
Functional Equations & Neural Networks
for Time Series Interpolation

Lars Kindermann, AWI
Achim Lewandowski, OEFAI

Drop an object with different speeds and measure the speed at the ground

Question: What’s the speed vm after half the way at xm?

v0 v1

x0

x1

v1 f v0 =

vm ?=xm

v0

v0

v1

free fall

friction

Data

An old experiment

Free Fall:

Theory:

Model: with data fitted

With additional Friction:

Theory:

Model: Integrate numerically and fit and - already a non-trivial Problem!

t
2

2



 x
g= 

v1 f v0  v0
2

2g x+= = g

t
2

2



 x
g k1 t

x– k2 t
x 2

– f
t

x
 
 –= 

g k

Solving with traditional Physics

x0

x1
v1

v0
x0

x1

vm  vm =xm

v0

v1 f v0 =

v1  vm    v0= =

 
divide into
two equal

steps...

  v   f v =

and solve this functional equation for 

Theory: Assume translation invariance

A Data-based Aproach

A solution of this equation is a kind of square root of the function .

• If : is a function, we look for another function which

composed with itself equals :

Because the self-composition of a function is also called
“iteration”, the square root of a function is usually called its iterative root.

is solved by the fractional iterates of a function :

  x   f x =

 f

f x  IR
n

IR
n  x 

f   x   f x =

f f x   f
2

x =

n
x  f

m
x =

f

 x  f
m n

x =

A Functional Equation

A solution of this equation is called a square root of .

• If : is a function, we look for another function which

composed with itself equals :

Because the self-composition of a function is also called “iteration”,
the square root of a function is usually called its iterative root.

is solved by the fractional iterates of a function :

  x   f x =

 f

f x  IR
n

IR
n  x 

f   x   f x =

f f x   f
2

x =

n
x  f

m
x = f

 x  f
m n

x =

=
f



x

x

y

y

=
f



x

x

y

y  

f

3
5

A Functional Equation

The exponential notation of the iteration of functions can be extended
beyond integer exponents:

• means

• for positive integers are the well known iterations of

• denotes the identity function,

• is the inverse funktion of

• is the -th iteration of the inverse of

• is the -th iterative root of

• is the -th iteration of the -th iterative root or fractional iterate of

The family forms the continuous iteration group of .

Within this the translation equation is satisfied.

f
n

x 

f
1

f

f
n

n f

f
0

f
0

x  x=

f
1–

f

f
n–

n f

f
1 n

n f

f
m n

m n f

f
t

x  f

f
a b+

x  f
 a

f
 b

x  =

Generalized Iteration

Map this to a Network

 

x

 x 

f x 

f

share
weights

f
1 n

x

 f
m n

=

f x 

  

1 m n

            

x f x 

loop n times

• Weight Copy: Train only the last layer and copy the weights continously
backwards

• Weight Sharing: Initialize corresponding weights with equal values and

sum up all delivered by the network learning rule

• Weight Coupling: Start with different values and let the corresponding
weights of the iteration layers approach each other by a term like

• Regularization: Add a penalty term to the error function which assigns an
error to the weight-differences to regularize the network. This allows to uti-
lize second order gradient methods like quasi Newton for faster training.

• Exact Gradient: Compute the exact gradients for an iterated Network

wi

wi  wj wi– =

Training Methods

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Start Velocity [m/s]

E
nd

 V
el

oc
ity

 [m
/s

]

measurement for v1 (training data)
physics for vm (prediction task)
fractional iterates (network results)

v1 f v0 =

f
 0

v0  v0=

vm f
 1 2

v0 =

f
 1 4

f
3 4

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Start Velocity [m/s]

E
nd

 V
el

oc
ity

 [m
/s

]

measurement for v1 (training data)
physics for vm (prediction task)
fractional iterates (network results)

v1 f v0 =

vm f
 1 2

v0 =f
 0

v0  v0=

f
3 4

f
 1 4

no friction with friction

The Network results are conform to the laws of physics up to a mean error of 10-6

Results for „The Fall“

0

0.2

0.4

0.6

0.8

1

1.2

0
1

2
3

4
5

6
7

8
9

10

0

2

4

6

8

10

12

h [m]
v0 [m/s]

v
[m

/s
]

Training Data

trajectories iterative roots

v0

v(h)

v=f(v0,h)

h

The Embedding Problem

One of the most important functional equations:
The Eigenvalue problem of functional calculus.

Transform to:

 f x   c x =

f x   1–
c x  =

invert

  1–

x

 x 

f x c

train

            

f

The Schröder Equation

Commuting Functions

 f x  

f  x  

x

x





f

f

weight
sharing

outputs
targets

 x 

 f x   f  x  =

- The steel bands are processed by N identical stands in a row

- , are known and can be measured

-

                      

x2x1
xout

    

    
f xin p1,  f x1 p2, 

F xin p1pN, 

    

f xN 1– pN, 

xin

Measuring

p1 p2 pN

instrument

=set of parameters like
force, heat, strip thikness
and width...

pi

xin pi xout

xout F xin p1...pN  f ...f f xin p1  p2 ... pN, = =

Steel Mill Model

Steel Mill Network

For a given autoregressive Box-Jenkins AR(n) timeseries , we

define the function : which maps the vector of the last n samples

 one step into the future as

 and can simply write now.

The discrete time evolution of the the system can be calculated using the

matrix powers of F: .

xt akxt k–

k 1=

n

=

F R
n

R
n

xt 1– xt 1–  xt n– = xt xt xt 1–  xt n 1– –  =

F

a1 a2  an

1 0 0 0

0 1 0 0

0 0 1 0

= xt F xt 1–=

xt n+ F
n

xt 1–=

 Timeseries Interpolation

This autoregressive system is called linear embeddable if the matrix power

exists also for all real . This is the case if can be decomposed into

 with being a diagonal matrix consisting of the eigenvalues

of and being an invertible square matrix which columns are the eigenvec-
tors of . Additionally all must be non-negative to have a linear and real

embedding, otherwise we will get a complex embedding.

Then we can obtain with

Now we have a continuous function and the interpolation of the

original time series consists of the first element of .

F
t

t R
+ F

F S A S
1– = A i

F S
F i

F
t

S A
t

S
1– = A

t
1

t
0 0

0  0

0 0 n
t

=

x t  F
t

x0=

x t  x

Using Generalized Matrix Powers

The Fibonacci series , , is generated by

 and . By eigenvalue decomposition of we get

That is Binet’s formula in the first component

x0 0= x1 1= xt xt 1– xt 2–+=

F 1 1

1 0
= x1 1 0 = F

xt 1+ F
t
x1 SA

t
S

1–
x1 = =

1 5+
2

---------------- 1 5–
2

1 1

1 5+
2

---------------- 
 

t
0

0 1 5–
2

---------------- 
 

t

1
5

1
2
--- 1

2 5
------------------–

1
5

------------–

1
2
--- 1

2 5
------------------+

1

0
=

xt
1

5
------- 1 5+

2
---------------- 
 

t 1 5–
2

---------------- 
 

t
–=

Example: A continuous Fibonacci Function

A time series of yearly snapshots from a discrete non linear Lotka-Volterra
type predator - prey system (x = hare, y = lynx) is used as training data:

 and

From these samples we calculate
the monthly population by use of
a neural network based method
to compute iterative roots and
fractional iterates.

The given method provides a
natural way to estimate not only
the values over a year, but also to
extrapolate arbitrarily smooth into
the future.

xt 1+ 1 a b yt–+  xt= yt 1+ 1 c– d xt+  yt=

Nonlinear Example

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Prey

P
re

da
to

r

