

Functional Equations & Neural Networks for Time Series Interpolation

Lars Kindermann, AWI Achim Lewandowski, OEFAI

Drop an object with different speeds \boldsymbol{v}_0 and measure the speed at the ground \boldsymbol{v}_1

Question: What's the speed \boldsymbol{v}_m after half the way at $\boldsymbol{x}_m?$

Free Fall: Theory: $\frac{\partial^2 x}{\partial t^2} = g \implies$ Model: $v_1 = f(v_0) = \sqrt{v_0^2 + 2g\Delta x}$ with data fitted g

With additional Friction: Theory: $\frac{\partial^2 x}{\partial t^2} = g - k_1 \left| \frac{\partial x}{\partial t} \right| - k_2 \left| \frac{\partial x}{\partial t} \right|^2 - f \left(\frac{\partial x}{\partial t} \right) \implies$

Model: Integrate numerically and fit g and k - already a non-trivial Problem!

Theory: Assume translation invariance

and solve this functional equation for $\boldsymbol{\phi}$

 $\varphi(\varphi(\mathbf{x})) = \mathbf{f}(\mathbf{x})$

A solution ϕ of this equation is a kind of square root of the function f.

• If $f(x): \mathbb{R}^n \to \mathbb{R}^n$ is a *function*, we look for another function $\phi(x)$ which composed with itself equals $f: \phi(\phi(x)) = f(x)$

Because the self-composition of a function $f(f(x)) = f^2(x)$ is also called "iteration", the square root of a function is usually called its *iterative root*.

$$\varphi^{n}(x) = f^{m}(x)$$

is solved by the *fractional iterates* of a function f:

$$\varphi(\mathbf{x}) = \mathbf{f}^{\mathbf{m}/\mathbf{n}}(\mathbf{x})$$

$$\varphi(\varphi(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

A solution ϕ of this equation is called a square root of f.

• If $f(x): \mathbb{R}^n \to \mathbb{R}^n$ is a *function*, we look for another function $\phi(x)$ which composed with itself equals $f: \phi(\phi(x)) = f(x)$

Because the self-composition of a function $f(f(x)) = f^2(x)$ is also called "iteration", the square root of a function is usually called its *iterative root*.

 $\varphi^{n}(x) = f^{m}(x)$ is solved by the *fractional iterates* of a function f:

The exponential notation of the iteration of functions $f^{n}(x)$ can be extended beyond integer exponents:

- f¹ means f
- f^n for positive integers n are the well known iterations of f
- f^0 denotes the identity function, $f^0(x) = x$
- f^{-1} is the inverse funktion of f
- f^{-n} is the n-th iteration of the inverse of f
- $f^{1/n}$ is the n-th iterative root of f
- $f^{m/n}$ is the m-th iteration of the n-th iterative root or *fractional iterate* of f

The family $f^{t}(x)$ forms the *continuous iteration group* of f. Within this the *translation equation* $f^{a+b}(x) = f^{a}(f^{b}(x))$ is satisfied.

Map this to a Network

- Weight Copy: Train only the last layer and copy the weights continously backwards
- Weight Sharing: Initialize corresponding weights with equal values and sum up all δw_i delivered by the network learning rule
- Weight Coupling: Start with different values and let the corresponding weights of the iteration layers approach each other by a term like $\delta w_i = \alpha (w_j w_i)$
- **Regularization:** Add a penalty term to the error function which assigns an error to the weight-differences to regularize the network. This allows to utilize second order gradient methods like quasi Newton for faster training.
- **Exact Gradient:** Compute the exact gradients for an iterated Network

The Network results are conform to the laws of physics up to a mean error of 10⁻⁶

 $\varphi(f(x)) = c\varphi(x)$

One of the most important functional equations: The Eigenvalue problem of functional calculus. Transform to: $f(x) = \phi^{-1}(c\phi(x))$ invert train С f(x) \mathbf{X} $\varphi(\mathbf{x})$ φ **(**) ť

Commuting Functions

 $\varphi(f(x)) = f(\varphi(x))$

Steel Mill Model

- The steel bands are processed by *N* identical stands in a row
- x_{in} , p_i are known and x_{out} can be measured

-
$$x_{out} = F(x_{in}, \bar{p}_1...\bar{p}_N) = f(...f(f(x_{in}, \bar{p}_1), \bar{p}_2)..., \bar{p}_N)$$

Steel Mill Network

 $f(x_{in}, \overline{p}_1 \dots \overline{p}_N)$

For a given autoregressive Box-Jenkins AR(n) timeseries
$$x_t = \sum_{k=1}^{n} a_k x_{t-k}$$
, we

define the function F: $R^n \rightarrow R^n$ which maps the vector of the last n samples

$$\dot{x}_{t-1} = \begin{bmatrix} x_{t-1}, ..., x_{t-n} \end{bmatrix} \text{ one step into the future } \dot{x}_t = \begin{bmatrix} x_t, x_{t-1}, ..., x_{t-(n-1)} \end{bmatrix} \text{ as}$$

$$F = \begin{bmatrix} a_1 & a_2 & ... & a_n \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ and can simply write } \dot{x}_t = F \cdot \dot{x}_{t-1} \text{ now.}$$

The discrete time evolution of the the system can be calculated using the matrix powers of F: $\dot{x}_{t+n} = F^n \cdot \dot{x}_{t-1}$.

This autoregressive system is called linear embeddable if the matrix power F^t exists also for all real $t \in R^+$. This is the case if F can be decomposed into $F = S \cdot A \cdot S^{-1}$ with A being a diagonal matrix consisting of the eigenvalues λ_i of F and S being an invertible square matrix which columns are the eigenvectors of F. Additionally all λ_i must be non-negative to have a linear and *real* embedding, otherwise we will get a *complex* embedding.

Then we can obtain
$$F^{t} = S \cdot A^{t} \cdot S^{-1}$$
 with $A^{t} = \begin{bmatrix} \lambda_{1}^{t} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{n}^{t} \end{bmatrix}$

Now we have a continuous function $\dot{\mathbf{x}}(t) = \mathbf{F}^t \cdot \dot{\mathbf{x}}_0$ and the interpolation of the original time series $\mathbf{x}(t)$ consists of the first element of $\dot{\mathbf{x}}$.

The Fibonacci series $x_0 = 0$, $x_1 = 1$, $x_t = x_{t-1} + x_{t-2}$ is generated by

$$F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\dot{x}_1 = [1, 0]$. By eigenvalue decomposition of F we get

$$\dot{\mathbf{x}}_{t+1} = \mathbf{F}^{t} \dot{\mathbf{x}}_{1} = \mathbf{S} \mathbf{A}^{t} \mathbf{S}^{-1} \dot{\mathbf{x}}_{1} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{t} & \mathbf{0} \\ \mathbf{0} & \left(\frac{1-\sqrt{5}}{2}\right)^{t} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{1}{2} - \frac{1}{2\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{1}{2} + \frac{1}{2\sqrt{5}} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

A time series of *yearly* snapshots from a discrete non linear Lotka-Volterra type predator - prey system (x = hare, y = lynx) is used as training data:

$$x_{t+1} = (1 + a - b y_t) x_t$$
 and $y_{t+1} = (1 - c + d x_t) y_t$

From these samples we calculate the *monthly* population by use of a neural network based method to compute iterative roots and fractional iterates.

The given method provides a natural way to estimate not only the values over a year, but also to extrapolate arbitrarily smooth into the future.