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Abstract. Paleoclimate time series are often irregularly sam-half of the uncertainty in the similarity estimation process.
pled and age uncertain, which is an important technicalTime series irregularity contributes less, particularly for the
challenge to overcome for successful reconstruction of pasadapted Gaussian-kernel-based estimators and the event syn-
climate variability and dynamics. Visual comparison and chronization function. The introduced link strength concept
interpolation-based linear correlation approaches have beesummarizes the hypothesis test results and balances the indi-
used to infer dependencies from such proxy time seriesvidual strengths of the estimators: while gXCF is particularly
While the first is subjective, not measurable and not suitablesuitable for short and irregular time series, gMI and the ESF
for the comparison of many data sets at a time, the latter in€an identify nonlinear dependencies. ESF could, in particu-
troduces interpolation bias, and both face difficulties if the lar, be suitable to study extreme event dynamics in paleocli-
underlying dependencies are nonlinear. mate records. Programs to analyze paleoclimatic time series
In this paper we investigate similarity estimators that couldfor significant dependencies are included in a freely available
be suitable for the quantitative investigation of dependen-software toolbox.
cies in irregular and age-uncertain time series. We compare
the Gaussian-kernel-based cross-correlation (gXRehfeld
et al, 2011) and mutual information (gMIRehfeld et al. )
2013 against their interpolation-based counterparts and the-  Introduction

new event synchronization function (ESF). We test the ef-T_ . ft d h . fth
ficiency of the methods in estimating coupling strength and Ime series are often used to assess the properties of the pro-

coupling lag numerically, using ensembles of synthetic sta SESSEs that generated them, in climate scieRebifeld et al.

lagmites with short, autocorrelated, linear and nonlinearly201|]) but ‘:‘:SO I'rt]t ma?y IOt;gi SCtIentIfItC fler:ds' ranging lfrom
coupled proxy time series, and in the application to real®c0'09Y t ermitte et a, ) to astrop y§|cs$carge
stalagmite time series. 1989. Time series similarity measures quantify the degree of
In the linear test case, coupling strength increases are idens_tatistical association and are, particularly in the geoscientific
tified consistently for all estimators, while in the nonlinear context, often equated with Pearson correlatiGh4field

test case the correlation-based approaches fail. The lag %00‘9' They help to identify the strength of dependencies be-

which the time series are coupled is identified correctly asiween climate processes and potential lead-lag relationships.

the maximum of the similarity functions in around 60—55 % For modern-day weather stations, both daily temperature and
}he time of observations are logged precisely. To identify re-

(in the linear case) to 53—42 % (for the nonlinear processes) . . X : ;
of the cases when the dating of the synthetic stalagmite is pe ationships between distant weather evolution, time series of

fectly precise. If the age uncertainty increases beyond 5 % ofemperature apomal_les can be com pared. .Palec')cllmate data
the time series length, however, the true coupling lag is nof'® .cru0|al to Investigate chmate; |nterr.elat|ons'h|ps beyond
identified more often than the others for which the similar- ("€ instrumental record. Paleoclimate time series are, how-

ity function was estimated. Age uncertainty contributes up to€VEr, more challenging _than_ the data Sources in ot_her disci-
plines: neither observation time nor the climatic variable are
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108 K. Rehfeld and J. Kurths: Similarity estimators

X R v S sure, the joint and marginal distributions of proceskeand
o 060% Prs, 9 o O age uncertain Y are evaluated. Its advantage is that it is model free and
e 0\ © Oo fime series able to quantify nonlinear dependencies, but it is symmetric,
\ \ \ \ \ \ \Iag MI(X, Y)=MI(—X,Y), and more difficult to quantify as the
\ s o o oo guantification bias changes considerably for different sample
Y | 56°96 O/ 2.0? ol Mg g0 4O regular sizes and estimator techniquaééhén et al, 2007, Kraskov
time series et al, 2004. It has been adapted and tested for irregular

Fig. 1. lllustration: assume that the climatic procdsss driven by and aqtocorrelated time sgrleRe(hfeId et al. 2013 in a
processY at a given lag. They are sampled by a paleoclimate IerXyGauss|'an—kerneI—based variant. Both Ml and XC depend on
archive () and an automatized measurement device (esulting ~ the notion of a scatter plot between the data.
in corresponding time series. A typical task in paleoclimate data An alternative, especially in the analysis of extreme
analysis is to estimate the strength of statistical association betwee@vents, could be found in the measure of event synchroniza-
such time series; the delay time can hint at physical driving mechation (ES, Quian Quiroga et al.2002, which is not based
nisms. on the available time series, but the relative timing of dis-
tinguished events in two time series. Originally conceived
for neurophysiological signals, it has become a popular mea-
known precisely. Both have to be reconstructed, resulting insure to investigate dependencies in precipitation time series
irregular and age-uncertain time series, because variability ifMalik et al,, 2010 2011 Rheinwalt et al.2012, but it has
the growth of the archive impacts on the temporal resolutionnot been tested for its suitability on short and autocorrelated
of the resulting proxy time series (Fiy. The dependency of time series. In its original form it provides a measure for the
reconstructed paleoclimate time series, and their relationshigtrength of synchronization and for the direction of a poten-
to global or external forcing, is often inferred from similar- tial coupling between the processes generating the events,
ities, coinciding maxima/minima or trends, between graphi-but not for the lag of the potential coupling. Although stated
cal visualizations of the time series (for exampleZimang  differently in the original paper, ES does not require regular
et al, 2008 2011, Cheng et a].2012 Sinha et al.201J). Vi- observation intervals.
sual comparison is, however, inherently subjective, cannot be A number for an individual correlation coefficient can be
quantified and tested in a hypothesis test and will not sufficenterpreted, when its level of significance is determined as
with the growing number of paleoclimatic data sets available.well. For the usually short and autocorrelated paleoclimatic
Standard statistical techniques, such as estimating théme series, this can be done by bootstrapping the result
Pearson correlation (XC), cannot readily be applied when th€Mudelsee 2002, or by testing the similarity for mutually
sampling of the time series is irregular. XC is, in principle, uncorrelated surrogate time series with similar autocorrela-
computed by taking the arithmetic mean over the productdion propertiesRehfeld et al.2011, 2013. The values of the
of coeval, centralized and standardized observations and radifferent estimators, however, cannot be compared directly,
flects the goodness of a linear fit to the scatter plot of theas they vary on different scales. In this paper we evaluate the
data. If the two time series to be correlated are irregular, coimpact of age uncertainty and time series irregularity on the
eval observations are only given in the special case that botlhccuracy of the estimators.
time series have the same timescale. In practice, this would Furthermore we propose the concept d¢ih& strength to
arise only if, for example, two proxies were measured on thesummarize the hypothesis test results of different estimators.
same samples. In the general case the irregularity precludd$ no outcome is significant, it is zero, if three out of five
the direct computation. employed estimators yield a significant similarity, the link
Interpolating the time series to a regular coinciding strength is 3/5 and if all tests for null correlation were re-
timescale, however, results in a loss of high-frequency vari-jected the link strength is equal to unity. The advantage of
ability and a spectral bias towards low frequenci®shulz  this approach lies in its robustness due to the different esti-
and Statteggerl997). In a comparison of correlation anal- mators, and in the easy consideration of uncertain data sets.
ysis techniques the Gaussian-kernel-based Pearson correld-the uncertainty of the time series can be modeled, for ex-
tion was identified as a reliable and robust estimator for ir-ample using the Monte Carlo techniques in age modeling
regular time serieRehfeld et al.2011). However, relation-  software such as StalAg&c€holz and Hoffmann2017) or
ships in the climate system are not always linear, and thereCOPRA @Breitenbach et al2012), it can be incorporated in
fore not necessarily identifiable by linear techniques such ashe link strength considerations in a straightforward manner.
Pearson correlation. This is not a problem in the geosciences In this paper we will investigate how well each of these
alone, and similarity measures that can capture nonlinear inestimators identify the strength and the delay time of ac-
terrelationships exist. Mutual information (MI), an entropy- tual coupling between paleoclimatic processes from irregu-
based measure, has been used to investigate nonlinear der and age-uncertain time series. First we review the sim-
pendencies of processes from observatiddgnges et al.  ilarity measures (XC, MI), and develop a event synchro-
2009 Runge et aJ.2012 Hlinka et al, 2013. In this mea-  nization function (ESF) based on the concept of ES. We
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simulate artificial stalagmites with linearly and nonlinearly A casairlationship  8: Common diver - C: Unobserved intermediary process  D: Flse positve
. . . et en X an o an leleconnection; no actual relationsl I[J)

coupled proxy time series based on autoregressive (AR) . 7

and threshold-autoregressive (TAR) models. Using these anc TN AN

o : . X Y X Y X g Y

the stalagmite time series from Danda&ir(ha et al.2007,

Berkelhammer et gl.2010 and Wanxiang Zhang et al.  Fig. 2. Significant similarities between the time series at two loca-

2008 caves, we investigate how the similarity estimators per-tions, X and Y, can arise fror(a) direct physical coupling(b) a

form for irregular, age-uncertain and autocorrelated time seieleconnection(c) a common driving mechanism ¢) by chance

ries, and how they are impacted by age uncertainty. as false positives.

X e—-

2 Methods interpolate from these few dates to a time axis for the proxy

time series, which is sampled much more densely in depth
In this section we first give necessary definitions for time se-than the dating table. Thus, an age model is defined here as
ries and Slmllarlty measures, and derive the ESF and the |inl©ne potentia| depth_age re|ati0nsmjpzi) out of the possi-
strength concept. ble ensemble of age models For Monte Carlo (MC) age
modeling, wholeensemble®f age modelsT are created,
sampling the probability space inherent in the dating table
Time series are a collection of measurements of specific(Cf' def.2). By con\{ent|on: usually thmpst likelyage model

Is selected as the time axis for proxy time ser®{tenbach

properties of a dynamical process, together with the t|meet al, 2012 Scholz and Hoffmanr2011. Finally the dating

when the observation (or measurement) took place. The in: : . . . _ ;
able is combined with the proxy observation series using a

dividual data points of the series are often regarded as obsel;—. | del to f i tain ti .
vations of processes, which may be deterministic, stochastic“?Ing €-age modet to form a ime-uncertain ime series.
or a combination of both. In classical time series analysis the2 2 Estimating similarity of irregular time series

observation times of the proceXs are expected to be reg-

ular and certain, and the observation values to be measuredimilarity measures reflect statistical properties of time se-

exactly. ries, which may not reflect the same climatic parameters. Dif-
In contrast to this, for irregular time series no unique sam-ferent estimators focus on different characteristic properties

pling rate can be defined, and the observation times canngig|ated to the distributions of the observations. We summa-

be directly related to an index anymore, but have to be giveryjze them in Tablel.

explicitly for each measurement. Assume that the process&sandY generated time series

Definition 1 (Irregular time series) An irregular time se- X (*) andy(z). These processes, and the time series, are simi-
riesx (1) = (¢;, x;) is defined by its observation timgsand lar if, for example, coeval minima or maxima were observed.
the respective observations, wherei = 1, ..., N. The two Comparison can then give information about functional re-

vectors have a common lenghly, with £ < £ < --- < tj‘\,x lationships between processes unQerIying time series: given
as observation times. that two processeX andY are not independent, there may

either be a causal relationship or they are both driven by a
In the following we focus on the age-uncertain paleoclimateg|ohal common driveror there are unobservable intermedi-
proxy time series for which a growth model of the archive hasate processes, as illustrated in FgA significant similarity
been combined with pointwise age information, for exam- estimate may therefore arise for such physical reasons — or
ple from uranium/thorium measurements. Input data to thisys 3 false positive of the statistical test. If a transfer function
age modeling are (i) a dating table with its entries contain-petween these two processes exists in a fBres F(X;1¢),
ing depths, associated age estimates and their uncertaintiegis results in a repetition of a pattern, though maybe dis-
usually given as standard deviations, and (ii) the proxy ob-orted, that occurs irX, atzy and inY, at a timet = to + ¢

2.1 Time series

servations. later. A similarity estimator can help identiff and quan-
Definition 2 (Dating table) A dating table D — ::maesstz:aiess|-m|lar|t|es in the contemporary evolution of two

(D;,T;,07,)i=1,..,Ngy CONtAINS Ngat pointwise age es-
timatesT; taken at depthd; and their corresponding age

o Definition 4 (Similarity estimator) A similarity estimator
standard deviations T, . ( y ) y

S=F{(t*,x)@,y)) reflects the similarity between(t)
Definition 3 (Proxy observation series)Proxy observation ~andy(#) to a numeric value in an intervab[ b], S : x (1) x
seriesX? = (d;,x;) are given forj = 1,..., Nopsmeasure- ~ ¥(t) —[a,b].

ment depthd ; and proxy measurements.
e proxy ¥ For most similarity measures= —1, b =1 is considered,

For paleoclimate archives, the ages at few depths are estbut for different estimators different bounds exist. Here we
mated, with some uncertainty. Age models are then created tonly require that the relationship between true dependency
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110 K. Rehfeld and J. Kurths: Similarity estimators

Table 1.Properties, parameters and references of the similarity estimator algorithms for irregularly sampled time series developed and tested

in this paper.

Estimator  Quantif. property Parameter choice References

(abbr.)

1 (gXCF) Gaussian-kernel-based XCF h=0.25 Rehfeld et al(2017);
(goodness of linear fit to scatter Babu and Stoic§2010
plot)

2 (tiXCF) interpolation + Pearson correlationAt = max(At*, ArY) Rehfeld et al(2011); basics, for
(goodness of linear fit to scatter example, inChatfield(2004
plot)

3 (gMl) Gaussian-kernel-based Ml (rela-h =0.5,7 =3 Rehfeld et al(2013; basics, for
tive non-randomness in joint vs. example, in Cover and Thomas
marginal distribution) (2006

4 (iMI) interpolation + MI (relative non- Ar=maxAt*, AtY), Rehfeld et al(2013; basics, for
randomness in joint vs. marginal npins = 10 example, in Cover and Thomas
distribution) (2006

5 (ESF) Relative timing of extreme events ¢ = 0.8 based oiQuian Quiroga et a(2002);

Malik et al. (2010

and estimated similarity is monotonically increasing, which the kernelby (¢ — t}) weights those products higher whose
is what we test for using artificially generated time series. Iftime lag lies cl’oser t&Ar:
the delay time in the transfer function is nonzero, a similar-

ity function gives the similarity between two time series for by (d) = ——— e~ 14°/2/* | (3)
increasing delay: 21 h

where h = At/4 or 0.25 for the rescaled time axig, =

t7"9/Ar, andd denotes the distance between the product
inter-observation time and the desired ldgs ¢, —t7 —kAt,

k denotes the lag index. The standard widtﬁ parameter

SW) =S-An) = f (", x), (" +L-At, y))). (1)  chosen to result in a main lobe width af, the mean sam-
pling interval or common sampling period in the bivariate
case. Note that the observations have to be standardized to
zero mean and unit variance before the analysis.

Definition 5 (Similarity function) A similarity function
S(¢) gives the estimated similarity over different lag tindes

The spacing of the lag vector is uniform and depends
on the mean time resolution of the time seriest =
max(At,, Aty). To indicate that we are focusing on bivari-
ate similarity we also use the alternative notatiStX,Y) 222 Kernel-based estimators for mutual information
which does not explicitly refer to the possible lags.

Mutual information/ (X, Y) = I, is a measure of the depen-

Similarity measures as required in this context should b&yency (inear or nonlinear) between two random variables,
symmetric, reflexive, translation and scale invaridbeatyr- X andY. This measure from information theory can be in-

shin et al, 2012. The estimators presented here fulfill these terpreted as the uncertainty reduction in varialilegiven

requirements. that Y was observed. It is symmetric, that is, relationships
of opposite sign but the same association strength, correla-
tion and anti-correlation give the same MI. By definition, the

Pearson correlation is defined as the mean over coeval prodP€asure yields a null result if, and only if, the two random
ucts of standardized observatior@h@tfield 2004. For ir-  Vvariables, in this case time series of observations, are inde-
regular time series the inter-sampling time intervals varyPendentKraskov et al.2004 Cover and Thoma2008.

2.2.1 Kernel-based estimators for Pearson correlation

and the classical definition cannot be appligehfeld et al. ~ While more complex estimators exist (e.graskov et al.

(201)) tested different correlation estimators for irregular 2004, the simplest estimator is

time series and found that a Gaussian-kernel-based estimatqr Dy

performed best. In the definition of the correlation function Zxy = pr,y log pepy (4)
X,y

p(kAt) at the lagkAt:
NUSNY L Y where p, , is the two-dimensional joint probability density
Yiz1 2 j—1 Xy bty — 1)) (2)  function of the variablest and Y and p resp. p, are the

p(kAr) = N i ) . . R
Dz j=1bx (t? —t) one-dimensional probability distributions &f resp.Y. The

Clim. Past, 10, 107422 2014 www.clim-past.net/10/107/2014/



K. Rehfeld and J. Kurths: Similarity estimators 111

unit of measurement of MI depends on thgarithmchosen 4. Based on this set of bivariate observatiois, Y") the
in the estimator: it is measured lits if the logarithmic base joint density ofX andY can be estimated using stan-
2 is chosen, and inatsfor the natural logarithm. dard binning estimators for MI.

In case of irregular sampling, however, the bivariate ob- o .
servation setX,, Y;) at regular observation pointshat are The reconstructed set of bivariate observations can also be

required for a scatter plot is not available. In standard inter-US€d to construct Gaussian-weighted scatter plots, where the
polation procedures, botfr,, x) and (¢,, y) would be re- size of the marker reflects the amount of weight placed on

sampled to obtain a bivariate set of observations with regulatn® reconstructed observation (cf. Figs. andsb). Ml is dif-
observation time intervalgtr, x;, yr). This is undesirable for ficult to estimate in practice, first and foremost because of

paleoclimate records (a) because every interpolation routind€ large bias effects produced in the inference of the joint
involves an assumption on the dynamics of the underlyingand. marglnal probabl!ltles. Elgborate algonthms.have been
process, and this is difficult to justify for climate data, and devised to improve this (described, for exampleKiaskov
(b) it reduces the observable variability in the proc&shglz €t al, 2004 Papana and Kugiumtzi2009 Roulston 1999,
and Statteggerl997 Stoica and Sandgre@00§ Babu and but no straightforward solution to this has been found yet. We
Stoica 2010. have tested several algorithms and finally resorted to the most
There are two main points where this problem can be adSimple equidistanbinning estimatoi(Kraskov et al, 2004,
dressed: either by reconstructing bivariate observations whil&U€ t0 its computational efficiency and simplicity. Bias ef-
avoiding variance reduction as much as possible or by a modf€cts are predominantly tied to the temporal sampling and
ification of the joint distribution, for example by introducing €ngth of the time series due to the occurrence of empty bins.
weights proportional to the sampling time distance similar TUS, if necessary, we can estimate and subtract the bias us-
to the Gaussian-kernel-based XRehfeld et al.201%). For N9 uncorrelated processes with the same observation times
MI the latter is difficult to achieve. But following the former @S inX andY. However, for use as a similarity measure com-

solution, the probabilities required for Ed) @re straightfor- ~ Parable to XCF and ES in the context of paleoclimate net-
ward to derive from relative frequencies. works, we only require that the estimated MI be proportional

Algorithmically, this can be described as follows: to the actual association strength. For bivariate normally dis-
tributed and linearly correlated andY, Ml is by definition
1. Alocal reconstruction of the signal is performed by es- proportional to their estimated correlation coefficieﬁt
timating for each point in the time serieX = (¢*, x)
a corresponding observation frofh= (¢”, y), by es- Lo _} log(1— r2) ©)
timating a local, observation-time weighted m@%h W9 9 Tay)

around a time point? in Y, . . . .
poing; and can, by inversion of this equation, be scaled to the pos-

Ny itive range of the correlation coefficient so that [0, 1]
yljr = Zbk(d)yi i (5) (Na_zareth et al2007). The expected value for_mu_tual infor-
i1 mation of these processes at the lag of coupling is then given
_ _ _ by MI(X (¢), Y (t+1)) = —0.5log(1—r?Z). For the evaluation
with the Gaussian-kernel-based local weightd) de-  qf the joint and marginal distributiongins = 10 equidis-
fined as in Eq. ). For MI the standard deviation tant pins were employed. In principle, the number of bins
of the Gaussian weight function is setfo=0.5. If  ghoyld be adapted to the respective length of the time series
there are less than five observatiopsavailable in - jqyolved, to reduce bias effects from empty bins.
a time window+3A¢ aroundt; this reconstruction
is not performed. Repeating this for each time point2.2.3 Event synchronization function
j=1,...,N*in X one obtains a new, bivariate set of
observations The concept of event synchronization (ES) was introduced
Y*=(t],x;, yﬁr) . by Quian Quiroga et al(2002. The motivation behind the
development was to obtain a simple, fast method that quan-
2. Afterwards the procedure is repeated by steppingdtifies the synchronization between time series where certain

throught?, which yields eventsan be distinguished. The primary application was fo-
, cused on neurophysiological signaf3uian Quiroga et a|.
X' =@ x"y). 2002 Kreuz et al, 2009, but it was also applied later for the
. J

investigation of rainfall patterns in the Asian monsoon do-
3. The local reconstructioy* and the original obser- main Malik et al, 2010 2011) and EuropeRheinwalt et al.
vationsY are then concatenated into one seiiés= 2012.
{Y UY*} combining locally reconstructed and original ~ The main idea behind ES is that two time series are syn-
observations. Similarly, a time seri&$ = (XUX") is chronized, if events in time seriasoccur close in time to
obtained. events in time serieg. Considering the temporal order of the
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112 K. Rehfeld and J. Kurths: Similarity estimators

events (e.g., if an event in occurredbeforeone inx), it is
also possible to infer which procesdéading In the follow-
ing we will define the event synchronization function, ESF,
further developing the ES concef®ian Quiroga et al.
2002 Malik et al,, 2010.

Given two time serie¢*, x) and(¢”, y) that represent ob-
servations of autocorrelated stochastic processas)tsare
given by the set of observations that are considesggme
in that their observation value lies above or below @
resp.(1— q/2) percentiles of the distributions of and y.
The actualalueof the observation at the event points is not Fig. 3. How much age uncertainty is allowed to still enable re-
relevant for the further analysis. Once the events are definediable similarity estimation? Artificial stalagmites with increasing
only the observatiotimesare considered in the event time Standard deviations of the ages are evaluated.

. Dating table & Proxy observations Q Age modeling (Monte Carlo)
Age

O Ensemble of time series ° Similarity estimation for ensemble o Distribution of estimates

: ™
|\ T B |||
? _ III Il

Age Similarity S

vectorst’ andtf. Next a temporal threshold is defined to

evaluate the relationship between the events endY with

a maximum separation time:

7= max(At", min(Az}, At;‘)/Z) . @)
Here, Ar* is the mean sampling rate &f, and Az} and

At* are the inter-event times iKi andY, respectively.

Subsequently, the co-occurrence of eventXiandY is
counted and summed for all events as

Ny Ny
cCxN=>>"

[=1m=1

J

Im

(8)

where N, and N,, respectively, give the total numbers of
events inX andY. The counter variabld,’ is defined as

1 if0<l‘lx—l,,};<+‘l,'
1/2 if f—1;,=0
0 otherwise

Xy __
‘]lm -

9)

C(Y|X) is obtained by exchanging vs. Y in the above ex-
pression, and combining both,

CX|Y)+CY|X)

xy = 0xy(X,Y) = , 10
gives thestrengthof the event synchronization and
CX|Y)—-C|X)
4xy = (11)

VNN,

the direction of the association. Unless double counting of
events occurs, these are normalizedto 0 <1resp—1<
g < 1. Q0 =1 corresponds to completely synchronous occur-
rence of events iX andY, andg = 1 implies that all events
in Y precedethose inX.

For the previous studieQian Quiroga et al2002 Malik
et al, 201Q 2011) local definitions of the temporal threshold
T were used, preventing, in most cases, events from bein

double counted, and adapting it to the local inter-event rate;

The chosen definition of is motivated by the fact that, to

Clim. Past, 10, 107422, 2014

be able to compare the results for ES to those obtained from
MI and XCF, a similarity function over thdelayis needed.
Thus, the delay cannot be allowed to be arbitrarily large
or small, as inMalik et al. (2010 or Quian Quiroga et al.
(2002.

The ESF is obtained by shifting the observation times of
time seriesX according to the desired lag:

ES(kAt) = Qxy((tx_kA[ax)v(ty»y))v (12)

which, using the delay time from Eq. (7), makes it possible
to use the ESF as a similarity function.

2.3 An approach to similarity assessment of
time-uncertain time series

Age uncertainty is a key obstacle to be overcome for a com-
prehensive understanding of past earth system dynamics. To
investigate the potential dependency structure of paleocli-
mate processeX and Y as they are reflected in natural
archives, the contribution of age uncertainty to the uncer-
tainty of the similarityS(X, Y) is important.

Thus the aim is to estimate the distributipnS(X, Y)) of
similarity for given data setX andY, where

[0 = (D", 7% 07,7 = a" x)] and (13)

Y = [Dy = (D", T o7}, X! = {dy,y}]. (14)
Both input data sets consist of a dating table (2D with
dating depth vectoD, the corresponding estimated ades
and their uncertainties 7y and a set of proxy measurements
X9 resp.Y? (Def. 3), visualized as Step 1 in Fi@. The
smoothing resulting from the size of the samples in depth
direction, o p, is assumed to be negligible here. The input
proxy measurements are mapped to observation times in the
age modelingprocess. In general, algorithms to assess simi-
larity between time series are not capable of proceg=ioig-
ability distributionsor confidence intervalinstead of sin-
leton values, neither for the observation times nor for the
measurement values.

www.clim-past.net/10/107/2014/
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For Pearson correlation, an analytical approach to propavs. total variance between two linearly correlated processes
gate the uncertainty around the input data into the correlatiorat a given lag, S(¢), is given in the maximum of the cross-
estimate is possible. However, Pearson correlation alone isorrelation function. While the relation to the overall vari-
insufficient to characterize similarity between paleoclimateance of the processes does not necessarily hold by defini-
time series in general and in the context of paleoclimate nettion for other similarity measures, they, too, will observe the
works. Therefore, a Monte Carlo-based approach based omaximum of their similarity function ma), at the lag of
time series ensembles which are obtained via age modelingoupling¢.

is used here, to keep the flexibility regarding similarity esti-
mators: 2.3.1 Synthetic data

1. In afirst step the input data sefsandY are processed. “True” growth histories for two synthetic stalagmités1

The monotonicity of the depth control variabldsand  and SS2 and according climate histories are obtained via

D is checked. simulation. These pseudo-archives are then “dated”, climate
histories are “sampled”. Then the age modeling procedure
is performed and its output is fed into similarity estimation.
Finally, we assess how much of the similarity that was orig-
inally present in the climate history is still recognizable sig-
tively, for all i = 1""’Ndxtg pointwise age estimates nificantly, considering the uncertainties. The test strategy is

corresponding tg = 1,..., NJ,, entries in the dating illustrated in Fig.3.

2. A Monte Carlo simulation for the uncertain age esti-
mates in the dating table is performeds,s ages are
drawn from N (T ¥, o ;x) andJ\/(T}/,oT_Y). respec-

i J

table. This results in dating matricksand¥ with Nens 232 The synthetic stalagmite

columns containing the sampled ages. If no distribu-

tion of ages is otherwise given, the ages are expected\ synthetic (or virtual) stalagmite is grown for the sensitivity
to be Gaussian distributed with the given standard de-analysis. The main parameters controlled are

viation. .
— the growth rate. in mmyr-1,

3. The age estimates in each column abadY) are in- -
terpolated to the depths of the proxy observations: — the total length of the stalagmite (in mm),
T =interp( D,X,d) which results in a matrix of
reconstruction observation tim@s We used conven-
tional linear interpolation of the ages in COPRA. Thus
we obtain an ensemble of possible age—depth relaA growth rate of u(i(z)) =1mmyr?! is chosen. Lin-
tionships{T, d} and an ensemble of proxy time series ear growth may be a reasonable first order approximation
{T,x}. (Telford et al, 2004, but microscopically, the growth rates

of natural archives vary. Therefore, Gamma-distributed accu-

mulation times are drawn for each depth= {0, ..., Z}mm

i ) oo ; of the stalagmite, with the sampling time step medh(z))
S(X.Y). This results in a distribution of estimates yetarmined by the desired growth rate and shape and scale
P(SX,Y)). parameters andg asI'(«, 8) = I'(«, (A (z)) /). This way,

5. Analysis of distributions(X, ¥): apart from inspec- _the mean sampling rate_ can .be _kep_t cqnstant, even when the
tion of mean, variance and skewness of this distribu-I"eégularity of the sampling distribution is changeeehfeld
tion, a hypothesis test can be conducted, comparin t al, 2.01]). The cumulative sum of the'accumulatlon times
S(X,Y) with a distribution obtained from suitable sur- QSQ gives t?e ‘true” ages of the archive at the depfhs
rogate time serie§(X*, Y*). (i) = X1 M

— the type of accumulation (linear growth, or growth
modeled via randomly distributed accumulation rates).

4. Each of the members of the ensemble of proxy time
series is used as an input to the similarity statistic

This approach is general in the sense that itis independent ¢#-3-3  The simulated climate history

the specific functiorf ([X, Y]) that maps the uncertain input ] ) )
to some output estimate. Apart fraf= S, F may represent We attgch each syqthetlc stalagmite SSl_ and SSZ to a cli-
any bivariate statistic, and with minor modification is also Mate history. The climate/pseudo-proxy simulation is based
applicable to calculate the influence of sampling uncertainty®" the assumption that SS1 lies in an area whose climate is
on univariate statistics, like the autocorrelation coefficientscontrolling that around SS2, through a teleconnection or, for

or persistence timesehfeld et al. 2011 Mudelsee 2002. example, by being situated downstream of the same monsoon

Bivariate similarity assessment is often concerned with esPranch (cf. Fig2). We simulate climate variability using two

timation of a potentiatoupling strengthw (hinting towards different coupling schemes, one linear, one nonlinear, to in-
the same process of origin) and/or thg of couplinge for ~ vestigate how the proposed methods perform.
model-building. For Pearson correlation, the ratio of shared
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2007 Dykoski et al, 2005 Breitenbach et 812012 or radio-
carbon fadava et a].2004 Webster et a]2007), yielding an

Assuming that the archive SS2 samples the same climatgstimate off (z,) at a few points. The corresponding dating
variability as SS1, in the same way though at a later time,uncertainty, in reality dependent on many factors from initial
we model such a causal sequence using coupled AR(1) prgsotope concentrations, overall age of the core, dating tech-

cesses. Then, theue proxy history of climate as recorded in
SS1is given by

X ("% z) = pX 1D + ocei, (15)
and it determines part of the proxy history$§2:
Y (4% 2i) = a X (¢]Y]) + 0z (16)

Here,e and & are additional Gaussian white noise whose
variancess, andog are scaled such that the variancesXof
andY are equal to unityr € [—1, 1] is the coupling strength
between SS1 and SS2 agdthe autocorrelation of SS1.
Since there is no autocorrelative terntinthe true similarity
S(X,Y) is equal to the cross-correlatiofitX, ¥) = pyy =«
(Rehfeld et al.2011).

Nonlinear threshold-AR(1) processes

nigque, lab and contaminatiordirchild and Baker2012,
often lies between 0.1 to 0.5 % of the age for stalagmites, but
may be considerably higher.

For the synthetic stalagmites, dating “samples” are taken
at equidistant depthB ; and the center points of the assumed
age distribution are taken directly from tireie age—depth
relationship. The age uncertainty, however, is modeled as in-
creasing proportionally with age, as T ;. p here denotes
the (im-)precision of the dating and is varied in the following
numerical experiments.

2.3.5 Age modeling for SS1 and SS2

Age modeling aims to reconstruct the “true” depth—age rela-

tionship that is inaccessible in real paleoclimate archives.
Based on the synthetic stalagmite dating taBl€sandD”

for SS1 and SS2, the “observation times” for the proxy ob-

servationsX? andY?, t* and¢”, are constructed by inter-

Let us assume that SS1 samples climate variability in a cerpolation from the known ages (see Bg). In Monte Carlo-

tain place, and that this can be modeled as in E§). (Then
the climate variability in another place, where SS2 is located

based numerical frameworks such as StalA8ehplz and

Hoffmann 2011) or COPRA @reitenbach et 812012, an

could be controlled in a nonlinear manner: the processegnsemble of age modeld = {#;, z; }*=1Vens is created,

are negatively correlated, similar to EdL6f with o < 0.
If, however, a threshold in the climate system is exceeded

which, in their entirety, reflect the age uncertainty of the es-
timated depth—age relationship. Based on this ensemble of

X (t) > 7, the correlation changes and might even becomeage models, the uncertainty in the similarity estimates can be
positive. Such a multi-scale behavior can be modeled usingnferred, as is visible in Fig3.

threshold-AR processes (TARsay 1989, which are sim-
ilar to the regime-dependent AR modé&wiers and Storch
(1990 used to model the behavior of the Southern Oscilla-
tion. Assume that the negative coupliagpelow the thresh-
old z, herer =0, for X (t —1) < 7 turns into a positive corre-
lation, with the same magnitude, f&r(t — 1) > 7. Then the
proxy history of SS2 can be modeled as
Yt z0) = ak X (¢ + 0 (179, | (17)
wherethac = —1if X(r—1) < r ande = 1whenX (¢-1) >
7. For convenience, the variance of the innovation térim
scaled such that the overall varianceYois equal to unity in
both cases.

2.3.4 “Dating” of the synthetic stalagmite

Mimicking the real-life situation, thé&rue growth history of
the synthetic stalagmitg(tiye) is, in the following, inacces-
sible. The stalagmite is subjecteddating along its depth.
The dating table contains the dating depfhsthe estimated
age at these deptlfs;, the proxy measurement sample width
ap and the age uncertaintyr.

In real life, the stalagmite would be dated using radiomet-

ric dating techniques based on uranium-thori@imba et al.

Clim. Past, 10, 107422, 2014

In summary, the test plan is thus as follows:

1. Simulate a growth history(z) of a synthetic stalag-
mite of lengthZ mm, corresponding to a “true” age—
depth relationship™e(z;), resp.z; (£®). For this, as-
sume gamma-distributed growth and an accumulation
ratex = 1 mmyr-L. Z can be varied to study the influ-
ence of changing time series length.

. Simulate proxy historie$T, x}5S1and{T, y}SS? ac-
cording to thetrue growth history using coupled au-
toregressive processes (cf. Etgand17). Forget the
true growth history.

. Sample the true growth history at the dating depths and
infer corresponding uncertainties.

. CreateNgps surrogate dating tables for SS1 and SS2
with increasing uncertainty of the ages according to
the (im)precisiorp (i.e., an ensemble of dating tables).

. Assess if the estimate&X, Y) are statistically signif-
icant for the given uncertainty, and how they are influ-
enced by sampling heterogeneity and time uncertainty.

[

The core of the COPRA algorithm is used for MC simu-
lations. Nepns= 2000 MC iterations are used to sample the

www.clim-past.net/10/107/2014/
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Fig. 4. Testing the similarity measures: for linearly coupled AR time Fig. 5. Testing the similarity measures for nonlinear threshold-AR
series (cf. EqL6) from two synthetic stalagmites, SS1 and SS2, we time series (cf. Eql7). For caption please refer to Fid.
give the sample time serig¢a) and the Gaussian weighted scatter
plot (b). We check the monotonicity of the estimators with increas-
ing coupling strengtifc) and how often the maximum of the simi- Well do they identify the lag of coupling as the maximum
larity function correctly coincides with the lag of couplifd). of the similarity function?
To answer the first question, we fix the imprecision at zero
(at the dating points) and vary the coupling strength by set-
probability space and linear interpolation is employed to in-ting the parametez in Eq. (16) to values from 0.1 to 1. The
fer ages between point estimates of the age at depth. results are given in Figlc. The expected value of the similar-
ity, aesy and the variance of the estimate are computed from
the mean and standard deviations of the estimatgg,, for
100 realizations for each value of the coupling parameter.
Each of the similarity measures returns estimates whose ex-
pectation values increase monotonically with the actual simi-
larity, airye in EQ. (16), except for the ESF, which has a single
reversal which may be due to the low number of MC realiza-
3.1 Characterization of linear proxy dependency tions (100) for each point in this diagram.
In practical data analysis, the potential lag and strength of
We first consider the linear dependency case, where théprimary) coupling, identified as the maximum of the sim-
proxy history of SS1 is linearly correlated with that of SS2 ilarity function is of interest (e.g., for model-building). If
a lag time¢ later. We chose a length for the stalagmite N0 age uncertainty exists at the dating points, the maximum
of L =100mm for which we expect the time series to be of the similarity function is correctly identified in 50-60%
roughly 100yr long (cf. Sec.3.2 and linearly correlated, of the ensemble cases. When timescale uncertainty exists
as in Fig4a. For each test 100 time series were generatedn the time series, this becomes difficult quickly (Fd).
from AR1 processes (cf. Sec®:3.3, where procesy is  When the fraction of correct identifications has dropped to
coupled to procesX at an intrinsic lag¢ and with a cou- % ~ 0.05, wheren, is the number of lags for whichi(¢) has
pling strengthe. The autocorrelation parameter was set to been estimated, the maxima of the similarity functions are
¢ = 0.8, the coupling lag td = 5 and the coupling parame- perfectly uncorrelated. This limit is approached as an impre-
ter toae = 0.6. For such stochastic processes, the true similar<ision of more than 10 % is reached. Increasing imprecision
ity function is single peaked, with its peak height determinedcontained in the time series also results in increasing estima-
by «, and its location on the lag-axis by the coupling tag tion error (i.e., root mean square error(RMSE)) for the simi-
The time series are irregular, therefore a direct scatter plotarity at the lag of coupling$(¢) (results not shown). When
of the data is not possible. Figute shows a weighted scat- the stalagmite length is increased, the time series length in-
ter plot where the time series have been reconstructed usingreases and both the RMSE and the false identification rate
Gaussian weights, as for the Ml estimation in SB@&.2 decreases for all estimators.
The tests were guided by two questions: do the similar-
ity estimators reflect the actual similarity (here, the coupling
strength at lad, «) truthfully and monotonically? and, how

3 Tests on synthetic stalagmites

We evaluate the performance of the different estimators de
scribed in Sect2, for which parameter choices and refer-
ences are given in Table
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3.2 Nonlinear dependencies impact of regular sampling, regular time series of the same
length, average temporal spacing and coupling scheme were
For the nonlinear TAR model, the time series in Bg.are  also simulated. We evaluated the performance of the different
not as straightforward to compare visually as the linearlyestimators for the different sampling schemes at increasing
coupled ones in Figla. The weighted scatter plot for these dating imprecision using theot mean square errqfRMSE)
time series in Figbb shows the two different slopes of the of the estimators for the target coupling parameter
positive and negative correlation regimes above and below
the threshold yalue of zero. . _ RMSE(aes) = 1/ Var(aes) + bias(aes)? (18)
The comparison of true vs. estimated coupling streiagth
in Fig.5c shows no monotonous behavior for the linear cor-where biagres) = cirue — dest
relation measures and no overall increase of their expected We did this separately for each sampling scheme to obtain
similarity estimates with the coupling strength. The Ml esti- the RMSEeg, the “baseline” RMSE for each estimator un-
mators retain a monotonic increase, starting from a considerder regular sampling, RMSkg for the irregularly sampled
able bias value, while the ESF increases monotonically, buensembles and the RM§Efor the age-uncertain ensem-
does not show consistent similarity estimate increases untible. Coupling strength, autocorrelation and time series length
the coupling strength is rather large. The monotonicity andwere fixed to the same values for the three different sampling
linearity of the response for gMI, iMI and ESF improve con- schemes. To improve the comparability for the MI estima-
siderably when the time series are chosen longer, that is, witlors, the bias offset was estimated from mutually uncorre-
a length of 200 or more (results not shown). lated time series with the same autocorrelation and length
In the identification of the maximum lag the Gaussian MI and subtracted prior to the conversion to the XCF scale.
succeeds most often for imprecisions up to 2.5%. For more Based on the assumption that the RMSE should in-
imprecise data sets the ESF remains stable, while the othejrease from regular to irregular to age-uncertain time se-
measures perform worse and worse. The linear estimatorsies, RMSEeq < RMSEeqg < RMSE,, the “baseline” con-
gXCF and iXCF do notidentify the maxima correctly, neither tribution is estimated from regular time series as RMGE

the coupling strength, nor the lag of coupling. the additional contribution from timescale irregularity as
RMSE;reg — RMSEeg and the additional RMSE of the age-
3.3 Error source attribution uncertain time series’ similarity as RMQE- RMSEireg.

The results, averaged over the realistic imprecision values

Age uncertainty has a considerable impact on the accuracythe 2nd-5th points in Figdd andsd), are given in Fig6.
of similarity estimates, as we have shown in the previous |deally the RMSE should of course be as small as possi-
section. But to what extent can this impact be attributed toble. For the linear (CAR) case in Fig.3, the smallest RMSE
the short length of the time series, or the time series irregis observed for the ESF and the gXCF, the largest — by far
ularity that results from the increasing age uncertainty? The- for the interpolation-based iXCF. While the regular (esti-
uncertainty around the ages in the dating table is, in Montemator) bias is low for the correlation estimators, the contri-
Carlo-based age—depth modeling, reflected by drawing difbution of increasing irregularity of the time series sampling
ferent “dates” from distributions around these ages for each{due to the uncertain inputs) is non-negligible particularly for
MC realization. These realizations will therefore have dif- the interpolation-based cases. The age uncertainty alone ac-
ferent partial slopes between any dd¥ and D;11. This  counts for additional, but generally smaller, error. While a
corresponds to different estimated growth rates for the indiHarge amount of the uncertainty of the interpolation-based
vidual segments of the synthetic core. At a proxy samplingestimators, iMI and iXCF, is due to sampling irregularity,
rate over depth that is constant, this will lead to uneven ob-ES has a large RMSE for regular time series, which is even
servation times for the time series which correspond to thenigher than that for regular to slightly irregular time series.
MC realizations, and this irregularity increases with the ageTherefore the contribution of irregular sampling to the cu-
uncertainty. The RMSE af(¢) is, however, also dependent mulative uncertainty, as depicted in F&3, is negative, thus
on the irregularity of the time series, as it was shown for bothimproving the estimation efficiency!
XCF and Ml previously Rehfeld et al.2011, 2013. In the nonlinear (TAR) case the picture is quite different.

To separate these sources of uncertaiMy= 2000 re-  The correlation-based estimators are not able to tell the cou-
alizations of coupled climate histories, as define®i8.2 pling strength, regardless of the sampling scheme. The gMI
were generated in three different wagsle uncertainirreg- estimator ranks lowest, with a lower uncertainty contribu-
ularly andregularly sampledThe age-uncertain ensembles tion from irregular sampling compared to the iMI estimator.
were the direct product of the age modeling efforts, as in theThe ESF, again, improves its accuracy when the time series
previous sections and with same parameter settings(@.8, are irregular. The overall error level is higher than for the
a = 0.9, £ =5) For the irregular data set the proxy histories linear case.
were re-generated with the true coupling strength on the ir-
regular timescales of the age modeling output. To assess the
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[ Regular sampling
[ Irregularity
e |[ ]Age uncertainty

I Regular sampling
[ irregularity
[__]Age uncertainty [
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Estimators
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Fig. 6. Attribution of the uncertainty to its sources f@) the linear CAR model an¢b) the nonlinear TAR model: general (estimator) error

inred, error introduced via irregular sampling (orange) and additional error due to the age uncertainty (yellow). The source-dependent RMSE
was averaged over the second through to fifth imprecision levels given iMBigad5d, as these correspond to the error levels most likely

found in real-world studies. Errorbars indicate the associated standard deviation. For event synchronization the RMSE is lower for irregular
than regular sampling, folding the irregular part of the bar backwards.

The link strength summarizes the mogenize and summarize the results obtained for individual

The link weight reflects the

th::\izgnﬁoog;Iier?)“c;ili:LZt:Sttii::tseesries certainty in a statistical association. similarity measures.
Thelink strengthp(X, Y) for two observed time serie%
X Y X e Y andY is defined as the relative frequency of significant esti-

mates from theVsjm employed estimators;:

Fig. 7. The link strength concept: for each similarity estimator, sig- 3 sim p. (X, Y)
nificant results result in a link between the time series. The sum ofpl. (X, Y) = i=1 "1

) (19)
these links determine the strength, or weight, of the link. Nsim

as illustrated in Fig7. The link strength of the individual es-
timators,Piq (X,Y) is recorded on a binary scale:
3.4 The link strength concept « -
1 if S; symmetric ancﬂiy > S y
Each of the tested similarity estimators comes with differ- _, 1 if §; asymmetric and
ent underlying assumptions, estimator bias and variance, anfi (X>¥) = (5?‘3’ - Shi!xy) | (S?‘y - S!O'Xy>, (20)
they refer to different properties of the time series: the good- l l l l
ness of a linear fit to the joint distribution (XCF), the sharp-
ness of the joint vs. the marginal distributions (Ml) or the
relative positions of extreme points, or events, in the time se
ries (ES).

0 otherwisg

wheresh/° refer to the critical values of a hypothesis test, the
null hypothesis being that botki andY are autocorrelated,
Therefore direct results obtained from the different esti- Pt mutually uncorrelated, Gaussian distributed stochastic

mators are difficult to compare, and they respond to couP L?)((:yesszs.lg Xr;,e sr:gr;:ﬂcanqsd e.ter(rjn;nes the Fr_ltlfal (\)/alues

pling strength increases differently (Figs. and5c). The S andsS;™ which are obtained from theni = 1 —0.5¢

MI estimates, to this end, have to be converted to the XCFaNd gio = 0.5¢ quantiles of surrogate similarity estimates
. . * k

scale and thus are bound to the intef@ll], not[—1, 1] as Si(X*, Y7). ) .

for XC. This, together with the substantial and non-negative 'ndependent AR(1) surrogate time seris and Y™ are

bias, induces a different proportionality between the actuageénerated on the same time axesXaand Y according to
coupling and the inferred association strength. Inferred ESEQ- (19). The individual AR(1) persistence time for actual

on the other hand, increases nonlinearly, but monotonicallyPaleoclimate data can be obtained using an efficient least-
with the coupling. squares fitting algorithmRehfeld et al. 2011, Mudelsee

The main use of similarity measures is to assess the assoct009- The link strength can be extended to incorporate age
ation strength between dynamics of processes. This can onlyncertainties by computing the similarities i realiza-
be interpreted properly, if the significance of this estimate istions of an age model and adding a second summation over
known. To unify the results obtained from different similarity these in Eq.19).
estimators, we propose to usérk strengthp(X, Y), to ho-
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4 Application to real stalagmite data

Now after having ensured the efficacy of the estimators using

synthetic data sets, we apply the estimators to real-world sta- > 0.4
lagmite data sets from India, (the Dandak caV®0 record S
originally published in Sinha et al.2007), and China (the & 0.2
Wanxiang recordZhang et al.2008. Comparisons of these £

data sets have been performed3srkelhammer et a(2010
andRehfeld et al(2011). Thirteen U/Th dates constrain the
age model of the Dandak cave record, 19 are available for

the Wanxiang cave record. Age modeling was performed on

the full proxy data sets, comprising of 1875 and 703 oxy- §'0.4
gen isotope measurements over depth and using the COPRA g
algorithm with 1000 realizationsBfeitenbach et 312012). g 0.2
The time series were cut to the overlapping time period from =

600 to 1550 AD and detrended by subtracting the long-term _%.2
mean, estimated using a Gaussian kernel smoother with a
width W of 1000 yr.

Berkelhammer et al2010 determined an averaged cor- -
relation of 0.27 for 50 yr overlapping time windows, while § 04
Rehfeld et al(201]) found a lag zero correlation coefficient 2 0.2
of 0.290 and 0.295 for iXCF and gXCF, respectively. This 2

correlation was found to be significant at the 95 % level in
the two-sided test for zero correlation, the null hypothesis

0.650.70.750.80.850.90.95

. . . Mi
being that the time series are autocorrelated but mutually un- Q(ld)

correlated.

Does this correlation persist, when the age uncertainties
are considered in the analysis? We estimated the similarities
for the two records considering all five estimators of Tdble
and for the original records as well as the results from age
modeling, and give the results in FR). The histograms of

frequency
e o
=I- N R

0.8 0.85 0.9 0.95 1
similarity estimates for 100 realizations of the age models iMI
show a considerable spread. The mean similarity for the cor- (e)
relation estimators (indicated by the solid red line in F&gs. - i
and8b) is higher than that of the 95 % quantile of the sur- ] 0-4’ ‘ |
rogate distribution. The mean gMI estimage) is close to S |
the critical value, while the iMI&d) and ES 8e) results lie g 02 |
well below. The median link strength (red line in F&f) is . 0
equal to 0.4. In contrast, the original age models published 0 0.1 0.2 0.3 0.4
by Berkelhammer et a[2010 andZhang et al(2008 yield ES

significant results for all estimators except the ESF, resulting
in an overall link strength of 0.8.

When we compute the similarities using the COPRA en-
sembles for the more sparse DandaRO time series pub-
lished earlier §inha et al.2007) the outcome is quite differ-
ent —the link strength is only 0.2.

frequency
o o
o v b

0 0.2 0.4 0.6 0.8
Linkstrength
5 Discussion Fig. 8. Estimated lag zero similarities and link strength between

the Dandak and Wanxiang cave records for the overlapping time
Age uncertainty clearly affects all estimators of similarity for period. The results for the age-uncertain ensembles are given in the
time series, and it is an illusion that it would be possible to dark blue histograms. The red solid line refers to the mean of these
mitigate the effects of uncertainty on the time axis for any estimates, the light blue stem to the results for the mean timescale.
type of analysis depending on observation times. Even if theThe dashed lines refer to the respective confidence intervals.

observation — or accumulation — time of a grown archive is
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known precisely at some depths, an observation time recon- The ESF, originally intended for the analysis of event se-
struction from age modeling requires an assumption on thaies, performs well and has the lowest total RMSE, followed
accumulation behavior which, necessarily, will be wrong to closely by gXCF, in the linear test case. There, its baseline
some extent, as stochasticity and irregularity in the growthRMSE dominates the RMSE split, and the RMSE for irregu-
will always be present. This is a fact not challenged by thelar sampling idower than that for regular sampling. This is
choice of a different interpolation routine (e.g., to a contin- similar for the nonlinear processes. One reason for this might
uous cubic spline), which is often preferred by geoscientistsbe that, for irregularly sampled time series of the same mean
(Breitenbach et al2012 Scholz and Hoffman2011). On observation time distance, the number of observations spaced
the positive side, and although counterintuitive, incorporat-closelytogether is higher, which might increase the chances
ing (small) age uncertainty in the analysis might even im-to find multiple events spaced closely together, resulting in
prove the estimate when a deterministic (thus necessarilgffective double-countingpf events. The comparably small
wrong) assumption on the growth of the archive is made. contribution from age uncertainty in the linear test indicates
A low imprecision of 0-0.5 % or an age uncertainty of ap- that neither the relative nor the absolute observation time dis-
proximately 1-2 yr over a period of 200 yr results in minimal tance between the time series are crucially important to the
relative estimation error and maximal confidence on the sim-measure. Thus, it is quite a robust similarity measure with re-
ilarity peak position for the time series similarity functions spect to age uncertainty and comparable to gXCF for linear
S.Ifa similarity analysis for real-world data sets covering a coupling and gMI for nonlinear coupling, which both ulti-
time span of 100 000 yr was desired, this would amount to armately depend on the notion of simultaneous observations.
“allowed” age error of 500 yr at a mean time series resolution Although the irregularity of the time series is rather low
of 500 yr, which is a lower than what is usually founthy- (the inter-sampling-time distribution is narrow and close
lor et al, 2004. Thus, the resolution desired in the analysis to normally distributed) the estimators that do not require
is necessarily dependent on age uncertainty — only if that ighe time series to be sampled regularly perform better than
lower, or comparable, would an analysis of such short timethe interpolation-based records, which confirms the previous
series with full consideration of age uncertainties be feasiblefinding (Rehfeld et al. 2011, 2013 that large sampling ir-
One way to achieve higher certainty could be the incorpora+regularity (i.e., the presence of gaps) leads to large interpo-
tion of layer-counted data in the age modeling process, folation bias, where the adapted estimators gXCF and gMI are
example, for annually laminated archiv&éitenbach etal.  particularly suitable. We have applied the similarity estima-
2012. tors to investigate the similarities between the Dandak and
The similarity estimators tested show different behavior, Wanxiang cave records. We find that the link strength aptly
dependent on the signal type. The correlation-based estimaummarizes the results of the similarity significance tests: the
tors perform better for the linear coupling scheme, but fail time series are quite likely to be correlated, but age uncer-
for the nonlinear processes. tainty blurs the results. There are several other parameters
The gXCF and iXCFerror split is dominated by the age which can have a critical impact on the analysis: the choice
uncertainty as the largest source of error in the linear CARof the significance level for link strength estimation, the de-
case. Both have small baseline bias for regular samplingtrending width and the respective resolution of the time se-
gXCF estimates coupling strength more effectively, howeverries. The dependence of the results on the detrending param-
for both age uncertainty and irregular sampling contributionseter (Fig.9) illustrates the timescale dependence of the anal-
of iXCF are significantly larger due to interpolation effects. ysis: a small detrending widtW results in a high-pass fil-
In the nonlinear coupling scheme there is little differenceter and very low link strengths, larg& yields high similar-
whether the time series is regular, irregular or age uncertairity on larger timescales. This indicates that the paleoclimatic
— the correlation-based methods cannot capture such type @écords are more clearly associated at centennial to multi-
dependencies. centennial timescales than at decadal timescales, which are
gMI and iMI perform badly on the first glance in the linear more impacted by age uncertainty. A higher temporal reso-
CAR case, as their baseline bias for regular sampling RMSHution of proxy measurements improves the accuracy of the
is large. However, one needs to take into account that thestimators, particularly for the data-demanding Ml estima-
RMSE is determined by both variance and bias — and thators. Bootstrapping of the time series to successively lower
MI estimation, especially using binning estimators, is alwayslengths could be used to test the robustness of the estimators
associated with a significant positive bias, particularly for against such effects.
short time series. This bias, however, decreases with increas- We have only considered five similarity estimators (gXCF,
ing time series length. If a direct comparison of Ml and XC iXCF, gMI, iMI and ESF) here, but this could be expanded
estimates is desired, this bias should be subtracted from théor other concepts, for example, based on (cross-)recurrence
MI estimate prior to scaling it to the correlation scale. In the plots (Romano et a).2005 Marwan et al. 2007 Marwan
nonlinear TAR case the Gaussian-kernel-based version ha2002 Lange 2011), recurrence networkg=gldhoff et al,
the lowest overall RMSE. 2012, convergent cross mappin§ygihara et al.2012 or
distance measureslfermitte et al. 2011). The notion of
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1 ble1 gives a comprehensive overview over the similarity esti-
mators, parameter choices and further references. gXCF and
ESF perform particularly well if the relationship is linear, but
the correlation estimator fails in the presence of nonlinear
coupling, where the ESF and gMI are better suited to infer
dependences. The significance of results from different es-
timators and under varying time series length and sampling
can be unified using the concept of a link strength. It com-
90% CI bines similarity estimators and significance tests and is given
0 Q- oo ol by the relative frequency of positive significance tests and
0 2°%etren§‘;gg widfﬁ"[yearsf“ 1000 could be especially useful in the analysis of large paleocli-
matic data sets where it is infeasible to check each pair of
Fig. 9. Sensitivity of the link strength result for the original records time series for similarity individually. We have shown that
of Berkelhammer et a(2010 andZhang et al(2008 to changes  age uncertainty is the largest contributor to estimation error
in the detrending parametér of a Gaussian-kernel detrending and for time series similarity, and for a reliable of similarity func-
the significance level in the hypothesis test. tion shape and coupling structure, the timescale imprecision
should be as low as possible. When it exceeds 5 % of the time
a link strength, instead of XC, MI or ES values, makes it senesilength couphng phenomena on timescales cIo;e tp the
. . sampling resolution can no longer be deduced. While time
straightforward to extend the analysis to a whole ensemble " . ™ . .
. . . i Series irregularity can be well addressed by the use of the
of time series, be it from age modeling or out of a database X .
. ; . adapted estimators, age uncertainty cannot, and should there-
of paleoclimate records. If age uncertainty does not |mpactf . :
ore be reduced as much as possible by measuring more ages,

the cross similarity, the link strength will not drop substan- improved dating techniques or the use of additional temporal
tially. The actual value of the link strength can be interpreted. b 9 d P

. ) . s ) information from layer countingBreitenbach et a/.2012
in terms of a “degree of confidence”: if the value is close : A
- . . here possible. This is, in essence, good news, because the
to the significance level, a relationship cannot be conclude .
! ' ! . irregular growth of the archives cannot be reversed, but mea-
with confidence. If the link strength is close to one, all the

: o Y . . surement devices can be optimized.
estimators return significant similarity estimates and a simi-

larity can be deduced with certainty.
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