

Functional Equations & Neural Networks for Time Series Interpolation

Lars Kindermann, AWI Achim Lewandowski, OEFAI

Drop an object with different speeds v_0 and measure the speed at the ground v_1

Question: What's the speed v_m after half the way at x_m ?

Free Fall: Theory: Model: $v_1 = f(v_0) = \sqrt{v_0^2 + 2g\Delta x}$ with data fitted g t 2 2 ∂ $\frac{\partial}{\partial x} \times g = g \implies$

With additional Friction: Theory: t 2 2 $\frac{\partial^2 \mathbf{x}}{\partial t^2} = g - k_1 \left| \frac{\partial \mathbf{x}}{\partial t} \right| - k_2 \left| \frac{\partial \mathbf{x}}{\partial t} \right|^2$ $-\mathbf{k}_2\left|\frac{\partial \mathbf{x}}{\partial t}\right| - \mathbf{f}\left(\frac{\partial \mathbf{x}}{\partial t}\right)$ $= g - k_1 \left| \frac{\partial x}{\partial t} \right| - k_2 \left| \frac{\partial x}{\partial t} \right|^2 - f \left(\frac{\partial x}{\partial t} \right) \Rightarrow$

Model: Integrate numerically and fit g and k - already a non-trivial Problem!

Theory: Assume translation invariance

and solve this functional equation for φ

 $\varphi(\varphi(x)) = f(x)$

A solution φ of this equation is a kind of *square root* of the function f.

• If $f(x): \mathbb{R}^n \to \mathbb{R}^n$ is a *function*, we look for another function $\varphi(x)$ which composed with itself equals $f: \varphi(\varphi(x)) = f(x)$

Because the self-composition of a function $f(f(x)) = f^2(x)$ is also called "iteration", the square root of a function is usually called its *iterative root.*

$$
\varphi^{n}(x) = f^{m}(x)
$$

is solved by the *fractional iterates* of a function f:

$$
\phi(x) = f^{m/n}(x)
$$

$$
\varphi(\varphi(x)) = f(x)
$$

A solution φ of this equation is called a *square root* of f.

• If $f(x): \mathbb{R}^n \to \mathbb{R}^n$ is a *function*, we look for another function $\varphi(x)$ which composed with itself equals $f: \varphi(\varphi(x)) = f(x)$

Because the self-composition of a function $f(f(x)) = f^2(x)$ is also called "iteration", the square root of a function is usually called its *iterative root.*

 $\varphi^n(x) \, = \, f^m(x)$ is solved by the *fractional iterates* of a function f : n $f(x) = f^{m}(x)$ is solved by the *fractional iterates* of a function f

The exponential notation of the iteration of functions $f''(x)$ can be extended beyond integer exponents: $\binom{n}{x}$

- f^1 means f
- $fⁿ$ for positive integers n are the well known iterations of f
- f^0 denotes the identity function, $f^0(x) = x$
- f^{-1} is the inverse funktion of f
- f^{-n} is the n-th iteration of the inverse of f
- f^{Vn} is the n-th iterative root of $1/n$ n-th iterative root of ${\rm f}$
- \bullet $f^{m/n}$ is the m-th iteration of the n-th iterative root or *fractional iterate* of m/n m-th iteration of the n-th iterative root or fractional iterate of f

The family $f'(x)$ forms the *continuous iteration group* of f. Within this the *translation equation* $f^{a + b}(x) = f^a(f^b(x))$ is satisfied. t (x) forms the continuous iteration group of f

Map this to a Network

- **Weight Copy:** Train only the last layer and copy the weights continously backwards
- **Weight Sharing:** Initialize corresponding weights with equal values and sum up all $\delta \rm w_i$ delivered by the network learning rule
- **Weight Coupling:** Start with different values and let the corresponding weights of the iteration layers approach each other by a term like $\delta w_i = \alpha (w_i - w_i)$
- **Regularization:** Add a penalty term to the error function which assigns an error to the weight-differences to regularize the network. This allows to utilize second order gradient methods like quasi Newton for faster training.
- **Exact Gradient:** Compute the exact gradients for an iterated Network

The Network results are conform to the laws of physics up to a mean error of 10^{-6}

 $\varphi(f(x)) = c\varphi(x)$

One of the most important functional equations: The Eigenvalue problem of functional calculus. Transform to: $f(x) = \varphi^{-1}(c\varphi(x))$ invert $\begin{array}{cc}\n\Theta \\
\varphi\n\end{array}$ x $\varphi(x)$ $\frac{c}{\sqrt{c}}$ f(x) train f $\overline{}$

Commuting Functions

 $\varphi(f(x)) = f(\varphi(x))$

Steel Mill Model

- The steel bands are processed by *N* identical stands in a row
- x_{in} , p_i are known and x_{out} can be measured
- $x_{\text{out}} = F(x_{\text{in}}, \bar{p}_1...\bar{p}_N) = f(...f(f(x_{\text{in}}, \bar{p}_1), \bar{p}_2)...,\bar{p}_N)$

Steel Mill Network

 $f(x_{in}, \bar{p}_1...\bar{p}_N)$

For a given autoregressive Box-Jenkins AR(n) timeseries
$$
x_t = \sum_{k=1}^{n} a_k x_{t-k}
$$
, we

define the function $F\colon R^n\,{\to}\, R^n$ which maps the vector of the last n samples

$$
\vec{x}_{t-1} = \begin{bmatrix} x_{t-1}, \dots, x_{t-n} \end{bmatrix} \text{ one step into the future } \vec{x}_t = \begin{bmatrix} x_t, x_{t-1}, \dots, x_{t-(n-1)} \end{bmatrix} \text{ as}
$$
\n
$$
F = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and can simply write } \vec{x}_t = F \cdot \vec{x}_{t-1} \text{ now.}
$$

The discrete time evolution of the the system can be calculated using the matrix powers of F: $\vec{x}_{t+n} = F^{n} \cdot \vec{x}_{t-1}$.

This autoregressive system is called linear embeddable if the matrix power $\overline{\mathrm{F}}^\mathrm{t}$ exists also for all real $\mathrm{t}\in\mathrm{R}^{^{+}}.$ This is the case if F can be decomposed into $\mathrm{F}\ =\ \textrm{S}\cdot \textrm{A}\cdot \textrm{S}^{-1}$ with $\mathrm{A}\,$ being a diagonal matrix consisting of the eigenvalues $\lambda_{\textrm{i}}$ of F and S being an invertible square matrix which columns are the eigenvectors of F. Additionally all $\lambda_{\rm i}$ must be non-negative to have a linear and *real* embedding, otherwise we will get a *complex* embedding.

Then we can obtain
$$
F^t = S \cdot A^t \cdot S^{-1}
$$
 with $A^t = \begin{bmatrix} \lambda_1^t & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^t \end{bmatrix}$

Now we have a continuous function $\dot{x}(t) = F^t \cdot \dot{x}_0$ and the interpolation of the original time series $x(t)$ consists of the first element of \dot{x} .

The Fibonacci series $x_0 = 0$, $x_1 = 1$, $x_t = x_{t-1} + x_{t-2}$ is generated by

$$
F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}
$$
 and $\hat{x}_1 = [1, 0]$. By eigenvalue decomposition of F we get

$$
\vec{x}_{t+1} = F^t \vec{x}_1 = SA^t S^{-1} \vec{x}_1 = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^t & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^t \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{1}{2} - \frac{1}{2\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{1}{2} + \frac{1}{2\sqrt{5}} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

A time series of *yearly* snapshots from a discrete non linear Lotka-Volterra type predator - prey system $(x = \text{hare}, y = \text{lynx})$ is used as training data: $x_{t+1} = (1 + a - b y_t) x_t$ and $y_{t+1} = (1 - c + d x_t) y_t$

From these samples we calculate the *monthly* population by use of a neural network based method to compute iterative roots and fractional iterates.

The given method provides a natural way to estimate not only the values over a year, but also to extrapolate arbitrarily smooth into the future.