

Protist diversity in the Southern Ocean revealed by molecular tools

Christian Wolf and Katja Metfies

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

Research questions

- Are different large-scale water masses characterized by distinct protist community assemblages?
- Are there regional protist community patterns within a single large-scale water mass?
- Mow can molecular tools help to reveal protist community patterns?

Methods

ARISA (automated ribosomal intergenic spacer analysis)

- Amplification of intergenic spacer region (between 18S and 28S rRNA gene)
- \checkmark Determination of fragment lengths \rightarrow presence/absence matrix of different fragment lengths
- Comparison of fragment length structure (~community structure) of several samples

454-pyrosequencing

- \checkmark Amplification of the hypervariable V4 region of the 18S rRNA gene (~670 bp) \rightarrow sequencing on a Roche FLX system Raw sequence reads processing:
 - Semoving of low quality reads (too short, too long, more than one uncertain base, chimeric sequences)
 - In Clustering of remaining reads into operational taxonomic units at the 97% similarity level (Lasergene 10)
 - \checkmark Formation of consensus sequences \rightarrow remove of singletons \rightarrow alignment of consensus sequences (HMMER)
 - Into a reference tree (1,200 high quality sequences of SILVA SSU Ref 108)

Conclusions

Search water mass harbored characteristic protist assemblages. Most prominent separator was the Polar Front. Within a single water mass, protist assemblages differed according to geographical and environmental conditions.

(offshore and inshore).

ARISA and 454-pyrosequencing constitute powerful tools to investigate protist distribution and composition patterns.

Christian.Wolf@awi.de