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The Fram Strait is the main gateway for water, heat and sea-ice exchanges between the Arctic Ocean and
the North Atlantic. The complex physical environment results in a highly variable primary production in space
and time. Previous regional studies have defined key bottom-up (ice cover and stratification from melt water
controlling the light availability, and wind mixing and water transport affecting the supply of nutrients) and
top-down processes (heterotrophic grazing). In this study, in situ field data, remote sensing and modeling
techniques were combined to investigate in detail the influence of melting sea-ice and ocean properties on the
development of phytoplankton blooms in the Fram Strait region for the years 1998–2009. Satellite-retrieved
chlorophyll-a concentrations from temporarily ice-free zones were validated with contextual field data. These
were then integrated per month on a grid size of 20 × 20 km, resulting in 10 grids/fields. Factors tested for
their influence on spatial and temporal variation of chlorophyll-a were: sea-ice concentration from satellite
and sea-ice thickness, ocean stratification, water temperature and salinity time-series simulated by the
ice-ocean model NAOSIM. The time series analysis for those ten ice-free fields showed a regional separation
according to different physical processes affecting phytoplankton distribution. At the marginal ice zone the
melting sea-ice was promoting phytoplankton growth by stratifying the water column and potentially
seeding phytoplankton communities. In this zone, the highest mean chlorophyll concentration averaged
for the productive season (April–August) of 0.8 mgC/m3 was observed. In the open ocean the phytoplankton
variability was correlated highest to stratification formed by solar heating of the upper ocean layers. Coastal
zone around Svalbard showed processes associated with the presence of coastal ice were rather suppressing
than promoting the phytoplankton growth. During the twelve years of observations, chlorophyll concentrations
significantly increased in the southern part of the Fram Strait, associated with an increase in sea surface
temperature and a decrease in Svalbard coastal ice.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

The rapid decrease in sea-ice extent and thickness in the Arctic
(Comiso et al., 2008; NSIDC, 2012), and the freshening of the Arctic
Ocean surface waters (Proshutinsky et al., 2010) are likely to impact
primary productivity and carbon export of the Arctic Ocean by alter-
ing solar irradiation, nutrient transport and plankton seasonality
(Arrigo et al., 2012; Boetius et al., 2013; Vaquer-Sunyer et al., 2013;
Wassmann, 2011).
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Previous satellite-based phytoplankton studies showed that the var-
iability in ice cover affects phytoplankton density in most geographical
sectors of the Arctic Ocean except for the Greenland and Baffin Seas
(Arrigo and Van Dijken, 2011; Pabi et al., 2008). Time series studies
showed that in some regions phytoplankton blooms occur earlier be-
cause of the Arctic-wide seasonal sea-ice decrease (Wassmann and
Reigstad, 2011), whereas at Fram Strait only a minor change or even
delay in phytoplankton bloom timing was recorded (Harrison et al.,
2013; Kahru et al., 2011). Generally, sea-ice cover can influence
phytoplankton blooms in a variety of ways: Firstly, sea-ice reduces
light penetration into the water column, which negatively affects
the growth of algae in and under the sea ice (Rysgaard et al., 1999;
Smetacek and Nicol, 2005). Secondly, during the ice melt, sea-ice
plankton, nutrients and trace elements are released into the
upper ocean layer. This process can accelerate the spring bloom
(Schandelmeier and Alexander, 1981; Smetacek and Nicol, 2005).
Furthermore, melting of sea-ice increases the upper ocean stability
ved.
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since freshwater is released into the upper ocean layer. This can either
promote blooms by keeping plankton closer to the surface where light
levels are favorable (Doney, 2006; Gradinger and Baumann, 1991;
Lancelot et al., 1993; Smith et al., 1987), or suppress them by increasing
grazing pressure from zooplankton (Banse, 1992; Behrenfeld, 2010).
Stratification can also limit nutrient supply from deeper layers and
thus constrain phytoplankton growth. The complex spatial, seasonal
and interannual variations in these biophysical factors suggest that a
considerable spatial resolution is needed to decipher the interaction be-
tween key environmental factors governing photosynthetic production,
in order to better understand the future of Arctic ocean productivity
(Cavalieri and Parkinson, 2012; Rabe et al., 2013; Sakshaug, 2004;
Wassmann and Reigstad, 2011). Simulationswith sea-ice oceanmodels
provide an important tool to test hypotheses related to the key mecha-
nisms that determine phytoplankton growth on interannual to decadal
scales. For the Greenland Sea and Fram Strait, this includes ice cover,
stratification, wind, surface water transport and the activity of grazers
(Skogen et al., 2007; Slagstad et al., 2011). Generally, interannual
variability in this region can be linked to the transport of Arctic
water through the Fram Strait, and the presence of sea-ice in spring
(Skogen et al., 2007). An effect of atmospheric warming on phyto-
and zooplankton growth was detected in the simulations, suggesting
that phytoplankton productivity in the Greenland Sea and western
Fram Strait may increase in the future (Slagstad et al., 2011).

Twomain ocean currents influence the exchange of water masses
in Fram Strait (Forest et al., 2010). The current flowing along the
Greenland coast is the East Greenland Current which carries cold
and low salinity Arctic waters southward. In the eastern Fram Strait,
the West Spitsbergen Current transports relatively warm and salty
Atlantic waters northward (see Fig. 1). Smith et al. (1987) reported
that the pycnocline in the Fram Strait is established by these large-
scale water movements and is a year-round feature of this region.
However, the Fram Strait is a spatially dynamic area in terms of
Fig. 1. The schemeof the transformation ofwarm subtropicalwaters into colder subpolar and po
of the current; red: 15 °C, yellow: 4 °C, blue: 0 °C, shadings of oranges or greens indicate interme
the location of Fram Strait. Image courtesy of Michael McCartney and Ruth Curry, Woods Hole
water mass exchange and sea-ice transport (Rudels and Quadfasel,
1991), with strong North to South and East to West gradients,
as well as substantial mixing by eddies (Johannessen et al., 1987).
The effects on phytoplankton growth via nutrient and light availabil-
ity are hence also likely to differ significantly on the scale of a few
tens to hundreds of kilometers within the Fram Strait region, render-
ing the detectability of interannual to decadal trends challenging.
Previous field studies reported that in the northeastern Fram Strait
(78–81°N, June–July 1984) phytoplankton density is higher in the
marginal ice zone, where physical processes such as enhanced
water-column stability and upwelling result in favorable conditions
for phytoplankton growth (Gradinger and Baumann, 1991; Smith
et al., 1987). In the southern Fram Strait (75°N transect, May of
1993 and 1995), phytoplankton biomass was shown to follow
hydrographical patterns, with elevated phytoplankton in the areas
of low salinities and, hence, higher stratification (Rey et al., 2000).
It has been shown that empirical algorithms for estimating CHL
from satellite information do not perform well in this environment
even if they were developed explicitly for Arctic waters (Cota et al.,
2004; Matsuoka et al., 2007). Generally the bio-optical properties
of polar waters may differ significantly from those of waters at
lower latitudes (e.g. Matsuoka et al., 2007; Mitchell and Holm-
Hansen, 1991; Sathyendranah et al., 2001).

Since 1998 sections across the Fram Strait were run repeatedly since
1998 (e.g. Budeus and Ronski, 2009; Schauer et al., 2008). During these
cruises the measurements of in situ chlorophyll-a (CHL) are carried
out regularly. This time series phytoplankton data can be used for a
thorough validation of ocean color products.

In our study, we combine both satellite-derived and simulated
physical data for the analysis of spatial (7 × 105 km2) and temporal
(1998–2009) variations in phytoplankton distribution in the Greenland
Sea. The satellite phytoplankton biomass data (given as chlorophyll-a
(CHL) concentration) were first validated with in situ CHL data within
larwaters in thenorthernNorth Atlantic. The color of the arrows indicates the temperature
diate temperatures. The small curled or spiraling lines denote sinking. Red square indicates
Oceanographic Institution.
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this region, and then studied with respect to changes in remote sensing
sea-ice concentration, as well as variations in simulated sea-ice thick-
ness, water temperature, salinity and stratification. The latter simulated
data sets were used because they provide time series information
throughout the water column and parameters which have not been
measured by satellite. Themulti-parameter time series analysis enabled
to test the following hypotheses: 1) processes associated with the
presence of drifting sea-ice promote phytoplankton growth within the
Fram Strait; and 2) effects of physical processes on phytoplankton
variability are spatially inconsistent in this region.

2. Data and methods

2.1. Methods

2.1.1. Chlorophyll extraction
In situ CHL data from RVs “Polarstern” and “Maria S Merian”

1998–2009 cruises were combined with the ARCSS-PP database
(Arctic primary production in situ database) covering years 1998–2003.
The samples of RV “Polarstern” and “Maria S Merian” cruises were
collected for 6 depths (0–100 m) in Niskin bottles, mostly between
June and July. 0.5–2.0 L of water were filtered through Whatman
GF/F glassfiber filters, and stored at −18 °C. Afterwards, in the
Alfred-Wegener-Institute laboratory, these filters were analyzed
with a spectrophotometer for higher values and with a Turner-
Design fluorometer for lower values according to the methods de-
scribed in Edler (1979) and Evans and O'Reily (1987). First the filters
were transferred to plastic centrifuge tubes, then 8–11 ml 90% ace-
tone was added. The filters were sonicated with an ultrasound device
in an ice-bath for less than a minute, and then further extracted in
the refrigerator for 2 h. After refrigerated centrifugation for another
ten minutes the chlorophyll/acetone extract was measured in a dark
laboratory room. The values from the fluorometer were calibrated
using the values obtained from the spectrophotometer. In addition,
calibration of the fluorometer was carried out with Sigma chlorophyll-a.
Refer to Matrai et al. (2013) and Hill et al. (2013) for details on the
ARCSS-PP database (http://www.nodc.noaa.gov/cgi-bin/OAS/prd/
accession/details/63065).

2.1.2. Satellite-borne chlorophyll measurements
Satellite CHL level-3 data were taken from the GlobColour archive

(http://hermes.acri.fr). The GlobColour data sets are based on themerg-
ing of level-2 data from three ocean color sensors over the whole globe.
The sensors are theMEdiumResolution Imaging Spectrometer (MERIS),
the Moderate Resolution Imaging Spectroradiometer (MODIS) and the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These sensors
measure visible and infrared light, which is mainly sunlight scattered
and reflected by the Earth's surface and by clouds. Such remotely sensed
information about open ocean water is complicated by atmospheric
absorption and scattering processes, and is only available in the pres-
ence of sunlight and the absence of clouds and sea-ice. The satellite-
retrieved CHL data set with 4.6 km spatial resolution was generated
using the Garver-Siegel-Maritorena (GSM) model (Maritorena et al.,
2002) and algorithm, developed by Maritorena and Siegel (2005). The
data for open ocean (case 1 waters) was used. Daily data sets were
used for validation purposes and the monthly data sets for the cross-
correlation analysis.

2.1.3. Estimation of sea-ice and ocean properties
Daily Sea-Ice Concentration (SIC) maps were provided by the

PHAROS Group of the University of Bremen. SIC data were retrieved
from the Advanced Microwave Scanning Radiometer - Earth Observing
System (AMSR-E) data with a spatial resolution of 6.25 km. AMSR-E
measures microwave radiation that is emitted by the Earth's surface
and by the atmosphere. This radiometer is independent of sunlight
and clouds and thus provides daily maps with fine coverage for high
latitudes. SIC is the percentage of a 6.25 by 6.25 km cell that is covered
by sea-ice. The uncertainty of the data is 25% for 0% SIC and 5,7% for
100% SIC (Spreen et al., 2008).

Monthly sea-ice thickness as well as water temperature and sa-
linity profiles down to 200 m depth were calculated with the North
Atlantic/Arctic Ocean sea-ice Model (NAOSIM). NAOSIM is a coupled
ocean-sea-ice model with 50 vertical layers driven by daily reanaly-
sis data from the National Centers for Environmental Prediction
(NCEP), developed at the Alfred-Wegener Institute for Polar and
Marine Research (Köberle and Gerdes, 2003). It is derived from the
Geophysical Fluid Dynamics Laboratory modular ocean model
MOM-2 (Pacanowski, 1995) and a dynamic-thermodynamic sea-ice
model with a viscous-plastic rheology (Hibler, 1979). NAOSIM has
been used in a number of studies on the dynamics of northern high
latitude oceans and was successfully validated by field observations
(e.g., Gerdes et al., 2003; Karcher et al., 2003, 2005, 2012; Kauker
et al., 2003; Köberle, and Gerdes, 2007). Specifically, the structure
and development of water temperatures of 50–500 m in Fram
Strait (and in the whole boundary current of the Arctic Ocean) for
1979–1999 were generally in good agreement with available obser-
vations. The interior Eurasian Basin of the Arctic Ocean, however,
was colder than the observations (Karcher et al., 2003). The salinity
sections, compared at East Greenland Shelf in September 2003 showed
that the model mimicked the stratification on the shelf very well
(De Steur et al., 2009). The simulated freshwater content, which is
derived from salinity data, when compared to the field observations
for the period of 1992–2008 (Rabe et al., 2013) showed strong similar-
ities in the large-scale pattern and amplitude. Regional differenceswere
however apparent, in particular in the Beaufort Sea and the southern
Canada Basin. Sea-ice concentration data were compared with satellite
observations for the period of 1978–2001 (Kauker et al., 2003), which
demonstrated the capability of the model in reproducing the long-
term mean state and the inter-seasonal variability in the Arctic and
the North Atlantic. The observed and modeled sea-ice concentration
variability were similar to a high degree, capturing even the small-
scale features in the Greenland Sea. A detailed model description can
be found in Fieg et al. (2010). Here we used the monthly data high
resolution version of NAOSIM with 9 km grid spacing.

2.2. Satellite chlorophyll data quality, availability and time series analysis

2.2.1. Validation
To obtain the sufficient number of collocations we validated the

satellite data for the whole Greenland Sea sector of the Arctic: north of
the Arctic circle at 66°33′39″N and between 45°W and 15°E as in
Arrigo and van Dijken (2011). The rest of the time series analyses was
performed for the Fram Strait area only, 76°N–84°N, and 25°W–15°E.

In situ and satellite data were required to have been collected on the
same day in order to be considered a validmatch-up. Satellite values for
match-upswere taken by averaging the valid pixels of a 3 × 3 pixel box
centered on the location of the in situ data. More than half of the pixels
in the box were required to be valid (i.e. not screened out due to clouds
or sea-ice cover). Most of the validationmethodologywas adopted from
GlobColour Full Validation Report (ACRI-STLOV et al., 2006). We vali-
dated the satellite data by the surface in situ CHL (b10 m) and alterna-
tively by the in-situ CHL averaged over the penetration depth (5–28 m).
According to Gordon and McCluney (1975) 90% of optical remote sens-
ing information in the homogeneous ocean originates from the upper
layer, defined by the parameter penetration depth. The penetration
depth can be estimated as depth at which downwelling in-water irradi-
ance falls to 1/e (e ≈ 2.72) of its value at the surface (Gordon and
McCluney, 1975). In our study the penetration depth was computed
for every profile as the euphotic depth (Zeu) divided by 4.6 (Morel and
Berthon, 1989). Zeu is defined as the depth where the downwelling
PAR irradiance is reduced to 1% of its value at the surface.We calculated
Zeu using themethod described byMorel and Berthon (1989, Eq. 1a, 1b).

http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/details/63065
http://www.nodc.noaa.gov/cgi-bin/OAS/prd/accession/details/63065
http://hermes.acri.fr


Fig. 2. Satellite GlobColour chlorophyll-a versus in situ data of RV ‘Polarstern’,
RV ‘Maria S. Merian’ cruises and ARCSS-PP database for the period of 1998–2010.
Black line: one-to-one line, red line linear regression line calculated in this study. In-situ
data have been averaged over the penetration depth defined according to Gordon and
McCluney (1975). Correlation statistics: N = 54, R = 0.64 (R2 = 0.41), RMSD = 0.35,
OFFSET = 0.1, SLOPE = 0.69.
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2.2.2. Temporal variability
The availability of the satellite GlobColour CHL data in Fram Strait

was assessed as following. Firstly, in each pixel we calculated the num-
ber of days per month (April–August) with data per year (1998–2009).
Only the months April–August were considered for further analysis
since they had a sufficient number of valid data points (more than 1/3
of the area covered with data). We spatially averaged the obtained
number of days with valid data over all the pixels in the Fram Strait
area, and summed up the monthly numbers for each of the years.

In the analysis of satellite CHL monthly time series, the trend and its
significance were assessed. We first fitted the trend line to the original
time series. Then, in order to avoid the influence of the seasonal cycle
on the trend line, the anomalies of the monthly data were calculated.
This was done by subtracting the climatological monthly value from
the currentmonthly value of the current year. The alternative reduction
of the magnitude of seasonal variability of the data was received by
smoothing the time series with the moving average filter of 5 months
(yearly cycle of the current dataset). The first element of the moving
average was obtained by taking the average of the initial five points of
the number series. Then the subset was modified by “shifting forward”,
i.e., excluding the first number of the series and including the next num-
ber following the original subset in the series. This created a new subset
of numbers, which was averaged. This process was repeated over the
entire data series. The plot line connecting all the (fixed) averages was
the moving average. The time series smoothed with a moving average
was used for the standard analysis of the trend for, see results in
Table 2. The magnitude of a trend was assigned as the difference
between the first and last y-values of a trend line. Significance of the
trends was evaluated using t-tests.

To assess the spatial variability of CHL, the standard deviation was
calculated as:

σCHL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

CHLi−CHL
� �2

:

vuut ð1Þ

where for a current month of the current year N is the number of valid
data pixels, CHL is the spatially averaged CHL value and CHLi is the CHL
of each data point i.

2.3. Calculation of simulated density, stratification

The Thermodynamic Equation Of Seawater — 2010 (TEOS-10) was
used to calculate potential density profiles from potential temperature
and salinity simulated by NAOSIM (Feistel, 2010). Upper ocean stratifi-
cation was then determined by calculating the depth where the poten-
tial densitywas 0.125 kg m−3 higher than at the surface (Levitus, 1982)
and alternatively by the maximum density gradient method (Method 5
in Zawada et al., 2005). Fram Strait is the region of sea ice melt, where
the shallow meltwater layer of low density appears locally. In this case
the stratification value obtained using the criteria we used does not
correspond to the conventional mixed layer, which is situated deeper.
To avoid the confusion of stating that the shallow freshwater layer is
the mixed layer, we use the term ‘stratification’ instead.

2.4. Statistical analysis of relationship between chlorophyll and
environmental factors

Monthly satellite-retrieved sea ice concentrations (SIC) were spa-
tially averaged for the part of the Fram Strait that was not constantly
ice-covered, and for the period of April–August 1998–2009. Of all
months, July 2009 (see basemap in Fig. 7) showed the lowest SIC
(20%). Only area not covered with sea-ice in July 2009 was used for fur-
ther analysis. In this area, ten sites were chosen in such a way that they
covered 1) the marginal ice zone (sites A, C, G, see Fig. 7 for locations);
and 2) open ocean (sites D, E, H, I); 3) the coast of Svalbard (sites B, F, J).
Their centers were equally spaced in latitude and longitude (1° latitude
step, 4° longitude step) so that they did not intersect. For the parameters
of interest all pixels within a 20 km radius around the individual sites
were averaged into one value. Then a cross-correlation analysis of the
data was performed. The data included monthly resolution time-series
of satellite CHL and SIC, and simulated sea-ice thickness, surface water
temperature and salinity as well as stratification for April–August
1998–2009. In addition, the connection between the timing of the
bloom onset and the sea-ice was roughly estimated. For this purpose,
satellite CHL and satellite SIC time series were used to calculate for
each site and each year if the large increase in CHL between April and
May (CHL N 0.5 mgC/m3) coincided with the presence of ice in April
(SIC N 5%).

All the analyseswere restricted to the period of April through August
due to limitations of satellite-retrieved CHL data by light availability,
cloud and ice cover at other times of the year. The analysis considers
data from April 1998 onwards, when SeaWiFS provided ocean color
data. The time series analysis was restricted to the years until 2009
because no simulated data sets were available afterwards.
3. Results

3.1. Satellite chlorophyll-a data quality and availability

We validated the satellite CHL: 1) by the surface in-situ CHL and
alternatively 2) by the in-situ CHL averaged for the penetration depth
(see Section 2.2.1). The surface CHL data included the underway ship
measurements, and the profiles data used here were not required to
reach euphotic layer depth as opposed to the second method used.
This resulted in high number of in-situ data points collocated to the
satellite data after applying the match-up criteria (N = 108). The
correlation was significant (p b 0.001) with R = 0.58 (R — correlation
coefficient), and RMSD = 0.58 (RMSD—RootMean SquareDifference).
In-situ data was underestimated by satellite data by a factor of 3
(slope = 0.33). A better agreement with satellite data was reached
when the in-situ CHL was averaged for the penetration depth, for
which 54 out of 526 available in situ data points were used after apply-
ing the match-up criteria. For these points penetration depth spanned
from 5 m to 28 m. The correlation coefficient (R) equaled 0.64, and

image of Fig.�2


Fig. 3. Availability of the satellite GlobColour chlorophyll-a data in the Fram Strait area (76°N–84°N, 25°W–15°E). Each bar represents mean number of pixels with data for the
Fram Strait per year.
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RMSD (RootMean Square Difference) equaled 0.35. The correlationwas
significant (p b 0.001). In-situ chlorophyll data were underestimated
by satellite data by a factor of 1.4 (slope = 0.69, Fig. 2).

Satellite data availability test (Fig. 3), showed the number of days
with data available within a specific year sharply increases from 11 to
22 days after 2001. This is due to the launch of the two new sensors
in 2002 (MERIS on 1 March and MODIS/Aqua on 4 May) while the
GlobColour data before 2002 are based on SeaWiFS measurements
only. The years 2003–2005 have the most data, reaching a maximum
of 25 days in 2004. The months with largest number of days with data
in 1998–2001 are June and July, while after 2002 predominant months
are hard to define. Noteworthy, the monthly mean we used for the
further analysis was composed from an average of 2 days for the years
1998–2001 and 5 days for the years 2002–2009.
Fig. 4. 1998–2009 climatology of satellite GlobColour chlorophyll-a, which is the
MERIS-MODIS-SeaWiFS merged data with 4.6 km resolution within the Fram Strait,
area: 76°N–84°N, 25°W–15°E.
3.2. Time series analysis: basic statistics and temporal trends

The climatology of 1998–2009 CHL for the whole area of study
(76°N–84°N, 25°W–15°E) (Fig. 4) shows the timing of the bloom
varying for the different parts of the Fram Strait. Overall, the spatial var-
iation of our data was high, and ranged for the whole area between
0.15 mgC/m3 and 1.4 mgC/m3, with values below 0.8 mgC/m3 seen
only in 2009. If one defines the start of the bloom as the time
when the CHL concentration increases to the threshold of 1.0 mg/m3

(as, e.g., in Wu et al., 2007), then the start of the bloom in the eastern
Fram Strait area generally occurred in May (except for the coast of
Svalbard where the bloom were observed already in April). In the
western part of the Fram Strait the bloom started as late as July–August.

The time-series of April–August CHL was first averaged over the
whole area (Fig. 4) and is shown in Fig. 5a. A clear seasonal signal can
be observed in the mean CHL concentrations with lowest concentra-
tions in April and highest concentrations inMay to July in the investigat-
ed period. The interannual variation can be summarized as follows: the
years before 2002were characterized by an earlier CHLmaximum. After
2002, almost all maxima were observed in July, with the exception of
the year 2007when themaximumoccurred in June. Comparing average
CHL across allmonths, we notice an increasing trend in overall CHL from
1998 to 2009 (Fig. 5a) with a maximum monthly value observed in
2008. This trend shows an increase of 0.18 mgC/m3 over the twelve
years analyzed (p = 0.14, see Table 1). In the anomalies a weaker
trend is present (Fig. 5b) with an increase of 0.13 mgC/m3 (p = 0.05)
over the same period. Applying the moving average of five months to
the data also resulted in an increase of 0.22 mgC/m3 (significant with
p b 0.01). The trend for the interannual variation based on single
months (Table 1) showed the largest (+0.41 mgC/m3) significant
(p b 0.01) trend for July (Fig. 5c). All following trend analyses were
calculated by applying the moving average of five months to the data.

The standard deviation characterizing the spatial variability of
the CHL data showed a decreasing trend of −0.2 mg/m3 (or −41%,
p b 0.01, not shown). In the standard deviation time series of the
other parameters, a decreasing trendwas identified for the stratifica-
tion only (−6 m according to Levitus (1982) method and −5 m
according to maximum density gradient method, both p b 0.01).
The stratification patterns have thus spatially become more uniform
and so did the phytoplankton patterns.

When the area was divided in subsections (Fig. 7), significant
increasing trends in mean CHL over the twelve years were observed
mainly in the southern part (Table 2, sites G, H, I). They coincided
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Fig. 5. Time-series of the monthly satellite-retrieved GlobColour chlorophyll-a averaged for the Fram Strait area 76°N–84°N, 25°W–15°E for April–August of 1998–2009 (a), its anomalies
(b), and July values only (c).
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with the significant increase in sea surface temperature (observed
everywhere, 1.6 °C on average) and significant decrease in shelf
Svalbard ice concentration (sites B, F, J, −13% on average). The sea
surface salinity and water stratification either decreased or increased,
depending on the site, not showing significant trends for the
entire region.

Apart from the temporal trends, Table 2 explores the spatial patterns
in the CHL data and in the physical parameters. The highest annual
mean, standard deviation and maxima of CHL at the given latitude
were observed at the marginal ice zone (sites A, C, G). Sea-ice was con-
centrated both around themarginal ice zone and at the coast of Svalbard
(site B, F, J),with the thickest ice situated at the coast of Svalbard (68 cm
at site B). The warmest and saltiest waters were associated with
the ice-free sites (D, E, H, I). Stratification – regardless its definition
(see Section 2.3) – showed a mean surface layer depth of 20 m in
the entire region. However, both the sign and the absolute value of
the difference resulting from the two methods for calculating strati-
fication were spatially varying. Random (April 1998) examples of
the temperature, salinity and density vertical profiles centered at
the marginal ice zone site (G), open ocean site (I), and coastal site
(J) at 75°N were plotted with the estimated depth of the surface
layer (Fig. 6). Here, the coastal sites show no difference between
Table 1
Trend analysis of remotely sensed chlorophyll-a time-series (N = 60) averaged for the Fram S
(p b 0.01) are marked in bold. The time series for individual months were taken from the orig

Trend characteristics Overall (April 1998–August 2009)

Original Anomalies Moving average

Magnitude 0.18 0.13 0.22
p-Value 0.14 0.05 b0.01
the two criteria, while the sites at the marginal ice zone and in the
open ocean show that the Levitus (1982) definition gives a deeper
surface layer. The stratification is influenced from both vertical salin-
ity and temperature gradients at the marginal ice zone site, from
the temperature gradient at the open ocean site (salinity profile is
close to uniformity) and from the salinity gradient at the coastal
site (temperature increases with depth).

3.3. Statistical analysis of relationship between chlorophyll and
environmental factors

The correlation coefficients between CHL, several physical parame-
ters and the spatial locations are presented in Table 3. The results of a
cross-correlation analysis show that ocean stratification estimated
according to Levitus (1982) is the parameter, which showed highest
correlation to CHL explaining up to 36% of the observed variance
(with the highest average correlation coefficient (r) of −0.6 for open
ocean sites; Fig. 6). For the open ocean and marginal ice zone sites
significant negative correlations (less stratification, more CHL) were
observed, while for the coastal sites r was closer to zero (sites B and J),
or even positive (site F) and not significant. Besides the observed rela-
tionship with ocean stratification, the CHL time-series also correlated
trait area (76°N–84°N, 25°W–15°E). Monthly averaged data were used. Significant trends
inal time series.

Individual months, 1998–2009

April May June July August

−0.03 −0.22 0.15 0.41 0.28
0.67 0.25 0.31 b0.01 0.02

image of Fig.�5


Table 2
Statistical characteristics of the remotely sensed chlorophyll-a time-series (CHL, mgC/m3, N = 60) and the environmental parameters, which were assumed to influence CHL
variability, for ten sites of the Fram Strait region. Monthly averaged data were used and the trend analysis was based on the time series smoothed with the moving average filter.
The locations of the sites A–J are indicated in Table 2 and Fig. 7. Significant trends (p b 0.01) are marked in bold. SIC — remotely sensed Sea-Ice Concentration (%). Simulated
parameters: SIT — Sea-Ice Thickness (cm), SSS — Surface Salinity (‰), SST — Sea Surface Temperature (°C), Stratification (Δσmax) — stratification estimated using maximum
density gradient (m), Stratification (Levitus) — stratification estimated using Levitus (1982) 0.125 kg/m3 difference in density from the surface value method (m).

Parameter Statistics Site

A B C D E F G H I J

CHL Mean 0.79 0.73 0.78 0.76 0.68 0.76 0.75 0.56 0.57 0.64
St dev 0.41 0.31 0.49 0.50 0.34 0.35 0.60 0.41 0.35 0.26
Max 1.65 1.31 2.44 2.22 2.09 2.14 2.81 2.54 1.41 1.38
Min 0.16 0.19 0.11 0.10 0.17 0.25 0.11 0.07 0.10 0.19
Trend 0.03 −0.04 0.13 0.33 0.05 −0.04 0.43 0.46 0.16 0.05
p 0.60 0.45 0.06 0.00 0.27 0.41 0.00 0.00 0.00 0.22

SIC Mean 9.71 1.47 3.48 0.03 0.19 13.16 2.40 0.00 0.01 3.62
St dev 12.49 1.78 4.77 0.09 0.53 8.96 8.50 0.00 0.05 5.55
Max 50.73 7.27 17.90 0.46 2.82 42.97 62.14 0.02 0.34 33.12
Min 0.00 0.00 0.00 0.00 0.00 2.19 0.00 0.00 0.00 0.00
Trend 5.70 −4.14 1.72 −0.03 −0.83 −23.75 −1.34 0.00 −0.06 −10.70
p 0.11 0.00 0.21 0.04 0.00 0.00 0.55 0.01 0.00 0.00

SIT Mean 0.02 0.06 0.01 0.00 0.01 0.05 0.00 0.00 0.01 0.07
St dev 0.06 0.12 0.05 0.01 0.05 0.11 0.01 0.01 0.02 0.15
Max 0.37 0.68 0.42 0.05 0.34 0.56 0.07 0.05 0.12 0.66
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Trend 0.00 −0.04 0.00 0.00 −0.04 −0.04 0.00 0.00 −0.01 −0.07
p 0.76 0.08 0.69 0.07 0.00 0.27 0.81 0.81 0.01 0.09

SSS Mean 34.53 33.92 34.38 34.78 34.71 34.43 34.78 34.98 34.96 34.49
St dev 0.48 0.85 0.80 0.34 0.39 0.39 0.41 0.16 0.25 0.42
Max 35.13 35.07 35.11 35.16 35.12 35.02 35.11 35.22 35.22 35.08
Min 32.96 31.82 31.59 33.75 33.58 33.22 33.05 34.46 33.96 33.25
Trend −0.38 −0.75 0.00 −0.11 0.07 0.25 −0.02 −0.08 0.10 0.46
p 0.02 0.00 0.99 0.32 0.49 0.04 0.89 0.05 0.06 0.00

SST Mean 5.83 4.67 6.18 6.88 6.79 3.92 6.39 7.08 7.66 5.83
St dev 2.80 2.42 2.92 2.83 2.82 2.05 3.25 3.40 3.18 2.89
Max 10.82 9.23 10.70 10.96 10.90 7.02 11.25 11.54 12.12 9.89
Min 0.29 0.65 −0.01 1.34 1.45 −0.27 0.60 1.03 1.44 0.10
Trend 1.96 1.58 1.86 1.59 1.91 1.53 1.43 1.55 1.91 2.07
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Stratification (Δσmax) Mean 21.06 24.24 22.67 22.33 26.25 28.29 19.48 21.28 21.48 28.99
St dev 9.26 11.67 12.97 10.98 15.13 12.23 7.76 10.49 11.66 13.09
Max 53.87 51.84 47.64 44.87 65.65 44.91 48.55 51.67 58.59 54.52
Min 5.00 5.00 5.00 5.00 5.52 6.52 5.00 5.00 5.00 6.21
Trend −4.76 −5.28 −6.56 0.07 3.17 −5.35 −0.87 3.39 3.37 −2.92
p 0.01 0.02 0.00 0.97 0.12 0.02 0.43 0.03 0.06 0.22

Stratification (Levitus) Mean 22.50 19.96 22.95 23.96 22.92 20.92 21.51 21.12 23.16 19.52
St dev 10.66 8.53 12.84 12.01 11.45 8.95 11.15 9.77 10.41 8.53
Max 55.00 48.64 59.88 50.85 54.27 52.88 52.45 53.58 57.02 51.61
Min 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Trend −4.01 −1.77 −8.08 −3.63 2.64 −4.08 −2.67 −2.46 −0.52 3.79
p 0.08 0.20 0.00 0.11 0.11 0.01 0.13 0.15 0.77 0.02

202 A. Cherkasheva et al. / Journal of Marine Systems 132 (2014) 196–207
relatively strong (significant for 7 out of 10 sites) to the sea surface
temperature variability (increasing T, more CHL). Significant positive
correlation was observed for all open ocean sites and all but one MIZ
sites, but significant negative correlation was observed for one coastal
site. For observed sea-ice concentration, simulated sea-ice thickness
and sea surface salinity no significant correlations with CHL variability
were identified for the region with temporary sea-ice cover included
in the analyses.

When only the months of April and May and not the summer
months were studied, a link between the SIC and the timing of CHL
bloom onset was observed (Table 4). The presence of sea-ice in April
(sea-ice event)was usually followed by a large increase in CHL from
April to May (CHL increase) at the sites located closest to the ice
edge (or marginal ice zone sites, namely A, C and G). At site A, 88%
(seven out of eight) of the years with the ice edge present was followed
by an early CHL increase, at site C the same was observed for 50%
(three out of six) of the years, and at the site G for 60% (three out of
five) of the years. At all other sites a lower percentage of years with
the ice edge close by was followed by a CHL increase in April (17% or
less). At the open ocean sites not directly situated at the ice edge
(D, E, H, I), the sea-ice concentration was never higher than 5%, there-
fore no match was observed. At the coastal sites (B, F, J) the presence
of coastal ice was observed often in April (in four years on average),
but did not result in an increase in CHL in most cases.

4. Discussion

The sections below first discuss the phytoplankton variabili-
ty in the Fram Strait and then address its relationship to the
environmental factors.

4.1. Quality of satellite chlorophyll data

Globally only about 15% of field data can be used for the validation
of satellite-borne CHL measurements, because of cloud cover, sun
glint, time difference or other rejection criteria (Brown, 2008).
At polar latitudes, where the poor spatial coverage by satellite optical
sensors remains a problem for remote sensing-based chlorophyll
measurements, obtaining 54 points out of 526 observations (=10%)
for satellite CHL validation allowed to detect a significant correlation
(R = 0.64, N = 54, p b 0.001) between in situ and satellite-borne
data. Our results for the Fram Strait/Greenland Sea sector show that
satellite CHL underestimates the concentration in the field by a factor
of 1.4 when using in-situ CHL data averaged over the penetration



Fig. 6. Examples of water density, salinity and temperature vertical profiles for the marginal ice zone (site G), open ocean (site I), and coast of Svalbard (site J). The circles indicate
stratification computedusing: 1)maximumdensity gradient (red circle), and 2) Levitus (1982) 0.125 kg/m3 difference indensity from the surface value (green circle). At site J both criteria
match the same point. Data of North Atlantic/Arctic Ocean sea-ice Model (NAOSIM) for April 1998.
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depth, which showed better agreement with satellite CHL than the
surface in-situ CHL data. Compared to other parts of the Arctic, this
uncertainty is the same magnitude as observed for global as well as
Arctic-adapted algorithms for the Labrador Sea (factor of 1.5, Cota
et al., 2003), and better than for the Beaufort Sea (factor 3–5, Ben
Mustapha et al., 2012). Compared to the GlobColour data validation
(slope = 0.87; ACRI-STLOV et al., 2006), the underestimation is some-
what stronger (slope = 0.69) in Fram Strait. This may be explained
by the presence of blooming phytoplankton species, which have a spe-
cific absorption spectrum differing from the spectrum used as the basis
of global empirical satellite CHL algorithms. For example, Phaeocystis
pouchetii and Phaeocystis globosa are forming colonies which bloom in
major nutrient-enriched areas such as Greenland Sea (Schoemann
et al., 2005), and show low specific absorption as compared to other
phytoplankton species (Astoreca et al., 2006; Bracher and Tilzer, 2001;
Lubac et al., 2008).

Monthly composites of CHL data were composed from an average of
two to five days per pixel. This is a low number considering the revisit
time of the sensorsmerged for GlobColour data. At the latitudes of inter-
est the revisit time for MERIS, MODIS and SeaWiFS is less than one day.
Therefore by merging the data of three sensors, daily coverage can be
obtained, and the revisit time cannot be the reason for the small number
of days with data. The reason for data loss is likely sea-ice cover, clouds,
sun glint or low illumination. However, even with monthly data com-
posed from 2 to 5 days, phytoplankton blooms should be detected as
the sub-arctic blooms are reported to last more than onemonth, for ex-
ample, 70–90 days in the Irminger Sea (Waniek and Holliday, 2006),
and more than 50 days on the Newfoundland and Labrador Shelves
(Wu et al., 2007).

4.2. Environmental controls of the chlorophyll variability in the Fram Strait

The importance of themarginal ice zone for the productivity of polar
regions is well established. It is associated with abundant ice flora and
fauna, as well as sediments, drifting with the sea-ice from the central
Arctic into the Fram Strait (Hop et al., 2006), where a positive trend in
sea-ice export was observed in recent years by Smedsrud et al. (2011).
Elevated concentrations of phytoplankton and higher trophic levels at
the marginal ice zone were documented by, e.g., Smith et al. (1987),
Smith andNelson (1985) andHunt et al. (2002, 2008). Ice-melt induced
stratification – as observed in this study – can support substantial
phytoplankton blooms (Wu et al., 2007). In addition, in some years

image of Fig.�6


Fig. 7.Circles on themap show location of the ten siteswhere the statistical analysiswas applied. Color of the circles indicates correlation coefficients between 1998 and2009 time-series of
satellite-retrieved GlobColour chlorophyll-a and simulatedwater stratification. Exact number of the correlation coefficient is given in the table on the left. Left and right maps differ in the
method of calculating the stratification. Base map is satellite-retrieved sea-ice concentration for July 2009.
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the Arctic water outflowmay add to the high CHL by transport of Pacific
water with high nutrient concentrations (Slagstad et al., 2011). Combi-
nation of these processes resulted in the highest mean CHL at the ice
edge as compared to that observed at other sites at the same latitude
(Table 2, sites A, C, G). For the Fram Strait marginal ice zone, we could
not confirm the finding by unlike Wu et al. (2007) for the Labrador
Sea, that an “early ice retreatwill result in an early and prolonged spring
bloom”. Our results rather match the conclusions by Hunt et al. (2002,
2008) for the Bering Sea, indicating that late ice retreat leads to an ice-
associated bloom (Table 4). However, in Fram Strait the ice distribution
reflects more the ice transport from the Central Arctic, and less seasonal
melting. Further, the ice-associated blooms observed in this study oc-
curred later (in May) than those observed by Hunt et al. (2002, 2008)
in Bering Sea (late March). In the observed area in Fram Strait, the
April CHL value at marginal ice zone reached 0.5 mgC/m3 only in two
years out of twelve at site A, and never at sites C and G. We conclude
that the reason for this late ice-associated bloom is the light limitation
of phytoplankton in Fram Strait at 76–84°N (EOS, 1989), while in the
Bering Sea light at latitudes of 55–58°N is available much earlier.
Table 3
Correlation coefficients for the parameters analyzed with respect to remotely sensed
chlorophyll-a time series covering the months April to August 1998–2009 (N = 60) for
the ten sites of the Fram Strait region, with the geographic locations of their centers.
Significant correlations (p b 0.01) are marked in bold. SIC – remotely sensed Sea-Ice
Concentration. Simulated parameters: SIT — Sea-Ice Thickness, SSS — Surface Salinity,
SST — Sea Surface Temperature, Stratification (Δσmax) — stratification estimated using
maximum density gradient, Stratification (Levitus) — stratification estimated using
Levitus (1982) 0.125 kg m3 difference in density from the surface valuemethod. Monthly
averaged data were used. Areas A–J are indicated on the map in Fig. 7.

Site Lat Long Correlation coefficient (r) of chlorophyll a time-series with

SIC SIT SSS SST Stratification
(Δσmax)

Stratification
(Levitus)

A 79°N 4°E −0.1 −0.1 −0.2 0.1 −0.6 −0.5
B 79°N 8°E 0.1 −0.1 −0.2 −0.3 0 −0.1
C 78°N 0° −0.2 −0.2 −0.2 0.4 −0.5 −0.5
D 78°N 4°E −0.1 −0.1 −0.2 0.5 −0.5 −0.6
E 78°N 8°E −0.1 0 −0.3 0.4 −0.5 −0.6
F 78°N 12°E 0.1 0.2 0.2 −0.5 0.3 0.3
G 77°N 0° −0.1 −0.1 −0.2 0.4 −0.4 −0.5
H 77°N 4°E −0.1 −0.1 0.1 0.5 −0.3 −0.5
I 77°N 8°E −0.1 0 0.3 0.6 −0.4 −0.6
J 77°N 12°E −0.1 0 −0.1 0 −0.1 −0.2
Accordingly, cross-correlation analysis of environmental factors poten-
tially influencing phytoplankton accumulation at the marginal ice
zone sites showed that stratification was significantly correlated to
CHL (Table 4), with the shallowest surface layer corresponding to the
highest CHL.

Interestingly, the CHL variability at the open ocean sites distant to
the ice edge was also significantly correlated to stratification, as it was
the case for the marginal ice zone sites. Looking at the example of the
density profile for the open ocean site I (Fig. 6), the gradual increase
in density with no changes in salinity suggests that stratification is a
consequence of the warming of the ocean surface due to solar radiation,
rather than by the sea-ice melt. In the Arctic Seas such solar-induced
stratification was previously observed by Wassmann et al. (2006) in
the southern and central parts of the Barents Sea, influenced by Atlantic
waters. Since for themajority of the open ocean area (sites C, D, E, G, H, I)
the surface water salinity time-series was not correlated to CHL, but
temperature and stratification were significantly related (Table 3),
we suggest that here surface temperature is the key parameter that
Table 4
Years when sea-ice concentration in April was N5% (I) or/and years when the increase in
chlorophyll-a from April to May was N0.5 mgC/m3 (C) at the ten sites used for the cross-
correlation analysis (for site locations see Table 2 and Fig. 7). The percentage of the years
with the sea-ice concentration in April N5% followed by the increase in chlorophyll-a from
April toMay N0.5 mgC/m3 (% of yrs I&C)was calculated by normalizing the number of the
years with both I and C by the number of years with I. Remotely sensed sea-ice concentra-
tion and chlorophyll-a data with monthly averaging were used.

Site Year #
yrs I

# yrs
C

% of yrs
I&C

98 99 00 01 02 03 04 05 06 07 08 09

A I,
C

C C I,
C

I,
C

I,
C

I,
C

I,
C

I,
C

I 8 9 88

B I C C C C 1 4 0
C C I,

C
I I,

C
I,
C

I I 6 4 50

D C 0 1 0
E C C 0 2 0
F I I C C I I C C I I C 6 5 0
G I,

C
C I I,

C
I I,

C
C 5 5 60

H 0 1 0
I 0 0 0
J I I C I I,

C
C C I I 6 4 17

image of Fig.�7
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influences stratification most strongly. This agrees with the results of
Karstensen et al. (2011) for the Irminger Sea, which showed that 90%
of the density changes in the upper 100 m layer of subpolar Atlantic
waters are due to changes in temperature. Hence, seawater temperature
may also be a good indicator for onset of the phytoplankton bloom in
open ocean zones in Fram Strait.

For the coastal sites (B, F, J) no significant relationship between
stratification (any of the methods used) and CHL variability was
found. In contrast to the link observed at the marginal ice zone,
CHL concentrations at the coastal sites were higher when sea-ice
was absent in April (Table 4), indicating a stronger nutrient than
light limitation. This landfast ice, as opposed to the drifting sea-ice,
is probably not enriched with nutrients and seed organisms. Coastal
ice is also the thickest ice observed in the area and thus may rather
delay the phytoplankton bloom. However, poor quality of the
GlobColour CHL product in the coastal area is another possibility
for our different results at the shelf of Svalbard. No validation data
were available at the coast to investigate the latter in detail. The
other, more general uncertainties that have to be kept in mind in-
clude the limitations of the cross-correlation analysis, and choice of
the parameters studied. In the current analysis we restricted the
physical variables analysis to the ocean and sea-ice properties.
The atmospheric properties, such as Arctic Oscillation Index (AO),
North Atlantic Oscillation Index (NAO), Arctic Climate Regime
Index (ACRI), air temperature and wind speed, though, have previously
been found to have an impact on marine organisms productivity
(Carroll et al., 2011; Pabi et al., 2008; Slagstad et al., 2011).

Our finding of increased stratification in the non-coastal ocean
corresponding to enhanced CHL is consistent with Sverdrup's Critical
Depth Hypothesis on the development of phytoplankton blooms
(Platt et al., 1991; Sverdrup, 1953). The Critical Depth Hypothesis
was recently disputed by Behrenfeld (2010) who claimed that the
phytoplankton blooms start when the depth of the stratified layer
is at its maximum (in winter). Behrenfeld's study was carried out
in the North Atlantic, south of our study area (40–65°N). However,
at the latitude of Fram Strait the phytoplankton blooms are likely
most limited by light availability and thus cannot start in winter. Ac-
cordingly, the Fram Strait blooms happen after May except for the
coast of Svalbard (Fig. 4). According to Behrenfeld (2010), grazing
pressure plays a central role in the North Atlantic phytoplankton
population dynamics and will intensify with the shallowing of the
mixed layer as the mobile predators concentrate into the shrinking
volume. Indeed, in the late summermonths in Fram Strait, an intense
grazing pressure by mainly small copepods and protozooplankton is
limiting CHL concentrations (Moeller et al., 2005). An important
question remains the control of the phytoplankton by nutrient sup-
ply, which probably is also limited by strong stratification in sum-
mer, especially in the absence of ice.

5. Conclusion

Our results suggest that Fram Strait could be divided into three
regions in terms of the environmental conditions favoring the growth
of phytoplankton. These processes are: stratification induced by sea-
ice melt at the ice edge; stratification caused by solar warming in the
open ocean; and decline of shelf ice around Svalbard. The conditions
at the marginal ice zone promoted phytoplankton growth most and re-
sulted in the enhanced CHL inMay. For the twelve years of observations
in 1998–2009, a significant increase in CHL was detected mostly in the
southern part of the region influenced by the warmer Atlantic waters
(Table 2). In this area we observed a significant increase in sea surface
temperature and in coastal ice concentration, but not in sea surface
salinity. We conclude that the observed increase in CHL in the southern
Fram Strait resulted mostly from an increase of sea surface tempera-
tures and better light availability for phytoplankton. The maxima of
phytoplankton blooms, defined as the maximum monthly average
in the respective year, tend to occur later in the summer since 2002.
The same was found for subarctic waters by Harrison et al. (2013) and
for the Fram Strait area by Kahru et al. (2011). The reason for this
delay is yet unknown, but may be due to the increasing ice transport
through Fram Strait.
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