
Mitochondrial Acclimation Capacities to Ocean Warming
and Acidification Are Limited in the Antarctic
Nototheniid Fish, Notothenia rossii and Lepidonotothen
squamifrons
Anneli Strobel1*, Martin Graeve2, Hans O. Poertner1, Felix C. Mark1

1 Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany, 2 Ecological Chemistry, Alfred Wegener

Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Abstract

Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean,
which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but
also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial
acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic
Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L.
squamifrons to 9uC and N. rossii to 7uC (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4–6 weeks, we compared
the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency),
proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates
in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater
ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation
was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L.
squamifrons were less saturated than in warm normocapnia2/hypercapnia-acclimated N. rossii. Proton leak capacities were
not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial
capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via
oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities
than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated
energy demand, possibly induced by ocean warming and acidification. The observed adjustments of electron transport
system complexes with a higher flux through CI under warming and acidification suggest a metabolic acclimation potential
of the sub-Antarctic L. squamifrons, but only limited acclimation capacities for N. rossii.
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Introduction

Rising temperatures and PCO2 values around the Antarctic

Peninsula [1–3] warrant investigation of the physiological flexibil-

ity of Antarctic species to respond to these environmental changes

[4]. Adaptations of Antarctic teleost fish to their cold environment

include for example higher mitochondrial densities and changes in

mitochondrial christae surface [5,6], as well as higher levels of

unsaturated fatty acids in the biological membranes (termed

‘homeoviscous adaptation’) [7–9], when compared to temperate

zone fish.

Mitochondria are suggested to play a central role in defining the

thermal responses of aerobic energy metabolism of ectothermic

animals [10,11]. Only few studies have investigated the effects of

warming on the contribution of the different respiratory complexes

to mitochondrial state III respiration [12,13]. They reported

limitations in complex I (CI, NADH dehydrogenase) respiration at

higher temperatures in more stenothermal species of crustaceans

and temperate fish. Conversely, variability in CI contribution can

be an indicator for eurythermy in ectothermal fish [13]. This

indicates an important role for CI capacities in setting thermal

tolerances of both invertebrates and vertebrates and makes it an

important parameter for the comparison of acclimation capacities

between fish species.

A recent study on the physiological function of the electron

transport system (ETS) complexes I and II (CII, succinate

dehydrogenase) in the Antarctic fish N. rossii and N. coriiceps

presents a functioning CI despite translocation of its coding gene

(ND6, [14,15]), with a higher thermal sensitivity for N. rossii [16].

Furthermore, they reported a marginally increasing CI contribu-

tion to state III respiration with rising temperatures in N. rossii, and

an increasing CII contribution in N. coriiceps, suggesting differences

in mitochondrial responses towards warming between the two

species.
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Protons leaking through the inner mitochondrial membrane

without concomitant ATP production account for a significant

amount of the metabolic rate in isolated cells (20–25%) [17–20].

Typically, proton leak is adjusted in parallel to changes in

metabolic rate, in that it is increased with rising standard

metabolic rate and mitochondrial state III respiration, e.g. during

acute thermal challenges [21,22]. These adjustments are driven by

modifications in the ETS activity [23], and a higher proton

leakage would therefore result in reduced mitochondrial capacities

and P/O ratios (amount of ATP produced per total oxygen

consumed) at higher temperatures [18,24]. Thus, at a higher

temperature more oxygen is required by the ETS to maintain

ATP supply, which has been found in ectothermal invertebrates

[25,26], and vertebrates, such as temperate [13] and Antarctic fish

[22,27].

Additionally, temperature changes (both cold and warm) can

modify saturation or fatty acid composition of the membrane

phospholipids [7,17,21,28]. This may affect various membrane-

associated proteins and processes, such as ETS complexes or

altered proton permeability [7,29], up to a complete loss of

mitochondrial function [30]. For example, a recent study of warm-

acclimated trout (Oncorhynchus mykiss) reported a restructuring of

membrane phospholipid classes, but a limited effect on membrane

desaturation [31]. Therefore, acclimation-induced modulations in

the fatty acid composition of mitochondrial membranes may

become a critical aspect under altered environmental conditions.

Some studies investigated the temperature or hypercapnia

acclimation capacities in Antarctic fish at the whole animal level,

however, little is known about the biochemical mechanisms

involved [32–34]. Most studies at the mitochondrial level in fish

address mitochondrial proliferation, changes in cristae volume or

enzyme capacities (e.g. [35] for review; [36]). A few relate to

mitochondrial respiration in Antarctic fish during acutely increas-

ing temperature (e.g. [22,27,37], and only for the extreme

stenotherm Antarctic Trematomus bernacchii, an unaffected mito-

chondrial metabolism was reported after two weeks warm

exposure [38]. To our knowledge, very few studies have included

the effect of chronic hypercapnia exposure at whole animal level

[39,40] and only one at the mitochondrial level [40], which left the

question open on the specific response of mitochondria towards

changing seawater temperature and CO2 concentrations.

The nototheniid Antarctic fish species N. rossii and L. squamifrons

(Notothenioidei, Perciformes) are frequently found in coastal

Antarctic communities [41–43]. Both species are similar in terms

of their ecology [44], but strongly differ in their geographical

distribution, and therefore environmental temperature exposure.

The sub-Antarctic L. squamifrons faces summer temperatures up to

3.5uC, while the more southerly N. rossii experiences maximum

habitat temperatures of 2uC during summer. This makes them

excellent models to compare physiological acclimation capacities

towards increased temperatures and PCO2.

We hypothesize that due to its distribution in warmer waters,

the sub-Antarctic fish L. squamifrons possesses higher thermal

acclimation capacities than the Antarctic fish N. rossii. Thus, the

first aim of the study was to compare the effect of warm

acclimation (4–6 weeks; L. squamifrons: 9uC, N. rossii: 7uC) on liver

mitochondrial capacities between these two species. The second

aim of this study was to compare effects of warm (7uC) and/or

hypercapnia acclimation (5 weeks; 0.2 kPa CO2) on liver

mitochondria of N. rossii. In our analysis, we focused on the

contribution of the mitochondrial respiratory complexes I and II,

P/O ratio and proton leakage in N. rossii and L. squamifrons. In

particular, we measured mitochondrial respiration related to

mitochondrial fatty acid composition, the two complexes, and leak

respiration (state IV+, after inhibition with oligomycin) at three

acute assay temperatures of 0, 6 and 12uC.

Methods

Animal Collection & Acclimation
Using baited traps and trammel nets, specimens of N. rossii were

caught in December 2009 in Potter Cove, King George Island

(62u149S; 058u419W) during the Antarctic summer season

(seawater temperature 0.8u60.9uC, salinity 33.560.2 psu).

For the acclimation trials (29–36 days), animals were randomly

selected and exposed to:

1) 1uC, 0.04 kPa CO2 (control/cold normocapnic group, n = 9,

mass 155–804 g; total length 25–39.4 cm)

2) 1uC, 0.2 kPa CO2 (cold hypercapnic group, n = 10, mass 144–

510 g; total length 23.8–32.8 cm)

3) 7uC, 0.04 kPa CO2 (warm normocapnic group, n = 5, mass

151–412 g; total length 23.6–33.9 cm)

4) 7uC, 0.2 kPa CO2 (warm hypercapnic group, n = 10, mass

137–504 g; total length 21.4–31.3 cm).

Fish were acclimated in well-aerated 150 liter tanks, fed by a

150 liter header tank. Acclimation temperature was controlled in

the header tank using a 250 W heating element (Jaeger, EHEIM

GmbH, Germany), and a Temperature Controller TMP1380

(iSiTEC GmbH, Germany). For the CO2 acclimations, PCO2 was

regulated in the header tank by an iks aquastar system (iks

ComputerSysteme GmbH, Germany). pH of all acclimation

systems was measured daily with a WTW 340i pH meter

(WTW, Germany. Electrode: WTW SenTix HWS) and calibrated

daily with NIST certified buffers (WTW, Germany). Total CO2

(CCO2) in the seawater was determined with a carbon dioxide

analyzer (Corning 965, CIBA, Corning Diagnostics, UK).

Seawater carbonate chemistry was calculated with the measured

pHNIST and CCO2 using the CO2sys software [45]. For details on

seawater physicochemistry, see [40]. Animals were fed to satiation

every other day with chopped fish.

Sub-Antarctic L. squamifrons were caught in February 2011

during the RV Polarstern cruise ANT XXVII/3 by means of

bottom trawls at 300 m water depth off South Georgia

(53u24.549S; 42u40.559W) at a local seawater temperature of

2.1uC and a salinity of 34.4 psu. Animals were kept in well-aerated

150 liter tanks (salinity 34.460.15 psu) in aquaria containers on

board of RV Polarstern. Animals were kept for 39–46 days at:

1) 2uC60.45, 0.04 kPa CO2 (control group; n = 7, mass 182.0–

292.0 g, standard length 22.0–25.4 cm)

2) 9uC60.26, 0.04 kPa CO2 (warm-acclimated group; n = 9,

mass 107.4–255.2 g, standard length 19.8–24.9 cm).

Temperature was maintained with a 250 W heating element

(Jaeger, EHEIM GmbH, Germany) controlled by a Temperature

Controller TMP1380 (iSiTEC GmbH, Germany). Fish were fed to

satiation every other day with isopods.

Sampling & Ethics Statement
Animals were anaesthetized with 0.5 g/l tricaine methane

sulphonate (MS 222) for 15 minutes, and the liver and the heart

excised. After that, animals were killed by a spinal cut behind the

head plates. All sampling of fish was conducted according to the

ethics and guidelines of the German law. The experiments have

been approved according to 1 8 animal welfare act (18.05.2006;

8081. I p. 1207) by the veterinary inspection office ‘Senatorin für

Thermal & PCO2 Effects on Nototheniid Mitochondria
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Arbeit, Frauen, Gesundheit, Jugend und Soziales, Abt. Veter-

inärwesen, Lebensmittelsicherheit und Pflanzenschutz’, Bahnhofs-

platz 29, 28195 Bremen, Germany, under the permit number Az.:

522-27-11/02-00 (93) on January 15th, 2008 (permit valid until Jan

14th 2013).

Isolation of Mitochondria
In both fish species, the liver was cleaned of blood and total liver

weight was taken before a subsample of liver tissue was taken,

weighed and washed in 5 ml/g tissue ice-cold wash buffer (80 mM

sucrose, 85 mM KCl, 5 mM EGTA, 5 mM EDTA, 50 mM

HEPES, pH 7.1 at 20uC). Then, the liver tissue was cut into small

pieces, suspended in 10 volumes ice-cold isolation buffer, and then

put into a 30 ml Potter-Elvehjem glass homogenizer (VWR

International, Germany) and slowly homogenized with three

strokes at 80 revolutions/minute. The homogenate was centri-

fuged (600 g, 10 min, 0uC), the supernatant collected and the

pellet resuspended in isolation buffer and centrifuged again. Joined

supernatants were centrifuged for 10 min at 11,000 g (0uC). After

discarding the supernatant, the pellet was resuspended in isolation

buffer and centrifuged again. In the last step, the supernatant was

discarded again, and the pellet was resuspended in ice-cold

mitochondrial assay buffer (80 mM sucrose, 85 mM KCl, 5 mM

KH2PO4, 50 mM HEPES, 1% w/v BSA (fatty acid free), pH 7.1

at 20uC) at a dilution of 1 ml/g initial liver weight. This

mitochondrial preparation was kept on ice and away from light.

The mitochondrial protein concentration was determined accord-

ing to Bradford [46] using a bovine serum albumin (BSA)

standard, also accounting for the protein content of the

mitochondrial assay buffer.

Mitochondrial Respiration Assay - N. rossii
Measurements were carried out in assay buffer with a final

volume of 1200 ml with mitochondrial concentrations adjusted to

about 3 mg mitochondrial protein per ml, at 0, 6, and 1260.1uC,

respectively. Chamber temperature was maintained with a

thermostat (LAUDA, Germany). The assay temperatures 0, 6,

12uC allow the comparison of putative acclimation effects on the

mitochondrial capacities to respond to acute thermal challenges in

control vs. warm and/or hypercapnia-acclimated N. rossii.

Initial respiration was recorded and malate and pyruvate added

to a final concentration of 1.3 mM and 1.6 mM, respectively, as

substrates for complex I (CI, state II). Then ADP (final conc.

0.16 mM) was added to measure state III (max. slope) and state IV

(ADP depleted) respiration. After that, CI was inhibited with

0.01 mM rotenone (state IV+) and 1.6 mM succinate was added

(state II respiration, complex II (CII)) followed by 0.16 mM ADP

(state III and IV after ADP exhaustion, complex II). State IV+ was

initiated with 1.3 mg/ml oligomycin and mitochondria were finally

uncoupled with 0.05 mM carbonyl cyanide p-trifluoromethox-

yphenylhydrazone (FCCP).

Mitochondrial Respiration Assay - L. squamifrons
Respiration of each liver mitochondrial sample was measured at

0, 6 and 12uC in 2 ml assay medium +300 U/ml catalase (for

reoxygenation with hydrogen-peroxide), in glass-chambers of an

Oroboros Oxygraph-2kTM respirometer (Oroboros Instruments,

Austria). The mitochondrial respiration was converted to nmol

O2*mg21*min21. Resting respiration (state II) was measured with

CI substrates, 2 mM glutamate, 1 mM malate and 1 mM

pyruvate. State III respiration of CI was induced by 0.4 mM

ADP, state III respiration of CI and II by adding 2 mM succinate

and 0.1 mM ADP. Leak respiration (state IV+) was evaluated by

adding 0.002 mg/ml oligomycin; stepwise titration with the

uncoupler FCCP (2 mM stock) revealed maximum capacity of

the electron transport system. After inhibition of CI with 5 mM

rotenone (state IIIu of CII), non-mitochondrial respiration

(residual oxygen consumption, ROX) was detected by adding

2.5 mM antimycin A, and all values were ROX corrected later on

in the data analysis.

Lipid Extraction
Mitochondrial membrane lipids of control/acclimated N. rossii

and L. squamifrons were extracted after Folch [47]. The extract of

liver mitochondria was diluted with 3 ml methylene chloride/

methanol (2:1). Following ultra-sonication (20uC, 10% of power

(Sonorex Digital 10P, Bandelin electronic GmbH&Co, Germany),

10 min), the extraction mixture was further diluted with 2 ml of

0.8% KCl and sonicated again as described above. Then, the

mixture was centrifuged (5 min at 1000 rpm) and the separated,

aqueous phase carefully removed. After complete evaporization

with nitrogen, the raw extract was resuspended with 250 ml

hexane and 1 ml of derivatisation reagent (methanol, 3% H2SO4)

and incubated at 80uC for 4 hours. After the incubation, the

solution was dissolved in 4 ml of water and the lipids separated

with 3 3 ml hexane. Then, the hexane was completely evaporated

under nitrogen and the lipid extracts resuspended in 50 ml hexane

prior to analysis. The samples were analyzed using gas-chroma-

tography with a flame ionization detector (Agilent 6890N GC,

Agilent Technologies, USA).

The unsaturation index (UI) of the mitochondrial membranes

was calculated following Grim [48] according to the formula:

UI ~
Xn~0

n~24

n| % of fatty acids with n double bonds

Data and Statistical Analysis
All data were tested for outliers at the 95% significance level

using Nalimov’s test [49] and excluded if justified (about 5–10% of

data per data set) as well as for normality (Kolmogorov-Smirnov)

and homogeneity of variance. Statistical differences in mitochon-

drial state III/leak respiration, P/O ratios and mitochondrial

membrane lipid composition (different lipid classes and membrane

unsaturation) were evaluated by analysis of variance (ANOVA)

followed by Tukey (one-way ANOVA) or Bonferroni (two-way

ANOVA) post-tests to compare acclimation treatments or assay

temperatures (0, 6 and 12uC). All data are presented as means 6

standard error of the mean (SEM). Differences were considered

significant if P,0.05.

Results

Complex I/II Contribution to Mitochondrial State III
Respiration

Here we contrast the effects of acute changes in mitochondrial

assay temperature with those of chronic changes in temperature

and CO2 levels during whole animal acclimation.

N. rossii. State III respiration in all groups comprised 21–

41% CI and 59–79% CII. In the control group, mitochondrial

state III respiration increased with rising assay temperature and CI

and CII respiration were significantly elevated at 12uC in

comparison to the respective CI and CII respiration in the 0uC
assay (one-way ANOVA, F11,61 = 4.38, P,0.0001; Figure 1). In

the warm normocapnic N. rossii, state III respiration showed a

slower acute rise with increasing assay temperature, but was not

Thermal & PCO2 Effects on Nototheniid Mitochondria

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68865



significantly lower compared to the control group (two-way

ANOVA, F6,64 = 0.74, P = 0.62).

In the cold hypercapnic group, CI and CII respiration increased

significantly with rising assay temperature (one-way ANOVA,

F23,136 = 6.72, P,0.0001). However, total state III respiration at 6

and 12uC was significantly lower than in control animals at these

assay temperatures (two-way ANOVA, F3,64 = 7.23, P = 0.0003),

which was mainly due to a significantly decreased Complex II

respiration (Figure 1). In the warm hypercapnic N. rossii, total liver

mitochondrial state III respiration was only slightly, but not

significantly lower than in the control animals (Figure 1). In the

warm normocapnia acclimated N. rossii, the ratio of CI to CII was

significantly higher at 0 and 12uC. In the cold hypercapnia

acclimated fish, the CI/CII ratio was significantly higher at 6 and

12uC compared to the CI/CII ratio of the control group at the

respective assay temperatures (two-way ANOVA, F10,86 = 11.31,

P,0.0001).

L. squamifrons. In control and warm-acclimated L. squami-

frons, CI and CII state III respiration rose significantly with rising

assay temperatures (0–12uC; one-way ANOVA, F5,27 = 11.17,

P,0.0001; Figure 2). In the warm-acclimated group, both CI and

CII respiration rates were significantly lower than in the control

group at 12uC assay temperature (two-way ANOVA, F6,56 = 5.26,

P = 0.0002).

In both groups, CI contributed increasingly to total state III

respiration with rising assay temperature (control CI: 0uC240%,

6uC254%, 12uC264%; warm normocapnic CI: 0uC245,

6uC252%, 12uC275%). While in N. rossii the CI/CII ratio did

not change with rising assay temperature within a treatment (one-

way ANOVA, F8,33 = 2.00, P = 0.08), the ratio rose significantly

with temperature in both control and warm-acclimated L.

squamifrons (one-way ANOVA, F5,27 = 14.66, P,0.0001). At the 6

and 12uC assay temperatures, the CI/CII ratios of L. squamifrons

were significantly higher than in N. rossii (two-way ANOVA,

F10,86 = 11.31, P,0.0001).

P/O Ratio and RCR+

In all control/acclimation groups of N. rossii, P/O ratios were

higher for CI than for CII (Figure 3), and stable over the whole

acute thermal range. The mean P/O ratios for each group (over

all 3 assay temperatures, 0, 6 & 12uC) were a) CI: control

2.4960.12, warm normocapnic 3.0060.42, cold hypercapnic

3.3460.16, warm hypercapnic 2.4260.04; b) CII: control

1.8660.08, warm normocapnic 2.3360.21, cold hypercapnic

1.6960.05, warm hypercapnic 1.8260.11. In the cold hypercap-

nic group, the P/O ratio for CI related respiration (3.34) was

significantly higher than for CII related respiration (1.69) in

comparison to the control N. rossii at all assay temperatures (two-

way ANOVA, F7,153 = 11.67, P,0.0001).

The respiratory control ratio (mean RCR+ over all three assay

temperatures, calculated as state III/state IV+ (oligomycin)) was

significantly reduced in the cold hypercapnic (4.8260.4) and the

warm hypercapnic N. rossii (4.3060.6) compared to the control

group (6.0560.2), caused by lower state III respiration rates and

slightly elevated proton leak capacities. The RCR+ of the warm-

acclimated L. squamifrons (6.4261.1) was similar to control L.

squamifrons (8.2561.2) and the N. rossii control group (one-way

ANOVA, F5,35 = 12.41, P,0.0001).

Proton Leak Capacities in N. rossii and L. squamifrons
In all groups of N. rossii, the capacities for proton leak (state IV+)

did not rise significantly with increasing assay temperature (two-

way ANOVA, F6,72 = 0.52, P = 0.79), while state III respiration

was elevated in parallel. Only in the control and warm-acclimated

L. squamifrons, net leak respiration was significantly elevated at

12uC above those in the 0uC assays (two-way ANOVA,

F2,26 = 7.74, P = 0.0023; Figure 4).

In the cold/warm hypercapnic N. rossii, the % fraction of state

IV+ respiration in relation to state III respiration tended to be

higher (significant only in the warm hypercapnic group,

Figure 1. State III respiration rate of liver mitochondria at
various assay temperatures of 0, 6, 126C. Mitochondria isolated
from N. rossii acclimated to 1uC, 0.04 kPa CO2 (control), n = 9; 7uC,
0.04 kPa CO2 (warm normocapnic), n = 5; 1uC, 0.2 kPa CO2 (cold
hypercapnic), n = 10; and 7uC 0.2 kPa CO2 (warm hypercapnic), n = 10.
The total state III rate comprises the involement of complex I (CI, grey
part of stacked bars) and II (CII, white part of stacked bars). * indicates
significantly increased CI or CII state III respiration over the rate at 0uC
within a control/acclimation group (ANOVA, P,0.05); # indicate
significant changes in CII state III respiration compared to the control
group at the respective assay temperature (ANOVA, P,0.05). Values are
given as means 6 SEM.
doi:10.1371/journal.pone.0068865.g001

Figure 2. State III respiration rate (isolated liver mitochondria)
assayed at 0, 6, 126C in L. squamifrons. State III respiration
comprises complex I (CI, grey part of stacked bars) and II (CII, white part
of stacked bars) in control (2uC, 0.04 kPa CO2), n = 7, and warm
acclimated (9uC, 0.04 kPa CO2), n = 5, L. squamifrons. * depicts a
significantly elevated CI and CII state III respiration rate in comparison
to the respective rate at 0uC in the control/acclimation group. #

incidates a significantly lower CI and CII rate in comparison to the
control group (ANOVA, P,0.05) at the respective assay temperature.
Values are given as means 6 SEM.
doi:10.1371/journal.pone.0068865.g002
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27.162.1%) compared to the N. rossii control group (20.462.1%).

In control L. squamifrons, mean state IV+ fraction of 12.7761.1%

represented a significantly lower fraction of state III respiration

than in control N. rossii. The mean percent fraction of state IV+ in

the warm-acclimated L. squamifrons (18.8362.2%) was significantly

higher than in their control group (one-way ANOVA,

F5,101 = 17.78, P,0.0001; Table 1).

Lipid Composition of Mitochondrial Membranes
Mitochondrial membrane fatty acid composition influences

mitochondrial membrane permeability with consequences for ETS

function and proton leakage. The mitochondrial membrane of N.

rossii had significantly more saturated (one-way ANOVA,

F5,31 = 4.48, P = 0.0035) and n-6 (one-way ANOVA, F5,31 = 4.48,

P = 0.0035) fatty acids than L. squamifrons (one-way ANOVA,

F5,32 = 14.10, P,0.0001; Table 2). In the cold and warm

hypercapnic N. rossii, the mitochondrial membranes consisted of

more n-6 (unsaturated) fatty acids than in the control group (one-

way ANOVA, F5,32 = 14.10, P,0.0001). The unsaturation index

(UI) was not altered by either warm and/or hypercapnia

acclimation, neither in N. rossii, nor in L. squamifrons.

Discussion

In this study, we used the contributions of CI (NADH

dehydrogenase) and CII (Succinate dehydrogenase) to mitochon-

drial state III respiration as indicators of temperature acclimation

capacities in the Antarctic fish N. rossii and the more sub-Antarctic

fish L. squamifrons. Additionally, we focused on the effect of chronic

cold/warm hypercapnia acclimation on mitochondrial function in

N. rossii.

Warm Normocapnia Acclimated N. rossii and L.
squamifrons

CI plays an important role in aerobic metabolism, as it creates a

major amount of the protonmotive force used for ATP production

in vertebrates [50]. In the N. rossii control group, CI comprised

about 25% of state III respiration, which equals to a CI/CII ratio

of 0.3 (Figure 5), and is coherent with CI/CII ratios found in N.

rossii and N. coriiceps at their habitat temperature [16].

According to the theoretical stoichiometry for the P/O ratio,

which is 2.5 ATP (CI) vs. 1.5 ATP (CII) per pair of electrons

translocated/mol O consumed [51], the P/O ratios in the control

N. rossii were 2.5 (CI) and 1.8 (CII). These values, which were

stable over the whole thermal range investigated (Figure 3),

support a high thermal stability for CI and CII in N. rossii at their

habitat temperature, similar to findings in the Antarctic fish L.

nudifrons, N. coriiceps and N. rossii [16,22]. The constant maximum

proton leak capacities as a percentage of total state III respiration

(18–22%; see Table 1 and Figure 4) at all assay temperatures

further indicate full functional integrity of coupled mitochondria

across a range of temperatures [18,51,52].

Total state III respiration of the warm normocapnia acclimated

N. rossii was similar to the control group, and also the CI

contribution to state III respiration (Figure 1) and CI/CII ratio

(Figure 5) of the warm normocapnic group measured at 6uC was at

a similar level compared to the control group measured at 6uC.

This suggests no compensation of the mitochondrial respiration

during chronic warm exposure. This was also reflected by stable

P/O ratios at all assay temperatures (Figure 3).

Also in other Antarctic fish, warmer ambient temperatures lead

to acute increments in metabolic rates (and thus ATP demand)

(e.g. Pagothenia borchgrevinki, [53,54]). This increase in energy

demand can be partly or fully reversed during acclimation,

depending on the fish species (e.g. [55,56]). In another study on N.

rossii, which were chronically exposed to 7uC, their whole animal

routine metabolic rates only showed an incomplete compensation

towards chronic warm exposure (Precht Type III, [40]). Mainte-

nance of an elevated routine metabolic rate at warmer temper-

atures may thus involve a high oxygen and metabolic demand at

the tissues, which may be supported by the uncompensated

mitochondrial phosphorylation efficiency. Such elevated metabolic

demands and rates seemed to be maintained during the

acclimation time of about five weeks, but were paralleled by a

significantly reduced liver weight [40], and may thus not be

sustainable in the long run.

In the sub-Antarctic L. squamifrons, both the control- and warm-

acclimated group, showed a high capacity to increase flux through

CI that was reflected in the increasing CI/CII ratio (Figure 5) with

rising acute temperatures. Yet, CI and CII respiration rates at

12uC assay temperatures were significantly reduced in the warm-

acclimated L. squamifrons compared to the control group at 12uC.

As a result, the state III respiration rates of the warm-acclimated L.

squamifrons at 12uC were at a similar level as the rates of the control

group at 6uC, which indicates the capacity for mitochondrial

temperature compensation after warm acclimation of L. squami-

frons. Similar to other studies, the lower oxidative capacity in warm

exposed fish can relate to lower mitochondrial content (mitochon-

drial proliferation), changes in the activity of membrane-bound

proteins [57], such as lower cytochrome c oxidase activity in warm

exposed carp (Cyprinus carpio) [58] and eelpout (Zoarces viviparus)

[22], paralleled by a significantly elevated proton leak capacity in

relation to state III respiration (control L. squamifrons: 12.7761.1%,

warm-acclimated: 18.8362.2%; Table 1). The higher proton leak

fraction in the warm-acclimated fish could partially be related to

the thermal stimulation of UCPs (see above; [59]) or to the levels

Figure 3. P/O ratio of acclimated N. rossii. Ratio of ADP produced
per oxygen consumed (P/O ratio) by complex I & II (CI & CII) in N. rossii
acclimated to 1uC, 0.04 kPa CO2 (control), n = 9; 7uC, 0.04 kPa CO2

(warm normocapnic), n = 5; 1uC, 0.2 kPa CO2 (cold hypercapnic), n = 10;
and 7uC 0.2 kPa CO2 (warm hypercapnic), n = 10. Values are given as
means 6 SEM. * indicate significantly different P/O ratios at the
respective assay temperature within an control/acclimation group
(ANOVA, P,0.05).
doi:10.1371/journal.pone.0068865.g003
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of unsaturated fatty-acids (n-6 FAs) after warm acclimation. Both

are factors that can increase the amount of protons leaking

through the inner mitochondrial membrane [17] (Table 1 and 2).

As a consequence, state IV+ respiration rate of the warm-

acclimated L. squamifrons was similar to that of the control group

but showed a more pronounced increase during acute warming

(Figure 4).

In both L. squamifrons and N. rossii, UI of the mitochondrial

membranes was not altered by warm acclimation. In many

temperate zone fish, the percentage of unsaturated fatty acids

increases in response to cold temperatures [60], e.g. in goldfish

(Carassius auratus) [61] and shorthorned sculpin (Myoxocephalus

scorpius) [62]. However, this pattern cannot be generalized for all

phylogenetic groups. Similar to L. squamifrons and N. rossii,

unsaturation of heart and liver membrane lipid composition in

sea bass (Dicentrarchus labrax) is not affected by temperature [57].

The mismatch between unsaturation and acclimation temperature

observed in our study might relate to a limited ability for

homeoviscous adaptation in both fish species and could in turn

hamper the function of membrane bound proteins (e.g. [58]) in a

warming Southern Ocean.

Considerable differences exist between the two nototheniid fish

species in the contributions of respiratory complexes to total

mitochondrial respiration. Control L. squamifrons showed a larger

dynamic response (Q10 3.1, range 0–12uC) in mitochondrial

respiration during acute temperature rise than control N. rossii

(Q10 1.7, range 0–12uC) and a generally greater thermal plasticity

of CI in both control and warm-acclimated L. squamifrons.

Furthermore, total state III respiration of L. squamifrons was

comprised by a significantly higher fraction of CI than in N. rossii,

indicated by a much higher mean CI/CII ratio at the 6 and 12uC
assay in the sub-Antarctic than in the Antarctic fish (Figure 5).

Figure 4. Plasticity of proton leak capacity (state IV+) in relation to complex II (CII) in state III respiration. Isolated liver mitochondria
from N. rossii acclimated to 1uC, 0.04 kPa CO2 (control), n = 9; 7uC, 0.04 kPa CO2 (warm normocapnic), n = 5; 1uC, 0.2 kPa CO2 (cold hypercapnic),
n = 10; and 7uC 0.2 kPa CO2 (warm hypercapnic), n = 10, and in mitochondria from control (2uC, 0.04 kPa CO2, n = 7) and warm-acclimated (9uC,
0.04 kPa CO2, n = 5) L. squamifrons. White dots represent values at 0uC, grey at 6uC and black at 12uC acute assay temperatures. Values are given as
means 6 SEM. * indicates a significant difference of state III respiration (horizontal error bars) or of mitochondrial proton leak capacity (vertical error
bars) from the 0uC assay within a control/acclimation group (ANOVA, P,0.05). The dotted line represents 20% leak of the given state III respiration.
doi:10.1371/journal.pone.0068865.g004
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While at 0uC, the CI/CII ratio was similar in both species, a

difference in Complex I thermal plasticity became visible by the

more dynamic response in the CI/CII ratio in L. squamifrons

towards warmer assay temperatures. A study on several temperate

triplefin fish found that high mitochondrial capacities and CI

contributions are related to a higher tolerance of the whole animal

to temperature change and hypoxia in fish that show a higher

degree of eurythermy than more stenotherm triplefin fish species

[13]. Accordingly, stability or increase in Complex I contribution

with temperature was suggested as an indicator for the capacity to

increase mitochondrial capacities to meet an elevated whole

animal energy demand, e.g. at chronically warmer temperatures.

In line with these findings, L. squamifrons may possess a generally

higher scope for adjustment/acclimation of their mitochondrial

capacities towards changing environmental conditions than N.

rossii. Furthermore, the warmer maximum seawater temperatures

experienced by L. squamifrons in their habitat may support a higher

usage of NADH-linked CI substrates, possibly to compensate for

higher energy demands at warmer and more variable tempera-

tures.

Table 1. Maximum proton leak capacities (state IV+) as a
putative fraction of total mitochondrial state III respiration
(complex I and II, liver) in N. rossii and L. squamifrons.

Species acclimation leak (state IV+)

T [6C] CO2 [kPa] % of state III

N. rossii 1 0.04 20.462.1

N. rossii 7 0.04 17.561.7

N. rossii 1 0.2 25.963.2

N. rossii 7 0.2 27.162.1#

L. squamifrons 2 0.04 12.7761.1#

L. squamifrons 9 0.04 18.8362.2a

Values are given as means 6 SEM over all assay temperatures (0, 6, 12uC) of
control/acclimated N. rossii (control: 1uC, 0.04 kPa CO2, n = 9; warm
normocapnic: 7uC, 0.04 kPa CO2, n = 5; cold hypercapnic: 1uC, 0.2 kPa CO2,
n = 10; warm hypercapnic 7uC, 0.2 kPa CO2, n = 10) and L. squamifrons (control:
2uC, 0.04 kPa CO2, n = 7; warm normocapnic 9uC, 0.04 kPa CO2, n = 5).
#indicates a significant (ANOVA, P,0.05) difference in comparison to the N.
rossii control group.
aindicates a significant (ANOVA, P,0.05) difference in comparison to L.
squamifrons control. T = temperature.
doi:10.1371/journal.pone.0068865.t001

Table 2. Fatty acid composition of phospholipids in liver mitochondria from control, warm and hypercapnia-acclimated N. rossii
and L. squamifrons.

L. squamifrons N. rossii

26C 0.04 kPa CO2 96C 0.04 kPa CO2 16C 0.04 kPa CO2 76C 0.04 kPa CO2 16C 0.2 kPa CO2 76C 0.2 kPa CO2

SFA 30.466.2 28.663.6 42.4±2.0a,b 37.6±6.2b 30.966.7 38.1±3.0a,b

MUFA 23.463.9 21.961.6 34.4613.23 23.964.2 25.965.4 21.164.2

PUFA 46.2610.1 54.064.1 36.9612.7 42.466.6 47.867.2 45.262.6

n-3 39.5610.3 45.964.5 33.0612.1 29.765.9 34.168.8 32.264.1

n-6 2.660.5 2.960.6 5.561.9 5.4±2.4a 6.7±2.3a,b,# 8.0±1.8a,b,#

UI 254.6654.2 291.5626.1 221.5665.3 224.7641.6 231.1648.2 239.869.6

Treatments: N. rossii control: 1uC, 0.04 kPa CO2; warm normocapnic: 7uC, 0.04 kPa CO2; cold hypercapnic 1uC, 0.2 kPa CO2; warm hypercapnic: 7uC, 0.2 kPa CO2. L.
squamifrons control: 2uC, 0.04 kPa CO2, warm normocapnic: 9uC, 0.04 kPa CO2.
Units are percentages of total fatty acids within a control/acclimation group of N. rossii and L. squamifrons. N. rossii: control n = 4, warm normocapnic n = 4, cold
hypercapnic n = 7, warm hypercapnic n = 8; L. squamifrons: control n = 7, warm normocapnic n = 5. Data are presented as means 6 SEM. All significances are highlighted
bold.
#indicates a significant (ANOVA, P,0.05) difference to the N. rossii control group.
aindicates a significant (ANOVA, P,0.05) difference to L. squamifrons controls.
bindicates a significant difference (ANOVA, P,0.05) to L. squamifrons acclimated to 9uC, 0.04 kPa CO2. SFA: saturated fatty acids; MUFA: monounsaturated fatty acids;
PUFA: polyunsaturated fatty acids; n-3: fatty acids with 3 double bonds in the carbon chain; n-6: fatty acids with 6 double bonds in the carbon chain. Unsaturation index

UI~
Pn~0

n~24

n|% of fatty acids with n double bonds (adopted from [48]).

doi:10.1371/journal.pone.0068865.t002

Figure 5. CI/CII ratio in liver mitochondria from warm/
hypercapnia acclimated N. rossii and L. squamifrons. N. rossii
acclimated to 1uC, 0.04 kPa CO2 (control), n = 9; 7uC, 0.04 kPa CO2

(warm normocapnic), n = 5; 1uC, 0.2 kPa CO2 (cold hypercapnic), n = 10;
and 7uC 0.2 kPa CO2 (warm hypercapnic), n = 10, and in mitochondria
from control (2uC, 0.04 kPa CO2, n = 7) and warm acclimated (9uC,
0.04 kPa CO2, n = 5) L. squamifrons. * indicate a significantly elevated CI/
CII ratio compared to the 0uC assay within an control/acclimation group
(ANOVA, P,0.05). # indicate significantly elevated CI/CII ratios
compared to the control group at the respective assay temperature
(ANOVA, P,0.05). Values are given as means 6 SEM.
doi:10.1371/journal.pone.0068865.g005
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Effect of Hypercapnia Acclimation on N. rossii
In the cold hypercapnia acclimated animals, the CII respiration

rates were significantly reduced at warmer assay temperatures in

comparison to the control group (Figure 1), and also the warm

hypercapnia acclimated N. rossii showed the same trend. In the

cold hypercapnic group, this resulted in a significantly elevated

CI/CII ratio at warmer assay temperatures (Figure 5). Thus, CI

appears to be less sensitive towards chronically elevated PCO2 and

thermally more robust compared to CII; yet, total mitochondrial

capacities (state III respiration) were significantly reduced. The

resulting relative shift in complex-dependent flux in favor of CI,

but lower rates of state III may reflect a role for CO2 in depressing

aerobic scope in response to environmental stress, in similar ways

as seen in marine invertebrates [63].

When exposed to acutely elevated ambient PCO2, teleost fish

can compensate for this rise via an active extra- and intracellular

accumulation of bicarbonate [40,64,65]. A new steady state in

acid-base balance includes permanently elevated bicarbonate and

is established within the blood and intracellular milieu [40]. Acid-

base regulation may bring about a continuous elevation in energy

demand to maintain ion gradients across cellular membranes

paralleled by an increase in the abundance of ion exchangers, e.g.

Na+/K+-ATPase or Na+/HCO3
2 co-transporter, during acclima-

tion to hypercapnic conditions [66].

The significantly lower rates of CII respiration (Figure 1),

coupled to slightly lower CI respiration as well, indicate limitations

in mitochondrial metabolism, including the TCA-cycle, as a

response to chronic hypercapnia in N. rossii. Furthermore, a

reduction in complex IV activity of the ETS was reported for N.

rossii exposed to a chronically elevated PCO2 of 0.2 kPa [40],

highlighting the reductions in mitochondrial capacities of these

hypercapnia acclimated fish, possibly related to changes in gene

expression. An increased energy demand for maintenance of the

acid-base balance, combined with a decrease in mitochondrial

capacities would support the hypothesis that ambient hypercapnia

initiates a decrease in aerobic scope [63].

High bicarbonate levels can competitively inhibit citrate

synthase function (Figure 6, [67]). During chronically elevated

bicarbonate levels and PCO2, TCA activity therefore may be

reduced. Instead, net oxidative decarboxylation of dicarboxylic

acids, such as aspartate and glutamate (after transamination of

asparagine/glutamine) may be enhanced as an anaplerotic

mechanism to fuel the TCA-cycle, thereby at least partially

displacing the competitive inhibitor bicarbonate (Figure 6,

[68,69]). However, these anaplerotic mechanisms may not be

sufficient to fully compensate for a TCA-inhibition, as reflected by

the reduced CII respiration in hypercapnia acclimated N. rossii. A

similar stimulating effect of acute high bicarbonate concentrations

on glutamate, pyruvate or palmitoyl carnitine oxidation is

observed in mammalian liver and kidney mitochondria [70,71].

These reactions could on the one hand help to reduce the proton

load in mitochondria (by proton consumption during oxidative

decarboxylation), maintaining bicarbonate concentrations in the

mitochondrial matrix. On the other hand, in oxidative decarbox-

ylation reactions NAD+ is reduced to NADH+H+, which fuels CI.

This excess in non-TCA-linked NADH can support the ETS to

build up the proton gradient across the inner mitochondrial

membrane (Figure 6).

In terms of ATP production per mol of substrate, CI is more

efficient than CII. Per NADH, 2 electrons are transported via CI

and CIII to CIV, paralleled by 4 protons pumped through CI and

CIII each, and 2 protons through CIV; this equals 10 protons

pumped per NADH. Oxidation of 1 pyruvate yields 4 NADH,

which equals 40 protons being pumped by CI, III and IV.

Oxidation of 1 succinate corresponds to the transport of 2

electrons via CII and CIII to CIV and a total of 6 protons being

pumped through complex III and IV [16,24,50]. As CII does not

actively pump protons across the inner mitochondrial membrane,

while CI directly supports the proton gradient, increased relative

CI capacities in hypercapnia acclimated N. rossii could reflect a

shift towards an increased usage of NADH, while the TCA-cycle

could not maintain full capacities. By this mechanism, mitochon-

drial capacities of hypercapnia acclimated N. rossii may to some

extent compensate for a higher ATP demand, e.g. to maintain a

new acid-base equilibrium, under chronic hypercapnia and at

decreased mitochondrial state III capacities. Although the

molecular mechanisms which lead to a higher CI than CII

contribution in total state III respiration at warmer temperatures

after hypercapnia acclimation are not clear at present, our data

reveal that compensation of metabolic rate after hypercapnia

acclimation of N. rossii may be accomplished by an improved CI

P/O ratio (per milligram mitochondrial protein) compared to the

CII P/O ratio in the cold hypercapnic group (Figure 3).

As a corollary, exposure to chronically elevated PCO2 can

involve rearrangements in mitochondrial functions. This may not

affect proton leak capacities, which remained similar to control

conditions in cold or warm hypercapnic mitochondria (following

an almost linear increase with temperature, Figure 4). However, in

light of depressed state III respiration this may lead to a higher

relative contribution of state IV+ respiration, particularly in the

warm hypercapnia acclimated N. rossii (Table 1). Nothing is known

about the expression of uncoupling proteins, which mediate

proton leak to a great extent (see above), under chronic

hypercapnia. However, their expression is clearly temperature

dependent in Antarctic fish (e.g. up-regulation of UCP2 after

warm acclimation of Pachycara brachycephalum [72]). According to

these capacities for up- or down-regulation as a response to

environmental stress, they might also be involved in mediating

proton leakage in warm hypercapnia acclimated N. rossii. Next to

the lower state III respiration in the hypercapnia acclimated fish,

this elevation in proton leak capacity can also contribute to the

reduced mitochondrial coupling ratio (RCR+ control: 6.160.2,

cold hypercapnic group: 4.860.4, warm hypercapnic group

4.360.6), as commonly seen in animals with highly flexible

energy demand [22,52].

Proton leakage is frequently correlated with membrane

phospholipid composition, i.e. the UI and involvement of PUFAs

[17,28]. Membrane saturation in the mitochondrial extracts of N.

rossii was not significantly altered by hypercapnia, but a clear trend

towards more PUFAs and n-6 FA’s was visible in the cold/warm

hypercapnia acclimated animals. The activity of UCPs might also

respond to such changes. They may also mediate the effects of

chronically elevated PCO2 on other membrane bound proteins,

such as cytochrome c oxidase [40]. This suggests a remodelling of

mitochondrial membrane structure-function relationships follow-

ing acclimation to chronic hypercapnia, involving proton leakage

and reducing mitochondrial coupling capacities. However, these

findings are not reflected in whole animal respiration, which

remained unaffected in hypercapnia acclimated vs. control N. rossii

[40]. Overall, our data support limitations in aerobic energy

metabolism in the tissues of N. rossii chronically exposed to higher

PCO2. Next to the changes in mitochondrial metabolic pathways

(see above), they might be partially compensated by a higher

mitochondrial volume density, cristae surface or proliferation [6]

in order to increase the reduced tissue mitochondrial capacities, an

aspect that remains to be explored.
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Conclusion
In this study, the variable contribution of CI and CII to

mitochondrial state III respiration was found to reflect different

mitochondrial plasticities in the Antarctic fish N. rossii and the sub-

Antarctic fish L. squamifrons.

Chronically warm exposed N. rossii showed uncompensated

mitochondrial respiration rates, which may reflect a high oxygen

and metabolic demand at the tissue level and are further in line

with previous findings on uncompensated whole animal metabolic

rates of warm-acclimated N. rossii [40]. Such an elevated metabolic

demand may come along with limitations in the liver energy

metabolism in the long run. In the cold hypercapnia acclimated N.

rossii, a higher thermal plasticity of CI, which directly contributes

to the proton gradient over the inner mitochondrial membrane,

may be supported by an enhanced utilization of anaplerotic

substrates (via oxidative decarboxylation reactions). This could

result in mitochondria with a higher flexibility to respond to

environmental challenges in hypercapnia acclimated N. rossii. In

hypercapnia acclimated fish, high bicarbonate levels may inhibit

the TCA-cycle, thus a trend towards non-TCA-linked NADH,

used by CI, may partially compensate for the reduced aerobic

scope indicated by lower state III capacities to a certain extent.

The questions whether these changes are adaptive or not and

whether change in mitochondrial densities occur at the same time,

remain to be investigated.

Warm acclimation did not significantly affect the mitochondrial

membrane unsaturation index in both species compared to their

controls, suggesting a limited ability to react to temperature

changes. Nevertheless, warm-acclimated L. squamifrons possess

more polyunsaturated fatty acids in their mitochondrial mem-

branes than warm normocapnia acclimated N. rossii, and thus

possibly a higher flexibility in their thermal response. A higher

dynamic response in the CI/CII ratio with rising temperature in L.

squamifrons compared to N. rossii probably relates to a higher

mitochondrial plasticity to respond to environmental changes in

the sub-Antarctic compared to the Antarctic fish.
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