A new model for biomineralization and trace-element signatures of Foraminifera tests


Contact
Gernot.Nehrke [ at ] awi.de

Abstract

The Mg/ Ca ratio of Foraminifera calcium carbonate tests is used as proxy for seawater temperature and widely applied to reconstruct global paleo-climatic changes. However, the mechanisms involved in the carbonate biomineralization process are poorly understood. The current paradigm holds that calcium ions for the test are supplied primarily by endocytosis of seawater. Here, we combine confocal-laser scanning-microscopy observations of a membrane-impermeable fluorescent marker in the extant benthic species Ammonia aomoriensis with dynamic 44Calabeling and NanoSIMS isotopic imaging of its test. We infer that Ca for the test in A. aomoriensis is supplied primarily via trans-membrane transport, but that a small component of passively transported (e.g., by endocytosis) seawater to the site of calcification plays a key role in defining the trace-element composition of the test. Our model accounts for the full range of Mg/ Ca and Sr / Ca observed for benthic Foraminifera tests and predicts the effect of changing seawater Mg/ Ca ratio. This places foram-based paleoclimatology into a strong conceptual framework.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
34278
DOI 10.5194/bg-10-6759-2013

Cite as
Nehrke, G. , Keul, N. , Langer, G. , de Nooijer, L. , Bijma, J. and Meibom, A. (2013): A new model for biomineralization and trace-element signatures of Foraminifera tests , Biogeosciences, 10 , pp. 6759-6767 . doi: 10.5194/bg-10-6759-2013


Download
[img]
Preview
PDF
bg-10-6759-2013.pdf

Download (1MB) | Preview
Cite this document as:

Share


Citation

Research Platforms
N/A

Campaigns


Actions
Edit Item Edit Item