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Drop an object with different speeds  and measure the speed at the ground 

Question: What’s the speed vm after half the way at xm?
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An old experiment



Free Fall:

Theory:   

Model:  with data fitted 

With additional Friction:

Theory:   

Model: Integrate numerically and fit  and  - already a non-trivial Problem!
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Solving with traditional Physics
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Theory: Assume translation invariance

A Data-based Aproach



A solution  of this equation is a kind of square root of the function .

• If :  is a function, we look for another function  which 

composed with itself equals : 

Because the self-composition of a function  is also called 
“iteration”, the square root of a function is usually called its iterative root.

is solved by the fractional iterates of a function :

  x   f x =

 f

f x  IR
n

IR
n  x 

f   x   f x =

f f x   f
2

x =

n
x  f

m
x =

f

 x  f
m n

x =

A Functional Equation



A solution  of this equation is called a square root of .

• If :  is a function, we look for another function  which 

composed with itself equals : 

Because the self-composition of a function  is also called “iteration”, 
the square root of a function is usually called its iterative root.

is solved by the fractional iterates of a function :
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A Functional Equation



The exponential notation of the iteration of functions  can be extended 
beyond integer exponents:

•  means 

•  for positive integers  are the well known iterations of 

•  denotes the identity function, 

•  is the inverse funktion of  

•  is the -th iteration of the inverse of 

•  is the -th iterative root of 

•  is the -th iteration of the -th iterative root or fractional iterate of 

The family  forms the continuous iteration group of . 

Within this the translation equation  is satisfied.
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Generalized Iteration



Map this to a Network
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• Weight Copy: Train only the last layer and copy the weights continously 
backwards

• Weight Sharing: Initialize corresponding weights with equal values and 

sum up all  delivered by the network learning rule

• Weight Coupling: Start with different values and let the corresponding 
weights of the iteration layers approach each other by a term like 

• Regularization: Add a penalty term to the error function which assigns an 
error to the weight-differences to regularize the network. This allows to uti-
lize second order gradient methods like quasi Newton for faster training.

• Exact Gradient: Compute the exact gradients for an iterated Network

wi
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Training Methods
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The Network results are conform to the laws of physics up to a mean error of 10-6

Results for „The Fall“
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The Embedding Problem



One of the most important functional equations: 
The Eigenvalue problem of functional calculus.

Transform to:  
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Commuting Functions
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- The steel bands are processed by N identical stands in a row

- ,  are known and  can be measured
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Steel Mill Model



Steel Mill Network



For a given autoregressive Box-Jenkins AR(n) timeseries , we 

define the function :  which maps the vector of the last n samples 

 one step into the future  as

 and can simply write  now.

The discrete time evolution of the the system can be calculated using the 

matrix powers of F: . 
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 Timeseries Interpolation



This autoregressive system is called linear embeddable if the matrix power  

exists also for all real . This is the case if   can be decomposed into 

 with  being a diagonal matrix consisting of the eigenvalues  

of  and  being an invertible square matrix which columns are the eigenvec-
tors of . Additionally all  must be non-negative to have a linear and real 

embedding, otherwise we will get a complex embedding. 

Then we can obtain  with 

Now we have a continuous function  and the interpolation of the 

original time series  consists of the first element of .
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Using Generalized Matrix Powers



The Fibonacci series , ,  is generated by 

 and . By eigenvalue decomposition of  we get

That is Binet’s formula in the first component 
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Example: A continuous Fibonacci Function



A time series of yearly snapshots from a discrete non linear Lotka-Volterra 
type predator - prey system (x = hare, y = lynx) is used as training data:

 and 

From these samples we calculate 
the monthly population by use of 
a neural network based method 
to compute iterative roots and 
fractional iterates. 

The given method provides a 
natural way to estimate not only 
the values over a year, but also to 
extrapolate arbitrarily smooth into 
the future.
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Nonlinear Example
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