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Data assimilation applications with high-dimensional nu-

merical models exhibit extreme requirements on compu-

tational resources. Good scalability of the assimilation

system is necessary to make these applications feasible.

Sequential data assimilation methods based on ensem-

ble forecasts, like ensemble-based Kalman filters, pro-

vide such good scalability. This parallelism has to be

combined with the parallelization of both the numerical

model and the data assimilation algorithm.

The Parallel Data Assimilation Framework PDAF has

been developed to simplify the implementation of scal-

able data assimilation systems based on existing numer-

ical models. PDAF is suitable for educational use with toy

models but also for high-dimensional applications and

operational use. PDAF is distributed as open source

software.

PDAF is configured for sequential data assimilation

with ensemble-based filters. A selection of filter and

smoother algorithms is fully implemented and optimized

in PDAF including parallelization, e.g.

•EnKF – Ensemble Kalman Filter [1]

• LESTKF – Local Error Subspace Transform Kalman

Filter [2]

• LETKF – Local Ensemble Transform Kalman Filter [3]

• LSEIK – Local Singular Evolutive Interpolated

Kalman filter [4]

• smoother extensions of the filters above

Common fixes and tuning options like covariance infla-

tion are also implemented. Further, a selection of ad-

vanced localization options are available.

Top: Principle of sequential data assimilation with a filter algorithm.

The state estimate of the assimilation is given by the ensemble

mean. The analysis estimate lies typically between the forecast es-

timate and the observation, hence closer to the true state.
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Logical separation of the assimilation system

2-level parallelization of the assimilation system

Left: PDAF uses a logical separation of the compo-

nents of the data assimilation system: Model, filter algo-

rithm, and observations. The filter algorithms are part of

PDAF’s core, while the model routines and routines to

handle observations are provided by the user. A stan-

dard interface for all filter algorithms connects the three

components. All user-supplied routines can be imple-

mented like model routines.

Right: The assimilation system is implemented with

PDAF [5,6] by extending the model source code and

utilizing parallelization. Three calls to subroutines are

added. In contrast to other frameworks, the model does

not need to exist as a separate subroutine. The ensem-

ble forecast is controlled by user-supplied routines that

are called through PDAF. Implementations using this

online coupling have been performed for models like

NEMO, FEOM, BSHcmod, MIPOM, NOBM, ADCIRC,

and PARODY.

Left: PDAF provides support for a 2-level parallelization

for the assimilation system:

1. Each model task can be parallelized.

2. All model tasks are executed concurrently.

Thus, ensemble integrations can be done fully parallel.

In addition, the filter analysis step uses parallelization.

All components are combined in a single program.

PDAF is coded in Fortran with MPI parallelization. It is

available as free software. Further information and the

source code of PDAF are available on the web site:

http://pdaf.awi.de
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ensemble size 8

ensemble size 64

ideal 512 proc. 

4096 proc. 

64/512 proc. 
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Time increase with increasing ensemble size
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64/512 proc. 
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Scalability: Time increase with increasing ensemble size 

The parallel performance has been tested with an imple-

mentation of PDAF with the finite-element ocean model

FEOM. About 94 to 99% of the computing time are used

for the ensemble integrations.

Speedup is accessed with a constant ensemble size. Due

to the parallel properties of the model, a speedup of 6 is

obtained when the number of processors is increased by

a factor of 8 (left panel).

The scalability of the assimilation system is visible when

the number of processes per model task is kept constant.

Increasing the ensemble size by a factor of eight results

in a time increase between only 1% and 7% (right panel).

• PDAF has been developed to simplify the implementation of

data assimilation systems. It is aimed for large-scale data

assimilation applications but can also be used to test or teach

assimilation methods with small models.

• Very good scalability is provided through the complete paral-

lelism of all parts of the assimilation system (ensemble inte-

gration, filter algorithms, and perhaps the model itself).

• Only minimal changes to the model source code are required

when combining a model with PDAF in its online mode. An

offline mode is also supported with separate programs for

model and filtering. The offline mode avoids changes to the

model code, but leads to a smaller computing performance.

• PDAF is currently used in several research projects with a

variety of models. It is in pre-operational use for forecasting in

the North Sea (see poster E-P10 by S. Losa et al.).
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