
Ocean Sci., 9, 609–630, 2013
www.ocean-sci.net/9/609/2013/
doi:10.5194/os-9-609-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

A comparison between gradient descent and stochastic approaches
for parameter optimization of a sea ice model

H. Sumata1, F. Kauker1,2, R. Gerdes1,3, C. Köberle1, and M. Karcher1,2

1Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
2Ocean Atmosphere Systems, Hamburg, Germany
3Jacobs University, Bremen, Germany

Correspondence to:H. Sumata (hiroshi.sumata@awi.de)

Received: 2 November 2012 – Published in Ocean Sci. Discuss.: 20 November 2012
Revised: 13 May 2013 – Accepted: 5 June 2013 – Published: 9 July 2013

Abstract. Two types of optimization methods were applied
to a parameter optimization problem in a coupled ocean–sea
ice model of the Arctic, and applicability and efficiency of
the respective methods were examined. One optimization uti-
lizes a finite difference (FD) method based on a traditional
gradient descent approach, while the other adopts a micro-
genetic algorithm (µGA) as an example of a stochastic ap-
proach. The optimizations were performed by minimizing a
cost function composed of model–data misfit of ice concen-
tration, ice drift velocity and ice thickness. A series of op-
timizations were conducted that differ in the model formu-
lation (“smoothed code” versus standard code) with respect
to the FD method and in the population size and number of
possibilities with respect to the µGA method. The FD method
fails to estimate optimal parameters due to the ill-shaped na-
ture of the cost function caused by the strong non-linearity
of the system, whereas the genetic algorithms can effectively
estimate near optimal parameters. The results of the study in-
dicate that the sophisticated stochastic approach (µGA) is of
practical use for parameter optimization of a coupled ocean–
sea ice model with a medium-sized horizontal resolution of
50 km×50 km as used in this study.

1 Introduction

Sea ice plays an important role in shaping the climate sys-
tem in the Arctic Ocean by altering heat, momentum and
material exchanges between the atmosphere and ocean (e.g.,
Wadhams, 2000; McPhee, 2008; Thomas and Dieckmann,
2009). Development of a sea ice model is thus of great sig-

nificance not only for understanding the sea ice physics it-
self but also for understanding the Arctic climate system and
its linkage to the global climate. Comprehensive, large-scale
sea ice models have existed for more than 3 decades and
have provided various insights regarding sea ice and its role
in the Arctic climate system (e.g., Hibler, 1979; Hibler and
Bryan, 1987; Zhang and Hibler, 1997; Hunke and Dukow-
icz, 1997). However, even current sea ice models differ in
the simulated ice properties and also show pronounced bi-
ases compared to observations (Rothrock et al., 2003; Gerdes
and Köberle, 2007; Johnson et al., 2007, 2012; Martin and
Gerdes, 2007; Eisenman et al., 2007). In order to improve
simulated ice properties, explorations of suitable parameter-
ization of dynamic and thermodynamic processes of sea ice
(Shine and Henderson-Sellers, 1985; Lipscomb et al., 2007)
as well as parameterization regarding atmosphere–ice–ocean
fluxes (L̈upkes and Birnbaum, 2005; Lu et al., 2011) are still
under way. Such studies are always accompanied by sensi-
tivity studies with respect to newly introduced parameters or
an estimation of an optimal parameter set. Particularly, an
estimation of an optimal parameter set relevant to respective
model configurations is nontrivial work for simulating real-
istic sea ice fields by a model (Miller et al., 2006; Kim et al.,
2006; Nguyen et al., 2011). In this study we explore suitable
and effective methods for parameter optimization of coupled
ocean–sea ice models, which can be applied to any kind of
similar models with relatively small programming effort.

To find an optimal parameter for a parameterization of a
certain physical process, early studies performed sensitiv-
ity experiments in which a single parameter was varied at a
time and other parameters were fixed (Shine and Henderson-
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Sellers, 1985; Ledley 1991a, b; Holland et al., 1993). How-
ever, Chapman et al. (1994) reported an interdependency of
parameter sensitivity and thus the necessity of multivariate
sensitivity experiments. In order to find an optimal param-
eter set in multi-dimensional parameter space, Harder and
Fischer (1999) and Miller et al. (2006) performed multivari-
ate sensitivity experiments with a sea ice model. Harder and
Fischer (1999) optimized atmospheric and oceanic drag co-
efficient and ice strength to minimize the misfit between their
sea ice model and observations. Similarly, Miller et al. (2006)
optimized atmospheric drag coefficient, ice strength param-
eter and ice albedo simultaneously. In both studies, the pa-
rameter space was discretized in a lattice form and combina-
tions of parameters were tested. Although they successfully
obtained an optimal parameter set in the three-dimensional
parameter space, they had to perform more than 100 exper-
iments even for just 3 parameters. Generally, the number of
experiments required for ann-dimensional parameter space
increases with then-th power.

In recent years, more sophisticated approaches for parame-
ter optimization were presented. Kim et al. (2006) applied an
automatic differentiation (AD) technique to examine param-
eter sensitivity of a dynamic thermodynamic sea ice model.
In their approach, analytical derivatives of the model with
respect to selected parameters were obtained by AD. They
used so-called “identical twin experiment” for parameter op-
timization to demonstrate the performance of their algorithm.
It was shown that an AD-based gradient combined with a
quasi-Newton search algorithm can effectively retrieve the
parameters. Nguyen et al. (2011) presented another sophisti-
cated approach for parameter optimization. They optimized
sea ice and ocean model parameters as well as the initial
conditions of a coupled ocean–sea ice model with a Green’s
function approach. Sensitivities of the model with respect
to the control parameters were assumed to be linear around
a baseline experiment, and then the model Green’s func-
tion was calculated by perturbation experiments. They ob-
tained a set of parameters, forcing field and initial conditions,
which reduces the cost function by 45 %. Other than sea ice
models, such methods for model’s parameter optimizations
can be found in numerous atmospheric and oceanic studies
(e.g., Garcia-Gorriz et al., 2003; Menemenlis et al., 2005;
Mochizuki et al., 2007; Bocquet, 2012).

Although these approaches provided effective methods
to perform a multivariate parameter optimization, problems
could arise if the model exhibits a nonlinear response to con-
trol parameters, resulting in a complicated shape of the cost
function (Evensen and Fario, 1997; Mazzega, 2000). For in-
stance, if the cost function has a multimodal or ill-shaped
structure, results of gradient descent methods depend on the
initial guess for the parameter set. Generally we cannot ex-
clude the possibility that the cost function has local minima
besides the global minimum. In such a situation, one has to
perform multiple individual optimizations starting from a va-
riety of initial parameter guesses to find the global minimum.

Another problem may arise from a micro-scale structure of
the cost function, because gradient descent approaches can
only be reasonably applied if the cost is a smooth function
of control parameters. Unfortunately, smoothness of sea ice
model’s response with regard to its control parameters is not
always guaranteed (as will be shown in Sect. 3).

One of the possible solutions to these problems is to ap-
ply stochastic algorithms, which perform a random search
in the parameter space. Stochastic algorithms, such as simu-
lated annealing or genetic algorithms, are kinds of global op-
timization algorithms (GOAs) and widely applied to param-
eter optimization problems in other research fields such as
biogeochemical modeling (e.g., Athias et al., 2000; Schartau
and Oschlies, 2003; Shigemitsu et al., 2012). Advantages of
stochastic approaches are their applicability to multimodal or
ill-shaped functions, easy implementation and suitability for
parallel computational environment. On the other hand, a se-
rious disadvantage of these approaches is that they generally
require huge computational resources as compared with gra-
dient descent approaches for an individual search (Vallino,
2000). This may be one of the reasons why these approaches
have not been applied to parameter optimizations for sea
ice models coupled with ocean general circulation models
(OGCMs), which usually require substantial computational
resources. Actually, most of the applications of stochastic ap-
proaches for parameter optimizations are found in zero- or
one-dimensional model studies (e.g., Carroll, 1996; Vallino,
2000; Athias et al., 2000; Schartau and Oschlies, 2003; Lv et
al., 2009), and only a few applications for three-dimensional
model studies can be found (Huret et al., 2007).

Difficulties arising from a large computational burden can
be overcome by combining parallel processing and a low-
computational-cost stochastic approach. Athias et al. (2000)
examined the efficiency of parameter optimization by 3
types of GOAs. They reported that a micro-genetic algo-
rithm (µGA) can more efficiently reach a near-optimal solu-
tion than other GOAs like simulated annealing (Kirkpatrick
et al., 1983) and TRUST (Cetin et al., 1993). The genetic al-
gorithm (GA) is a quasi-stochastic search algorithm to find
an optimal solution based on the natural selection of liv-
ing things (Holland, 1975; Goldberg, 1989). The µGA is a
realization with a small computational load by taking ad-
vantage of very small population size (Krishnakumar, 1989;
Kim et al., 2002). It has been successfully applied to a va-
riety of optimization problems (e.g., Johnson and Abush-
agur, 1995; Carroll, 1996; Kim et al., 2002; Schartau and
Oschlies, 2003), and its advantages compared with the sim-
ple GAs were reported by Krishnakumar (1989) and Kim et
al. (2002). As will be shown in Sect. 2, the computational
load of µGA is quite suitable for multi-processor architec-
ture of recent computers, and a parameter optimization of a
coupled ocean–sea ice model can be achieved within a rea-
sonable computational time by using a medium resolution.

The purpose of this study is to provide a simple and
systematic method for a parameter optimization of coupled
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ocean–sea ice models. In order to provide a suitable opti-
mization method, we introduce a cost function composed
of model–data misfit of ice concentration, ice drift velocity
and ice thickness. We examine the characteristics of the cost
function to specify a requirement necessary for an optimiza-
tion approach, and then demonstrate parameter optimizations
in practice by two types of different approaches: a gradient
descent approach and a stochastic approach. As an example
of gradient descent approaches, we apply the finite difference
method, whereas as an example of stochastic approaches we
apply the µGA. By examining applicability and efficiency
of the respective approaches together with examinations of
the characteristics of the cost function, we provide a use-
ful parameter optimization procedure for modelers working
on coupled ocean–sea ice models. To achieve our goal, we
demonstrate parameter optimizations with a cost function de-
fined by a 1 yr window. This is too short to estimate proper
parameters for a long-term simulation, but long enough to ex-
amine the properties of the cost function and the efficiency of
the methods. A parameter optimization for a realistic simula-
tion by using a longer time window and examinations of the
applicability of the estimated parameters to higher resolution
models will be presented in forthcoming papers.

The paper is organized as follows: in Sect. 2 we describe
the experiment design, which is composed of a brief intro-
duction of the coupled ocean–sea ice model, sea ice data used
in this study, definition of the cost function, a description of
two types of optimization methods and a description of opti-
mization experiments. In Sect. 3, properties of the cost func-
tion are examined in two-dimensional parameter space, and
then results from the two types of optimizations are provided.
Conclusions are given in Sect. 4.

2 Experiment design

2.1 Coupled ocean–sea ice model

The coupled ocean–sea ice model used in this study is the
North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM) de-
veloped at Alfred Wegener Institute (AWI; Gerdes et al.,
2003; Köberle and Gerdes, 2003; Kauker et al., 2003). The
ocean part of NAOSIM is based on the MOM-2 model devel-
oped at the Geophysical Fluid Dynamics Laboratory (GFDL;
Pacanowski, 1995), while the sea ice part of the model is a
dynamic thermodynamic sea ice model with viscous plas-
tic rheology (Hibler, 1979; Harder, 1996). Both parts of the
model are coupled following the procedure devised by Hi-
bler and Bryan (1987). The model domain encloses the whole
Arctic and the North Atlantic Ocean north of approximately
50◦ N (Fig. 1), and is formulated on a spherical rotated grid.
The geographical North Pole was shifted to 60◦ E on the
Equator to avoid a numerical singularity arising from con-
vergence of meridians. NAOSIM has been successfully ap-
plied to a variety of ocean and sea ice studies in the Arc-

Fig. 1.Bottom topography of the model.

tic Ocean (e.g., Kauker et al., 2003, 2005, 2009; Karcher
et al., 2005, 2007, 2011), and more descriptive information
about the model configuration can be found in Karcher et
al. (2003), Kauker et al. (2003) and studies mentioned above.

In this study we employ a low-resolution version of
NAOSIM (Kauker et al., 2009), with a horizontal resolution
of 0.5◦×0.5◦ and 20 levels in the vertical (Table 1). At the
southern boundary of the model domain, an open boundary
condition has been implemented along the Atlantic sector
following Stevens (1991), while in the Pacific sector Bering
Strait is treated as a closed wall. At the open boundary of
the Atlantic sector, temperature and salinity at inflow points
are restored toward PHC (Polar science center Hydrographic
Climatology, Steele et al., 2001), and barotropic velocities
normal to the boundary are specified from a model version
covering the entire Arctic and Atlantic Ocean north of 20◦

S (Köberle and Gerdes, 2003). The model is driven by daily
atmospheric forcing from 1948 to 2003 (NCEP/NCAR re-
analysis, Kalnay et al., 1996) starting from temperature and
salinity fields given by the PHC climatology and 100 % ice
concentration with 2 m thickness in regions where the sea
surface temperature falls below the freezing point of sea wa-
ter. The initial model fields for the parameter optimization
window are taken from 1 January 2003, and 1 yr integration
window forced by daily NCEP forcing from 1 January to
31 December 2003 is used for parameter optimization.

For parameter optimizations by a gradient descent ap-
proach, we make use of two types of model codes. One is the
standard model code, and the other is a “smoothed” model
code (hereafter referred to as standard- and smth-code, re-
spectively). As will be shown in Sect. 3, responses of mod-
eled sea ice fields to its control parameters do not provide
a tractably smooth function for a local gradient estimation.

www.ocean-sci.net/9/609/2013/ Ocean Sci., 9, 609–630, 2013
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Table 1.Vertical grid spacing of the model.

Layer Layer Bottom of the
number thickness [m] layer [m]

1 20.0 −20.0
2 20.0 −40.0
3 20.0 −60.0
4 20.0 −80.0
5 20.0 −100.0
6 21.6 −121.6
7 34.4 −156.0
8 59.3 −215.3
9 95.3 −310.6
10 140.9 −451.5
11 194.0 −645.5
12 252.3 −897.9
13 313.3 −1211.2
14 374.3 −1585.5
15 432.6 −2018.2
16 485.8 −2503.9
17 531.3 −3035.3
18 567.4 −3602.6
19 592.3 −4194.9
20 605.1 −4800.0

Possible reasons are the parameterization of certain phys-
ical process and the model’s coarse discretization in space
and time. The smth-code of NAOSIM was developed for its
4DVar data assimilation system (Kauker et al., 2009) and is
used here to mitigate the problems of local gradient estima-
tion arising from the standard-code. In the smth-code, For-
tran statements such as “if”, “max(.)”, “min(.)” and “abs(.)”
in the code, which potentially cause discontinuous model
behaviors, were replaced by a continuous function such as
“atan(.)” to smooth the local structure of the cost function.
Although the smth-code slightly modifies the modeled ice
and ocean fields, the differences of the simulated fields be-
tween the standard- and smth-code are acceptable for the
present purposes. Differences of the cost function between
the standard- and smth-code will be examined in Sect. 3.

2.2 Data

To evaluate modeled sea ice fields, we make use of 3 types
of sea ice data sets obtained from satellite observations (i.e.,
ice concentration, ice drift velocity and ice thickness). With
a basin-wide spatial coverage, these satellite data are suit-
able to measure model–data misfit and have been applied
for parameter optimization of a sea ice model (e.g., Miller
et al., 2006) as well as a coupled ocean–sea ice model (e.g.,
Nguyen et al., 2011).

For sea ice concentration, we use preprocessed sea ice con-
centration data set of the European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT) Ocean
and Sea Ice Satellite Application Facility (OSI SAF). For

the data period in this study, the original data were mea-
sured by the Special Sensor Microwave/Imager (SSM/I) and
processed following the algorithms described in Eastwood
et al. (2010). Here we use the product OSI-409 (available
at ftp://saf.met.no/reprocessed/ice/conc/v1/), which contains
daily mean ice concentration on a polar stereographic grid
with a horizontal resolution of 10 km, covering the entire
Arctic Ocean except near the North Pole. We processed the
original OSI-409 data set into monthly mean data on the
model grid to facilitate model–data comparison. Only the
original data whose status flag guarantees its reliability were
used. The monthly mean values were defined at points where
the number of valid data exceeds at least 30 % of the num-
ber of days of the respective month. For the data projection
from the data grid to the model grid, we simply calculated the
arithmetical mean of valid data contained in each model grid
cell. Each grid cell generally contains a sufficient number of
data points, and interpolation errors can be negligible.

For sea ice drift, we utilize the low-resolution sea ice drift
product OSI-405 from EUMETSAT OSI SAF as well. The
data used here are a single sensor product measured by the
Advanced Microwave Scanning Radiometer of the Earth Ob-
servation System (AMSR-E) and processed following the al-
gorithms described in Lavergne and Eastwood (2010). The
data set provides information about positions of ice parcels
before and after a certain time interval (48 h) as daily files
from January to April and from October to December with
some data gaps. In the original data set, the initial positions
of the parcels are fixed to the grid points defined on the polar
stereographic coordinate with 62.5 km mesh, while the posi-
tion of the parcels after the time interval is provided as ice
displacement data. This procedure introduces certain biases.
Nevertheless, this is one of the best available estimates of sea
ice motion with large spatial and long temporal coverage. In
order to use the data for the present model–data compari-
son, we calculated monthly mean ice drift on the model grid.
In this process, we firstly calculated monthly mean displace-
ment of each parcels on a data grid point when observations
were available for more than half of each month. We sec-
ondly projected the displacement data from the data grid to
the model grid and calculated zonal and meridional ice drift
in the model coordinate, with a limitation of maximum inter-
polation distance of 90 km.

In addition to the above data sets, we also use basin-wide
ice thickness data provided by Kwok et al. (2009). The data
set is composed of 10 campaigns of Ice, Cloud and land Ele-
vation Satellite (ICESat) from 2003 to 2008 on a polar stere-
ographic grid with a horizontal resolution of 25 km (avail-
able athttp://rkwok.jpl.nasa.gov/icesat/download.html). Ice
thickness is estimated by a method described in Kwok et
al. (2007) and Kwok and Cunningham (2008) from total (sea
ice plus snow) freeboard measured by a laser altimeter on the
satellite. In the present study, we utilized the ON3 campaign
from 24 September to 18 November 2003 for model–data
comparison. We projected the original data onto the model

Ocean Sci., 9, 609–630, 2013 www.ocean-sci.net/9/609/2013/
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grid by simply adopting the nearest data point, since the hor-
izontal resolution of the original data is finer than that of the
model.

2.3 Cost function

The cost function measuring the model–data misfit is defined
by a combination of 3 types of sea ice data mentioned above
and an additional penalty term. The total cost function,J , is
given by

J =

3∑
k=1

Jk

Nk

+P, (1)

wherek = 1, 2 and 3 correspond to ice concentration, ice
drift velocity and ice thickness observations, respectively;Jk

represents the contribution from respective component;Nk is
the number of observational data for thek-th component;P
is a penalty term introduced for a gradient descent approach
and will be defined later. To reduce the cost from the respec-
tive components simultaneously, we organize the cost func-
tion so that the contributions from the respective sea ice prop-
erties have the same order of magnitude.

For this purpose,Jk is divided by the number of respective
observations,Nk, since the numbers of the respective obser-
vations significantly differ from each other (N1= 50730 (ice
concentration);N2= 14295 (ice drift velocity);N3= 2123
(ice thickness)). Together with the observational uncertain-
ties defined later, this normalization makes it possible to eval-
uate the contribution from the respective components in the
same order of magnitude.

We measure each component of the cost function by the
squaredL2 norm of model–data misfit weighted by the un-
certainties of the observations:

Jk = [d −G(m)]T W[d −G(m)], (2)

whered = [d1,d2, . . .dN ]
T represents the observational data;

m= [m1,m2, ...mM ]
T is the control parameter set to be op-

timized; G(m)= [G1(m),G2(m), . . .GN (m)]T is the con-
volution of measurement function with the full model dy-
namics (i.e.,Gi(m) gives the model’s counterpart to the ob-
servational data,di ); W is the weighting matrix to take un-
certainties of the observed data into account. In the present
experiments, we only consider the diagonal elements ofW
defined byWi = σ−2

k , whereσk is the uncertainty of the re-
spective observations ofk-th component. We assume provi-
sional values,σ1=5 % for ice concentration,σ2= 1 cm s−1

for ice drift velocity andσ3=50 cm for ice thickness. These
uncertainty values were chosen so as to make the costs as-
sociated with respective components have the same order of
magnitude and, therefore, contribute to the total cost function
to the same extent. An exact evaluation of uncertainties of
the merged data and providing an exact form of the weight-
ing matrix is nontrivial and would be quite time-consuming
as well as digress from the subject of the present study.

Therefore, we simply assumed the provisional uncertainty
values for ice concentration and ice drift velocity, whereas
we adopted the uncertainty values provided by Kwok et
al. (2009) for ice thickness data, since the thickness data are
provided as a time average of each campaign period, and we
did not process the data for temporal average.

As control parametersm for the optimization, we se-
lected 7 model parameters from different physical processes
as listed in Table 2 (i.e.,M = 7 in the present case). Two
of the parameters were taken from momentum transfer pro-
cesses among atmosphere, ice and ocean, while others were
taken from dynamic and thermodynamic processes of the
sea ice model. Atmospheric and oceanic drag coefficients
(cdwinandcdwat) are important tuning parameters for cou-
pled ocean–sea ice models, and a number of studies have
focused on obtaining appropriate values for realistic sea ice
simulation (e.g., Holland et al., 1993; Chapman et al., 1994;
Harder and Fischer, 1999). The present model employs a
simple quadratic drag formulation and does not take the at-
mospheric surface stability into account (i.e., neutral con-
ditions are assumed). The empirical ice strength parameter
(P ∗) is another key parameter controlling dynamic sea ice
processes and has been chosen as one of the tuning parame-
ters in a number of studies (e.g., Holland et al., 1993; Harder
and Fischer, 1999; Nguyen et al., 2011). We also include the
lead closing parameter in the ice compactness equation,h0,
in the set of control parameters. Furthermore, we select la-
tent and sensible heat transfer coefficients (cdlat andcdsens)
and snow and ice albedo values (albedo), since these are the
key parameters controlling the thermodynamic processes of
sea ice. The representative albedo value in Table 2 is set to
be equivalent to the albedo of frozen snow in the model, and
is related to other albedo values by maintaining the original
ratio between the albedo of frozen snow and other albedo
values (0.77/0.8 for melting snow, 0.7/0.8 for frozen ice, and
0.68/0.8 for melting ice). It should be mentioned that the
choice of parameters is particular to this study and other Hi-
bler (1979) class of models. A different parameterization of
sea ice mechanics and thermodynamics (like in Hunke and
Lipscomb, 2001) naturally leads to a different set of parame-
ters and thus different optimization results.

We limited the number of control parameters to 7 to max-
imize the efficiency of the optimization by the gradient de-
scent approach on our computational environment. This lim-
itation comes from the number of available CPUs in a cer-
tain batch job class at the computer facility at AWI, and can
be relaxed when we perform a parameter optimization for
realistic model simulations. We also set bounds to the pa-
rameter values within a prescribed upper and lower limits
(seemmax

i andmmin
i in Table 2). These limits are provisional

values for examining performances of the present two opti-
mization approaches, and also can later be relaxed within the
physical constraints (e.g., that the albedo values should not
exceed 1.0).

www.ocean-sci.net/9/609/2013/ Ocean Sci., 9, 609–630, 2013
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Table 2. Parameters applied for the optimizations. The representative albedo of snow and ice is related to respective albedo values in the
manner described in the text.

mi Name Description Upper limit Lower limit Increment for µGA Increment for µGA
(mmax

i
) (mmin

i
) (possibility=27) (possibility=210)

m1 h0 Lead closing parameter for ice 2 0.1 1.496×10−2 1.857×10−3

compactness equation [m]
m2 P ∗ Empirical ice strength parameter [N m−2] 5.0×104 5.0×103 354.3 43.99
m3 cdwin Atmospheric drag coefficient 3.0×10−3 5.0×10−4 1.969×10−5 2.444×10−6

m4 cdwat Oceanic drag coefficient 1.0×10−2 4.0×10−3 4.724×10−5 5.865×10−6

m5 cdlat Latent heat transfer coefficient 2.5×10−3 1.25×10−3 9.843×10−6 1.222×10−6

m6 cdsens Sensible heat transfer coefficient 2.5×10−3 1.25×10−3 9.843×10−6 1.222×10−6

m7 albedo Representative albedo of snow and ice 0.99 0.6 3.071×10−3 3.812×10−4

The penalty term,P , is introduced so that the gradient de-
scent algorithms can keep the estimated parameters within
the prescribed range:

P =

M∑
i=1

(
mi −mcentral value

i

m
half range
i

)20

, (3)

where mcentral value
i = (mmax

i +mmin
i )/2 and

m
half range
i = (mmax

i −mmin
i )/2, respectively. This term

rapidly increases the cost function when the estimated
parameters exceed their prescribed ranges, while adding
negligible cost when the parameters stay within. Although
the stochastic approach does not need the penalty term,
we applied the term to a couple of series of optimization
experiments with a stochastic approach for comparison
purposes.

2.4 Gradient descent approach

As a gradient descent approach, we employ a finite differ-
ence (FD) method combined with a quasi-Newton search al-
gorithm to find an optimal parameter set. This is a very fun-
damental and simple method to optimize model parameters.
One of the advantages of the method is that no changes to the
model code are necessary to evaluate the gradient of the cost
function. Therefore, the method can be easily applied to nu-
merical models of all kinds without a special programming
effort. Another advantage is that no linearization of the code
is done, and one can explore the fully nonlinear cost function
space. On the other hand, the computational cost for gradient
estimation increases proportional to the number of the con-
trol parameters in contrast to sophisticated approaches such
as an adjoint. By exploiting recent parallel computational
environments, one can apply the method to parameter op-
timizations for a moderate number of parameters, while it is
still impractical to apply the method to optimize initial and/or
boundary conditions of the model. A disadvantage common
to all gradient descent approaches is the possibility of be-
coming stuck in one of the local minima of the cost function.

In order to reduce this possibility, experiments with various
initial guesses of the parameter set must be performed.

In the FD method, a gradient of the cost function with re-
gard to each control parameter,∂J

∂mi
, is evaluated at a certain

point in theM-dimensional cost function space by a differ-
ence of the cost functions divided by an increment:

∂J

∂mi

=
J (m+1mi)− J (m)

1mi

, (4)

where1mi = [0, 0, . . . ,1mi , . . . 0]T is an increment ofi-th
control parameter normalized by the range of each param-
eter. By performingM+1 model runs and cost evaluations,
we can obtain a full gradient of the cost function∂J

∂m
at a

certain point. We applied one of the quasi-Newton search al-
gorithms, the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm (L-BFGS) by Liu and Nocedal (1989), to
reduce the cost function by searching an optimal parameter
set in the gradient descent direction. Re-evaluations of the
cost and its gradient and an application of the search algo-
rithm are repeatedly performed, until an Euclidean norm of
the gradient (normalized by a Euclidean norm of the control
vector) falls below a prescribed threshold or the line search
routine in the search algorithm is unable to provide further
steps, which satisfies the sufficient decrease and curvature
conditions. The threshold for the norm of the gradient is set
to 1.0×10−12.

Before performing parameter optimizations, we tested the
performance of the L-BFGS algorithm by a pseudo-cost
function defined by aM-dimensional continuous function
with only one global minimum, and confirmed that the al-
gorithm finds the minimum of the function within a com-
putational accuracy after dozens of iterations. Figure 2a
shows schematics of the parameter optimization system by
the present method. As shown in the figure, we perform
M+1 model runs and cost evaluations in parallel by exploit-
ing M+1 processors. Therefore, the time required forL it-
erations is equivalent toL model runs plus the cost evalua-
tions by one processor. Since a parallel computational envi-
ronment has become quite common, the approach is feasible
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Fig. 2. Schematics of a parameter optimization system with(a) fi-
nite difference method and(b) genetic algorithm. See text for de-
scription.

for the optimization of a limited number of paramters in a
coupled ocean–sea ice model.

Before performing optimization experiments, we also
made a survey of the increment,1m, for the gradient estima-
tion. If the cost function is a smooth and continuous function
of the control parameter setm, we can apply an infinitesimal
increment for local gradient estimation in Eq. (4). However,
as will be shown in Sect. 3, the shape of the cost function
given by the coupled ocean–sea ice model is not smooth. It
has a spiky micro-scale structure probably due to some pa-
rameterizations adopted in the model and the model’s dis-
cretization in space and time. Although this situation is to
some extent alleviated by adopting the smth-code mentioned
above, it is not completely solved. A cost function,J , eval-
uated at a certain point in the parameter space inevitably re-
flects micro-scale local structure. If we apply a very small
increment for a gradient estimation, the gradient represents
an inclination of micro-scale unevenness of the function and
is not applicable to the minimum search, whereas if we apply
a large increment, the gradient cannot represent a local gra-
dient and the accuracy of the search will decline. In such a
situation, we have to figure out an appropriate increment size
that is sufficiently larger than the width of the micro-scale
structure while, at the same time, small enough to capture
a local gradient of the function. We performed preliminary
optimization experiments with various increment sizes, and
evaluated the reduction ratio of the gradient of the function
as a measure of an appropriate increment size. If a gradi-
ent of the function after an optimization is sufficiently small,
the optimized parameter set is close to an extremum of the

function. While the gradient remains large, it is still far from
an extremum or the gradient captures micro-scale uneven-
ness of the function due to an inordinately small increment.
Therefore, we can say that a smallness of the gradient after an
optimization compared to the initial gradient is a necessary
condition for being close to an extremum. In the preliminary
experiments, we tested various sizes of increment with smth-
code and found that an increment with (mmax

i −mmin
i )×10−2

gives the best reduction ratio of the gradient. We apply this
increment value in the following experiments. The adequacy
of the increment will be reexamined by two-dimensional sur-
vey of the cost function in Sect. 3.

2.5 Stochastic approach

As an example of stochastic approaches, we apply the micro-
genetic algorithm (µGA), which is a small population ver-
sion of the genetic algorithms (GAs). The GAs are global
optimization algorithms based on the natural selection of liv-
ing things (a description of the algorithms can be found in
Holland, 1975, and Goldberg, 1989). The advantage of the
algorithms is an applicability to an extremum search for ill-
shaped or multimodal functions, whereas the disadvantage is
a huge computational cost to obtain a solution with a high
accuracy. In the algorithms, a single set of the control pa-
rameters (parameter vector) is represented by a genotype of
an individual by encoding the parameter vector to binary bit
strings (Fig. 3a), and then agenerationthat is composed of a
prescribed number of randomly generated individuals is pre-
pared (Fig. 3b). The generation can be regarded as a pool of
various vectors, and the algorithms simulate an evolution of
the generation based on a reproductive plan, which consists
of selection of individuals, recombination of genes and muta-
tion of individuals. The selection process is conducted by the
Darwinian evolutionary principle of “survival of the fittest”,
which in the present context corresponds to a selection of
suitable parameter vector by an evaluation of the cost func-
tion (Fig. 3c). The recombination of genes is carried out by
an exchange of genes among selected individuals (Fig. 3d),
corresponding to a generation of new parameter vector by a
random combination of binary bit strings coming from a cou-
ple of vectors contained in the pool. The mutation introduces
new genic information into the generation, corresponding to
an introduction of random seeds of parameter vectors into the
pool. Generally, GAs require a population size ofO(102) to
preserve sufficient possibilities for the search. Since the pop-
ulation size is correspondent with the number of model runs
required for each generation, it is generally not possible to
apply the algorithms to a parameter optimization of coupled
ocean–sea ice models in its original form.

The µGA, on the other hand, requires a very small pop-
ulation size regardless of the chromosome length (Gold-
berg, 1989). The basic strategy of the µGA is to perform a
quick search in parameter space by taking advantage of the
small population size and to perform an intensive search by
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Fig. 3. Schematics of key processes in genetic algorithm:(a) en-
coding the parameter vector to binary bit strings,(b) preparation
of generation,(c) evaluation of fitness of each individual,(d) re-
combination of genes and(e) renovation of generation. See text for
description.

iterative reinitializations. Technically, the algorithm is com-
posed of 3 processes: a reproduction of individuals, an as-
sessment of convergence and a reintroduction of randomly
generated individuals throughout a reinitialization. The re-
production of individuals is achieved by a recombination of
genes in the same manner as in the simple GAs with the ex-
ception that the best fittest individual of the current genera-
tion is reserved and is directly transferred to the next genera-
tion without any change (Fig. 3e). After each renewal of gen-
eration, the algorithm evaluates convergence of genotype in
the generation, and if the diversity of the genes is lower than
a certain criterion, all the individuals except the fittest one
are replaced by randomly generated new individuals (reini-
tialization). Since the new information is repeatedly intro-
duced by the reinitialization process, µGA does not need a
mutation process. (An example of evolution of estimated pa-
rameters is shown in Appendix A.) Advantages of the µGA
compared with the simple GAs have been reported in Kr-
ishnakumar (1989) and Kim et al. (2002), and examples of
application of µGA to various problems can be found in the
papers mentioned in the Introduction.

Figure 2b shows schematics of the parameter optimiza-
tion system with the µGA. We adopted the genetic algorithm
driver developed by Carroll (1996) to implement the µGA
into the system. As shown in the figure, the number of CPUs
necessary for running the system is equivalent to the num-
ber of the population size of the generation. The population
size required for the µGA is generally less than 10; Gold-
berg (1989) indicated that a population size of 3 is sufficient
for convergence; Coello and Pulido (2001) used a population
size of 4; Krishnakumar (1989), Athias et al. (2000) and Kim
et al. (2002) used a population size of 5. On the other hand,
Schartau and Oschlies (2003) and Shigemitsu et al. (2012),
for example, adopted larger population sizes of 13 and 19. In
their studies, the population size is set to be the same number
as the number of control parameters. Schartau and Oschlies
(2003) mentioned that the choice is not mandatory, but was
found to perform well in their test experiment. In the present
experiment, we adopt population sizes of 5 and 8. The popu-
lation size of 5 is recommended by a number of former stud-
ies, whereas 8 is a number slightly larger than the number
of the control parameters. Both of the numbers are quite fea-
sible for recent parallel computational environments. Since
the system executes all the model runs in one generation in
parallel, the computational time required for an optimization
is given by the time for one model run times the number of
generations.

The number of generations required for an optimal so-
lution depends on the needed accuracy. Due to the quasi-
stochastic nature of the µGA, the convergence of a solution
particularly near the optimal solution is quite slow. In addi-
tion, since the parameter space is discretized by a prescribed
increment and the size of the increment is inversely propor-
tional to the size of the parameter space (or the number of
possibilities), a small increment necessary for an accurate so-
lution requires a search in a vast space. Therefore, we have
to figure out a practical number of generations as well as
a size of an increment in relation to the desired accuracy
of a solution. In order to obtain a tentative relation among
them, we performed preliminary optimization experiments
with a pseudo-function. In these experiments we found that
the number of possibilities of 27 for each parameter requires
at least 400 generations for a solution with 1 % expected er-
ror, and 1000 generations for a solution with 0.5 % expected
error (see Appendix B for details). It should be noted that
since these tentative estimations of errors were obtained from
a continuous function with only one minimum, it is not clear
whether such an error estimate is applicable to a complicated
function with a number of local minima. Nevertheless, from
the practical point of view, an optimization experiment with
400 generations is an upper limit of model runs if we in-
tend to apply the method to a parameter optimization with
a realistic time window, and therefore we employ these ten-
tative estimations to examine efficiency and applicability of
the present method.
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Table 3.Five series of optimization experiments with the FD and µGA.

FD – 1 FD – 2 µGA – 1 µGA – 2 µGA – 3 µGA – 4

Model code standard smth standard standard standard standard
Penalty term yes yes no yes no yes
Number of independent optimization 10 10 10 10 10 10
experiments
Number of possible combinations of ∞ ∞ (27)7 (27)7 (27)7 (210)7

parameter values
Number of population sizes – – 5 5 8 5
Number of model runs required for each 8 8 4 4 7 4
iteration or generation (except the
first generation of the µGA)
Number of total model runs 2536 3232 16 001 16 001 28 001 16 001

2.6 Optimization experiments

Before performing optimization experiments, we conducted
two-dimensional complete surveys of the parameter space
spanned byh0 andP ∗ to demonstrate the nature of the cost
function derived from coupled ocean–sea ice model. The sur-
veys were done for both standard- and smth-code with some
intensive search in a specific area. All the two-dimensional
maps showing the cost function structure are composed of a
mesh of 40×40 points obtained from 1600 model runs and
cost evaluations.

For the gradient descent approach, we performed a cou-
ple of series of optimization experiments with the standard-
and smth-code to examine the effect of smoothing of the
model code on the efficiency of an optimization (Table 3).
The cost function obtained from the smth-code is reevaluated
by applying the optimized parameters to the standard-code
for comparison purposes. In each series of experiments, 10
independent optimizations starting from different initial pa-
rameter sets were performed to see whether the optimized pa-
rameter sets converge to certain parameter values (Table 4).
The initial parameter sets are generated as follows: the first
parameter set is given by the standard parameter setup used
in previous studies of NAOSIM, and the second (the third)
parameter set is composed of the upper (lower) limits of re-
spective parameter values. The fourth parameter set is com-
posed of a combination of parameter values with their up-
per (h0, cdwatandcdsens) and lower (P ∗, cdwin, cdlat and
albedo) limits. The fifth to the tenth parameter set are com-
posed of random combinations of selected parameter values,
modified in discrete, nearly equidistant steps inside the pa-
rameter ranges. It is essential to perform such experiments
to assess the applicability of the algorithm to the objective
function, because one of the difficulties arising from the ap-
proach is missing the global minimum of a function with an
ill-shaped structure.

We also performed four series of optimization experiments
with the µGA (Table 3). Each series of experiments was com-
posed of 10 independent optimization experiments with dif-
ferent seeds for random number generator in order to statisti-
cally assess the efficiency of the algorithm. The first series of
experiments (µGA – 1) is conducted with the population size
of five and the number of possibilities of (27)7.The second
series of experiments (µGA – 2) has exactly the same setup
as the first one but includes the penalty term in the cost func-
tion to facilitate the direct comparison with the optimizations
by the FD method. The third (µGA – 3) and fourth (µGA –
4) series of experiments employ different setup parameters
in the µGA. The third series uses a population size of eight,
whereas the fourth series uses a larger number of possibilities
of (210)7.

3 Result

3.1 Property of the cost function

Figure 4 shows a two-dimensional cost function map in
h0−P ∗ space obtained from the standard-code. The other
parameters used for the cost evaluations were fixed to the
standard setup values from Table 4. The figure shows that
the total cost function reaches its minimum aroundh0∼1.3
andP ∗∼35 000 (Fig. 4a) with the standard parameter set.
This combination of theh0 andP ∗ values does not corre-
spond to minima of the 3 individual components (Fig. 4b–d)
of the cost function. The shapes of theJk/Nk coming from
different ice properties significantly differ from each other.
For example, around the center of the panels, the response of
the ice thickness cost toh0 variation (Fig. 4b) is opposite to
that of the ice concentration cost (Fig. 4c), while at the same
time, the ice drift cost is relatively insensitive toh0 variation
(Fig. 4d).

Such property-dependent responses of the cost suggest a
couple of important features of the total cost function derived
from a combination of different ice properties. The first point
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Table 4. Initial parameter sets for optimization experiments with the FD method.

Experiment h0 P ∗ cdwin cdwat cdlat cdsens albedo
number

1 (standard setup) 0.5 15 000 2.475×10−3 5.5×10−3 1.75×10−3 1.75×10−3 0.8
2 2.0 50 000 3.0×10−3 1.0×10−2 2.5×10−3 2.5×10−3 0.99
3 0.1 5000 0.5×10−3 4.0×10−3 1.25×10−3 1.25×10−3 0.6
4 2.0 5000 0.5×10−3 1.0×10−2 1.25×10−3 2.5×10−3 0.6
5 0.1 50 000 1.5×10−3 8.0×10−3 2.0×10−3 2.0×10−3 0.7
6 1.0 30 000 2.0×10−3 6.0×10−3 1.5×10−3 1.5×10−3 0.85
7 1.5 40 000 2.5×10−3 8.0×10−3 2.0×10−3 1.25×10−3 0.65
8 0.5 10 000 1.5×10−3 7.0×10−3 1.8×10−3 2.25×10−3 0.75
9 0.75 7500 1.0×10−3 4.0×10−3 1.4×10−3 1.85×10−3 0.95
10 0.25 20 000 0.75×10−3 5.0×10−3 2.4×10−3 2.4×10−3 0.8

Fig. 4. (a) A two-dimensional structure of the total cost function
in h0−P ∗ space obtained from the standard-code, and contribu-
tion to the cost from(b) ice thickness,(c) ice concentration and(d)
ice drift velocity. Note that the same contour interval is adopted in
all the panels, whereas the color scale is different. The black solid
rectangles around the center of the panel are the area for the magni-
fications shown in Fig. 5.

is that the function potentially has more than one minimum
even if each component of the cost has only one global min-
imum. The property-dependent responses may be partly due
to biased initial sea ice conditions, shortcomings of modeled
physics and also partly due to errors in the forcing data. Since
a parameter optimization work is inevitably accompanied by
such circumstances, the search algorithms for a parameter
optimization should be tolerant regarding the existence of lo-
cal minima. In other words, the gradient descent approaches
may have some difficulties finding a global minimum due to
the characteristics of the cost function. The second point is

Fig. 5. The same as Fig. 4, but the rectangular areas in Fig. 4 are
magnified.

that the shape of the total cost function, and therefore the
optimal parameter set corresponding to the cost function, is
strongly influenced by relative importance or weightings of
respective components. Since the relative importance stems
from squared differences between modeled and observed ice
properties divided by observational uncertainty, an appropri-
ate choice of respective uncertainties is of significant impor-
tance. Although we adopted here the provisional uncertainty
values to concentrate on our examination of an applicability
and efficacy of the optimization methods, we have to investi-
gate appropriate uncertainties as well as their relative weight-
ings when we perform parameter optimizations for realistic
simulations.

Another characteristic of the cost function is its micro-
scale structure. Figure 5 shows a magnification of the black
solid rectangles in Fig. 4. The cost function obtained from the
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Fig. 6. A two-dimensional structure of the total cost function in
h0−P ∗ space obtained from the smth-code, and contribution to
the cost from(b) ice thickness,(c) ice concentration and(d) ice
drift velocity. (e) Magnification of the black solid rectangle in(a).
(f) Magnification of the black solid rectangle in(e). (a–d)utilize the
same contour interval but different color scale, whereas(e) and(f)
utilize a different contour interval and color scale.

standard-code has a micro-scale uneven structure. Although
most of the unevenness on this scale stems from the ice con-
centration cost, the ice drift and ice thickness cost also have
uneven structures if we magnify the map further. Such an
uneven structure makes it difficult to accurately estimate a
gradient of the function required for the gradient descent ap-
proach, and then extremely lowers the accuracy of the so-
lution. Although an application of the smth-code mitigates
such a situation to some extent (Fig. 6a, e), the cost func-
tion still has an uneven structure on a smaller scale (Fig. 6f).
If we estimate possible increments for the FD method from
Fig. 6, 1h0∼0.025 and1P ∗∼500 are respectively the
smallest values that will not be affected by the micro-scale
unevenness. These estimations are consistent with the in-
crement values obtained from the preliminary experiments,
(mmax

i −mmin
i )×10−2 (i.e., 1h0=0.019 and1P ∗=450).

It should be kept in mind that although the smth-code does
not change the basic responses of the cost function to vari-
ations of respective parameters, it increases the cost by ap-

Figure 7.

Fig. 7. Time series of ice concentration cost (blue lines) and ice
drift cost (red lines) obtained from the standard setup (solid lines)
and from the optimized parameter set (dashed lines). The optimized
parameter set is obtained by using finite difference method with the
standard-code, starting from the standard setup (see Table 4).

proximately 7–8 % and slightly deforms the shape of the cost
function (Fig. 6a–d).

3.2 Gradient descent approach

To assess the ability of the optimization system, we first
examine the cost function and corresponding sea ice fields
obtained from an optimized parameter set. As an example,
Fig. 7 shows a time series of ice concentration cost and ice
drift cost before and after an optimization. The optimization
was performed by the FD method with the standard-code
starting from the standard setup shown in Table 4. The total
cost function was reduced by 26.3 % from 20.87 (standard
setup) to 15.39 (after the optimization) after 44 iterations,
and all of the 3 components of the cost were also reduced (ice
concentration cost: 25.6 %, ice drift cost: 24.6 %, ice thick-
ness cost: 28.7 %). As shown in Fig. 7, the system success-
fully reduced the ice concentration cost in summer, while the
cost in winter and spring seasons remained unchanged. In
August the broad ice-free area in the Eurasian Arctic found
with the standard setup was drastically improved by an appli-
cation of the optimized parameter set (Fig. 8a–c). As for ice
drift velocity, the time series of the cost shows that the cost
was reduced in the early months of the year, while the costs
in October and November were rather increased (Fig. 7).
Figure 8d–f show monthly mean ice drift velocity fields in
March, in which the improvement of the modeled ice veloc-
ity field is evident. For the ice thickness field, we have only
one ICESat campaign in 2003. The ice thickness averaged
over the period also shows significant improvement in the
Eurasian Arctic (Fig. 8g–i). These results indicate that the
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Fig. 8. Modeled and observed(a–c) monthly mean sea ice concentration in August 2003,(d–f) monthly mean ice drift velocity in March
2003 and(g–i) ice thickness in ON3 ICESat campaign period. The panels in the left column are NAOSIM with standard setup, while the
panels in the center column are NAOSIM with the optimized parameter set obtained from the finite difference method with the standard-code,
starting from the standard setup. The panels in the right column are from satellite observations:(c) OSI – 409,(f) OSI – 405 and(i) ICESat.

system can at least provide a parameter set that gives smaller
cost function, although the set might not be optimal.

Figure 9 shows the initial and optimized cost functions and
associated parameter values obtained from the 10 indepen-
dent optimization experiments by the FD method with the
standard-code. As shown in Fig. 9a, all the optimizations
starting from various parameter sets successfully reduced the
cost to similar values as the optimization starting from the
standard setup (opt-1). The final costs range from 15.02 to
15.47 (mean value is 15.26). Nevertheless, the estimated pa-
rameter values except albedo show quite divergent distribu-

tions despite the fact that they give similar costs (Fig. 9b–h).
Possible reasons for the divergent distributions are (1) short-
comings of the FD method associated with an inaccurate
gradient estimation caused by the micro-scale unevenness of
the cost function and its manifestation particularly in weak-
sensitivity regions, and (2) the search algorithm being stuck
to one of the local minima of the function. The first pos-
sibility comes from the characteristics of the cost function
shown in Figs. 4 and 5, and also from the fact that the simu-
lated ice fields corresponding to the estimated parameter sets
show quite similar spatial patterns, regardless of the different
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Fig. 9. The initial and optimized cost functions and associated pa-
rameter values obtained from 10 independent optimization exper-
iments with the finite difference method using the standard-code.
(a) Initial (red) and optimized (blue) cost function values.(b–h) Ini-
tial (red) and optimized (blue) parameter values:(b) h0, (c) P ∗,
(d) cdwin, (e)cdwat, (f) cdlat, (g) cdsensand(h) albedo.

parameter values (Fig. 10, the upper panels). The second pos-
sibility comes from the fact that some of the estimated pa-
rameters tend to have some specific values as can be seen in
Fig. 9c–g (e.g., in Fig. 9f, opt-1, 6 and 8 give similar esti-
mated values around 1.6×10−3, whereas opt-3, 5, 7 and 10
give values around 2.1×10−3) . In any case, we can con-
clude that the FD method with the standard-code can reduce
the cost to some extent, but at the same time, has a weakness
for estimating parameters with weak sensitivity to the cost.

The application of the smth-code mitigates the divergent
property of the estimated parameters to some extent. Fig-
ure 11 shows the initial and optimized cost functions and as-
sociated parameter values obtained from the 10 independent
optimization experiments with the smth-code. Variations of
some of the estimated parameters become small compared
to the standard-code (Fig. 11b, g and h). Other parameters
still vary over a similar range as with that of the standard-
code (Fig. 11e and f). The cost function values after the op-
timizations range from 16.26 to 16.39, and those values cor-
responding to the same parameter sets but re-evaluated by
the standard-code range from 15.26 to 15.59 (mean value is
15.38). These values are slightly larger than those obtained
from the optimizations with the standard-code, indicating
that the application of the smth-code, as a result, could not
provide parameter values, which gives smaller cost than the
cost obtained from the standard-code.

3.3 Stochastic approach

In this subsection, we survey applicability and efficiency of
the µGA by examining results from µGA – 1, in which the
population size is set to 5 and the number of possible pa-
rameter values is set to (27)7 (see Table 3). Afterwards, we
briefly show results from a different setup, µGA – 2, 3 and
4, to make a direct comparison of optimization efficiency be-
tween the µGA and the FD method, and also to examine the
effects of setup parameters used in the µGA.

The parameter sets obtained from the µGA optimization
experiments also succeeded to reduce the cost function and
improved the simulated ice fields as summarized in Figs. 12
and 13. The time series of the cost function (Fig. 12) and
simulated ice fields (Fig. 13b, e and h) were obtained from
a model run for which the mean parameter values obtained
from 10 independent optimization experiments by µGA – 1
were applied. The cost function value after the optimization
is 14.82, and the reduction rate of the cost compared to the
standard setup is 29.0 % (ice concentration cost: 27.5 %, ice
drift cost: 28.7 %, ice thickness cost: 32.0 %). As shown in
Fig. 12, the reduction of ice concentration cost is emphasized
in the summer months similar to the FD optimizations. The
costs from January to June are also reduced more than 10 %.
For ice drift velocity, the cost decreases in the early months
of the year, whereas they increase in October and November,
again similar to the FD optimizations. The spatial pattern of
the simulated ice fields (Fig. 13b, e and h) also exhibit similar
but slightly better structure than those from the FD optimiza-
tions (see also Fig. 8b, e and h for comparison).

Figure 14 summarizes the evolution of the cost functions
and corresponding parameter values throughout the 10 in-
dependent optimization experiments by the µGA (µGA –
1). As shown in Fig. 14a, the cost functions rapidly re-
duced during the first 100 generations, and the reduction of
the cost throughout the following 300 generations is rela-
tively small. After 400 generations, the costs obtained from
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Fig. 10. Standard deviation of the simulated sea ice fields calculated from the 10 model runs. In the respective model runs, the optimized
parameter sets obtained from the 10 independent optimization experiments by the finite difference method using the standard-code (the
model runs ina–c), or those by the µGA – 1 (the model runs ind–f) were applied. The standard deviations of (a andd) monthly mean sea ice
concentration in August 2003, (b ande) monthly mean ice drift velocity in March 2003 and (c andf) ice thickness in ON03 ICESat campaign
period.

the 10 optimization experiments range from 14.80 to 14.83
(mean value is 14.81). The evolution of the associated pa-
rameter values, on the other hand, shows slight modifications
even after the 100th generation in some cases. The variances
of the estimated parameters become nearly constant after 200
generations. (For line plots showing evolution of estimated
parameters, see Appendix C.) It should be noted that the es-
timated parameters are not necessarily applicable to a long-
term simulation and/or to assess physical processes of the
model, regardless of the reduction of the cost and the conver-
gence of the estimated parameters. This is mainly due to the
assimilation window used in our test case being shorter than
the spin-up time of the sea ice–ocean system. For example,
extremely high albedo values (∼0.99) are probably due to
the strongly biased ice concentration and thickness found in
the original model run (Fig. 14a and g). The algorithm leads
to more ice on the Eurasian Basin side by reducing sea ice
melt in summer with extremely high albedo values. For re-
alistic parameter estimation, the assimilation window should
be at least the spin-up time of the sea ice–ocean system (i.e.,
at least about 7 yr). This work will be done in a forthcoming
paper.

A remarkable point of µGA – 1 optimizations is the small
variance of the estimated parameter values even for parame-
ters that varied considerably in the FD method, such ascdwat
andcdlat (Fig. 14; see also Figs. 9 and 11 for comparison).

Figure 15 summaries standard deviations of the estimated
parameters obtained from the 10 independent optimization
experiments for the respective approaches. µGA – 1 gener-
ally provides better convergence of the estimated parame-
ters compared to the FD method. Although the FD method
with smth-code provides slightly better convergence than the
µGA for cdsensandalbedovalues, the standard deviations
are quite small in both approaches and the difference between
the two approaches is vanishing.

Figure 10d–f show the spatial pattern of standard devia-
tions of the simulated ice fields calculated by the 10 model
runs corresponding to the 10 estimated parameter sets by
µGA – 1. The figure shows that differences among the simu-
lated ice fields are sufficiently small and generally limited
to the marginal ice zone. In addition, the differences are
quite small compared to those obtained from the FD method
(Fig. 10a–c), indicating better convergence of the simulated
ice fields than those obtained from the FD method. The small
standard deviations of the simulated ice fields indicate that
the corresponding cost functions are closer to the global min-
imum than those obtained from the FD method.

In order to make a direct comparison of the optimization
efficiency between the µGA and the FD methods, we per-
formed an additional series of experiments (µGA – 2), in
which the penalty term was included in the cost function. In
this series of experiments, all the cost function values after
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Fig. 11.The same as Fig. 9 but with the smth-code.

400 generations are smaller than the minimum cost obtained
from the FD method, and the standard deviations of the es-
timated parameters are again satisfactorily small (less than
9 % of the prescribed parameter range), again supporting the
advantage of the µGA compared to the FD method.

Further experiments were also performed to examine ef-
fects of the setup parameters in the µGA on the efficiency
of the optimization. One series of experiments examines the
effect of the population size (µGA – 3), and the other series
of experiments examines the effect of the number of possible
parameter values (µGA – 4). If we increase the population
size from 5 to 8, the efficiency of an optimization slightly de-
creases (the maximum standard deviation of the estimated
parameters is 12.3 % of the prescribed parameter range at

Figure 12.

Fig. 12. The same as Fig. 7 but with the µGA optimization exper-
iments (µGA – 1: population size=5, number of possibilities of
each parameter=27).

400th generation), probably because of a reduced number of
reinitializations due to increased population size. For a large
number of possibilities, the convergence of the solution again
decreases, indicating that the larger parameter space worsens
the efficiency of the optimization even for an identical cost
function. These results indicate that the selection of the setup
parameters used in the µGA is important to achieve a fast
convergence within a limited number of generations.

4 Summary and conclusion

Two types of optimization methods were applied to a param-
eter optimization problem of a coupled ocean–sea ice model,
and a comparison of the two methods was made to assess an
applicability and efficiency of the respective methods. One
is a finite difference method based on a gradient descent ap-
proach, while the other adopts the stochastic approach of ge-
netic algorithms. To evaluate modeled sea ice properties, a
cost function composed of model–data misfit of ice concen-
tration, ice drift velocity and ice thickness was introduced.

An example of a two-dimensional complete survey of the
cost function in the parameter space showed that the cost
function composed of a combination of different types of
observations potentially has more than one minimum value.
In addition, the survey also showed that the cost function
exhibits a micro-scale uneven structure in parameter space,
which prevents the estimation of the gradient of the function
with high accuracy. Due to the nature of the cost function,
the finite difference (FD) method has difficulties estimating
optimal parameters. The estimated parameter values depend
on their initial guesses, and the standard deviations of the
estimated parameters calculated from 10 independent opti-
mization experiments were quite large for some parameters.
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Fig. 13. The same as Fig. 8 but with the average of the µGA – 1. The results from the standard setup (the left column) and from satellite
observations (the right column) are again shown to facilitate comparisons.

A longer time window for a more realistic parameter opti-
mization would render the cost function more complicated
and would make the FD method even harder to apply. The
genetic algorithm, on the other hand, provides satisfactory
results regardless of a relatively small number of generations
used here. The results show that the standard deviations of
estimated parameters calculated from 10 independent opti-
mization experiments were less than 6 % of the prescribed
range of the respective parameters. Examinations of standard
deviations of the simulated ice fields also suggest that the
µGA can provide cost functions that are closer to the global
minimum than those from the FD method. From these re-
sults, we conclude that the µGA is favorable compared to the

FD method for a parameter optimization of coupled ocean–
sea ice model of medium resolution.

In a forthcoming paper we will extend the assimilation
window to be comparable to the spin-up time of the sea ice
model of about 5 to 7 yr to obtain more “physical” optimal
parameters. This set of parameters can be applied to higher
resolution models (O ∼10 km). The cost function can be
evaluated without large computational costs, and the bene-
fit can be examined although the parameters are not “opti-
mal” for these models. A direct application of the µGA to
theO(10 km) model is possible but not achievable with the
computer resources currently available to us at AWI .
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Fig. 14.The initial and optimized cost function values and associ-
ated parameter values obtained from 10 independent optimization
experiments with the µGA (µGA – 1; population size=5, num-
ber of possibilities= (27)7). (a) Cost function values at the initial
(red) and after 100 (yellow), 200 (green) and 400 (blue) genera-
tions. (b–d) Parameter values at the initial and after 100, 200 and
400 generations (the same color correspondence as(a)). The initial
cost functions and associated parameter values for respective opti-
mization experiments were obtained from the best fittestindividual
in the first generation.

The computational costs of the µGA limit the direct appli-
cation to eddy-resolving models of the Arctic (O ∼1 km).
For this class of models, further development in high-
performance-computing technology is needed.

Fig. 15. Standard deviations of the estimated parameters
obtained from 10 independent optimization experiments by
(a) the FD method and(b) µGA. The standard deviations
were normalized by corresponding parameter ranges: the nor-
malized standard deviation ofi-th parameter is given by(
mmax

i
−mmin

i

)−1
[
L−1

L∑
l=1

(m̄i −mi)
2

] 1
2

, whereL is the num-

ber of optimization experiments and̄mi is a mean of estimatedi-th
parameter.

Appendix A

An example of parameter renovation by the
micro-genetic algorithm

Table A1 shows the parameters of 5 individuals and their
fitness (cost function) for the first 6 generations of µGA –
1. In the first generation, all parameters are generated ran-
domly and the fitness is evaluated by model runs. The fittest
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Table A1. Example of evolution of estimated parameter values by the µGA (µGA−1).

Generation 1

No. h0 Pstar cdwin cdwat cdlat cdsens alb COST.FUNC.
1 1.16220 46456.69 0.000677 0.004142 0.001594 0.001427 0.67984 26.0288467
2 0.95276 41141.73 0.001327 0.008866 0.001772 0.001762 0.85488 17.9832013
3 1.13228 44330.71 0.002547 0.009811 0.002431 0.001427 0.79039 18.0514735
4 1.37165 25196.85 0.000953 0.005228 0.002057 0.002146 0.90402 16.8213995← the fittest
5 0.35433 44330.71 0.002272 0.007780 0.001476 0.002077 0.61228 26.8653972

Generation 2

No. h0 Pstar cdwin cdwat cdlat cdsens alb COST.FUNC.
1 1.37165 25196.85 0.000953 0.005228 0.002057 0.002146 0.90402 16.8213995← the old fittest
2 0.41417 23425.20 0.001661 0.006598 0.002352 0.001506 0.85488 17.1665073
3 1.37165 49291.34 0.002783 0.009764 0.002431 0.002146 0.70748 20.9840715
4 1.37165 19527.56 0.002331 0.008299 0.002037 0.002136 0.91630 15.8714103← the new fittest
5 1.31181 40787.40 0.000618 0.005606 0.002067 0.002096 0.85488 24.5029623

Generation 3

No. h0 Pstar cdwin cdwat cdlat cdsens alb COST.FUNC.
1 1.37165 19527.56 0.002331 0.008299 0.002037 0.002136 0.91630 15.8714103← the fittest
2 0.41417 26614.17 0.001701 0.009811 0.002352 0.001506 0.96543 17.1451719
3 0.41417 22362.20 0.000953 0.005276 0.002057 0.002136 0.90402 18.5657524
4 1.37165 25196.85 0.002370 0.005276 0.002037 0.002136 0.91630 17.0261603
5 1.37165 22362.20 0.001701 0.006409 0.002352 0.001506 0.85488 16.3909644

Generation 4

No. h0 Pstar cdwin cdwat cdlat cdsens alb COST.FUNC.
1 1.37165 22362.20 0.002370 0.004898 0.002352 0.002136 0.86717 18.2140693
2 1.37165 19527.56 0.002331 0.009811 0.002352 0.002136 0.91630 15.5498109← the new fittest
3 1.37165 19527.56 0.002331 0.008299 0.002037 0.002136 0.91630 15.8714103← the old fittest
4 0.41417 20944.88 0.001071 0.008299 0.002352 0.002136 0.96543 19.3435762
5 1.37165 25196.85 0.002370 0.005276 0.002037 0.002136 0.91630 17.0261603

Generation 5

No. h0 Pstar cdwin cdwat cdlat cdsens alb COST.FUNC.
1 1.37165 19527.56 0.002331 0.009811 0.002037 0.002136 0.91630 15.5990099
2 1.37165 19527.56 0.002331 0.008299 0.002352 0.002136 0.91630 15.8190923
3 1.37165 16692.91 0.002331 0.007921 0.002037 0.002136 0.86717 16.8763867
4 1.37165 19527.56 0.002331 0.009811 0.002352 0.002136 0.91630 15.5498109← the fittest
5 1.37165 25196.85 0.002331 0.004898 0.002352 0.002136 0.91630 17.2076177

Generation 6

No. h0 Pstar cdwin cdwat cdlat cdsens alb COST.FUNC.
1 1.37165 19527.56 0.002331 0.009811 0.002352 0.002136 0.91630 15.5498109← the fittest
2 1.47638 17047.24 0.001346 0.004236 0.001427 0.001496 0.71362 21.7795272←new individual
3 1.17717 28031.50 0.000657 0.004945 0.001378 0.001791 0.72898 23.4859782←new individual
4 0.98268 43622.05 0.002232 0.005276 0.001880 0.001614 0.75047 21.1250344←new individual
5 0.66850 43976.38 0.002508 0.005181 0.001644 0.001742 0.64606 25.7545548←new individual

individual (No. 4) is transferred to the second generation
without any change (No. 1 of the second generation). In the
second generation, a new fittest individual emerges by a ran-
dom combination of the binary bits coming from the indi-
viduals of the first generation. Then the new fittest is trans-
ferred to the third generation, and the old fittest individual is

abandoned. In the third generation, no new fittest is gener-
ated. It is evident in the third generation that the diversity of
the parameter values is decreased. In the fifth generation, the
difference of binary bits among the individuals is small and
correspondingly the diversity of the parameters is also small.
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Then reinitialization is done in the sixth generation produc-
ing new individuals.

Appendix B

Preliminary optimization experiment by the
micro-genetic algorithm

In order to estimate the needed number of generations in re-
lation to the number of possible parameter values (which is
inversely proportional to the increment) and the expected ac-
curacy of a solution, we performed optimization experiments
with a pseudo-cost function.

The pseudo-function is defined as follows:

cost=
M∑
i=1

(
mi

mcentral value
i

−1

)2

, (B1)

whereM is the number of optimized parameter (M = 7),
mi i-th parameter value andmcentral value

i = (mmax
i +mmin

i )/2
again the central value of the prescribed range ofi-th pa-
rameter. The function is smooth and continuous everywhere
and has only one minimum, cost=0, atm=mcentral value. A
mean error of estimated parameters after a certain number of
generations for a certain optimization trial is given by

e =
1

M

M∑
m=1

(
mOPT

i −mANL
i

mmax
i −mmin

i

)
, (B2)

wheree is a mean error normalized by the prescribed pa-
rameter ranges,mOPT

i i-th parameter value after a certain
optimization trial, andmANL

i the analytical solution ofi-th
parameter that gives the minimum cost function.mmax

i and
mmin

i are the prescribed upper and lower limits ofi-th pa-
rameter value given by Table 2. The expected value of the
mean error after an optimization is given by

E =

J∑
j=1

ejP
(
ej

)
, (B3)

whereE is the expectation of the mean error andP(ej ) is a
probability function.

Figure B1 shows the expected value of the mean error for
different number of possibilities (proportional to reciprocal
number of increment) and different number of generations.
Each point in the figure (from 23 to 215 possibilities for each
number of generations) is calculated by 100 independent op-
timization trials (J = 100) by the µGA. In each optimization
experiment, we can obtainej by Eq. (B2), whileP (ej ) is
simply given by the reciprocal number of optimization ex-
periments, 1/J . The figure indicates that a larger number of
generations generally gives a smaller expected error. On the
other hand, the number of possibilities has a small contribu-
tion to the expected error in the range of possibilities larger

Figure B1.

Fig. B1. An expected error of the estimated parameters by the
µGA as a function of number of possibilities and number of gen-
erations, obtained from the idealized pseudo-function experiments.
Each point in the figure is calculated by 100 independent optimiza-
tion trials by the µGA. See text for details.

than 27. The figure also indicates that a solution with 1 % ex-
pected error can be obtained after 400 generations calculated
with the number of possibilities of 27, while a solution with
0.5 % expected error needs 1000 generations with 27 possi-
bilities. Note that these results are only valid for the simple
cost function applied here, and it is not clear whether these
results can be directly applicable to an optimization for a re-
alistic cost function with complicated structure.

Appendix C

Evolution of estimated parameters by the micro-genetic
algorithm

The evolution of the cost function and the corresponding pa-
rameters of 10 independent optimization experiments (µGA
– 1) are shown in Fig. C1. The cost function and parame-
ters are taken from the best fittestindividual in the respective
generations. The cost functions of all experiments rapidly re-
duce during the first 50 generations. Afterwards the reduction
is moderate. However, the corresponding parameters still ex-
hibit large variance in the 50th generation. A total of 200
generations are needed in some cases to reach the desired ac-
curacy. After the 200th generation, the further reduction of
the cost function is very small and also the parameters only
change very slightly.
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Fig. C1. Evolution of the cost function and associated parame-
ter values through 10 independent optimization experiments by the
µGA (µGA – 1: population size=5, number of possibilities of each
parameter=27): (a) evolution of the cost function,(b–h) evolu-
tion of associated parameters(b) h0, (c) P ∗, (d) cdwin, (e) cdwat,
(f) cdlat, (g) cdsensand (h) albedo. Note that the division of the
horizontal axes is nonlinear. The vertical dashed lines were plotted
every 50 generations.
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of SeaWiFS data for light availability and parameter estimation
of a phytoplankton production model of the Bay of Biscay, J.
Marine Syst., 65, 509–531, 2007.

Johnson, E. G. and Abushagur, M. A. G.: Microgenetic-algorithm
optimization methods applied to dielectric gratings, J. Opt. Soc.
Am. A 12, 1152–1160, 1995.

Johnson, M., Gaffigan, S., Hunke, E., and Gerdes, R.: A compar-
ison of Arctic Ocean sea ice concentration among the coordi-
nated AOMIP model experiments, J. Geopys. Res., 112, C04S11,
doi:10.1029/2006JC003690, 2007.

Johnson, M., Proshutinsky, A., Aksenov, Y., Nguyen, A. T., Lind-
say, R., Hass, C., Zhang, J., Diansky, N., Kwok, R., Maslowski,
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