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Abstract. Recent advances in satellite retrieval methodol-of the two cases are 9.9 and 12.3 Gt CYrrespectively.
ogy now allow for estimation of particular organic carbon Overall, the remaining POC and phosphate misfits of both so-
(POC) concentration in ocean surface waters directly fromlutions are considered too large, and the difference fields still
satellite-based optical data. Because of the good coveragexhibit significant systematic geographical patterns. This in-
these data reveal small-scale spatial and temporal concemicates that the present model runs are too simplistic and do
tration gradients and document the evolution of surface wanot fully explain the data. Further, more refined model setups
ter POC as well as the underlying driving biogeochemi- are needed.

cal processes throughout the seasons. Water column nutrient
data also reveal biogeochemical activity. However, because

of the scarcity of data, the deduction of temporal changes

of particle production and export is not possible in most1 Introduction

parts of the ocean. Here we present first results from a new

study combining both data streams, thereby exploiting thelhe ocean is one of the major carbon reservoirs on Earth,
high spatio-temporal resolution of surface POC concentra£ontaining around 40000 Gt C, about 50 times more than in
tions from satellite optical sensors with water column nu- the atmosphere (Sarmiento and Sundquist, 1992). The ocean
trient data having sparser coverage but providing informa-S believed to be the ultimate sink for about 90% of hu-
tion throughout the entire water column. We use a mediumJnan fossil fuel emissions (Archer etal.,, 1998) In the surface
resolution global model with steady-state 3-D circulation thato¢ean, phytoplankton fixes dissolved carbon to form partic-
has been optimized by fitting to a large number of hydro_ulate biomass by photosynthesis (primary production PP). A
graphic parameters and tracers, including CFCs and naturaction of the particulate material sinks into the deep ocean
ral radiocarbon. Production and export of POC is alloweddue to gravity, thereby sustaining a downward flux of partic-
to vary monthly, and the magnitudes of the monthly exportmate nutrients and carbon (export flux). This process, which
fluxes are determined by fitting the model to satellite pocdepletes the ocean surface of nutrients and dissolved inor-
data as well as water column nutrient data using the adjoinga”ic carbon (DIC) relative to the deep water, is referred to as
method. Two cases have been investigated: (1) the produdhe biological pump (Volk and Hoffert, 1985). Drawdown of
tion rate of POC is set to be proportional to export produc-Surface carbon concentrations by the biological pump leads
tion (EP) and the seasonal changes are assumed sinusoid8l @n increased flux of COfrom the atmosphere, and the
(meridionally varying amplitude and phase), and (2) the pocoverall oceanic C@uptake thus depends on the strength of
production rate is linked to primary production rates (liter- the biological pump. Quantification of export flux and the
ature). Both cases were run with the same initial state angtrength of the biological pump therefore is an important ob-
model settings, and show total cost function decreases of 1{£Ctive.

and 95 %, respectively. The POC misfit term alone decreased Over the past decades, extensive work has been carried out

by 75 and 99.8 %. The integrated annual global POC export§0 quantify the downward carbon export in the ocean. One
observational approach is the use of sediment traps (Honjo et
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al., 2008; Gardner, 2000; Kahler and Bauerfeind, 2001). Thismethod of the adjoint model approach, Sect. 4 describes the
is a direct way of measuring downward export fluxes by cap-two experiments we performed, Sect. 5 shows the analysis
turing and preserving the sinking material. However, the dis-of the results of two experiments, and Sect. 6 contains the
advantages are sparse coverage in space and time. Moreovegmmary and conclusion.
the catchment efficiency of sediment traps, especially in the
shallow waters, are debated (Gust et al., 1994), casting doubt
on absolute flux values derived from shallow traps. Addi- 2 Data
tionally, there is another alternative instrument of measuring
carbon export directly, it is carried on ARGO floats, called There are two kinds of data used in this study: ship-based
“Carbo-ARGO” floats (Bishop and Wood, 2009). Besides measurements of dissolved inorganic nutriedtsq in the
these direct measurement approaches, radioiséffifa is  water column, and satellite-derived particulafipd) data for
also widely utilized to quantify particle export out of the sur- the ocean surface water. The dissolved nutrient data cover
face layer (Buesseler et al., 2009; Rutgers v. d. Loeff et al.the whole global ocean and extend from the surface to the
2011). ocean bottom. The satellite-derived particulate data provide
In addition to observational approaches, modeling isexcellent spatial and temporal coverage (much better the wa-
a powerful way of quantifying carbon export. Different ter column data), but data are only available for the ocean
model approaches are used to estimate carbon export, sugurface. Combining these two diverse data types is the novel
as ecosystem models (Aumont et al., 2003; Oschlies andeature of the present studly.
Kahler, 2004) or coupled physical-biogeochemical models
(Palmer and Totterdell, 2001). Performance of these forward.1  Water column data
models in terms of how well measured distributions are simu-
lated highly depends on clever choices of model parametersThe water column nutrient data are taken from the World
such as primary production and functions that relate exporOcean Atlas 2009 (WOAOQ9) (Garcia et al., 2010). WOA09
flux with PP. The inverse model of Schlitzer (2000, 2002) is based on a compilation of all presently publicly available
avoids these parameter choices and treats the geographicaltyuise data. These original data have been objectively ana-
varying annual export fluxes as independent parameters ddyzed, and climatological fields on & ¥ 1° horizontal grid
termined by the model by exploiting historical water column and at 32 standard depth levels have been produced for an-
data. However, this approach only yields the annual averagaual, seasonal, and monthly coverage for the world ocean.
fluxes and does not reveal seasonal changes. The WOAOQ9 nutrient and oxygen fields reveal important fea-
Recent advances in remote sensing now allow for directures that reflect the action of physical as well as biogeo-
quantification of surface carbon parameters such as the corchemical processes. The main aim of this study is to utilize
centrations of particulate organic carbon (POC) (Stramski ethe data and infer and quantify the strengths of the underly-
al., 2008) and particulate inorganic carbon (PIC) (Balch eting biogeochemical processes. The emphasis here will be on
al., 2005; Gordon et al., 2001). The satellite-derived fieldsthe export flux of particulate carbon from the surface ocean
are provided globally at high spatial and temporal resolution,into the deep.
and coverage is excellent, especially when compared to ship- As examples of nutrient distributions Fig. 1 shows surface
based water column data. Both of these quantities are serecean phosphate fields for June and December. Clearly visi-
sitive to biological production and export; therefore analysisble are the very low phosphate concentrations in subtropical
of this new data product likely helps in revealing flux varia- regions, whereas quite high concentrations are found in the
tions on small space and timescales. The disadvantage is thabrthern North Atlantic, the North and equatorial Pacific, and
satellite sensors only monitor the ocean surface. A combinaespecially in a circumpolar belt around Antarctica. We can
tion of satellite and water column data can build up a full 4-D also see that phosphate concentrations are generally lower
view of the global ocean. during the productive season (June in the Northern Hemi-
The present study uses the data-driven inverse model desphere, December in the Southern Hemisphere), reflecting
veloped by Schlitzer (1993, 2000, 2002, 2007) to link waterthe nutrient drawdown due to the production of particulate
column and satellite data for estimating carbon export and itsnaterial. This is also the case for the Antarctic high-nutrient
seasonality. Based on the older model version, we set up helt, where austral summer (December) concentrations are
new model combining water column phosphate and satellitenuch smaller than during austral winter (June).
POC data in the adjoint model in order to get better carbon Due to the combination of about 80 yr of measurements in-
export estimations on a monthly basis. The model is calcu-cluded in WOAQ9 this climatological dataset has quite good
lated in phosphor units, and using a constant Redfield ratiglobal coverage horizontally and with depth. Data coverage
(Redfield et al., 1963; Anderson and Sarmiento, 1994) relatfor any specific month (e.g., January 2000), however, is very
ing between phosphor and carbon. sparse, and fields as shown in Fig. 1 cannot be constructed
This paper is structured as follows: Sect. 2 introduces thebecause of lack of data. This situation is unlikely to improve
data we used in our study, Sect. 3 describes the details of thie the future because of the high logistical and financial costs
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Fig. 2. Climatological surface ocean POC concentrations for June
Fig. 1. Phosphate concentrations (unit umot) at 10m for and December (Stramski et al., 2008).
June(a) and Decembetb) from WOAOQ9 (data from Garcia et al.,
2010).

that for the first time provide estimates of particulate or-
of ship observations and the local nature of the obtained inganic carbon (POC) concentrations for the global ocean
formation. Many of the station data used for WOAQ9 have with unprecedented spatial and temporal resolution. In this
only been sampled in the upper water column, and, as atudy we use the product of Stramski et al. (2008) down-
consequence, coverage within the upper 500 m is much betoaded from http://oceandata.sci.gsfc.nasa.gov/cgifdis
ter than below. Because of the especially poor data coverPOC product uses data from the SeaWiFS satellite sen-
age in the deep, WOAQ9 monthly values are only providedsor on the SeaStar satellite. SeaWiFS covers the period
for the upper 500 m, whereas only annual average data arkom 18 September 1997 until 11 December 2010 and pro-
provided below. Due to the relative stability of the deepervides 10 yr of continuous observations. The release of high-
ocean, the temporal variation of phosphate concentrations isesolution satellite-derived surface ocean POC data is a ma-
weak, such that usage of annual phosphate values is justjer step forward, and now allows for direct inference of car-
fied. We take phosphate standard errors provided by WOAO%o0n export compared to the more indirect older approaches
or 0.03umolkg?! (whichever is greater) as the data error that were based on chlorophyll.
0cpq IN the data assimilation procedure described below. The Satellite POC data have much better temporal and spa-
0.03 umol kg! value corresponds to the typical expected er-tial resolution than water column data. As mentioned before,
ror of historical phosphate data. the existing water column data allow for construction of cli-

In this study, we use phosphate (and phosphorous) as matological fields, but are still too sparse to derive instanta-

proxy for carbon, and utilize the fact that abundance ratios oheous distributions on the basin or global scale. In contrast,
carbon and phosphorous in marine particulate organic matesatellites monitor the entire ocean and revisit individual loca-
rial are nearly constant (Redfield et al., 1963). The C/P Redtions typically within one or two weeks. Therefore, satellite
field ratio is used to infer carbon export from phosphorousdata are revealing small-scale features (9 km resolution) and
export. The reason for this approach is that there are about documenting their temporal evolution in great detail. In this
thousand times more phosphate data compared to carbon. study we use satellite data to fill up gaps in the water column

data.
2.2 Satellite POC data Figure 2 shows surface ocean POC distributions for June

and December (Stramski et al., 2008). POC concentrations
Development of new retrieval methods exploiting satellite- are generally low in the subtropical gyres, while they are
derived optical data of the ocean surface is an active fieldquite high in the biologically productive regions (equatorial
of research, and recently, new products have been releasehd coastal upwelling regions, subpolar and polar regions
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during productive summer periods). The lack of coverage inson
polar regions is due to light limitation during wintertime.

While providing high spatial and temporal resolution and . |
excellent coverage, satellite data have the disadvantage of n
being able to “see” below the ocean surface, and thus no suk
surface POC data exist. Considering advantages and disaf*™
vantages of satellite POC and water column data, it become i
clear that they are mostly complementary, and that the com
bination of the two will provide information not available
when using any of these sets individually. In this study we
assimilate both data streams and estimate the climatologice0s
monthly export of carbon in the world. -

As the amount of phosphate water column data is muct,
larger than for carbon, the present model is formulated in
phosphorous units. Therefore, before using the satellite PO(
data in the model, it is necessary to convert carbon to phos®s
phorous, using a fixed uniform Redfield ratio (C£R.06,
Redfield, 1963). Instead of POC the model uses the SOEig. 3. \_/griable resolutipn model grid. The green circle indicates
converted particulate organic phosphorous (POP) denoted 48€ Position of the data in Fig. 6.

Cpg- Note that the conversion does not change the structure

of the features as, for instance, shown in Fig. 2. The error 0
the satellite POC values is estimated=80 % (M. Stramska,
personal communication, 2010). As data error in the mode
we use 30 % or 13 mgi# (Stramski et al., 2008), whichever
is larger. The associated POP erregs, are obtained by ap-
plying the Redfield ratio above.
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fcapability to closely reproduce CFC and“Qistributions
Isuggests that water mass transports as well as ventilation and
overturning rates in the model are realistic. The model in-
cludes biological production of suspended as well as sink-
ing particles in the top two layers (euphotic zone: 0-133m
depth). Sinking particles are remineralized in the water col-
umn or at the sea floor. More details of the biogeochemical

processes in the model follow below.
3 Model

3.2 Model budgets equations
The model used in our study is an extension of the adjoint
model of Schlitzer (2007). The general model strategy is de-The model simulates two tracers, dissolved inorganic phos-
scribed in detail in Schlitzer (1993, 1995, 2000, 2002). In thephateCp and PORCp. Cp andCp are coupled in the surface
original model, all the tracers are in steady state except chlofayer (see Fig. 4). During the productive period, phosphate
rofluorocarbons (CFC). Following the treatment of CFC, we Cp is consumed by phytoplankton, leading to the build-up of
set up the model with phosphate and POP as time-dependaROP Cp, while the remineralization of'p leads to a release
model tracers with monthly resolution. Phosphate and PORf phosphate and thus to an increaseCpf Phosphatep
budgets contain the effects of circulation as well as particlebudgets are formulated for all boxes of the model throughout

production, degradation, and export. the entire water column, while budgets of suspended POP
Cp only exist in the surface layer. The sinking part@ is
3.1 Model grid remineralized while settling through the water column.

The concentrations afp andCp vary with time. TheCp

The model is global and has a nonuniform grid with hor- concentrations are transported by circulation and are affected
izontal resolution ranging between® £ 1° and 4 x5° by biological production (sink) and particle remineraliza-
(Fig. 3). Finer resolution is realized near coastal regionstion (source). When PO@p is formed during phytoplankton
while coarser resolution prevails in the open ocean. Thephotosynthesis near the ocean surface, dissolved phosphate
model has 2421 columns and three boundary columns adjacp, is consumed. Th€p budget for ocean surface boxes is
cent to the Mediterranean Sea, the Red Sea, and the Persiasg follows:
Gulf. There are 26 vertical layers, with thickness progres-
sively increasing from 60 m at the surface to 500 m at 5000 m
depth.

Figure 4 shows the main processes in the model. The
model has a steady-state 3-D circulation field that was ob-
tained by fitting the model to a large set of tracer data includ-
ing CFC and natural radiocarbon{} (Schlitzer, 2007). The
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Fig. 4. Schematic diagram of tracers and processes included in model. The two simulated tracers phosphate and particular organic phos:
phorous are represented by blue squares and colored dots, with symbol size reflecting typical concentrations. The size of the black arrow
indicates decreasing export flux with depth. Phosphate is transported by the ocean circulation (two big blue arrows) and also influenced by
the seasonal changes of mixed layer depth.

The vertical mixing coefficienKy, is affected by changes
of the mixed layer depth (MLD) taken from Monterey and

dﬂ = Levitus (1997). A deepening of MLD in the winter increases
dr Ky within the MLD, leading to an intense vertical mixing of
ZAi(uiCDi — KnVCp;) + ZAj(ijDj — KnVCp)) tracers within the MLD. In terms of phosphate this brings up
i J nutrients to the upper ocean from deeper layers, thus fuel-
dCp ing the next spring/summer bloom to come. In the model the
A — KyVCpr) —gp—V——. 1 : NG g
+ ; k(Wi Cor Wby —gp =V dr ) enhanced vertical mixing within the MLD is implemented by
applying a large factor oK\, for all vertical interfaces within
TheCp budget for ocean surface boxes has the form the MLD. The upscaling factor is reduced in a smooth way
to 1 for the first interface below the MLD.
% =gp. ) gp is the sink/source due to loss/gain by sinking parti-
dt cles. As in Schlitzer (2007) the vertical particle flyx(z)
The phosphat&€p budgets in the deeper ocean have the'S assumed to follow so-called Martin curves (Martin et al.,

dcp 1987). Production of particulate material occurs in the top

same form as Eq1j except that the last terivi=3F vanishes ; :
because of negligible subsurfa€e concentrations. two model layers (euphotic zone). The euphotic zepg

In Eq. (1), A is the area of an interface and has either als 133m. Sinking particles are remineralized below the eu-
positive or negative sign, depending on whether a positiveOhOt'C zone, and the patrticle flux decreases according to
flow u, v, or w (eastward, northward, or upward) enters or . @ =a-( / )b 3)
leaves the boxV is the box volume, an§Cp;, VCp;, VCp;, /P = ¢ /B2
areCp surfgce nprmal gradients onthe res_pgctive interfaces. In Eq. (3), the exponent determines the shape of the par-
The subscripts, j, andk indicate zonal, meridional, and ver- e flux profile, and thus controls the depth of remineraliza-
tical directions. In the present mo_del, the horizontal floyvs ar€on. Here we usé values provided by Schlitzer (2007).
steady state and taken from Schlitzer (2007). The vertical ve- 1a parametet represents the particle flux at the depth of

locity w is calculated by solving the continuity equation from euphotic zone, commonly referred to as export produc-
bottom to top in each columiKy, and Ky are horizontal and tion.

vertical mixing coefficients.

www.geosci-model-dev.net/6/1575/2013/ Geosci. Model Dev., 6, 19834 2013
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TheCp budget in Eq.2) simply links temporal concentra- the square of another model-adjustable parametetimes
tion changes with the net source/sink tegp We consider  a temperature-dependent fact@r The temperature factor
two different source/sink setups. (A) the source pagis Q follows Eppley (1972), and the monthly temperature data
set proportional to the particle export flux at the base of thefrom WOAQ9 temperature (Locarnini et al., 2010) are used.
euphotic zone, and the sink term describes exponential deA in Eq. () is the box surface area.
cay of the particulate material with a prescribed lifetime
(B) the source part of, is set proportional to the net pri- 3-3 Model parameters
mary production (NPP) obtained from satellite data, and the . .
sink term again describes exponential decay of particulatérhere are two groups of parameters in the model: indepen-

material, but the lifetime is temperature dependent and mode‘i’hent paramefterrlp*, w_high can be 3déusteddby the mod~el in
adjustable. These two setups are described in detail below. the course of the optimization, and dependent paramgters

In the first experiment (Exp A) th€p budget has the fol- which depend on the i_ndependent param_epérsand can be
calculated by performing a model simulation.

lowing form: : .
g The sets of independent parameters are different for the

dc C i i :

Vd_tp —aa—vEP 4) two experiments described above:
t p* = [pe] for Exp A,

The source term ofp is proportional to export produc-
. . . = for Exp B. 7
tion a, scaled with a factog. The sink term represents expo- LPe: Py palfOr EXp )
nential degradation of’p with a prescribed lifetime. The There are three types of independent parameters: export
export productior: follows Eq. 6) below. parameterge, remineralization parametets,, and produc-

2 tivity parametersp,. Note that all independent parameters

=ap- -s(y, 1), (5) . . .

a=0o- pe(x,y) s(y appear in squared form in the model equations to ensure

whereag - pg(x’ y) is the export flux of the steady-state so- Proper sign of the terms. For each type, there is one indepen-
lution of Schlitzer (2007) at longitude and latitudey, and ~ dent parameter for every model column; for example, each
p2(x, ) is the square of the spatially varying export flux pa- type of independent parameter descr!bes an entire 2-D global
rameter, which can be adjusted in the adjoint model. Formudi€ld- Exp B has three times as many independent parameters
lating the flux as square of the adjustable parameter guararS Exp A, and should therefore have more flexibility in fitting
tees positive export flux.(y, 1) = 1+« (y) -sin(®(y)+2rr)  the data. . _

is a prescribed season factor, which controls the seasonal EXP A only contains the export-related independent pa-
variations and time of bloom; is time; andk (y) is the rel- ~ fameters pe. These parameters not only appear in the
ative amplitude of the seasonal export variations ranging beSOurce/sink termgp of the Cp budgets but also in the source
tween 0 (no seasonal variations) and 1 (maximal seasondf'™m of theCp budgets. Therefore, in Exp A, varying the
variations) « (y) and®(y) are simplistic, prescribed formu- independent parametepg impacts both the’p andCp bud-
lations ensuring weak seasonality at low latitudes and stron?etS and tightly couples the two. Strong export (layge
seasonality at high latitudes. Blooms occur in spring at low!€2ds to large decrease of dissolved phosphate (drawdown)

latitudes and in late summer at high latitudes. and at the same time to large build-up of particulate matter.
In the second experiment (Exp B) ti#® budgets has the Exp A therefore has an inherent anticorrelation between the
following form: two tracers.

Runs of Exp A are started with initighe values from

V@ —p2.Np-A—V.-p2.0-Cp. (6) Schlitzer (2007). During the rupe values are adjusted to

dt * v satisfy the water column phosphate and ocean surface POP

Here the source of particulate material is set proportionaldata as closely as possible.
to satellite-derived new primary productiovp (Behrenfeld Exp B also includes the export-related independent param-
and Falkowski, 1997) scaled with the square of a model-eterspe but has two additional sets of independent parame-
adjustable parametex, (using the square guarantees a posi- ters, p, and p,, affecting the POP source and sink terms in
tive source term). Eq. ©). p)z, is initialized with the globally uniform value of

In the original satellite-derivetVp dataset there are no data 0.048day* (Schartau and Oschlies, 2003}, is initialized
in the polar regions, typically for some months during winter- with a globally uniform value of 0.75.
time; however, a complet¥p field is required by the model. The set of dependent parameters is composed of the
As a fill-in strategy we take 10 % of the maximuip value ~ model-simulated concentrations of the two tracers phosphate
over the given box surface area. This seems to be a reasoand POP:
able strategy as wintertime productivity values are expected.
to be much smaller than during bloom periods. In E), ( p=1Cp, Cpl. 8)
the sink term is theCp remineralization influenced by wa- The size of dependent parameter vector is determined by
ter temperature. The remineralization rate is proportional tothe number ofCp andCp boxes times the number of model

Geosci. Model Dev., 6, 1578590 2013 www.geosci-model-dev.net/6/1575/2013/
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Table 1. The parameters used in the model.

1581

Notation Meaning Note

p* In parameter

p Dependent parameter

Pe Export-independent parameter [Exp A & B] initial value from Schlitzer (2007)
Py Remineralization-independent parameter [Exp B only] initial valtﬁ;—_lB.MSH (Schartau and Oschlies, 2003)
Pa Primary production percentage-independent parameter [Exp B only] initial vqﬁjg 0.75

o Proportional factor to export production 3

T Lifetime of POP 10 days

0 Temperature factor Eppley (1972)

b Exponent of Martin type particle flux profile Martin et al. (1987)

u,v,w Zonal, meridional, and vertical flows

Cp Phosphate concentration

Cpd WOADO09 phosphate data

OCpy Error of WOA09

Cp Particulate organic phosphorous POP concentration

Cpq Satellite-derived POP concentration converted from satellite POC using Redfield ratio
OCpqg Error of satellite POP values

a Export production

Jp Particle flux

A Area of model box

Vv Volume of model box

time steps. A€p budgets exist for all depths, whi@& bud-
gets only exist in the surface layer, the numberCgf pa-
rameters is much larger than the numbeiCpfparameters.
The initial field of Cp is taken from Schlitzer (2007), while
the Cp field is initialized with zero uniformly. The time evo-
lution of Cp andCp is calculated by running a 10 yr model

weights used for the different experiments are identical (Ta-
ble 2).

Following standard procedures, model-data misfits for
phosphate and POC are calculated as error-normalized dif-
ferences between model simulated and observed values and
then squared. The data errors used are specified in Table 2. It

simulation. The model values for the last year are compareds assumed that data errors are uncorrelated. Given that the
with phosphate and POP data month by month, and the obelimatological phosphate data are the result of very many
served model-data misfits are fed into the adjoint model deindependent observations over the last 80yr, this assump-
scribed below. From the observed misfits the adjoint modeltion seems justified. The algorithms for estimating satellite-
determines modifications of the independent parameters thaterived POC values may in principle introduce correlated er-
will lead to a better next simulation. rors; however, the magnitude of such effects (if they exist)
are yet unknown.
3.4 Cost function
3.5 Adjoint equations
OnceCp and Cp are calculated during the model forward
run, theCp and Cp values of the last 12 months are stored The objective of the adjoint model is to find the minimum of
and Compared with observations. The model-data misfits a§OSt functionF under the additional condition that all model
well as other undesired features are accumulated in the co§quations are satisfied exactly. For Exp A the model equa-
function F of the model. The individual terms of cost func- tions are Egs.1) and @), while for Exp B we have Eqs1f
tion defined in this study are listed in Table 2. The total costand ). The first step in the derivation of the adjoint equa-
function F is the sum of all the terms listed (see B tions is to rewrite the model equations in homogeneous form
E; =0,i =1, ..., ne. Based on the cost functiaf, we then
formulate the Lagrangiah of the model,

(9)

F= thosphateﬂ‘ Fpoc+ Fsmoothness
There are two terms a_\ccumulatin_g squared m(_)o_lel—dath(p*’l;’k) = F(p*, p) +§:AJ- -E;. (10)

phosphate and POC misfits and a third term penalizing spa- =

tial roughness of the export-related independent parameters

pe (via second derivatives in east-west and north—south di- Herene is the number of model equations, angdare the

rections). The phosphate misfits Fynosphateare calculated — Lagrangian multipliers of the problem.

for three depth ranges separately and then summed up. The Seeking the minimum of cost functiafi is equivalent to

reason for the subdivision is the increased flexibility by al- finding a model solution that satisfies Eqsl) (12) and

lowing for individual weights for the individual terms. The (13).

www.geosci-model-dev.net/6/1575/2013/ Geosci. Model Dev., 6, 19834 2013
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Table 2. Description of individual terms in the cost functigh
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. . Weight factorw;
Meaning Mathematical form ExpA  ExpB
2
Phosphate data (surface 50 m) (Cf’%DCdW) -Wyq 100 100
2
Phosphate data (twilight zone: 60-400 m) (CD%;D") -Wo 5 5
2
Phosphate data (deep:400 m) (CD%C;DG') W3 1 1
D
2
POC data (surface) (CP%C;W) W, 100 100
P
. . gp2_2p2+p2 2+
Spatial smoothness of export production paramete 2W 5 ¢ ) e 50 50
(Ph—2p¢+ps)°]- Ws

%Cpd

is taken from the WOAQ9 phosphate standard error or 0.03 umdi kghichever is greateﬁcPd is taken as 30 % of the

satellite POC or 13 mg m3, whichever is greatepc, pw, pe, pn, andps are center, west, east, north, and south vataspectively.
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Fig. 5. Schematic overview of the model calculations.
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a descent algorithm that returns with a new and improved
set of independent parameters. Repeating this process iter-
atively will ultimately lead to a vanishing gradient vector,
and thus also satisfying EqL3). The derivation and imple-
mentation of the adjoint equations is described in detail in
Schlitzer (2007).

The general sequence of computational steps is shown
in Fig. 5. The advantage of the adjoint part is the adjust-
ment of independent model parameters that is guaranteed
to lead to smaller cost function values in subsequent sim-

Equation (1) represents the model equations, and is au-ulations. This is vastly superior to manual parameter opti-
tomatically fulfilled. One proceeds by calculating the La- mizations that in most cases do not lead to improved sim-

grangian multipliers\; from the Eq. {2). Then the calcu-

lated Lagrangian multipliers are inserted into Ei)(to cal-

culate the gradient of the cost functi@hwith respect to the
independent parameters. This gradient is then passed to

Geosci. Model Dev., 6, 157559Q 2013

ulations, or, in cases with thousands of parameters, is sim-
ply not technically possible. As explained in Sect. 4 be-

low, the adjoint model consists in a backward time-stepping
procedure with the same number of steps as the forward
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Table 3. Values of total cost function and individual terms (units of i.fbor Exp A and Exp B.

Total cost Phosphate Phosphate Phosphate POC  Smoothness of export

function («60m) (60-400m) £ 400m) production parameters

Exo A start 35.2 25.3 35 0.7 4.0 1.8
XPA end 31.1 25.3 3.1 07 1.0 0.9
Exo B start 294.9 22.4 3.2 0.7 267.2 14
*PE end 16.2 10.8 3.2 08 03 1.2

simulation. The computational cost of an adjoint run is sim- period, sufficient for upper ocean phosphate and POP fields
ilar to the cost of the forward run. A full iteration as shown to reach equilibrium. Initial values for phosphétg are from
in Fig. 5 thus requires about twice the effort of a forward Schlitzer (2007), and POP concentratiagfsare initialized
simulation. Hundreds or thousands of such iterations needvith zero.
to be performed to reach the minimum in large-scale prob- The simulation produces 120 snapshot field§gfandCp
lems. Our present model can be run on a typical PC, anadtoncentrations, which are kept in memory for usage during
computing time for finding optimal solutions is about a day. the backward adjoint run. Only the simulated phosphate and
The adjoint code of the present study was obtained manPOP concentrations during the last year are compared with
ually, and various efficiency measures were implementeddata on a month-by-month basis. Model-data misfits are ac-
Alternatively, FORTRAN adjoint code can also be obtained cumulated in the cost function as discussed above and listed
quasi-automatically using automatic adjoint model compilersin Table 2. Note that, in addition to the data misfit terms, a
(Giering and Kaminski, 1998, 2000; Giering et al., 2005).  smoothness term for export-related independent parameters
is also included in the cost function. This term is never dom-
inant in Exp A or Exp B (see below).
4 Model experiments The adjoint equations Eqs1%) and (3) have spe-
cial structure allowing for very efficient calculation of La-
As shown in Fig. 5 the model calculations can be dividedgrangian multipliers using a backward-in-time stepping of
into two parts. The first part is a normal forward run (simu- the adjoint equations Eql®) and finally of the gradient of
lation) that, for a given set of independent parameters, calthe cost function with respect to the independent parameters.
culates the dependent parameters (trac€ts)and Cp by The computational cost for Exp B is higher than for Exp A
forward time-stepping of the tracer budget equations. Thisdue to the three times larger number of independent parame-
step uses traditional procedures as included in most existters.
ing physical or biogeochemical models. The second part in- Before starting the model runs, the correctness of the
volves running the adjoint of the forward model including cost function gradient was checked by applying the gradient
comparisons of the simulated tracer values with data and theheck described in the Appendix for a number of indepen-
accumulation of misfits in the cost function. Ultimately the dent parameters. Failures of the test in all cases were caused
gradient of the cost function with respect to the independenby coding errors. The production runs were only run after all
parameters is obtained by time-stepping the adjoint modekrrors were fixed and all gradient checks succeeded.
backwards. Once this gradient is known, a new, improved
set of independent parameter values is produced using a suit-
able descent algorithm (here: quasi-Newton conjugate gradis Results and discussions
ent algorithm). In essence the parameter improvements are
determined (driven) by the data and data misfits. The adjoint.1 Cost function values
model guarantees that the next simulation with improved
model parameters will have more realistic tracer figligs  Initial and final (optimal) values of the total cost function
andCp and a lower value of the cost function. Many such as well as for the individual terms for the two experiments
iterations consisting of simulation and an adjoint model runExp A and Exp B are shown in Table 3. Note that both ex-
have to be repeated until a termination criteria is satisfied angberiments were run with identical weight factors for the in-
an optimal solution is reached. dividual terms, thus making the values directly comparable.
In this study, we have run the two experiments Exp A The initial cost function value for Exp B (2:910°) is much
and Exp B described in Sects. 3.2 and 3.3 above. In eaclarger than for Exp A mostly because of the very large POC
case, we solve the budgets equations for phospfigtend misfit term caused by poor initial values of thg- and p,, -
POPCp using an implicit time-stepping scheme that allows independent parameters that determine the POC source and
for large time steps of one month. We integrate over a 10 yrsink strengths. In all cases at initial stage the POC and upper
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ocean phosphate misfit terms are the dominant ones, whila
the deep phosphate misfit and spatial smoothness terms a
about one order of magnitude smaller.

In all runs we find decreases of the total cost function
values as a result of the iterative optimization procedure.
In Exp A the reduction amounts to about 12 %, mostly duep
to the decrease of the POC misfit term (reduced from 4 tc
1x 107). The phosphate misfit terms for the surface and deeg
ocean remain almost unchanged, while the term for twilight ‘ e P
zone phosphate decreases by about 12%. The overall co T2 3 45 8 7 8 8 10 112
function reduction for Exp B is much larger than for Exp A ¢
and amounts to about 95%. This large reduction is mostly
due to reductions of the POC misfit term (from about 267 to
0.3x107) and the surface phosphate misfit term (from 22.4 to
10.8x 107). The other terms remain almost unchanged. Com-
pared to Exp A, Exp B has reached a much better state witt
the total cost function and the surface misfit term, amounting A“

1 T T pa T T T T T T T
T o, ——+— Prosphate

WOA Phosphate(umol/kg)

T T T T T
====Exp A @ Exp B —#— WOAQ9

Phosphate(umol/kg)

POC(mg/m®)
@

00

300 &

to only half the Exp A values and the POC misfit only be- £ ¢
ing one-third. Obviously the simulated phosphate and POC = 1o}
fields of Exp B are closer to the observations than the one: O 3 4 s & o & 9 10t w2
for Exp A (see below). men

In Exp A, the export-production-related parametggsire  Fig. 6. Comparison of monthly phosphate and POC values in the
the only adjustable parameters, and by design of Exp A, anygentral North Atlantic (position marked by green circle in Fig. 3).
adjustment ofpe directly influences the simulated surface (a) WOA09 phosphate and satellite PO®) model-simulated
POC and phosphate concentrations in a prescribed anticorréhosphate for Exp A and Exp B together with WOAO9 phosphate,
lated way. In regions where observations show simultaneou$c) model-simulated POC for Exp A and Exp B together with satel-
increase or decrease of POC and phosphate concentratior€é POC. andd) monthly mixed layer depth (MLD, Monterey and
Exp A has no way of fitting both data types because a bettel€Vitus: 1997).
fit of one type inevitably is associated with a poorer fit of the

other. Such a situation is shown in Fig. 6a for a location in theTis is consistent with the smaller value of the phosphate
central North Atlantic. In this region both data types, surface(< 60 m) cost function term of Exp B described above. The
phosphate as well as POC, decrease from April u_ntil SepteMyaan phosphate misfit of Exp B in the twilight zone is

ber. Exp A has no way to reproduce such behavior, and prog|ighiiy larger than for Exp A. In the deep ocean both ex-
duces quite unrealistic phosphate and POC values during the. iiants produce about the same misfits. Overall, Exp B

entire period. In Exp B the linkage between phosphate and,e forms better than Exp A, especially in the surface layer.
POC is less strict because of the additional independent pa-

rameter setp, and p, that affect the surface POC distribu- 5.3 Surface phosphate and POC analysis

tion but not phosphate. Thus Exp B has more flexibility than

Exp A. The inherent limitation of Exp A is also reflected in Figure 7 shows the model-simulated phosphate fields for
the final misfit values for POC and surface phosphate, whichlune and December. Overall, both experiments reproduce the

both are about a factor of 3 larger than for Exp B. main features in the observations (see Fig. 1) well. We find
low concentrations in the subtropical gyres and high con-
5.2 Misfit analysis centrations in the subpolar regions as well as in equatorial

and coastal upwelling regions. In Exp A, there are occa-

The mean and root-mean-square (RMS) misfit values of POGional small negative values in parts of the Atlantic subtrop-
and phosphate are listed in Table 4. Consistent with thdcal gyres. These are unrealistic values, caused in the model
smaller cost function values discussed above, Exp B also exby insufficient phosphate resupply to the ocean surface. In
hibits smaller POC mean and RMS misfits than Exp A. Both Exp B, these unrealistic values are not observed.
Exp A and Exp B show an underestimation of POC concen- When comparing more closely, the model-data phosphate
trations, which in the case of Exp B is quite small. misfits for Exp A (Fig. 7b and d) reveal significant and

The phosphate misfits are calculated separately for thdarge-scale systematic offsets. Exp A overestimates surface
three depth ranges also used in the cost function terms: suphosphate in the entire north Pacific, in the southeast Pa-
face layer & 60 m), twilight zone (60 to 400 m), and deep cific upwelling region and at high latitudes in the South and
water (> 400m). In general, Exp B exhibits smaller mean North Atlantic. Phosphate underestimation in Exp A occurs
and RMS phosphate misfits in the surface layer than Exp Aat low latitudes, especially in the Atlantic. This general misfit
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Table 4. Mean and RMS of phosphate and POC model-data misfits for Exp A and Exp B.

Exp A Exp B
Depth POC (mgn13) Phosphate (pumol Kgt) POC (mgn13) Phosphate (umol ket
Mean RMS Mean RMS Mean RMS Mean RMS
Surface layer —30.85 88.00 0.06 0.31 —-8.71 65.87 0.03 0.20
Twilight zone (60-400 m) - - —005 0.28 - - 008 0.28
Deep & 400 m) - - 0.03 0.13 - - 0.03 0.14

pattern is found for June and December, and seems to presoncentrations are lowest. At the chosen location, POC con-
vail throughout the year. In Exp B the magnitude of surfacecentrations start rising in early spring, reaching maximum
phosphate misfits is generally smaller than for Exp A, butvalues in April and exhibiting a steady decline during most
large-scale systematic features are also observed. of the summer season. This decline occurs while biological
Figure 8 shows the model-simulated POC fields for Juneproduction is high, as indicated by the decreasing phosphate
and December. Both Exp A and Exp B capture the mainconcentrations.
structure of satellite POC data: low concentrations in the sub- Figure 6b and ¢ show that Exp B is able to reproduce
tropical gyres, and high concentrations in the coastal regionsthe observed trends in phosphate and POC, while results of
However, significant systematic misfits are present both inExp A are far from the data and essentially show very small
Exp A and Exp B. In Exp A, the POC concentrations are seasonal amplitude in both cases. As the main reason for this
underestimated in most regions in June and December. Thefailure of Exp A we see the rigidity of its POC source/sink
are overestimated in the Southern Ocean during Decembesetup (Eqs4 and5), which strictly links phosphate draw-
In Exp B, the extent of overestimation and underestimationdown with large POC source term and increasing POC con-
is smaller compared to Exp A, but large-scale systematic pateentrations. Simultaneous decreases of both phosphate and
terns are also found. POC such as in Fig. 6 cannot be reproduced by Exp A by
The agreement between simulated and observed POC vatlesign.
ues for both experiments is best at low and poorest at high lat-
itudes (Fig. 8b, d, f, and h). The large POC misfits in subpolar5.4 POC export analysis
and polar regions may again be caused by model shortcom-
ings. However, it is also possible that the POC data quality isFigure 9 shows the downward POC export flux at the base of
poorer in these regions because of scarcity of satellite opticaihe euphotic zone (133 m depth) of Exp A and Exp B for June
data due to light limitation and frequent cloud coverage. Inand December. Both Exp A and Exp B show large seasonal
addition, because of the high logistical cost, direct, shipboardchanges of the POC export, especially in the high-export re-
measurements of in situ POC concentrations required for th@ions. In June, high POC exports are found at high latitudes
calibration of the POC retrieval algorithms are rare (Stramskiin the North Atlantic, the North Pacific, and near the east
et al., 2008), and it is quite possible that the satellite-based0ast of Africa. In December, the highest exports occur in the
POC data still contain systematic biases at these high latiSouthern Ocean, the coastal region of Africa, and the south-
tudes. ern subpolar regions. The seasonal evolution of high-export
As an example of the temporal evolution of surface phos-regions matches the seasonal changes of high productivity as
phate and POC concentrations over the course of an entiréeen, for instance, in satellite chlorophyll maps. The annu-
year, Fig. 6 shows data values and model simulations folly averaged global POC export of Exp A is 9.9 Gt C¥r
the location in the central North Atlantic marked in Fig. 3. While for Exp B we obtain an about 25% higher flux of
This location was chosen because of relatively large seasondi2.3 Gt Cyr. These values are within the wide range of
changes of both the dissolved nutrient as well as POC conliterature values between 11 and 22 GtCY{Laws et al.,
centrations (see Figs. 1 and 2). At this location surface phos2000; Schlitzer, 2000; Eppley and Peterson, 1979).
phate concentrations are highest during winter and spring
(Fig. 6a), when the MLD is deepest (Fig. 6d). During late -5 Identifiability of independent parameters
spring, when the upper water column warms and MLD de- ) . o )
creases, phosphate concentrations start to decline as biolog€ notion of identifiability addresses the question of
ical production is starting to use up nutrients. The phos_whe.ther it is at all possible to obtain unique sol_utlons qf
phate drawdown continues until September, when finallythe inverse problem for. unknown parameters of mtergst in
concentrations begin to increase again towards winter value$t meteorological/oceanic model from data collected in the

During winter and spring, when phosphate is highest, pocspPatial and temporal domains (Navon, 1998). In order to ad-
dress the identifiability of our adjoint model, we conducted

www.geosci-model-dev.net/6/1575/2013/ Geosci. Model Dev., 6, 19834 2013



1586 X. Yao and R. Schlitzer: Assimilating water column and satellite data
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b
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Fig. 7. Model-simulated surface water phosphate and model-data misfits for June and December. The left-han@ed)usniior Exp A,
and the right-hand columf@-h)for Exp B.

three additional sensitivity runs of Exp B with different ini- function as well as for individual terms, all differing by less
tial independent parameter values to investigate the degree dfian 5%. The export-related independent parameigis
variance in the solutions. The initial independent parametethe three sensitivity runs are surprisingly similar given the
values are 10° (Exp B1), half of the initial values in Exp B vastly different initial fields, especially for B1 with its spa-
(Exp B2) and two times the initial values in Exp B (Exp B3). tially constant near-zero values. The mean valuepgodmd
Experiment Exp B1 has to be considered an extreme casthe associated global carbon exports agree within 2% (Ta-
with all independent parameters close to zero. Any resultingole 5) and the spatial fields all reveal nearly identical export
structures in the final solutions are developed during the datpatterns (not shown). The situation is different for the two
assimilation process and are not already included in the ini-other groups of independent parameteyandp,, that deter-
tial fields. mine sources and sinks of POC. These two parameter groups
Results from these runs are listed in Table 5. While startingappear to be positively correlated, and similar POC distri-
with wildly different initial cost function values (not shown), butions can obviously be produced (see POC misfit term in
all sensitivity runs show similar final values for the total cost Table 5) with both POC sourcep,() and sinks p,,) small or
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Fig. 8. Model-simulated surface water POC and model-data misfits for June and December. The left-handasedi)irior Exp A, and
the right-hand columie—h)for Exp B.

large. The observed spread in the three runs is almost 100%& Summary and conclusions

Overall, we find a situation that is quite common in opti-

mization problems, where some parameters are tightly con-

strained (export parameters) while others vary largely. Theln this study, we use a medium-resolution coupled

fact that Exp B1, which starts from a “state of ignorance”, biogeochemical—physical ocean model and assimilate satel-

still produces a carbon export field nearly identical to thelite POC as well as water column nutrient data to estimate

other two runs shows that indeed the water column nutrienthe seasonal evolution of carbon export in the global ocean.

and satellite-based surface POC data contain sufficient inforAs an extension of previous work, the addition of satellite

mation for estimating the marine carbon export flux. data with their good spatial and temporal coverage allows for
estimating the temporal variation of the global carbon export
fields. The extended model simulates surface water POC con-
centrations in addition to nutrient concentrations throughout
the water column. Both simulated fields are compared with
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Fig. 9. Optimal POC export fields for June and December for ExgAr{db) and Exp B ¢ andd).

Table 5. Summary of Exp B sensitivity runs starting at different initial independent parameters.

ExpBl ExpB2 ExpB3 Mean Std. Dev. (%)

Initial parameters 106 05xp* 2xp*
Total cost function 20.4 20.2 20.5 20.4 +5.8
Cost function  Phosphate surface:60 m) 11.1 11.1 111 111 +0
(units of 10) Phosphate shallow (60—400 m) 3.15 3.14 3.17 3.15 +0.3
at optimal state Phosphate deep-(400 m) 0.80 0.85 0.82 0.82 +2.4
Satellite POC term 4.18 4.02 4.29 4.16 +2.6
Smoothness of export production 1.20 1.19 1.17 1.19 +0.8
2 3 a1
Independent p% mean (16 m3umol C s 1kg—1) 10.65 11.14 10.99 10.93 +1.8
p& mean 0.576 1.378 3.661 1.87 +70.0
parameters o 1
p2 mean (day?) 0.022 0.062 0.23 0.10 +90.0
Global POC export (Gt C yrt) 12.1 12.7 124 12.4 +2.0

respective observations, and model misfits are accumulatedbservations. The integrated carbon export in the two exper-
in the cost function of the model. The adjoint method is ap-iments amounts to 9.9 (Exp A) and 12.3 Gt CY(Exp B).
plied to drive the model to the satellite POC as well as wa- In the surface layer, we allow for material exchanges be-
ter column nutrient data and to optimize the export produc-tween dissolved phosphate and particulate phosphorous POP
tion values. Experiments are done using two different PORn a way that makes the two essentially anticorrelated. When
production scenarios (C/P Redfield ratio is used to converfPOP builds up, phosphate is consumed, leading to a decrease
between POC and POP), one with a POP source term ban phosphate concentration. On the other hand, when POP is
ing proportional to export production (Exp A), while in the remineralized, dissolved phosphate is released, and its con-
second case the POP source is proportional to independentlyentrations rise. Such an anticorrelation between the two pa-
obtained new primary production (Exp B). rameters is actually also found in the data of water column
The model results show that the adjoint method workedphosphate and satellite POC in many regions. However, in
well and that significant decreases of the cost function weresome locations and months, the observations show a positive
achieved. Final (optimal) phosphate and POP model distri-correlation between the two, with both parameters simultane-
butions agree much better with observations than initially,ously increasing or decreasing for some period of time. This
and the model has driven the model simulations closer tdbehavior cannot be reproduced by the model because of a
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setup implying anticorrelation. In such regions, simulated
and Cp values often differ much from observations, and the

model has no way of improving both tracers at the same time

because of the inherent anticorrelation built into the model.
This is especially the case in Exp A with its strict linkage of
POC export and POC production. In Exp B, the influence of
this design limitation is reduced by the two additional sets of
independent parameters.

The existence of significant and systematic differences be

tween model and observations in the final, optimal solutions
strongly suggests that the treatment of POP budgets and the

coupling with dissolved nutrients is overly simplistic and

1589

Table Al. Example results of a successful gradient test.

Step « R(a)
1 105 1.63x 1078
2 1004 1.56x 1076
3 103 1.56x 1074
4 1072  1.56x 1072
5 1071 1.58
) 6 1 1.78x 102
7 10 4.48x 10%
8 100 9.8 107

unrealistic in the present setup. This is especially true for

Exp A, which exhibits relatively small improvements in the

POP fields. While the present study has shown that in prin.AcknowledgementsThe authors thank Ines Borrione for tech-

ciple the adjoint method can be applied for determination of
time-varying export flux fields using satellite and water col-
umn data, the present results have to be considered prelim

nary and more refined model setups coupling the dissolved

and particulate phases of nutrients and carbon are needed.

Appendix A

Gradient test

Before the actual model runs, a gradient test (Navon et al.

nical support during processing of the satellite data, Ying Ye
for discussions on particle-related biological processes in the
pcean, and Andrea Bleyer for improving the language of the
manuscript. Financial support was provided by the EU FP7 project
CARBOCHANGE under grant agreement no. 264879.
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