state estimate x and
corresponding covariance matrix P

Forecast: Evolve state estimate with model. Evolve
columns/rows of covariance matrix with model.

Analysis: Combine state estimate with observations
based on weights computed from error estimates of
state estimate and observations. Update matrix P

according to relative error estimates.

The KF (Kalman, 1960)

Initialization: Choose initial state estimate x and
corresponding covariance matrix P

Forecast: Evolve state estimate with model. Evolve
columns/rows of covariance matrix with model.

Analysis: Combine state estimate with observations
based on weights computed from error estimates of
state estimate and observations. Update matrix P

according to relative error estimates.

Forecast: Evolve state estimate with non-linear
model. Evolve columns/rows of covariance matrix

with linearized model.

With nonlinear model: Extended Kalman filter

•  Storage of covariance matrix can be unfeasible
(n2 with n of O(107-109))

•  Evolution of covariance matrix extremely costly

•  Linearized evolution (like in Extended KF) can be
unstable (e.g. Evensen 1992, 1993)

•  Adjoint model can be avoided using

Issues of the Kalman Filter

MT
i�1,i

Mi�1,i

�
Mi�1,iP

a
i�1

�T

  Need to reduce the cost

Approaches to reduce the cost of the Kalman filter
•  Simplified error evolution

(constant, variance only)
•  Reduce rank of P
•  Reduce resolution of model

(at least for the error propagation)
•  Reduce model complexity

Examples:
•  „suboptimal schemes“, Todling & Cohn 1994
•  Approximate KF, Fukumori & Malanotte, 1995
•  RRSQRT, Verlaan & Heemink, 1995/97
•  SEEK, Pham et al., 1998

“Suboptimal” Filters

Example: SEEK filter (Pham et al., 1998)

Approximate
(truncated eigendecomposition)

Mode matrix has size has size

Low-rank approximation of P

Vi n⇥ r r ⇥ r

Pa
i ⇡ ViUiV

T
i

Ui

Forecast of r „modes“:

for nonlinear model

Now use in analysis step:

Vi+1 = Mi,i+1Vi

P̃f
k ⇡ VkUk�1V

T
k

Vi+1 ⇡ Mi,i+1 (Vi + [xa
i , . . . ,x

a
i])�Mi,i+1 [x

a
i , . . . ,x

a
i]

The SEEK filter (Pham, 1998)

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUVT. Choose state x.

Forecast: Evolve state estimate with non-linear
model. Evolve modes V of covariance matrix with

linearized model.

Analysis: Apply EKF update step to ensemble mean
and the „eigenvalue matrix“ U. Covariance matrix

represented by modes and U.

Re-Initialization: Occasionally perform re-
orthogonalization of modes of covariance matrix

Sampling Example

€

Pt =

3.0 1.0 0.0
1.0 3.0 0.0
0.0 0.0 0.01

"

$
$ $

%

&

'
' '
;

€

x t =
0.0
0.0
"

$

%

&
'

Approximation in SEEK based on Gaussian distribution

More general:

•  Sample by N random state realizations :

General sampling of probability distribution

p(x)
x

(j)

•  State ensemble

•  Ensemble mean

X =
h
x

(1), . . . ,x(N)
i

x̄ =
1

N

NX

j=1

x

(j)

p(x) =
1

N

NX

j=1

�(x� x

(j))

Approximate

(holds ensemble mean in each column)

Ensemble representation (approximation) of P

Pa
i ⇡ 1

N � 1

�
Xi � X̄i

� �
Xi � X̄i

�T

X̄i

Forecast of N ensemble states:

for nonlinear model

Now use in analysis step:

Xf
i+1 = Mi,i+1X

a
i+1

Xf
i+1 = Mi,i+1X

a
i+1

P̂f
i ⇡ 1

N � 1

⇣
Xf

i � X̄f
i

⌘⇣
Xf

i � X̄f
i

⌘T

Sampling Example

€

Pt =

3.0 1.0 0.0
1.0 3.0 0.0
0.0 0.0 0.01

"

$
$ $

%

&

'
' '
;

€

x t =
0.0
0.0
"

$

%

&
'

•  Ensemble is not unique

•  Gaussian assumption simplifies sampling
(covariance matrix & mean state)

More on sampling

Example: 2nd-order exact sampling (Pham et al. 1998)

Use
(truncated eigendecomposition)
Create ensemble states as

 is random matrix with columns orthonormal and orthogonal
to vector . Size

Ensemble size

Pa
i ⇡ ViSiV

T
i

⌦
(1, . . . , 1)T

X = X̄+
p
N � 1VS1/2⌦T

N ⇥ (N � 1)

N = r + 1

Sampling Example

€

Pt =

3.0 1.0 0.0
1.0 3.0 0.0
0.0 0.0 0.01

"

$
$ $

%

&

'
' '
;

€

x t =
0.0
0.0
"

$

%

&
'

Same as spherical simplex sampling (Wang et al., 2004)

Collection of possible samplings

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4
Symmetric Pairs

positive−negative pairs
True prob. ellipsoid

  Approximate state covariance matrix by low-rank matrix

  Keep matrix in decomposed form (XXT, VUVT)

Error Subspace Algorithms

Lars Nerger et al., Tellus 57A (2005) 715-735

Mathematical motivation:
•  state error covariance matrix represents
 error space at location of state estimate

•  directions of different uncertainty

•  consider only directions with largest
 errors (error subspace)
⇒  degrees of freedom for state correction
in analysis: rank(P)

 = span(v1,v2,…)

x

P = VUVT

v2 v1

Error space:
E

Ensemble-based Kalman filters

Ensemble-based Kalman Filters

  Foundation: Kalman filter (Kalman, 1960)
•  optimal estimation problem

•  express problem in terms of state estimate x and
 error covariance matrix P (normal distributions)

•  propagate matrix P by linear (linearized) model

•  variance-minimizing analysis

  Ensemble-based Kalman filter:

•  sample state x and covariance matrix P by ensemble of
 model states

•  propagate x and P by integration of ensemble states

•  Apply linear analysis of Kalman filter

First filter in oceanography: “Ensemble Kalman Filter”
(Evensen, 1994), second: SEIK (Pham et al., 1998)

Ensemble-based Kalman Filter

Approximate probability distributions by ensembles

observation

time 0 time 1 time 2

analysis

ensemble
forecast

Questions:

•  How to generate initial ensemble?

•  How to resample after analysis?

resampling
initial

sampling Please note:

In general, this is
not an approximation
of the Kalman filter!

Efficient use of ensembles

€

 can be approximated by ensemble or modes:

Analysis at time tk:

Kalman gain

Pf
k

K̃k = P̃f
kH

T
k

⇣
HkP̃

f
kH

T
k +Rk

⌘�1

P̃f
k

xa
k = xf

k + K̃k

⇣
yk �Hkx

f
k

⌘

Costly inversion: matrix!

Ensembles allow for cost reduction – if R is invertible at low
cost

m⇥m

Efficient use of ensembles (2)

€

Kalman gain

K̃k = P̃f
kH

T
k

⇣
HkP̃

f
kH

T
k +Rk

⌘�1

K̃k =

⇣
P̃f

k

⌘�1
+HTR�1H

��1

HTR�1

Alternative form (Sherman-Morrison-Woodbury matrix identity)

Looks worse: matrices need inversion n⇥ n

K̃k = X
0
h
(N � 1)I+X

0THTR�1HX
0
i�1

X
0THTR�1

However: with ensemble

Inversion of matrix

(Ensemble perturbation matrix)

P̃f
k = (N � 1)�1X

0
X

0T

N ⇥N

X
0
= X� X̄

Ensemble transformations

€

 can be approximated by ensemble or modes:

Analysis at time tk:

State update

Update of error estimate

We are missing the analysis ensemble Xa
k

Pf
k P̃f

k

xa
k = xf

k + K̃k

⇣
yk �Hkx

f
k

⌘

P̃a
k =

⇣
I� K̃kHk

⌘
P̃f

k

This is incomplete!

Ensemble transformations (2)

€

Possibilities to obtain

1.  Monte Carlo analysis update

•  Kalman update of each single ensemble member

2.  Explicit ensemble transformation

1.  Kalman update of ensemble mean state

2.  Transformation of ensemble perturbations

a.  Right sided:

b.  Left sided:

Xa
k

X
0a = ŴX

0f

X
0a = X

0fW

X
0
= X� X̄

Monte Carlo analysis update

€

Used in Ensemble Kalman Filter (EnKF, Evensen 1994)

•  Forecast ensemble

•  Generate observation ensemble

•  Update each ensemble member

Xa
k = Xf

k + K̃k

⇣
Yk �HkX

f
k

⌘

Xf
k

y(j) = y + ✏(j)

Pro:

•  Simple implementation

Issues:

•  Generation of observation ensemble

•  Introduction of sampling noise through ✏(j)

Right sided ensemble transformation

€

Used in:

•  SEIK (Singular Evolutive Interpolated KF, Pham et al. 1998)

•  ETKF (Ensemble Transform KF, Bishop et al. 2001)

•  EnsRF (Ensemble Square-root Filter, Whitaker/Hamill 2001)

Very efficient: is small ()

X
0a = X

0fW

W N ⇥N

Ensemble Transform Kalman Filter - ETKF

Ensemble perturbation matrix

Analysis covariance matrix

“Transform matrix” (in ensemble space)

Ensemble transformation

Ensemble weight matrix

•  (symmetric square root)
•  is identity or random orthogonal matrix with EV)

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001). For the review of the analysis

step of the ETKF, we follow Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based on a square root of the state covari-

ance matrix given by the ensemble perturbations X′. The analysis state covariance matrix

Pa can be written as a transformation of the forecast ensemble perturbations as

Pa = X
′fA(X

′f)T . (4)

Here, A is an m×m matrix defined by

A−1 := (N − 1)I+ (HX
′f)TR−1HX

′f . (5)

A is frequently denoted as ’transform matrix’. The factor γ is used to inflate the forecast

covariance matrix to stabilize the filter performance.

The state estimate is updated according to

xa = xf +X
′fwETKF (6)

with the weight vector

wETKF := A
(

HX
′f
)T

R−1
(

yo −Hxf
)

. (7)

The square root of the forecast state covariance matrix is given by the perturbation

matrix X
′f up to the scaling by (m− 1)−1. To obtain the square root of the analysis state

covariance matrix, X
′f is transformed as

X
′a = X

′f WETKF . (8)

3

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001). For the review of the analysis

step of the ETKF, we follow Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based on a square root of the state covari-

ance matrix given by the ensemble perturbations X′. The analysis state covariance matrix

Pa can be written as a transformation of the forecast ensemble perturbations as

Pa = X
′fA(X

′f)T . (4)

Here, A is an m×m matrix defined by

A−1 := (N − 1)I+ (HX
′f)TR−1HX

′f . (5)

A is frequently denoted as ’transform matrix’. The factor γ is used to inflate the forecast

covariance matrix to stabilize the filter performance.

The state estimate is updated according to

xa = xf +X
′fwETKF (6)

with the weight vector

wETKF := A
(

HX
′f
)T

R−1
(

yo −Hxf
)

. (7)

The square root of the forecast state covariance matrix is given by the perturbation

matrix X
′f up to the scaling by (m− 1)−1. To obtain the square root of the analysis state

covariance matrix, X
′f is transformed as

X
′a = X

′f WETKF . (8)

3

The ETKF and the SEIK filter are ensemble-based Kalman filters. The state of a physical

system, like the ocean or atmosphere, is estimated at time tk by the state vector xk of size

n and the corresponding error covariance matrix Pk. An ensemble of m vectors x(α), α =

1, . . . , m, of model state realizations represents these quantities. The state estimate is given

by the ensemble mean

xk :=
1

m

m
∑

i=1

x(i)
k . (1)

With the ensemble matrix

Xk :=
[

x(1)
k , . . . ,x(m)

k

]

, (2)

Pk is given as the ensemble covariance matrix

Pk :=
1

m− 1
X′

k (X
′
k)

T (3)

where X
′

k := Xk −Xk with Xk = [xk, . . . ,xk] is the matrix of ensemble perturbations.

A forecast is computed by integrating the state ensemble using the numerical model until

observations become available. The observations are available in form of the vector yo
k of

size p. The model state is related to the observations by yo
k = Hk(x

f
k) + εk where H is the

observation operator, which is assumed to be linear. The vector of observation errors, εk, is

assumed to be a white Gaussian distributed random process with covariance matrix R.

The analysis equations of the ETKF and the SEIK filter are discussed separately below.

As all operations are performed at the same time tk, the time index k is omitted.

2

a. Analysis step of the ETKF

The ETKF has been introduced by Bishop et al. (2001). For the review of the analysis

step of the ETKF, we follow Yang et al. (2009) and Hunt et al. (2007).

The computations performed in the ETKF are based on a square root of the state covari-

ance matrix given by the ensemble perturbations X′. The analysis state covariance matrix

Pa can be written as a transformation of the forecast ensemble perturbations as

Pa = X
′fA(X

′f)T . (4)

Here, A is an m×m matrix defined by

A−1 := (N − 1)I+ (HX
′f)TR−1HX

′f . (5)

A is frequently denoted as ’transform matrix’. The factor γ is used to inflate the forecast

covariance matrix to stabilize the filter performance.

The state estimate is updated according to

xa = xf +X
′fwETKF (6)

with the weight vector

wETKF := A
(

HX
′f
)T

R−1
(

yo −Hxf
)

. (7)

The square root of the forecast state covariance matrix is given by the perturbation

matrix X
′f up to the scaling by (m− 1)−1. To obtain the square root of the analysis state

covariance matrix, X
′f is transformed as

X
′a = X

′f WETKF . (8)

3

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).

4

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).

4

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).

4

size
(n x N)

(N x N)

(N x N)

(n x N)

(n x n)

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (9)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (10)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (11)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).

4

Error-subspace basis matrix

 (T subtracts ensemble mean and removes last column)

Analysis covariance matrix

“Transform matrix” (in error subspace)

Ensemble transformation

Ensemble weight matrix

•  is square root of (originally Cholesky decomposition)
•  is transformation from N-1 to N (random or deterministic)

SEIK Filter

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-

sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 2. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T, (13)

G := (m− 1)−1
(

TTT
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=

I(m−1)×(m−1)

01×(m−1)

−
1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

5

when the matrix L is computed. In addition, T̃ removes the last column of X
′f , thus L is

an n× (m− 1) matrix that holds the first m− 1 ensemble perturbations.

The analysis update of the state estimate is given as a combination of the columns of the

matrix L by

x̃a = xf + LwSEIK. (16)

Here, the vector wSEIK of size m− 1 is given by

wSEIK := Ã (HL)T R−1
(

yo −Hxf
)

(17)

and the transform matrix Ã of size (m− 1)× (m− 1) is defined by

Ã−1 := (N − 1)TTT+ (HL)TR−1HL. (18)

In the SEIK filter, ρ̃ with 0 < ρ̃ ≤ 1 is referred to as the “forgetting factor”. It is the inverse

of the inflation factor γ used in Eq. (5) of the ETKF. The analysis covariance matrix is given

in factorized form by

P̃a = LÃLT (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as (HXf)T̃. Thus, T̃ operates on the

p×m matrix HXf , while H operates on each ensemble state.

Resampling: After the analysis step, the “resampling” of the ensemble is performed.

Here, the forecast ensemble is transformed such that it represents x̃a and P̃a. The transfor-

mation is performed according to

X̃a = X̃a +
√
m− 1LC̃ΩT . (20)

6

when the matrix L is computed. In addition, T̃ removes the last column of X
′f , thus L is

an n× (m− 1) matrix that holds the first m− 1 ensemble perturbations.

The analysis update of the state estimate is given as a combination of the columns of the

matrix L by

x̃a = xf + LwSEIK. (16)

Here, the vector wSEIK of size m− 1 is given by

wSEIK := Ã (HL)T R−1
(

yo −Hxf
)

(17)

and the transform matrix Ã of size (m− 1)× (m− 1) is defined by

Ã−1 := (N − 1)TTT+ (HL)TR−1HL. (18)

In the SEIK filter, ρ̃ with 0 < ρ̃ ≤ 1 is referred to as the “forgetting factor”. It is the inverse

of the inflation factor γ used in Eq. (5) of the ETKF. The analysis covariance matrix is given

in factorized form by

P̃a = LÃLT (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as (HXf)T̃. Thus, T̃ operates on the

p×m matrix HXf , while H operates on each ensemble state.

Resampling: After the analysis step, the “resampling” of the ensemble is performed.

Here, the forecast ensemble is transformed such that it represents x̃a and P̃a. The transfor-

mation is performed according to

X̃a = X̃a +
√
m− 1LC̃ΩT . (20)

6

be written as

X̃a = X̃a + LWSEIK (21)

with

WSEIK :=
√
N − 1C̃ΩT . (22)

In addition, the state analysis update (16) can be combined with the ensemble transformation

(21) to

X̃a = Xf + L
(

W
SEIK

+WSEIK
)

, (23)

with W
SEIK

=
[

wSEIK, . . . ,wSEIK
]

.

Equation (23) performs a transformation of the matrix L analogous to the ensemble

transformation of the ETKF (Eq. 11). Matrix L is the square root of the covariance matrix

Pf used in the SEIK filter. With this, the SEIK filter is clearly an ensemble square-root

filter.

It is particular for the SEIK filter that the matrix L has only m−1 columns, while other

filters use a square-root with m columns. Using m− 1 columns is possible because the rank

of Pf is at most m − 1. The SEIK filter utilizes this property by accounting for the fact

that the sum of each row of the perturbation matrix X
′f is zero. Thus, while the columns

of X
′f are linearly dependent, the columns of L are linearly independent if the rank of Pf

is m− 1. In this case, they build a basis of the error subspace estimated by the ensemble of

model states (for a detailed discussion of the error subspace, see Nerger et al. (2005a)). In

contrast, X
′
can be regarded as a transformation from its m-dimensional column space to

the error subspace of dimension m− 1 (see Hunt et al. 2007).

While the equations of the SEIK filter are very similar to those of the ETKF this does not

8

size
(n x N-1)

(N-1 x N-1)

(N-1 x N)

(n x N)
be written as

X̃a = X̃a + LWSEIK (21)

with

WSEIK :=
√
N − 1C̃ΩT . (22)

In addition, the state analysis update (16) can be combined with the ensemble transformation

(21) to

X̃a = Xf + L
(

W
SEIK

+WSEIK
)

, (23)

with W
SEIK

=
[

wSEIK, . . . ,wSEIK
]

.

Equation (23) performs a transformation of the matrix L analogous to the ensemble

transformation of the ETKF (Eq. 11). Matrix L is the square root of the covariance matrix

Pf used in the SEIK filter. With this, the SEIK filter is clearly an ensemble square-root

filter.

It is particular for the SEIK filter that the matrix L has only m−1 columns, while other

filters use a square-root with m columns. Using m− 1 columns is possible because the rank

of Pf is at most m − 1. The SEIK filter utilizes this property by accounting for the fact

that the sum of each row of the perturbation matrix X
′f is zero. Thus, while the columns

of X
′f are linearly dependent, the columns of L are linearly independent if the rank of Pf

is m− 1. In this case, they build a basis of the error subspace estimated by the ensemble of

model states (for a detailed discussion of the error subspace, see Nerger et al. (2005a)). In

contrast, X
′
can be regarded as a transformation from its m-dimensional column space to

the error subspace of dimension m− 1 (see Hunt et al. 2007).

While the equations of the SEIK filter are very similar to those of the ETKF this does not

8

(n x n)

In previous studies, the SEIK filter was always described to use a Cholesky decomposition

of the matrix Ã−1 to obtain (C̃−1)T C̃−1 = Ã−1. However, other forms of the square-root,

like the symmetric square root used in the ETKF, could be chosen. Section ?? will test the

influence of the chosen square root on the performance of the filter. The matrix Ω is an

m×(m−1) matrix whose columns are orthonormal and orthogonal to the vector (1, . . . , 1)T .

Traditionally, Ω is described to be a random matrix with these properties. However, using

a deterministic Ω is also valid. The procedure to generate a random Ω (Pham 2001; Hoteit

2001) and a procedure for generating a deterministic variant are provided in the Appendix.

For efficiency, the matrix L can be replaced by XfT̃ (Eq. 13). Then, the matrix T̃ can

be applied from the left to smaller matrices like the weight vector wSEIK or the matrix C̃.

The original formulation of the SEIK filter used the normalization m−1 for the matrix

Pf instead of using the sample covariance matrix that is normalized by (m − 1)−1. For

consistency with other ensemble-based Kalman filters, Nerger and Gregg (2007) introduced

the use of the sample covariance matrix in SEIK, which is also used here. In the SEIK

filter, the ensemble is generated to be consistent with the normalization of Pf . Hence, the

normalization acts only as a scaling factor that influences the equations (3) and (20) as well

as the definition of G in Eq. (14).

2. SEIK as an ensemble square-root filter

To identify the SEIK filter as an ensemble square-root filter, the analysis and resampling

steps of SEIK are combined as a transformation of the square root of Pf . Equation (20) can

7

when the matrix L is computed. In addition, T̃ removes the last column of X
′f , thus L is

an n× (m− 1) matrix that holds the first m− 1 ensemble perturbations.

The analysis update of the state estimate is given as a combination of the columns of the

matrix L by

x̃a = xf + LwSEIK. (16)

Here, the vector wSEIK of size m− 1 is given by

wSEIK := Ã (HL)T R−1
(

yo −Hxf
)

(17)

and the transform matrix Ã of size (m− 1)× (m− 1) is defined by

Ã−1 := (N − 1)TTT+ (HL)TR−1HL. (18)

In the SEIK filter, ρ̃ with 0 < ρ̃ ≤ 1 is referred to as the “forgetting factor”. It is the inverse

of the inflation factor γ used in Eq. (5) of the ETKF. The analysis covariance matrix is given

in factorized form by

P̃a = LÃLT (19)

but does not need to be explicitly computed.

For efficiency, the term HL is typically computed as (HXf)T̃. Thus, T̃ operates on the

p×m matrix HXf , while H operates on each ensemble state.

Resampling: After the analysis step, the “resampling” of the ensemble is performed.

Here, the forecast ensemble is transformed such that it represents x̃a and P̃a. The transfor-

mation is performed according to

X̃a = X̃a +
√
m− 1LC̃ΩT . (20)

6

X
′a = L WSEIK. (9)

The weight matrix WETKF is computed from the square-root C with CCT = A as

WETKF :=
√
N − 1CΛ. (10)

Here, Λ is an arbitrary orthogonal matrix of size m × m or the identity. To preserve the

ensemble mean, the vector (1, . . . , 1)T has to be an eigenvector of Λ.

When the ETKF was introduced by Bishop et al. (2001), the form of the square-root C

was not further specified. Studies about the properties of the ensemble transformation in

different square-root filters (e.g., Wang et al. 2004; Sakov and Oke 2008) have shown that

a symmetric matrix C ensures that the ensemble mean is preserved during the ensemble

transformation. The use of the symmetric square root

Csym := US−1/2UT (11)

has been proposed also for the localized version of the ETKF (LETKF, Hunt et al. 2007).

Eq. (10) can be obtained from the singular value decomposition (SVD)USV = A−1. The use

of matrix Csym from Eq. (10) provides a minimum transformation of the ensemble because

the distance of the square-root from the identity matrix is minimized in the Frobenius norm

(see Yang et al. 2009).

For efficiency, the analysis update of the state estimate (Eq. 6) and the ensemble trans-

formation (Eq. 8) can be combined into a single transformation of X
′f as

Xa = Xf +X
′f
(

W
ETKF

+WETKF
)

. (12)

with W
ETKF

=
[

wETKF , . . . ,wETKF
]

. This formulation leads directly to the analysis en-

semble, without explicitly updating the state estimate by Eq. (6).

4

The SEIK filter (Pham, 1998)

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUVT. Generate ensemble
of minimum size exactly representing error statistics.

Forecast: Evolve each of the ensemble members with
the full non-linear stochastic model.

Analysis: Apply EKF update step to ensemble mean
and the „eigenvalue matrix“ U. Covariance matrix

approx. by ensemble statistics.

Ensemble transformation: Transform state ensemble
to exactly represent updated error statistics.

Square root of covariance matrix (ensemble size N, state dim n)

 T is specific for filter algorithm:

 ETKF:
 T removes ensemble mean
 (usually, compute directly)
 Z has dimension nN

 SEIK:
 T removes ensemble mean and drops last column
 Z has dimension n(N-1)

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZf (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis

Xf
k =

⌃
xf(1)
k , . . . ,xf(N)

k

⌥
(168)

Xf
k =

⌃
xf
k , . . . ,x

f
k

⌥
(169)

Zf
k = Xf

k �Xf
k (170)

Z = X�X (171)

Z = XfT (172)

Pf = ZZT (173)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T

(174)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(175)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(176)

G :=
1

N � 1
I (177)

xa
k = xf

k + Zf
kwk (178)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo
k �Hkx

f
k

⌅
(179)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (180)

A�1
k = �(N � 1)I+ (HkZ

f
k)

TR�1
k HkZ

f
k (181)

P̌a
k = Zf

kAk(Z
f
k)

T (182)

A =
�
G+ (HZ)TR�1HZ

⇥�1
(183)

Pa = ZAZT (184)

Ensemble transformation

Xa = Xa +Xf
kW (185)

Xa ⇥ ZW (186)

WWT = A (187)

Xa
k = Xf

k + Zf
k

�
Wk +Wk

⇥
(188)

Wk =
⌃
wk, . . . ,wk

⌥
(189)

15

Computations in ensemble-spanned space

Square root of covariance matrix (ensemble size N, state dim n)

 T is specific for filter algorithm:

 ETKF:
 T removes ensemble mean
 (usually, compute directly)
 Z has dimension nN

 SEIK:
 T removes ensemble mean and drops last column
 Z has dimension n(N-1)

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZf (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis

Xf
k =

⌃
xf(1)
k , . . . ,xf(N)

k

⌥
(168)

Xf
k =

⌃
xf
k , . . . ,x

f
k

⌥
(169)

Zf
k = Xf

k �Xf
k (170)

Z = X�X (171)

Z = XfT (172)

Pf = ZZT (173)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T

(174)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(175)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(176)

G :=
1

N � 1
I (177)

xa
k = xf

k + Zf
kwk (178)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo
k �Hkx

f
k

⌅
(179)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (180)

A�1
k = �(N � 1)I+ (HkZ

f
k)

TR�1
k HkZ

f
k (181)

P̌a
k = Zf

kAk(Z
f
k)

T (182)

A =
�
G+ (HZ)TR�1HZ

⇥�1
(183)

Pa = ZAZT (184)

Ensemble transformation

Xa = Xa +Xf
kW (185)

Xa ⇥ ZW (186)

WWT = A (187)

Xa
k = Xf

k + Zf
k

�
Wk +Wk

⇥
(188)

Wk =
⌃
wk, . . . ,wk

⌥
(189)

15

Transformation matrix in ensemble space (small matrix)

 ETKF:

 A has dimension N2

 G = I (identity matrix)
 SEIK:
 A has dimension (N-1)2

 G = (T TT)-1	

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Computations in ensemble-spanned space

Square root of covariance matrix (ensemble size N, state dim n)

 T is specific for filter algorithm:

 ETKF:
 T removes ensemble mean
 (usually, compute directly)
 Z has dimension nN

 SEIK:
 T removes ensemble mean and drops last column
 Z has dimension n(N-1)

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZf (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis

Xf
k =

⌃
xf(1)
k , . . . ,xf(N)

k

⌥
(168)

Xf
k =

⌃
xf
k , . . . ,x

f
k

⌥
(169)

Zf
k = Xf

k �Xf
k (170)

Z = X�X (171)

Z = XfT (172)

Pf = ZZT (173)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T

(174)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(175)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(176)

G :=
1

N � 1
I (177)

xa
k = xf

k + Zf
kwk (178)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo
k �Hkx

f
k

⌅
(179)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (180)

A�1
k = �(N � 1)I+ (HkZ

f
k)

TR�1
k HkZ

f
k (181)

P̌a
k = Zf

kAk(Z
f
k)

T (182)

A =
�
G+ (HZ)TR�1HZ

⇥�1
(183)

Pa = ZAZT (184)

Ensemble transformation

Xa = Xa +Xf
kW (185)

Xa ⇥ ZW (186)

WWT = A (187)

Xa
k = Xf

k + Zf
k

�
Wk +Wk

⇥
(188)

Wk =
⌃
wk, . . . ,wk

⌥
(189)

15

Transformation matrix in ensemble space (small matrix)

 ETKF:

 A has dimension N2

 G = I (identity matrix)
 SEIK:
 A has dimension (N-1)2

 G = (T TT)-1	

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis state covariance matrix

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZ (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Computations in ensemble-spanned space

Square root of covariance matrix (ensemble size N, state dim n)

 T is specific for filter algorithm:

 ETKF:
 T removes ensemble mean
 (usually, compute directly)
 Z has dimension nN

 SEIK:
 T removes ensemble mean and drops last column
 Z has dimension n(N-1)

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZf (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis

Xf
k =

⌃
xf(1)
k , . . . ,xf(N)

k

⌥
(168)

Xf
k =

⌃
xf
k , . . . ,x

f
k

⌥
(169)

Zf
k = Xf

k �Xf
k (170)

Z = X�X (171)

Z = XfT (172)

Pf = ZZT (173)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T

(174)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(175)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(176)

G :=
1

N � 1
I (177)

xa
k = xf

k + Zf
kwk (178)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo
k �Hkx

f
k

⌅
(179)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (180)

A�1
k = �(N � 1)I+ (HkZ

f
k)

TR�1
k HkZ

f
k (181)

P̌a
k = Zf

kAk(Z
f
k)

T (182)

A =
�
G+ (HZ)TR�1HZ

⇥�1
(183)

Pa = ZAZT (184)

Ensemble transformation

Xa = Xa +Xf
kW (185)

Xa ⇥ ZW (186)

WWT = A (187)

Xa
k = Xf

k + Zf
k

�
Wk +Wk

⇥
(188)

Wk =
⌃
wk, . . . ,wk

⌥
(189)

15

Transformation matrix in ensemble space (small matrix)

 ETKF:

 A has dimension N2

 G = I (identity matrix)
 SEIK:
 A has dimension (N-1)2

 G = (T TT)-1	

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(184)

Wk =
⌃
wk, . . . ,wk

⌥
(185)

Pa
k =

1

N � 1
Za

k (Za
k)

T (186)

Za
k =

⇥
N � 1Zf

kA
1/2
k (187)

Za
k = Zf

kWk (188)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (189)

UkSkVk = A�1
k (190)

15

Analysis state covariance matrix

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(171)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(172)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(173)

G :=
1

N � 1
I (174)

xa
k = xf

k + Zf
kwk (175)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(176)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (177)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

P̌a
k = Zf

kAk(Z
f
k)

T (179)

A�1 = I + (HZ)TR�1HZ (180)

Pa = ZAZT (181)

Ensemble transformation

Xa = Xa + Xf
kW (182)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(183)

Wk =
⌃
wk, . . . ,wk

⌥
(184)

Pa
k =

1

N � 1
Za

k (Za
k)

T (185)

Za
k =

⇥
N � 1Zf

kA
1/2
k (186)

Za
k = Zf

kWk (187)

Wk =
⇥

N � 1UkS
�1/2
k UT

k � (188)

UkSkVk = A�1
k (189)

15

Computations in ensemble-spanned space

Ensemble transformation based on square root of A	

Very efficient:
Transformation matrix computed in space of dim. N or N-1

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa ⇥ XfL (184)

LLT = A (185)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(186)

Wk =
⌃
wk, . . . ,wk

⌥
(187)

15

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(167)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(168)

Zf
k = Xf

k �Xf
k (169)

Z = XfT (170)

Pf = ZZT (171)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(172)

P̌f
k =

1

N � 1
Zf

k

⇤
Zf

k

⌅T

(173)

P̌f
k = Zf

kG
⇤
Zf

k

⌅T

(174)

G :=
1

N � 1
I (175)

xa
k = xf

k + Zf
kwk (176)

wk = Ak(HkZ
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(177)

A�1
k = �G�1 + (HkZ

f
k)

TR�1
k HkZ

f
k (178)

A�1
k = �(N � 1)I + (HkZ

f
k)

TR�1
k HkZ

f
k (179)

P̌a
k = Zf

kAk(Z
f
k)

T (180)

A =
�
G + (HZ)TR�1HZ

⇥�1
(181)

Pa = ZAZT (182)

Ensemble transformation

Xa = Xa + Xf
kW (183)

Xa ⇥ ZL (184)

LLT = A (185)

Xa
k = Xf

k + Zf
k

�
Wk + Wk

⇥
(186)

Wk =
⌃
wk, . . . ,wk

⌥
(187)

15

The SEIK filter - Properties

  Computational complexity

•  linear in dimension of state vector

•  approx. linear in dimension of observation vector

•  cubic with ensemble size

  Low complexity due to explicit consideration of
 error subspace:

  Degrees of freedom given by ensemble size -1

  Analysis increment: combination of ensemble members
 with weight computed in error subspace

  Simple application to non-linear models due to
 ensemble forecasts (e.g. no adjoint model)

ETKF: Practically the same properties, but analysis in
ensemble space, dimension N

Left sided ensemble transformation

€

Used in:

•  EAKF (Ensemble Adjustment KF, Anderson 2001)

Issue:

•  Costly in plain form: is huge ()

•  But: Computation can be done stepwise avoiding to compute

X
0a = ŴX

0f

Ŵ n⇥ n
Ŵ

Analysis step and ensemble transformation

Analysis step of square-root filters:
1.  correct state estimate

2.  transform ensemble (forecast → analysis)

(both can be combined into a single operation)

Key element: Transformation matrix and its square-root

  Computed in space spanned by the ensemble members

  Not unique!

Deterministic transformation

Random transformation
with constraints

Ensemble transformations

Minimum transformation
(standard in ETKF)

Random transformation
with constraints

Minimum change to model states

Better chance to preserve balances

Preserves higher-order moments
(Ensemble clustering, Amezcua et al.
2012)

Larger change to ensemble states

More impact on balances

Destroys higher-order moments
(closer to Gaussian)

A simple test problem

  Twin experiment with nonlinear shallow water equations

  Initial state estimate: temporal mean state

  Initial cov. matrix: variability around mean state

Shallow water model: filter performances

  SEEK stagnates

  same convergence behavior
 for EnKF and SEIK

  smaller performance for
 EnKF than for SEIK

  EnKF ensemble 1.5-2 times
 larger than SEIK ensemble
 for same filter performance

Error reduction due to assimilation

Ensemble size

L. Nerger et al., Tellus 57A (2005) 715-735

3D box experiment

  finite element model FEOM

  31x31 grid points, 11 layers

  nonlinear problem: interacting
 baroclinic Rossby waves

  Assimilate sea surface height
 each 2.5 days over 40 days

3D Box - filter performance

N=10

3D Box - filter performance

N=100

3D Box - Computation Times (N=10)

Model integrations: 6600s

Filter update:

Difference due to

  inversion of large matrix in EnKF

  generation of ensemble of observations

Filter Time
EnKF 67.8s
SEIK 0.6s

Studying Kalman filters

  Goal: Find the assimilation method with
  smallest estimation error
  most accurate error estimate
  least computational cost
  least tuning

  Want to understand behavior, in particular performance

  Difficulty:

  Optimality of Kalman filter well known for linear systems

  Optimality not established for non-linear systems

➜  Need to apply methods to test problems!

  One way to learn:

  Compare different methods to learn from differences

€

Square-root Kalman filters

  Properties and differences are hardly understood
  Learn from studying relations and differences

_
_

ETKF

Ensemble-based/error-subspace Kalman filters

A little “zoo” (not complete):

EAKF

ETKF

EnKF(94/98)

SEIK

EnSRF SEEK

RRSQRT

ROEK

MLEF
EnKF(2003)

EnKF(2004)
SPKF

ESSE

ESTKF

EnKF(94/98)
SEEK

SEIK
Studied in Nerger

et al. (2005) SEIK

New study
(Nerger et al. 2012)

New filter
formulation

RHF

anamorphosis

SEIK−chol: Transformation matrix

−0.1

−0.05

0

0.05

0.1
ETKF: Transformation matrix

−0.1

−0.05

0

0.05

0.1

Weight Matrices (W in Xa’ = Xf W)

ETKF

main contribution from diagonal
(minimum transformation)

Off-diagonals of similar weight

➜  Minimum change in distribution
of ensemble variance

ETKF SEIK-Cholesky sqrt

SEIK with Cholesky sqrt

main contribution from diagonal

Off-diagonals with strongly
varying weights

➜  Changes distribution of variance
in ensemble

SEIK−sym: Transformation matrix

−0.1

−0.05

0

0.05

0.1

Transformation Matrix of SEIK/symmetric sqrt

SEIK symmetric sqrt transformation matrices difference: SEIK−ETKF

−4

−3

−2

−1

0

1

2

3

4
x 10−3

Transformation matrices of ETKF and SEIK-sym very
similar

Largest difference for last ensemble member

 (Experiments with Lorenz96 model: This can lead to
 smaller ensemble variance of this member)

Difference SEIK-ETKF
10-3

SEIK depends on ensemble order

SEIK−sym: Difference of transformation matrices

−4
−3
−2
−1
0
1
2
3
4

x 10−3

Switch last two ensemble members

Ensemble transformation depends on order of ensemble members
(For ETKF the difference is 10-15)

Statistically fine, but not desirable!

(Switched back last two columns
& rows for comparison)

10-3

Forecast Covariance:

with

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis step and ensemble transformation

➜  Ensemble transformation in SEIK depends on order of ensembles

➜  Something wrong with SEIK?

➜  Matrix T subtracts ensemble mean and removes last column

➜  Last column depends on ensemble ordering!

Analysis

Xf
k =
�
xf(1)
k , . . . ,xf(N)

k

✏
(76)

P̌f
k =

1

N � 1

N�

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T
(77)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (78)

T :=

⇧

↵ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(79)

Ti,j =

⌥
⌦⌦⌦

⌦⌦⌦�

1� 1
N for i = j, i < N

� 1
N for i ⇥= j, i < N

� 1
N for i = N

(80)

P̌f
k = LkGLT

k (81)

Lk := Xf
kT , G :=

1

N � 1

�
TTT

⇥�1
(82)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (83)

xa
k = xf

k + Ǩk

⇤
yo
k �Hk

�
xf
k

✏ ⌅
(84)

xa
k = xf

k + Ǩk

⇤
yo
k �Hkx

f
k

⌅
(85)

Ǩk = LkUkL
T
kH

T
kRk

�1 (86)

P̌a
k = LkUkL

T
k (87)

Re-Init

P̌a
k = LkC

T
k�

T
k �kCkL

T
k (88)

C�1
k (C�1

k)T = U�1
k (89)

xa(l)
k = xa

k +
⇤
N � 1 LkC

T
k�

T
k,l (90)

Xa
k = Xa

k +
⇤
N � 1 LkC

T
k�

T
k (91)

7

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Ensemble order matters in SEIK

Square-root (SVD)

New ensemble:

 is projection from N-1 to N
(Random matrix from Householder reflections)

Ensemble-transformation:

Distinct matrices L ➜ distinct matrices U:

➜ Finally: slightly different eigenvalues and eigenvectors

(this is always correct)

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Revised T matrix

Identical transformations require different projection matrix for SEIK:

For SEIK:

	
T subtracts ensemble mean and drops last column

➜  Dependence on order of ensemble members!
➜  Solution:

➜  Redefine T: Distribute last member over first N-1 columns
➜  Also replace by new

New filter formulation:

 Error Subspace Transform Kalman Filter (ESTKF)

b. Analysis step of the SEIK filter

The SEIK filter has been introduced by Pham et al. (1998) and was described in more

detail by Pham (2001). This review follows Nerger et al. (2006). The original separation

of the analysis step into the state update (“analysis”) and ensemble transformation (“re-

sampling”) is followed here. The SEIK filter is then explicitly re-formulated as an ensemble

square-root filter analogously to the ETKF in section 2. Quantities that are similar but not

identical to those of the ETKF are marked using a tilde. It is assumed that the forecast

ensemble is identical to that used in the ETKF.

Analysis: The computations of the analysis step update the state estimate and implicitly

update the state covariance matrix from the forecast to the analysis matrix.

In the SEIK filter, the forecast covariance matrix Pf is treated in terms of the forecast

state ensemble Xf by

Pf = LGLT (12)

with

L := Xf T, (13)

G := (m− 1)−1
(

TTT
)−1

. (14)

Here, T̃ is an m × (m − 1) matrix with full rank and zero column sums. Previous studies

have always defined matrix T̃ as

T̃ :=

I(m−1)×(m−1)

01×(m−1)

−
1

m

(

1m×(m−1)

)

(15)

where 0 represents the matrix whose elements are equal to zero and I is the identity. The

elements of the matrix 1 are equal to one. Matrix T̃ implicitly subtracts the ensemble mean

5

transformation, it should be desirable to obtain the same transformation with the SEIK

filter. This goal is achieved by a modification of the SEIK filter that is described in this

section.

The modification of the SEIK filter is motivated by the properties of the matrix Ω.

In general, Ω is an m × (m − 1) matrix that re-generates m ensemble perturbations in

combination with an ensemble transformation matrix of size (m − 1) × (m − 1). For a

deterministic ensemble transformation, a deterministic form Ω̂ can be used whose elements

are defined by:

Ω̂i,j =

1− 1
m

1
1√
m
+1

for i = j, i < m

− 1
m

1
1√
m
+1

for i #= j, i < m

− 1√
m for i = m

(25)

Geometrically, Ω̂ is the Householder matrix associated with the vector m−1/2(1, . . . , 1)T (see

Appendix). Thus, Ω̂ projects vectors in the ensemble space spanned by Xf onto the error

subspace spanned by L. Like T̃, Ω̂ has a full rank and zero column sums. In addition, the

columns of Ω̂ are orthonormal, which is not the case for T̃. Using Ω̂, one can replace Eqns.

(12) – (14) by

Pf = LΩGΩL
T
Ω (26)

and

LΩ := XfΩ̂, (27)

GΩ := (m− 1)−1
(

Ω̂T Ω̂
)−1

= (m− 1)−1I(m−1)×(m−1) . (28)

Now, matrix Ã−1 from Eq. (18) is computed as:

Ã−1
Ω := ρ̃(m− 1)I+ (HLΩ)

TR−1HLΩ. (29)

10

13 ESTKF

Init

xa
0 ⇤ Rn (200)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (201)

{xa(l)
0 , l = 1, . . . , N} (202)

Xa
0 =
⌦
xa(1)
0 , . . . ,xa(N)

0

↵
(203)

La
k = Xa

k�; � ⇤ RN⇥N�1 (204)

T̂i,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N
+1

for i = j, i < N

� 1
N

1
1p
N
+1

for i ⌅= j, i < N

� 1p
N

for i = N

(205)

xa
0 ⇥ xa

0 (206)

P̌a
0 :=

1

N � 1

N

l=1

⇤
xa(l)
0 � xa

0

⌅⇤
xa(l)
0 � xa

0

⌅T
(207)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(208)

Xa
0 = [xa

0, . . . ,x
a
0] (209)

Xa
0 =
�
xa
0, . . . ,x

a
0

⇥
(210)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (211)

17

Redefine T:
  Subtract ensemble mean
  Distribute last column over first N-1 columns
  Use correct scaling to preserve mean

➜ A deterministic form of (Householder reflection)

T-matrix in ESTKF

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(190)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(191)

Lf
k = Xf

k�; (192)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(193)

P̌f
k =

1

N � 1
Lf

k

⇤
Lf

k

⌅T

(194)

P̌f
k = Lf

kG
⇤
Lf

k

⌅T

(195)

G :=
1

N � 1
I; G ⇥ R(N�1)⇥(N�1) (196)

xa
k = xf

k + Lf
kwk (197)

wk = Ak(HkL
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(198)

A�1
k = �G�1 + (HkL

f
k)

TR�1
k HkL

f
k (199)

A�1
k = �(N � 1)I + (HkL

f
k)

TR�1
k HkL

f
k (200)

P̌a
k = Lf

kAk(L
f
k)

T (201)

Ensemble transformation

Xa
k = Xf

k + Lf
k

�
Wk + Wk

⇥
(202)

Wk =
⌃
wk, . . . ,wk

⌥
(203)

Pa
k =

1

N � 1
La

k (La
k)

T (204)

La
k =

⇤
N � 1Lf

kA
1/2
k (205)

La
k = Lf

kWk (206)

Wk =
⇤

N � 1UkS
�1/2
k UT

k �̂T (207)

UkSkVk = A�1
k (208)

16

With this:

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

12 ESTKF

Init

xa
0 ⇤ Rn (178)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (179)

{xa(l)
0 , l = 1, . . . , N} (180)

Xa
0 =
⌦
xa(1)

0 , . . . ,xa(N)
0

↵
(181)

La
k = Xa

k�; � ⇤ RN⇥N�1 (182)

Ti,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N

+1
for i = j, i < N

� 1
N

1
1p
N

+1
for i ⌅= j, i < N

� 1p
N

for i = N

(183)

xa
0 ⇥ xa

0 (184)

P̌a
0 :=

1

N � 1

N

l=1

⇤
xa(l)

0 � xa
0

⌅⇤
xa(l)

0 � xa
0

⌅T
(185)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(186)

Xa
0 = [xa

0, . . . ,x
a
0] (187)

Xa
0 =
�
xa

0, . . . ,x
a
0

⇥
(188)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (189)

15

T̂i,j

Use redefined T (= deterministic)

Forecast Covariance:

 With

Matrix U simplifies to:

New filter - ESTKF

Analysis

Xf
k =

⌃
xf(1)

k , . . . ,xf(N)
k

⌥
(190)

Xf
k =

⌃
xf

k , . . . ,x
f
k

⌥
(191)

Lf
k = Xf

k�; (192)

P̌f
k =

1

N � 1

N⇧

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T

(193)

P̌f
k =

1

N � 1
Lf

k

⇤
Lf

k

⌅T

(194)

P̌f
k = Lf

kG
⇤
Lf

k

⌅T

(195)

G :=
1

N � 1
I; G ⇥ R(N�1)⇥(N�1) (196)

xa
k = xf

k + Lf
kwk (197)

wk = Ak(HkL
f
k)

TRk
�1

⇤
yo

k �Hkx
f
k

⌅
(198)

A�1
k = �G�1 + (HkL

f
k)

TR�1
k HkL

f
k (199)

U�1
k = �(N � 1)I + (HkLk)

TR�1
k HkLk (200)

P̌a
k = Lf

kAk(L
f
k)

T (201)

Ensemble transformation

Xa
k = Xf

k + Lf
k

�
Wk + Wk

⇥
(202)

Wk =
⌃
wk, . . . ,wk

⌥
(203)

Pa
k =

1

N � 1
La

k (La
k)

T (204)

La
k =

⇤
N � 1Lf

kA
1/2
k (205)

La
k = Lf

kWk (206)

Wk =
⇤

N � 1UkS
�1/2
k UT

k �̂T (207)

UkSkVk = A�1
k (208)

16

(inverse of error covariance matrix in error space)

Ensemble transformation

➜  Consistent projections between state space and error space
➜  Transformation identical to ETKF (same eigenvalues/vectors)
➜  Cheaper than ETKF
➜  Not more expensive than SEIK

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Analysis

Xf
k =
⌦
xf(1)

k , . . . ,xf(N)
k

↵
(64)

P̌f
k =

1

N � 1

N

l=1

⇤
xf(l)

k � xf
k

⌅⇤
xf(l)

k � xf
k

⌅T
(65)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (66)

T :=

⇧

⌥ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(67)

P̌f
k = LkGLT

k (68)

Lk := Xf
kT , G :=

1

N � 1

�
TTT
⇥�1

(69)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (70)

xa
k = xf

k + Ǩk

⇤
yo

k �Hk

⌦
xf

k

↵ ⌅
(71)

xa
k = xf

k + Ǩk

⇤
yo

k �Hkx
f
k

⌅
(72)

Ǩk = LkUkL
T
k HT

k Rk
�1 (73)

P̌a
k = LkUkL

T
k (74)

Re-Init

P̌a
k = LkC

T
k �T

k �kCkL
T
k (75)

C�1
k (C�1

k)T = U�1
k (76)

xa(l)
k = xa

k +
⇥

N � 1 LkC
T
k �T

k,l (77)

Xa
k = Xa

k +
⇥

N � 1 LkC
T
k �T

k (78)

6

Lk := Xf
kT̂

Xa
k = X

a
k +

p
N � 1Xf

k T̂CT
k T̂

T

T-matrix in SEIK and ESTKF

  Efficient implementation as subtraction of means & last
column

  ETKF: improve compute performance using a matrix T

SEIK:

Analysis

Xf
k =
�
xf(1)
k , . . . ,xf(N)

k

✏
(76)

P̌f
k =

1

N � 1

N�

l=1

⇤
xf(l)
k � xf

k

⌅⇤
xf(l)
k � xf

k

⌅T
(77)

P̌f
k =

1

N � 1
Xf

kT(TTT)�1TT (Xf
k)

T (78)

T :=

⇧

↵ Ir⇥r

01⇥r

⌃

�� 1

N

⇤
1N⇥r

⌅
(79)

Ti,j =

⌥
⌦⌦⌦

⌦⌦⌦�

1� 1
N for i = j, i < N

� 1
N for i ⇥= j, i < N

� 1
N for i = N

(80)

P̌f
k = LkGLT

k (81)

Lk := Xf
kT , G :=

1

N � 1

�
TTT

⇥�1
(82)

U�1
k = �G�1 + (HkLk)

TR�1
k HkLk (83)

xa
k = xf

k + Ǩk

⇤
yo
k �Hk

�
xf
k

✏ ⌅
(84)

xa
k = xf

k + Ǩk

⇤
yo
k �Hkx

f
k

⌅
(85)

Ǩk = LkUkL
T
kH

T
kRk

�1 (86)

P̌a
k = LkUkL

T
k (87)

Re-Init

P̌a
k = LkC

T
k�

T
k �kCkL

T
k (88)

C�1
k (C�1

k)T = U�1
k (89)

xa(l)
k = xa

k +
⇤
N � 1 LkC

T
k�

T
k,l (90)

Xa
k = Xa

k +
⇤
N � 1 LkC

T
k�

T
k (91)

7

ESTKF:

13 ESTKF

Init

xa
0 ⇤ Rn (200)

Pa
0 :=

1

N � 1
L0L

T
0 , L0 ⇤ Rn⇥N�1 (201)

{xa(l)
0 , l = 1, . . . , N} (202)

Xa
0 =
⌦
xa(1)
0 , . . . ,xa(N)

0

↵
(203)

La
k = Xa

k�; � ⇤ RN⇥N�1 (204)

T̂i,j =

⇧
����⌥

����⌃

1� 1
N

1
1p
N
+1

for i = j, i < N

� 1
N

1
1p
N
+1

for i ⌅= j, i < N

� 1p
N

for i = N

(205)

xa
0 ⇥ xa

0 (206)

P̌a
0 :=

1

N � 1

N

l=1

⇤
xa(l)
0 � xa

0

⌅⇤
xa(l)
0 � xa

0

⌅T
(207)

P̌a
0 :=

1

N � 1

⇤
Xa

k �Xa
k

⌅⇤
Xa

k �Xa
k

⌅T
(208)

Xa
0 = [xa

0, . . . ,x
a
0] (209)

Xa
0 =
�
xa
0, . . . ,x

a
0

⇥
(210)

Forecast

xf(l)
i = Mi,i�1[x

a(l)
i�1] + �(l)

i (211)

17

ESTKF: New filter with identical transformation as ETKF

New filter ESTKF:
➜  Consistent projections between state space and error space
➜  Minimum Transformation identical to ETKF (or LETKF)

(same eigenvalues/vectors)
➜  Slightly cheaper than ETKF

(because of computations in N-1)
➜  Not more expensive than SEIK
➜  Transformation independent of ensemble order
➜  Direct access to error subspace
➜  smaller condition number of transform matrix A (U in ESTKF)

L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345

Nonlinearity

and current developments

Data Assimilation – an estimation problem

Probability densities: ,

Likelihood of y given x:	

€

p (xi)

p (yi|xi)

p (yi)

p (xi|yi) =
p (yi|xi) p (xi)

p (yi)

Bayes law: Probability density of x given y

•  This is too costly (if you don’t have a tiny model)
•  We don’t even know the initial error distributions

Solution of the full problem is principally known
1.  Time evolution of given by Fokker-Planck

(forward Kolmogorov) equation

2.  Apply Bayes law at time instance or interval

p (xi)

Data Assimilation – Probabilistic Assumptions

Assume Gaussian distributions:

€

N
�
µ,�2

�
= a e

✓
� (x�µ)2

2�2

◆

−2 0 2 4Observations:

State: N (x,P)

N (y,R)

Posterior state distribution

With

p(xi|Yi) ⇠ ae�J(x)

J(x) = (x� x

b)TP�1(x� x

b) + (y �H [x])TR�1(y �H [x])

Mean state and variance fully describe the solution

Kalman Filter (Kalman, 1960)
Forecast:

State propagation

Propagation of error estimate

€

xi = Mi�1,ixi�1 + ✏i

Pf
i = Mi�1,iP

a
i�1(Mi�1,i)

T +Qi�1

Analysis at time tk:

State update

Update of error estimate

with “Kalman gain”

xa
k = xf

k +Kk

⇣
yk �Hkx

f
k

⌘

Pa
k = (I�KkHk)P

f
k

Kk = Pf
kH

T
k

⇣
HkP

f
kH

T
k +Rk

⌘�1

This assumes Gaussian errors of
state, model, and observations!

  Method: 4D-Var

1. Formulate “cost function” (least squares)

2. Minimize cost by varying (initial state)

•  We assume that a single state estimate is sufficient

•  We do not explicitly require Gaussian errors

With linear model:

  linear function of (theoretically solvable in one step)

dJ/dx0 x0

J(x) =
kX

i=1

�
xi � x

b
i

�T
C

�
xi � x

b
i

�
+ (yi �Hxi)

T
D (yi �Hxi)J(x0)

Variational Data Assimilation

 Background Observation

x0

With nonlinear model:
  no longer a linear function of !
  minimization might need many iterations
  Result is different from Kalman filter

x0dJ/dx0

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Optimality of the Kalman Filter

Kalman filter was derived to minimize variance

Kalman filter is optimal only if

•  Covariance matrices are known
(they are not in high-dimensional systems)

•  Errors have normal distribution

With a nonlinear model

•  Initial Gaussianity not preserved by nonlinear transformation

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

EnKF: Effect of non-Gaussian distributions

Ensemble estimates:

Mean

•  biased if distribution is skewed

•  not at maximum of distribution

Error variance

•  not a sufficient estimate of error
(if used alone)

•  over- or underestimates
width of distribution ➜ Too big or too small state

 correction
➜ Sub-optimal corrections in analysis step
➜ Nonetheless:

•  EnKFs work successfully well in most cases
•  Compares well to 4D-Var (e.g. Buehner et al. 2005)

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

➜ Biased analysis estimate

Some recent methods to handle non-Gaussianity

Gaussian Anamorphosis (Bertino et al. 2003)

•  Transform into approx. Gaussian distribution

•  Used in several studies, e.g. in biogeochemistry
(Simon/Bertino 2009, Doron et al. 2011)

•  Gaussianity of cross-covariances might be problematic

Xf
k

Rank histogram filter (Anderson 2010)

•  Use a rank histogram to weight ensemble members for their
departure from prescribed Gaussian

  Motivation – if you already run a 4D-Var system:
  Stick to 4D-Var
  Improve it by combination with ensembles

Cost function

J(x) =
kX

i=1

�
xi � x

b
i

�T
C

�
xi � x

b
i

�
+ (yi �Hxi)

T
D (yi �Hxi)J(x0)

Hybrid Ensemble-Variational DA

 Background Observation

Now, use ensemble estimate:

•  Time – and flow – dependent
•  Ensemble can also help avoiding adjoint model (e.g. Liu et al. 2008)
•  Low rank of C: Localization likely required (e.g. Buehner et al. 2010)

C�1 = P̃f
i

C D

Alternative uses of Bayes law

€

p (xi|yi) =
p (yi|xi) p (xi)

p (yi)

Bayes law: Probability density of x given y

Represent by ensemble: p(xi)

p(xi|yi) =
NX

j=1

�(xi � x

(j)
i)

Kalman filter:
assume normal distributions

compute new ensemble states

x

a(j)
i ; j = 1, . . . , N

p(yi|x(j)
i)

p(yi)

p(yi|x(j)
i)

p(yi)

Alternative:
keep ensemble states with weights

w(j) =
p(yi|x(j)

i)

p(yi)

p(xi) =
1

N

NX

j=1

�(xi � x

(j)
i)

 : Likelihood of observations given state

Typical assumption: Gaussian observation errors

Computation of weights:

Ensemble weights – Particle Filter

€

Analysis probability density

p(xi|yi) =
NX

j=1

�(xi � x

(j)
i)

w(j) =
p(yi|x(j)

i)

p(yi)

w(j)

 : Normalization constant (sum of weights = 1) p(yi)

p(yi|x(j)
i)

p(yi|x(j)
i) = A exp

✓
�1

2

⇣
yi �Hx

(j)
i

⌘T
R

�1
⇣
yi �Hx

(j)
i

⌘◆

Not an inverse problem any more, but an estimation problem

(A single number for a single particle j)

Particle Filter (PF)

€

Provides analysis probability distribution as
•  ensemble states (particles)
•  associated weights

No assumption of Gaussian errors for model state!

Issues:

Small systems

• Many particles have low weight

➜ large ensemble
➜ resampling for uniform weights (e.g. Gordon et al. 1993)

High-dimensional systems

• Almost all particles have low weight

➜ PF with proposal density (van Leeuwen 2009, 2010)
➜ Implicit particle filter (Chorin & Tu 2009)
Currently an active research area

Review

Ensemble-based Kalman Filters
First formulated by G. Evensen (EnKF, 1994)
Kalman filter: express probability distributions by mean

and covariance matrix
EnKFs: Use ensembles to represent probability distributions

observation

time 0 time 1 time 2

analysis

ensemble
forecast

ensemble
transformation

initial
sampling

state
estimate

forecast Looks
simple!

BUT:

There are
many

possible
choices!

What we are looking for…

  Goal: Find the assimilation method with
  smallest estimation error
  most accurate error estimate
  least computational cost
  least tuning

  Want to understand and improve performance
(There is no sound mathematical basis yet)

  Difficulty:

  Optimality of Kalman filter well known for linear systems

  No optimality for non-linear systems

➜  limited analytical possibilities

➜  apply methods to test problems

€

Outlook – practical aspects

Data assimilation with ensemble-based Kalman filters is costly!

Memory: Huge amount of memory required
 (model fields and ensemble matrix)

Computing: Huge requirement of computing time
 (ensemble integrations)

Parallelism: Natural parallelism of ensemble integration exists
 (needs to be implemented)

„Fixes“: Filter algorithms do not work in their pure form
 („fixes“ and tuning are needed)
 because Kalman filter optimal only in linear case

+ case studies

Thank you!

