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Abstract We present a method for studying local stability of a solution to
an inverse problem and evaluate the uncertainty in determining true values
of particular observables. The investigation is done under the assumption
that only the Gaussian part of fluctuations about the local minimum of the
cost (likelihood) function is essential. Our approach is based on the spectral
analysis of the Hessian operator associated with the cost function at its
extremal point and we put forward an effective iterative algorithm suitable
for numerical implementation in case of a computationally large problem.

1 Introduction

The past decade was marked by a successful application of inverse tech-
niques to the investigation of oceanic dynamics. However, the key point in
formulating an inverse problem, namely specification of the cost (likelihood)
function, remains more an art than a well-defined engineering procedure.
Moreover, tuning the parameters and weights defining the cost function is
very often done on the grounds of visual inspection of the output pictures
and only deviations of the model-predicted fields from observations are used
as a quantitative criterion. Also there is no tool which can help in under-
standing how much the output depends on the initial guess, neither do we
have a reliable tool which can be used for estimating (in the framework of
of the employed inverse problem) the accuracy of the obtained result.

Since in general actual geophysical inverse problems are computationally
large and poorly conditioned, we also need a tool for the quantitative study
of their stability and the efficiency of regularization. Theoretical principles
for such an investigation are well known. Applications to geosciences have
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been described, e.g., by Thacker (1989). This work is aimed at constructing
a numerical scheme which can be used in practical applications.

Solutions to oceanographic inverse problems normally have the meaning
of a maximum likelihood estimate. The logic of the maximum likelihood
estimate implies that fluctuations of the solution about the most probable
state must not be large, otherwise the estimate becomes useless. Also one
should keep in mind that even when fluctuations about the most proba-
ble value are small and, in particular, there are no other local maxima of
the probability distribution nearby, spontaneous transitions to far-distant
locally-optimum solutions may occur and ruin the validity of the maximum
likelihood estimate. We shall not consider these highly non-linear phenom-
ena, but shall assume that the given solution makes sense. Therefore, it is
natural to linearize the problem in the vicinity of the most probable point
and treat the fluctuations as Gaussian noise (Thacker, 1989). The nature
of linear problems and corresponding analytic formulas are simple, so our
main concern is numerical implementation. Two particular examples will be
given for illustrative purposes, one in a general form and the other will be
related to the data assimilation problems arising in oceanography.

The outline of the paper is as follows. In section 2 we review basic prin-
ciples for solving inverse problems via variational techniques emphasizing
their probabilistic nature, discuss the maximum likelihood solution and ana-
lyze its uncertainty in the Gaussian approximation. In section 3 we describe
an iterative algorithm suitable for numerical implementation. For conve-
nience of reference we give a short summary in the appendix. In section 4
numerical examples are presented. Finally, general conclusions will be given
in section 5.

2 Variational formulation

We consider regularized inverse problems of the following form: given a D-
dimensional space X of possible solutions x, Riemannian metric 〈dx|g|dx〉
[we use standard angle-bracket notation (Dirac, 1981; Landau and Lifshitz,
1958a) to denote coupling between vectors and covectors] on it, which mea-
sures the quality of reconstruction (say, geodetic distance between the true
solution and the reconstructed one or the amplitude of random noise con-
taminating the reconstructed solution), and the probability distribution

DP (x) = Z−1 e−H(x) Dµ(x),
∫

x∈X

DP (x) = 1, (1)

where H is a scalar function, Dµ denotes the measure associated with metric
g and Z is a normalization constant, find the most probable solution x∗ such
that

H(x∗) = min
x∈X

H(x). (2)
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In terms of statistical physics X has the meaning of the phase space, Dµ
of canonical distribution, while probability DP is written in Gibbs’ form
(Landau and Lifshitz, 1958b). On the other hand, when formulated in the
language of the optimal control theory, x is normally referred to as a control
variable and H as a cost or likelihood function (e.g., Luong et al., 1998;
Thacker, 1989).

When H has well-determined minima one can expect that the saddle-
point approximation to (1) works well. In statistical physics it is known as
the mean-field theory, in statistics as the maximum likelihood estimating
(e.g., Nagelkerke, 1992), and within its framework we can consider X in the
vicinity of the optimum point to be an affine space and g a constant matrix.
Expanding H into a Taylor series,

H = H(x∗) +
1
2
〈x− x∗|h|x− x∗〉 + · · · , (3)

with h standing for a symmetric matrix of second derivatives of H with
respect to control variables at stationary point x∗, and substituting (3)
into (1), we find that the deviation x − x∗ of the control variable from the
optimal one appears to be a Gaussian stochastic vector with zero mean and
covariance matrix h−1,

Meanx

[
x− x∗

]
= 0, Meanx

[
(x− x∗) ⊗ (x− x∗)

]
= h−1, (4)

where Meanx[. . .] denotes mean value with respect to distribution (1).
Let Φα, α = 1, 2 . . . be observables, i.e., some scalar functions of control

variable x. Expanding Φα in powers of deviation x− x∗,

Φα = Φα(x∗) + 〈φα|x− x∗〉 + · · · , φα = dΦ(x∗),

we see that Φα are also Gaussian stochastic variables with the expected
value equal to Φα(x∗) and covariances

Cαβ
def= Meanx

{ [
Φα − Φα(x∗)

] [
Φβ − Φβ(x∗)

]}
= 〈φα|h−1|φβ〉. (5)

Therefore, to leading order of the saddle-point approximation correlation
functions of observables can be expressed as multi-linear combinations of
matrix elements of the form (5). In particular, the mean squared deviation
δ2 of the true solution x from the maximum likelihood estimate x∗ is given
by

δ2
def= Meanx

{
〈x− x∗| g |x− x∗〉

}
= Tr

{
h−1g

}
. (6)

The value of δ also characterizes stability of the solution: if instead of a deep
well centered at x∗ the “landscape” of H looks like a valley, position of the
deepest point becomes unstable and may be shifted by this distance along
the bottom of the valley. At this point some clarification should be done. In
our approximation the cost function is assumed quadratic and positive, and
since all positive quadratic forms are equivalent to each other (by means
of an appropriate linear transformation we always can turn h into a unity
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matrix), all directions in the phase space also seem equivalent. However, one
should take into account that we have a metric g for calculating the noise
amplitude and, therefore, while reshaping the cost function care should be
taken so that g is preserved.

We introduce the Hessian operatorH = g−1h as the ratio of two quadratic
forms and rewrite (5) and (6) as

Cαβ = 〈φα|H−1g−1|φβ〉, δ2 = Tr
{
H−1

}
. (7)

Operator H is self-adjoint and positive with respect to Euclidean structure
generated by quadratic form g and its spectral decomposition gives a full
set of invariants for the pair g and h of quadratic forms. We denote with
ε1, . . . , εD its eigenvalues and corresponding eigenvectors with ψ1, . . . , ψD :

H ψk = εk ψk, 〈ψi| g |ψk〉 = δik, i, k = 1, . . . , D. (8)

With this notation the covariance matrix of solution fluctuations takes the
form

h−1 =
∑

k

1
εk
ψk ⊗ ψk, (9)

while (7) becomes

Cαβ =
∑

k

〈φα|ψk〉 1
εk

〈φβ |ψk〉, δ2 =
∑

k

1
εk
. (10)

From (9) and (10) we see that along directions ψk corresponding to small
eigenvalues εk → 0 the profile of the cost function H is flat, position of x∗
is unstable, and their contribution to the fluctuations amplitude δ is dom-
inant. Also fluctuations of a particular observable, Φα, depend on whether
its gradient is perpendicular to these eigenvectors or not. Even when the
optimum point is unstable, certain quantities might be well observed if they
are invariant with respect to shifts in unstable directions.

For a quantitative description we introduce the Källén-Lehmann spectral
functions (see, e.g., Itzykson and Zuber, 1990) FH(ε) and Fα(ε) as follows:

dFH(ε) def=
∑

k

δ(ε− εk) dε, FH(0) = 0, (11)

dFα(ε) def=
∑

k

δ(ε− εk)
∣∣〈φα|ψk〉

∣∣2 dε, Fα(0) = 0, α = 1, 2, . . . (12)

Both of them are monotonically increasing and exhibit jumps exactly at
points coinciding with eigenvalues of the Hessian operator. Jumps of the
first one at spectral points are equal to dimensions of corresponding in-
variant subspaces, jumps of the other are equal to squared amplitudes of
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decomposition of φα into a superposition of eigenvectors. Each of these func-
tions accumulates much more information than the corresponding entry into
(7):

Cαα =

+∞∫
0

1
ε
dFα(ε), δ2 =

+∞∫
0

1
ε
dFH(ε). (13)

Also, convergence rate of many of iterative solvers in the vicinity of the
optimal point x∗ may be expressed through them. Thus, we consider the
stability problem to be completely examined if we find a way for computing
(7) and (11)–(12).

3 Computation

At present in case of a computationally large inverse problem a search for
the optimum point x∗ is done with the help of algorithms which perform
a descend from the starting point to the nearest local minimum computing
gradient of the cost function at each step. In contrast to the differential,
which is completely determined by the cost function itself, the gradient also
depends on the metric in the control space (Schwartz, 1967): ∇H = g−1dH.
In view of (3) we have ∇H = H |x − x∗〉, therefore, H |ψ〉 for any vector ψ
is available. We assume for the following that the product of the Hessian
operator and a vector can always be computed. Also in practice g is either
a diagonal matrix or differs from such a matrix by an operator of finite
rank, so we also assume that from the computational point of view g may
be treated as if it were diagonal.

The first formula in (7) suggests a simple way (Yaremchuk et al., 1998)
for evaluation of the covariance matrix: solve equation Hψβ = g−1φβ for ψβ

for all β and get Cαβ = 〈φα|ψβ〉. The value of δ2 may be obtained in a similar
manner if we perform an additional averaging over an ensemble of random
observables. Indeed, if φ is a Gaussian random vector with covariance matrix
equal to g, then

δ2 = Tr
{

Meanφ

[
φ⊗ φ

]
H−1g−1

}
= Meanφ

[
〈φ|H−1g−1|φ〉

]
, (14)

where Meanφ[. . .] denotes averaging over φ. In practice we can only use
a finite ensemble of independent realizations of a stochastic variable and,
therefore, our estimate of the average value of the matrix element on the
right-hand side of (14) will be approximate. The corresponding error may be
expressed in terms of χ-distribution. In particular, employing an ensemble
of five realizations, with probability of 90% we estimate the contribution
from any eigenmode with accuracy not worse than five decibel. According
to our experience it is enough to use three or even two realizations.

For computation of H−1g−1|φ〉 any suitable iterative solver can be used.
However, when (and in practice this is always the case) the Hessian opera-
tor is poorly conditioned, the result of such a computation does not make
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much sense since it will crucially depend on routine’s stopping criterion. It
seems more meaningful to get an estimate of the spectral functions (11)–
(12), examine their behavior, and choose the stopping criterion on these
grounds in a favourable case or issue an “undetermined” verdict otherwise.
For evaluation of (11)–(12) there are no library routines and we employ the
method proposed by Yaremchuk and Schröter (1998). Given any function
f of a complex variable regular at all points of the Hessian spectrum, we
can apply it to the Hessian operator itself (e.g., Rudin, 1991) obtaining the
following expression:

f(H) =
∑

k

f(εk) |ψk〉〈ψk|g. (15)

Obviously this formula does not only work in the case of analytic functions,
but distributions as well. Comparing it to (11)–(12) we see that

dFH(ε) = Tr
{
δ(ε−H)

}
dε = Meanφ

{
〈φ| δ(ε−H) g−1|φ〉

}
dε, (16)

dFα(ε) = 〈φα| δ(ε−H) g−1|φα〉 dε. (17)

In practice in case of a high-dimensional problem it is not possible to
evaluate a function of an operator explicitly, because we do not know eigen-
values and eigenvectors beforehand. We only can evaluate a polynomial by
successively computing H |ψ〉, H2|ψ〉, . . . for any given vector |ψ〉. Thus, we
may approximate distributions on the right-hand side of (16) and (17) by
polynomials and evaluate them iteratively.

The most straightforward way to obtain a polynomial approximation to
the delta distribution δ(ε−ε′) is to use the orthogonal polynomial technique.
Let

{
Pn(ε) |n = 0, 1, . . .

}
be a complete set of polynomials orthogonal with

respect to ρ(ε) dε, with ρ(ε) being a positive weight function. Then

δ(ε−H) g−1|φ〉 = ρ(ε)
∞∑

n=0

1
hn

Pn(ε)Pn(H) g−1|φ〉, (18)

where hn =
∫ ∣∣Pn(ε)

∣∣2 ρ(ε) dε. Here the main computational labor is re-
quired for evaluation of vectors Pn(H)| g−1φ〉, while subsequent summation
is cheap. It makes sense to use the sequence Pn(H)| g−1φ〉 also for evalua-
tion of Cαβ and δ2, say, by multiplying (18) by ε−1dε〈φ| from the left and
integrating (13) over the spectrum or, equivalently, by expanding H−1 in
an infinite series of polynomials Pn(H) and employing (7). However, it is
more practical to compute H−1/2| g−1φ〉 and use

Cαβ = 〈H−1/2g−1φα| g |H−1/2g−1φβ〉, (19)

δ2 = Meanφ

[
〈H−1/2g−1φ| g |H−1/2g−1φ〉

]
, (20)

since H−1/2 is less singular than H−1 and can be approximated more ac-
curately.
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In numerical applications the Hessian operator is always bounded, and
without loss of generality we assume that its spectrum is contained in the
subinterval (0, 1) of the real axis. [Estimation of the maximum eigenvalue
is relatively cheap and can be done, say, with the power method (Mathews,
1992)]. In the current investigation we use shifted Chebyshev polynomials
of the second kind (Bateman, 1953), Un(1 − 2ε), which correspond to

ρ(ε) = 4
√
ε(1 − ε), hn = π/2, n = 0, 1, . . .

and result in

H−1/2g−1|φ〉 =
16
π

∞∑
n=1

n

4n2 − 1
Un−1(1 − 2H) g−1|φ〉. (21)

Vectors |Un〉 def= Un(1 − 2H)|φ〉 may be computed recursively:

|U0〉 = g−1|φ〉, |U1〉 = 2 |U0〉 − 4H |U0〉,
|Un+1〉 = 2 |Un〉 − 4H |Un〉 − |Un−1〉, n = 1, 2, . . .

(22)

Spectral functions (11) and (12) may be represented in the form of a
trigonometric series if we lift them to a unit circle via substitution ε =
sin2 θ/2, 0 < θ < π :

FH

[
sin2

(
θ/2

)]
=

1
π

∞∑
n=0

sinnθ
n

Meanφ

[
〈φ|Tn〉

]
, (23)

Fα

[
sin2

(
θ/2

)]
=

1
π

∞∑
n=0

sinnθ
n

〈φα|Tn〉. (24)

New vectors |Tn〉 are formed from |Un〉 according to

|Tn〉 =

{
|Un〉, n = 0, 1,

|Un〉 − |Un−2〉, n = 2, 3, . . .
(25)

and are related to shifted Chebyshev polynomials of the first kind (Bateman,
1953) as follows:

|Tn〉 =

{
T0(1 − 2H) g−1|φ〉, n = 0,

2Tn(1 − 2H) g−1|φ〉, n = 1, 2, . . .
(26)

Certainly in case of spectral functions Fα covectors φα should be substituted
for φ in (22) and (26).

For numerical evaluation we have to truncate the infinite series (21)
and (23)–(24). This procedure may be interpreted as multiplication of the
expansion coefficients by the factors

wn =
{

1, 0 ≤ n ≤ N − 1,
0, N ≤ n,

(27)
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or, more generally, as smoothing functions represented by the original series:

f(H) 7→
∫ 1

0

W (H, ε′) f(ε′) dε′, W (ε, ε′) =
∞∑

n=0

wn

hn
Pn(ε)Pn(ε′) ρ(ε′).

Here f(H) stands for δ(ε − H) or H−1/2 and the kernel W (ε, ε′) is a
smoothed delta distribution determined by coefficients wn. When lifted to
the unit circle of Fourier frequencies θ, smoothing turns into convolution
with the smoothing kernel. In signal processing smoothing operators are
referred to as windows. It is well known that the Dirichlet window, given
by (27), leads to the Gibbs effect and it is better to use a different one. For
smoothing spectral functions (11) and (12) one should use a window that
is represented by a strictly positive kernel W (ε, ε′) and maps monotonic
functions into monotonic. Among such windows are the Cezàro kernel,

wn =
{

1 − n/N, 0 ≤ n ≤ N − 1,
0, N ≤ n,

(28)

and the Vallée-Poussin kernel (Hardy, 1949).
To construct an optimum window for computing H−1/2 let us suppose

that C(est)
αβ is an estimate of the covariance matrix. The relative error of an

estimate may be defined as

error def=

∣∣∣Cαβ − C
(est)
αβ

∣∣∣√
CααCββ

, (29)

and our goal is to minimize this error choosing the best polynomial approx-
imation P (ε) to ε−1/2. An optimal approximation to function ε−1 is well
known (see, e.g., Axelsson and Barker, 1984, for the theory of the conjugate
gradients method) and provides accuracy

error ≤ 1
cosh(Nθ∗)

, cosh(θ∗)
def=

1 +Emin

1 − Emin
, (30)

where Emin > 0 bounds the spectrum of the Hessian operator from be-
low. Accuracy in computing ε−1/2 appears to be higher and the optimum
approximating polynomial may be constructed as follows.

With the aid of Hölder’s inequality it is easy to obtain a bound for the
relative error in the following form:

error ≤ max
Emin<ε<1

∣∣∣1 − εP 2(ε)
∣∣∣ . (31)

The actual accuracy is normally much better than that given by (31), but
the right-hand side of (31) is a guaranteed one and we shall search for the
polynomial of degree N − 1 which minimizes it.
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Fig. 1 The optimum approximation to Hilbert’s transformer when N = 3 [Emin =
sin2 θmin/2] (left) and relative accuracy as a function of N (right). Accuracy for
the conjugate gradients inversion is shown by dashed curves, and for the H−1/2

method by solid curves. The kth curve corresponds to Emin = 10−k.

Suppose that we have succeeded in finding an odd polynomial F (s) of
degree 2N−1 such, that its maximum deviation ∆ on the interval

√
Emin <

|s| < 1 from the function sign(s) is minimal. Then

P (ε) =
1√

1 +∆2

F
(√
ε
)

√
ε

, max
Emin<ε<1

∣∣∣1 − εP 2(ε)
∣∣∣ ≤ 2∆

1 +∆2
.

Substituting sin(θ/2) for s =
√
ε, we see that function F(θ) = F

[
sin(θ/2)

]
may be interpreted as a finite-duration impulse response equiripple filter
approximating Hilbert’s transformer (e.g., Oppenheim and Schafer, 1989;
Parks and Burrus, 1987, and Figure 1).

Given an approximate Hilbert transformer F(θ) in the form of a Fourier
series,

F(θ) =
∞∑

n=0

cn sin
[
(n+ 1/2)θ

]
, (32)

we can obtain P (ε) as

P (ε) =
∞∑

n=0

an Un(1 − 2ε), an =
cn + cn+1√

1 +∆2
, n = 0, 1, . . . (33)

If only a finite number of cn are non-zero, P (ε) is a polynomial, and series
(21) should be replaced by

H−1/2g−1|φ〉 =
N−1∑
n=0

an |Un〉. (34)
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In signal processing the problem of digital filter design is well developed.
We used the Parks–McClellan algorithm (IEEE, 1979) for computing the
Fourier coefficients cn. The accuracy (31) of the estimate depends on N and
Emin and is better than that predicted by formula (30) for direct inversion
of the Hessian operator via the conjugate gradients method (Figure 1).

However, it is impractical to attempt to estimate the minimal eigenvalue
Emin beforehand. Instead it is natural to choose the necessary accuracy
and the number of iterations we are ready to perform. These two numbers
determine an approximation to Hilbert’s transformer in accordance with
Figure 1. The corresponding coefficients may be obtained via an iterative
algorithm similar to Parks–McClellan’s.

4 Numerical examples

To see the method in action we first demonstrate its performance in the
case of a toy model which can be solved analytically and then apply it
to estimating uncertainty in determining heat and mass fluxes across a
hydrographic section in the North Atlantic Ocean obtained in the framework
of a non-linear section inverse model (Nechaev and Yaremchuk, 1995).

Our toy problem is just a linear reconstruction of a 1D scalar field u(x)
on an interval x ∈ (0, 1) from direct observations udata(x). We employ the
likelihood function of the form

H =
κ2

2

∫ 1

0

(∇u)2
dx+

m2

2

∫ 1

0

(
u− udata

)2
dx,

where κ is a regularization constant and m−1 is the amplitude of noise
contaminating data. This choice results in the Hessian operator H = m2 −
κ2∆ with ∆ standing for Laplacian with Neumann boundary conditions.
The quality of reconstruction shall be determined by the L2-norm.

For numerical implementation we specify a function u(x) by its values
us at the nodes xs = (s− 1)∆x, ∆x = 1/(D − 1), s = 1, . . . , D, and define
the Laplacian with a finite-difference rule(

∆u
)
s

=
1

(∆x)2
(
us+1 − 2us + us−1

)
, s = 1, . . . , D,

assuming that u0 = u2 and uD+1 = uD−1 (mirror reflection with re-
spect to the boundaries). Quadratic form g is defined under the assump-
tion that we interpolate with constants around each node; this leads to
g = ∆xdiag

(
1/2, 1, . . . , 1, 1/2

)
because boundary points only contribute to

one half of the grid interval. Eigenvalues may be represented in the form

εk =
m2

2Emin

{
(1 + Emin) − (1 − Emin) cos

[
π
k − 1
D − 1

]}
, k = 1, . . . , D

where E−1
min = 1 + 4κ2m−2(∆x)−2 is the condition number of the system.

For the following we choose noise amplitude to be unity (m = 1) and char-
acterize the system by two parameters, D and Emin.
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Fig. 2 Uncertainty in reconstruction of the observed field (left) and spectral
distributions F1 and F2 for the first two observables u1 and u2, respectively (right).
Deviation δ is shown by dashed line; parameters of the toy model are D = 32,
Emin = 10−3.
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Fig. 3 Convergence of the H−1/2 method with the Dirichlet (1), Hanning (2),
Cezáro (3), and optimum (4) windows for the toy model at D = 100, Emin = 10−3

(left) and convergence of the H−1/2 (1) and conjugate gradients (2) methods for
the toy model at D = 100, Emin = 10−4 (right). Error bars for the H−1/2 (3) and
conjugate gradients (4) methods are given.

In Figure 2 we show the uncertainty in reconstructing field u at each
grid point and spectral distributions F1 and F2 for the first two observ-
ables Φ1[u] = u1 and Φ2[u] = u2 which fluctuate most strongly. Note that
while plotting spectral functions we made linear interpolation in between
the spectral points instead of drawing true jumps — this renders the curves
more readable and is indistinguishable from a step function when D → ∞.

In Figure 3 we demonstrate the impact of different windowing functions
on convergence rate of series (24) for the case of the most poorly deter-
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Fig. 4 Spectral distribution of the Hessian operator (1) and the observables that
map independent variables into the integrated mass (2) and heat (3) transports
when only smoothness as regularization is employed (left), and the same with an
additional background regularization (right). The dashed line points at the spec-
tral value determined by the uncertainty principle (due to truncation of infinite
series representing delta-distribution) and shows the resolution in the spectral
range. Note that in both cases distribution of the Hessian operator eigenvalues is
not resolved completely.

mined observable Φ1 and compare it with the convergence of the conjugate
gradients method used for straightforward evaluation according to (7).

As a realistic example we present a non-linear analysis of hydrographic
data. The model inverts temperature and salinity measurements from sur-
face to bottom along the cruise track of a research vessel to obtain the flow
field and thereby the mass and heat transport through the vertical plane
beneath the surface track. Details of the model may be found in Nechaev
and Yaremchuk (1995). The data set was produced artificially by integrating
the 1/3◦ North Atlantic Model of the FLAME Group (Redler et al., 1998).
The number of independent variables is of the order of 104 thus making a
direct inversion of the Hessian matrix for calculating the uncertainties of
integrated mass and heat transports impractical.

The quality of the inverse solution is evaluated by an Euclidean norm
where the fluctuations of each independent physical variable are weighted
by the inverse of an estimate of its horizontal variance. Since the control
parameters are the independent physical variables normalized by the square
root of their horizontal variance, the quadratic form g is represented by a
unity matrix.

The model is regularized by imposing spatial smoothness on the mod-
eled fields. In addition the deviation of the independent variables from a
prior guess, the so-called background, can be penalized. From Figure 4 it
becomes obvious that the gradients dΦα of integrated transports are with a
good accuracy orthogonal to the eigenvectors of the Hessian operator that
correspond to small eigenvalues, thus making the estimation of the trans-
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port uncertainties possible. The additional regularization with a background
term shifts the “infrared” part of the Hessian spectrum not seen in the left
frame of Figure 4 to the resolved part, but leaves the spectral distribution
of the transport observables almost unchanged. This means that although
we can not completely reconstruct the model state with the aid of the speci-
fied inverse problem and allowed CPU time, mass and heat transports seem
robust with respect to the choice of regularization and can be estimated rea-
sonably well. Employing the H−1/2 method with the cutoff Emin = 10−3, we
expect, on one hand, that more than 99% of elementary modes contributing
to their variance are accurately resolved and, on the other hand, that we
suppress numerical noise coming from the rest part of the spectrum.

5 Discussion

This paper deals with the problem of assigning confidence intervals to esti-
mates of individual observables, determining amplitude of possible deviation
of the true solution from the most probable one, and investigation of the
solution stability. It should be stressed that we only consider numerical
models of finite dimensions and do not investigate into their relations to the
corresponding continuous prototypes. The outline of the peculiarities and
shortcomings is as follows.

First, we confine ourselves to the Gaussian approximation and perform
numerically a complete spectral analysis of the Hessian operator associated
with the extremal point of the likelihood function. Evaluation of spectral
distributions not only provides us with information about the impact of reg-
ularization on linear stability of the problem, but also shows what portion
of the phase space becomes “visible” to iterative solvers after they per-
form a prescribed number of iterations. In case of high-dimensional poorly
conditioned problems reliability of estimates comes to the fore. From this
point of view our approach has an advantage over traditional linear systems
solvers which employ stopping criteria based on checking the magnitude of
the current relative change of the estimate. Theoretically, common solvers
may stop even when a substantial contribution to the answer is still lacking
or, on the contrary, may pass a solution and proceed further only amplifying
numerical noise. In contrast, spectral analysis provides a criterion for the
choice of a reasonable number of iterations: we only have to check that vital
eigenvalues are resolved. However, it should be stressed that even if we are
sure that 99.9% of eigenvalues are already resolved, there is no guarantee
that the remaining 0.1% do not dominate in the true answer. But if we
find that only 70% of the eigenvalues are resolved, we have a good reason
to discard the current estimate and continue the iteration to improve the
resolution.

Our approach is based on expansions of delta-functions and inverse
square roots in a series of Chebyshev polynomials. On one hand, one should
expect that expansions in a series of polynomials generated, say, by the
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conjugate gradients method or any other method based on decomposition
into Krylov’s subspaces may converge faster than Chebyshev’s. On the other
hand, all these polynomials exhibit violent fluctuations in between the spec-
tral points of the Hessian operator and can not be used for evaluation of
spectral functions. In contrast, shifted Chebyshev polynomials of the first
kind behave perfectly well over the whole spectral range and seem to be suit-
able for numerical computation. Also it is worth emphasizing that Cheby-
shev’s expansions allow us to employ the entire power of 1D filter design
and, given the number of iterations (or, equivalently, CPU time), to estimate
the resolution beforehand.
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Appendix

The computational algorithm of our study is aimed at estimating the spec-
tral distribution of the Hessian operator associated with an objective func-
tion at its minimum and covariances of scalar observables. The user has to
provide a subroutine that multiplies a vector by the Hessian, the number of
calls to this operation that can be afforded, and the required accuracy.

The method is summarized as follows: spectral functions (11) and (12)
store all necessary information about the Hessian spectrum and covariances
of observables. We can compute and plot them iteratively together with
estimates of uncertainty expressed by integrals (13). Formally the technique
is based on (23)–(24) for spectral functions, and on (19)–(21) for fluctuation
amplitude and covariances. All involved terms may be computed according
to (22) and (25).

In practical computations infinite series (21) and (23)–(24) must be trun-
cated. In order to avoid the Gibbs effect, which is introduced by simple
truncation with the Dirichlet or boxcar window, regularizing filters should
be applied. While an approximation to (23)–(24) may be obtained with any
standard smoothing window, a filter for truncating (21) is constructed by
minimizing the expected error in estimating the covariances. The resulting
window is related to Hilbert’s transform through (32)–(34). However, the
standard algorithm for computing the Hilbert transform coefficients is not
the most convenient one because it requires the user to supply the num-
ber of times he is prepared to multiply a vector by the Hessian and the
desired resolution in the spectral range. Instead of resolution we propose
to choose the required accuracy of approximation as the second parameter
that defines the smoothing window.
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In contrast to standard solvers our method offers an opportunity to
check a posteriori the spectral functions via visual inspection in order to
decide whether the choices were sufficient to resolve the part of the Hessian
spectrum that is of interest to a given application.
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