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An old experiment @N\”

Drop an object with different speeds v, and measure the speed at the ground v,
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Question: What's the speed v, after half the way at x,?



Solving with traditional Physics

Free Fall:
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Theory: 6—;( =g =
ot

Model: v, = f(vy) = [v2+2gAx with data fitted g

With additional Friction:
Theory: 8—;( = g—k, 2 2
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Model: Integrate numerically and fit g and k - already a non-trivial Problem!
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A Data-based Aproach

Theory: Assume translation invariance
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Vi, = 0(vy,)

| V1= P(vy) = o(e(v

R P((v)) = (V)

and solve this functional equation for ¢



A Functional Equation

e(o(x)) = f(x)

A solution ¢ of this equation is a kind of square root of the functionf.

e Iff(x): R —> R is a function, we look for another function ¢(x) which
composed with itself equals f: ¢o(¢p(x)) = f(x)

Because the self-composition of a function f(f(x)) = fz(x) is also called
“iteration”, the square root of a function is usually called its iterative root.

¢ (x) = f (x)

is solved by the fractional iterates of a function f:

o(x) = ™" (x)



A Functional Equation

e(o(x)) = f(x)

A solution ¢ of this equation is called a square root of f.

e Iff(x): R — R is a function, we look for another function ¢(x) which
composed with itself equals f: o(¢p(x)) = f(x)

Because the self-composition of a function f(f(x)) = fz(x) is also called “iteration”,
the square root of a function is usually called its iterative root.
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(pn(x) — fm(x) is solved by the fractional iterates of a function f:
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o(x) = ""(x)




Generalized Iteration

The exponential notation of the iteration of functions f"(x) can be extended
beyond integer exponents:

e f' meansf

e " for positive integers n are the well known iterations of f
. f’ denotes the identity function, fO(x) = X

« ' is the inverse funktion of f

e f " isthe n-th iteration of the inverse of f

« ”"is the n-th iterative root of f

o £ /n is the m-th iteration of the n-th iterative root or fractional iterate of £

The family f (x) forms the continuous iteration group of f.

Within this the translation equation " °(x) = £*(f °(x)) is satisfied.



Map this to a Network
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Training Methods

Weight Copy: Train only the last layer and copy the weights continously
backwards

Weight Sharing: Initialize corresponding weights with equal values and
sum up all 6w, delivered by the network learning rule

Weight Coupling: Start with different values and let the corresponding
weights of the iteration layers approach each other by a term like
OW: = oc(wj—wi)

Regularization: Add a penalty term to the error function which assigns an
error to the weight-differences to regularize the network. This allows to uti-

lize second order gradient methods like quasi Newton for faster training.

Exact Gradient: Compute the exact gradients for an iterated Network



Results for ,,The Fall“

no friction with friction
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The Network results are conform to the laws of physics up to a mean error of 100
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Em
bedding Prob
lem
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The Schroder Equation

o(f(x)) = co(x)

One of the most important functional equations:
The Eigenvalue problem of functional calculus.

Transform to: f(x) = (p_l(ccp(x))
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Commuting Functions

e(f(x)) = f(e(x))
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Steel Mill Model @*NVI

P

pi=set of parameters like
force, heat, strip thikness
and width...
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- The steel bands are processed by N identical stands in a row
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Steel Mill Network

Weight coupling
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Timeseries Interpolation

n
For a given autoregressive Box-Jenkins AR(n) timeseries x, = Z a X, 1, We
k=1

define the function F: R" — R" which maps the vector of the last n samples

X, | = [xt_l, ...,xt_n] one step into the future X, = [xt, X¢ 1o “"Xt—(n—l)} as
_al 32 an |

F = 00 8 and can simply write X, = F-x, | now.
_O O _

The discrete time evolution of the the system can be calculated using the

. AN _ n AN
matrix powersof F: x, . = = F -x .



Using Generalized Matrix Powers

This autoregressive system is called linear embeddable if the matrix power F'
exists also for all real t € R". This is the case if F can be decomposed into

F=S-A-S ' withA being a diagonal matrix consisting of the eigenvalues A,

of F and S being an invertible square matrix which columns are the eigenvec-
tors of F. Additionally all A, must be non-negative to have a linear and real

embedding, otherwise we will get a complex embedding.

Then we can obtain F' = S - At - S_1 with At =10 .. 0

Now we have a continuous function X(t) = F'. X, and the interpolation of the
original time series x(t) consists of the first element of x.



Example: A continuous Fibonacci Function

The Fibonacci series x, = 0, x; = 1, x, = X

) _ tx,_, is generated by

t

F = {1 1} and x, = [1, 0]. By eigenvalue decomposition of F we get
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Nonlinear Example

A time series of yearly snapshots from a discrete non linear Lotka-Volterra
type predator - prey system (x = hare, y = lynx) is used as training data:
= (l+a-by)x,andy, , = (1-c+dx)y,

Xt+1
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Predator
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From these samples we calculate

1 the monthly population by use of

a neural network based method

| to compute iterative roots and
| fractional iterates.

1 The given method provides a

natural way to estimate not only

| the values over a year, but also to
| extrapolate arbitrarily smooth into

the future.



