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Application Example DeMarine 3

Model surface temperature Satellite surface temperature
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Information: Model Information: Observation

Combine both sources of information
quantitatively by computer algorithm

=» data assimilation
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Data Assimilation

= Optimal estimation of system state:

* initial conditions (for weather/ocean forecasts, ...)
* state trajectory (temperature, concentrations, ...)
e parameters (growth of phytoplankton, ...)

e fluxes (heat, primary production, ...)

* boundary conditions and ‘forcing’ (wind stress, ...)

» Characteristics of system:

e high-dimensional numerical model - O(10°-10°)
e sparse observations

* non-linear
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Ensemble-based Kalman Filters
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Ensemble-based Kalman Filter

First formulated by G. Evensen (EnKF, 1994)

Kalman filter: express probability distributions by mean
and covariance matrix

EnKF: Use ensembles to represent probability distributions

forecast Looks trivial!

[ensemble BUT
initial orecas - There are

[ initia J/ : ore 2
e nsemble possible
: iceg!
transformatlon] choices!

state . -
estimate |
observation

time 0 time 1 time 2
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Which filter should one use?

Many choices - a little “zoo” (not complete):

EnKF(2003)
RRSQRT MLEF
EnKF(2004)
ROEK SPKF
| EnKF(94/98) | oeek | EAKE
ESSE
Studied in Nerger EnSRF
et al. Tellus (2005) ‘ SEIK ‘ RHF
ETKF

» Properties and differences are not fully understood
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Data Assimilation — Model and Observations

Two components:

1. State: x € R"

Dynamical model
X; = Mi_1,; [Xi—1]

Y

2. Obervations: y € R™

Observation equation (relation of observation to state x):
y = H [x]

Observation error covariance matrix: R,
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The Ensemble Kalman Filter (EnKF, Evensen 94)

Ensemble {xg(l),l =1,...,N}

Analysis step:

Update each ensemble member

20 — 0 | K, (yz(f) _ HkX£<z>)

» Kalman filter

K, = P{H] (H,P{H] + Ry

Ensemble fo 1 fO  F ORI T
covariance matrix Pk T N —1 Z (Xk Xk) (Xk Xk)
=1

Ensemble mean _ i EN: =
(state estimate) X, N @ MII



A simple test problem

* Twin experiment with nonlinear shallow water model
* |nitial state estimate: temporal mean state

= |nitial covariance matrix: variability around mean state

Initial state

Mean over 8000 time steps h [m]
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Shallow water model: filter performances

Error reduction due to assimilation

10

— EnkF » SEEK stagnates

-=+-- SEEK

* same convergence behavior
for EnKF and SEIK

» smaller performance for
EnKF than for SEIK

= EnKF ensemble 1.5-2 times
larger than SEIK ensemble

T for same filtering performance

10 0 100 200 300 400 500

Ensemble size

s
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Some results: EnKF vs. SEIK

« EnKF94/98

« very simple to implement

» costly (compute analysis update in observation space)

« oObservation ensemble introduces sampling errors

« random ensemble initialization has slow convergence
« SEIK

« more difficult to implement

* much faster (analysis update in ensemble space)

« faster convergence with initialization using singular value
decomposition (empirical orthogonal functions)

What makes SEIK faster than EnKF?

e
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Two features of the SEIK filter

1. Avoid perturbing observations
« Apply two step update:
1. Update ensemble mean state

2. Transform forecast ensemble to represent analysis P

2. Ensemble transformation in ensemble space
» Degrees of freedom of analysis: ensemble size — 1

 ENnKF uses update in observation space
(usually much larger than ensemble size)

Typical for ensemble square-root Kalman filters
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Efficient use of ensembles

Kalman gain

~ ~ - —1
Ky, = P{H] (H,P{H] + R;)

Alternative form (Sherman-Morrison-WWoodbury matrix identity)

- - —1 o
K, = [(Pg) + HTR_lH] H R
Looks worse: 7@ X 71 matrices need inversion
y ~ f o 1 / /T
However: with ensemble Pk — (N — 1) X X

K, =X [(N DI+ X’THTR*HX’} X THTR !

Inversion of /N X /N matrix

(Ensemble perturbation matrix X/ =X — X) @'AN,



Which filter should one use?

Many choices - a little “zoo” (not complete):

EnKF(2003)
EnKF(2004 MLEF
RRSQRT nKF )
ROEK EARE SPKE
| EnKF(94/98) | sEek | EnSRF ESSE
S, ERETKER [RHE
B =T
SEIK
T ‘ ESTKF New filter
New study: formulation
Nerger et al.,
Mon. Wea. Rev.

(2012)
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Computations in ensemble-spanned space

Square root of covariance matrix (ensemble size N, state dim n)

Z =X/T P!/ = 77"
Transformation matrix in ensemble space (small matrix)

A= (G+ (HZ)"R'HZ)

Analysis state covariance matrix

P® =ZAZ"

Ensemble transformation based on square root of A
X* ~ ZL LL" = A

Very efficient:

Transformation matrix computed in space of dim. N or N-

1
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The T matrix

SEIK and ETKF use different projections T

Z =X/T
=¥ results in slightly different ensemble transformations
=» SEIK is slightly faster than ETKF

ETKF uses minimal ensemble transformation — desirable feature!
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Error Subspace Transform Kalman Filter (ESTKF)

Combine advantages of SEIK and ETKF

Redefine T:
1. Remove ensemble mean from all columns
2. Subtract fraction of last column from all others

3. Drop last column

Features of the ESTKEF:
« Same ensemble transformation as ETKF
« Slightly cheaper computations

« Direct access to ensemble-spanned error space

L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 @ Ml



Requirements for applying ensemble Kalman filters

“Pure” ensemble-based Kalman filters have usually bad performance
* e.g. due to small ensemble size

L ocalization
Improvements through
« (Covariance inflation
L D ~
» Localization Mo . N
 Model error simulation ( S h )
N 4
\\ //

S: Analysis region
D: Corresponding data region

Q
Lars Nerger — Assimilating DOT data with EnKFs Ml



Implementation Aspects

a
Lars Nerger — Assimilating DOT data with EnKFs Ml



Computational and Practical Issues

Data assimilation with ensemble-based Kalman filters is costly!

Memory: Huge amount of memory required
(model fields and ensemble matrix)

Computing: Huge requirement of computing time
(ensemble integrations)

Parallelism: Natural parallelism of ensemble integration exists
(needs to be implemented)

,Fixes": Filter algorithms do not work in their pure form
(,fixes” and tuning are needed)
because Kalman filter optimal only in linear case

Q
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Implementing Ensemble Filters & Smoothers

Ensemble forecast

e can require model error simulation
* naturally parallel

Analysis step of filter algorithms operates on abstract state vectors
(no specific model fields)

Analysis step requires information on observations
« which field?
» |ocation of observations
* observation error covariance matrix
« relation of state vector to observation

=» Analysis step can be implemented independently of model!

Q
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Offline mode — separate programs

Model

Initialize Model
generate mesh
Initialize fields

v
—(Do i=1, nsteps>—>

Time stepper
consider BC
Consider forcing

i

{

Post-processing

For each ensemble state

* Integrate
 Write restart files

Assimilation

N\
~_"

program

read ensemble files

v

analysis step

v

write model
restart files

4= generic

* Read restart files (ensemble)
 Initialize from restart files « Compute analysis step
* Write new restart files
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Model

Initialize Model
generate mesh
Initialize fields

v
—><Do i=1, nsteps>—>

A 4

Time stepper
consider BC

Consider forcing

+

init_parallel_asml

!

Initialize Model
generate mesh
Initialize fields

!

init_asml

!
—( Do i=1, nsteps
!

get_state_asml

+

+

Post-processing

Online assimilation program:
=» Avoid expensive writing and
reading of ensemble files
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Time stepper
consider BC
Consider forcing

v

put_state asml

Filter-Analysis

v

Extension for
data assimilation

3

{

Post-processing

Initialization

Ensemble
forecast

Analysis
step

AW/



Features of online program

« minimal changes to model code when combining model with filter
algorithm (adding 4 routines)

 model not required to be a subroutine

* no change to model numerics

« control of assimilation program coming from model
 filter method encapsulated in subroutine

« simple switching between different filters and data sets

« complete parallelism in model, filter, and ensemble integrations

Implementation structure can be implemented in a generic
framework (for online and offline modes)

Q
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Parallel

PDAF: A tool for data assimilation P AL Xesmaton

Framework

PDAF - Parallel Data Assimilation Framework

= an environment for ensemble assimilation
= provide support for ensemble forecasts

provide fully-implemented filter algorithms

for testing algorithms and real applications

useable with virtually any numerical model

makes good use of supercomputers

Open source:
Code and documentation available at

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ MI/



Current algorithms in PDAF

Parallel

7_)? ) ] J/_ Data
Assimilation

Framework

PDAF originated from comparison studies of different filters

Filters

EnKF (Evensen, 1994)

ETKF (Bishop et al., 2001)
SEIK filter (Pham et al., 1998)
SEEK filter (Pham et al., 1998)
ESTKF (Nerger et al., 2012)

LETKF (Hunt et al., 2007)
LSEIK filter (Nerger et al., 2006)
LESTKF (Nerger et al., 2012)

Smoothers for

ETKF/LETKF
ESTKF/LESTKF
EnKF

= Global filters

Localized filters

aAWV/



Application examples

= Assimilation of satellite altimetry
(Project GEOTOP, @ AWI)

» QOcean chlorophyll assimilation into global NASA Ocean
Biogeochemical Model (with Watson Gregg, NASA GSFC)

» Generation of daily re-analysis maps of
chlorophyll at ocean surface

» (Coastal assimilation of ocean surface temperature
(within project “DeMarine”, AWI and BSH)

» Improve operational forecast skill in North Sea and Baltic Sea

+ external users, e.g. with
« MPI-OM (S. Brune/J. Baehr, MPI Hamburg)
« PARODY (A. Fournier, IPGP Paris)
 ADCIRC (l. Hoteit, KAUST, Saudi Arabia)
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Application:

Assimilation of ocean topography data

a
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Dynamic Topography Data

« Generated by IAPG Munich

MDT data at January 10, 2004

(A. Abertella within GEOTOP oo e =
project) AN B - O
- Difference of time-dependent o 8 .
altimetric sea surface height and s (R | e ‘ v
geoid data s ‘
9°:§o°w 120I°W . o“f soli°E 120'°E 180°W

« SSH: altimeter data from s
ERS-1/2, ENVISAT, | m |
TOPEX/Poseidon, Jason-1/2

* Geoid: based on data from
GRACE & GOCE

« SSH and geoid filtered to d/o 120
for consistency

a
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Global ocean model

Global configuration
» 1.3° resolution, 40 levels
» horizontal refinement at equator
> state vector size 107

A,
St
i
\VA

K

Experiments with DOT data
» ensemble size 50
» assimilate each 10th day over 1 year

» ESTKF with smoother extension and localization
(using PDAF environment as single program)

Drake passage

A\

inflation tuned for optimal performance (p=0.9)

» run using 2000 processor cores
(Timings: forecasts 8800s, filter+smoother 200s)

)
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Assimilation impact

. Global RMS deviati f SSH
Sea surface height o enT e

- assimilation reduces deviation G NN |
0.00F g o P\ N Nl
between data and model o8
(as it has to...) |
007 [ -
« growth of deviation during forecast 5 0.06f
(0]
phase %30.05 """""""""""""
O Q.04 o T YN ANG S L
- further reduction of deviation 0.03F | = fOreCast |- -
| ¢ analysis | ]
by smoother o.02p| | S
0.01p o free |
0 ; . .
0 100 200 300
day
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Sea surface height (~DOT)

Free forecast Filter analysis
Free forecast mean difference model-data Filter analysis: mean difference model-data

90°N _
600N ?’ ,_’ = ’.I 4 ’ 7 .) < R e
30°N[

00 -
30°S|
goos i 1 I I 1

1R0°W_ 190°W RN°W n° RN°F 120°F 180°W

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

- Pattern with free forecast typical for forcing type (CORE-II)
With assimilation

« Significant reduction of deviatons

« Largest deviations in southern ocean

« Deviations partly induced by forcing (windstress) as bias

tes
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Effect of Smoother

Smoother
Smoother: mean difference model-data
90°N
60°N -
30°N A
00
30°s
60°S
i i i
. of sofE 120°E 180°W
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
m

* Further reduction of deviations

Lars Nerger — Assimilating DOT data with EnKFs
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Filter

Filter analysis: mean difference model-data
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Influence of assimilation on the ocean state

Filter analysis: mean difference model-data

90°N

B60°N 60°N

30°N 30°N

OO e, 0°

30°S 30°S

6008 = 60°S

180° 120°W 60°W 0° 60°E

-0.300 -0.225 -0.150 -0.075 0.000 0.075 0.150 0.225 0.300

= steric height:

« Vertically integrated height variation compared to reference density
(function of temperature & salinity)

= SSH deviations widely correspond to differences in steric height

= assimilation improves steric height (hence the water column)

a
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How does model preserve assimilation changes?

* Initialize free model run from assimilation at day 30
(after 3 analysis steps)

SH (Analysis - Forward Run) 2000 m: days 10

0° 60°E 120°E 180° 120°W 60°W 0° 60°E 120°E 180° 120°W 60°W

L Il 1 1 L Il 1 1
-25.00 -18.75 -12.50 -6.25 0.00 6.25 12.50 18.75 25.00 -25.00 -18.75 -12.50 -6.25 0.00 6.25 12.50 18.75 25.00
ssh, cm ssh, cm

* Very small deviations after 70 days free forecast

» Forecast without any assimilation shows much larger deviations

Q
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How does model preserve assimilation changes?

* Initialize free model run from assimilation at day 30
(after 3 analysis steps)

0° 60°E 120°E 180° 120°wW 60°W 0° 60°E 120°E 180° 120°wW 60°W

L Il 1 1 L Il 1 1
-25.00 -18.75 -12.50 -6.25 0.00 6.25 1250 18.75 25.00 -25.00 -18.75 -12.50 -6.25 0.00 6.25 12.50 18.75 25.00
ssh, cm ssh, cm

» Notable deviations after 290 days free forecast

» Deviations still smaller than without any assimilation

Q
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Conclusion

Current ensemble Kalman filters

» efficient utilization of error space updates

Abstraction allows for generic filter implementation

» efficient assimilation framework possible

Assimilation of DOT data
» significant improvements of model state

» improvements preserved over longer time interval

Thank you!

Q
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