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Abstract. Paleoclimate time series are often irregularly sam-
pled and age uncertain, which is an important technical
challenge to overcome for successful reconstruction of past
climate variability and dynamics. Visual comparison and
interpolation-based linear correlation approaches have been
used to infer dependencies from such proxy time series.
While the first is subjective, not measurable and not suitable
for the comparison of many data sets at a time, the latter in-
troduces interpolation bias, and both face difficulties if the
underlying dependencies are nonlinear.

In this paper we investigate similarity estimators that could
be suitable for the quantitative investigation of dependen-
cies in irregular and age-uncertain time series. We compare
the Gaussian-kernel-based cross-correlation (gXCF,Rehfeld
et al., 2011) and mutual information (gMI,Rehfeld et al.,
2013) against their interpolation-based counterparts and the
new event synchronization function (ESF). We test the ef-
ficiency of the methods in estimating coupling strength and
coupling lag numerically, using ensembles of synthetic sta-
lagmites with short, autocorrelated, linear and nonlinearly
coupled proxy time series, and in the application to real
stalagmite time series.

In the linear test case, coupling strength increases are iden-
tified consistently for all estimators, while in the nonlinear
test case the correlation-based approaches fail. The lag at
which the time series are coupled is identified correctly as
the maximum of the similarity functions in around 60–55 %
(in the linear case) to 53–42 % (for the nonlinear processes)
of the cases when the dating of the synthetic stalagmite is per-
fectly precise. If the age uncertainty increases beyond 5 % of
the time series length, however, the true coupling lag is not
identified more often than the others for which the similar-
ity function was estimated. Age uncertainty contributes up to

half of the uncertainty in the similarity estimation process.
Time series irregularity contributes less, particularly for the
adapted Gaussian-kernel-based estimators and the event syn-
chronization function. The introduced link strength concept
summarizes the hypothesis test results and balances the indi-
vidual strengths of the estimators: while gXCF is particularly
suitable for short and irregular time series, gMI and the ESF
can identify nonlinear dependencies. ESF could, in particu-
lar, be suitable to study extreme event dynamics in paleocli-
mate records. Programs to analyze paleoclimatic time series
for significant dependencies are included in a freely available
software toolbox.

1 Introduction

Time series are often used to assess the properties of the pro-
cesses that generated them, in climate science (Rehfeld et al.,
2011) but also in many other scientific fields ranging from
ecology (Lhermitte et al., 2011) to astrophysics (Scargle,
1989). Time series similarity measures quantify the degree of
statistical association and are, particularly in the geoscientific
context, often equated with Pearson correlation (Chatfield,
2004). They help to identify the strength of dependencies be-
tween climate processes and potential lead–lag relationships.
For modern-day weather stations, both daily temperature and
the time of observations are logged precisely. To identify re-
lationships between distant weather evolution, time series of
temperature anomalies can be compared. Paleoclimate data
are crucial to investigate climate interrelationships beyond
the instrumental record. Paleoclimate time series are, how-
ever, more challenging than the data sources in other disci-
plines: neither observation time nor the climatic variable are
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108 K. Rehfeld and J. Kurths: Similarity estimators

Fig. 1. Illustration: assume that the climatic processY is driven by
processX at a given lag. They are sampled by a paleoclimate proxy
archive (X) and an automatized measurement device (Y ), resulting
in corresponding time series. A typical task in paleoclimate data
analysis is to estimate the strength of statistical association between
such time series; the delay time can hint at physical driving mecha-
nisms.

known precisely. Both have to be reconstructed, resulting in
irregular and age-uncertain time series, because variability in
the growth of the archive impacts on the temporal resolution
of the resulting proxy time series (Fig.1). The dependency of
reconstructed paleoclimate time series, and their relationship
to global or external forcing, is often inferred from similar-
ities, coinciding maxima/minima or trends, between graphi-
cal visualizations of the time series (for example inZhang
et al., 2008, 2011; Cheng et al., 2012; Sinha et al., 2011). Vi-
sual comparison is, however, inherently subjective, cannot be
quantified and tested in a hypothesis test and will not suffice
with the growing number of paleoclimatic data sets available.

Standard statistical techniques, such as estimating the
Pearson correlation (XC), cannot readily be applied when the
sampling of the time series is irregular. XC is, in principle,
computed by taking the arithmetic mean over the products
of coeval, centralized and standardized observations and re-
flects the goodness of a linear fit to the scatter plot of the
data. If the two time series to be correlated are irregular, co-
eval observations are only given in the special case that both
time series have the same timescale. In practice, this would
arise only if, for example, two proxies were measured on the
same samples. In the general case the irregularity precludes
the direct computation.

Interpolating the time series to a regular coinciding
timescale, however, results in a loss of high-frequency vari-
ability and a spectral bias towards low frequencies (Schulz
and Stattegger, 1997). In a comparison of correlation anal-
ysis techniques the Gaussian-kernel-based Pearson correla-
tion was identified as a reliable and robust estimator for ir-
regular time series (Rehfeld et al., 2011). However, relation-
ships in the climate system are not always linear, and there-
fore not necessarily identifiable by linear techniques such as
Pearson correlation. This is not a problem in the geosciences
alone, and similarity measures that can capture nonlinear in-
terrelationships exist. Mutual information (MI), an entropy-
based measure, has been used to investigate nonlinear de-
pendencies of processes from observations (Donges et al.,
2009; Runge et al., 2012; Hlinka et al., 2013). In this mea-

sure, the joint and marginal distributions of processesX and
Y are evaluated. Its advantage is that it is model free and
able to quantify nonlinear dependencies, but it is symmetric,
MI(X,Y ) = MI(−X,Y ), and more difficult to quantify as the
quantification bias changes considerably for different sample
sizes and estimator techniques (Khan et al., 2007; Kraskov
et al., 2004). It has been adapted and tested for irregular
and autocorrelated time series (Rehfeld et al., 2013) in a
Gaussian-kernel-based variant. Both MI and XC depend on
the notion of a scatter plot between the data.

An alternative, especially in the analysis of extreme
events, could be found in the measure of event synchroniza-
tion (ES, Quian Quiroga et al., 2002), which is not based
on the available time series, but the relative timing of dis-
tinguished events in two time series. Originally conceived
for neurophysiological signals, it has become a popular mea-
sure to investigate dependencies in precipitation time series
(Malik et al., 2010, 2011; Rheinwalt et al., 2012), but it has
not been tested for its suitability on short and autocorrelated
time series. In its original form it provides a measure for the
strength of synchronization and for the direction of a poten-
tial coupling between the processes generating the events,
but not for the lag of the potential coupling. Although stated
differently in the original paper, ES does not require regular
observation intervals.

A number for an individual correlation coefficient can be
interpreted, when its level of significance is determined as
well. For the usually short and autocorrelated paleoclimatic
time series, this can be done by bootstrapping the result
(Mudelsee, 2002), or by testing the similarity for mutually
uncorrelated surrogate time series with similar autocorrela-
tion properties (Rehfeld et al., 2011, 2013). The values of the
different estimators, however, cannot be compared directly,
as they vary on different scales. In this paper we evaluate the
impact of age uncertainty and time series irregularity on the
accuracy of the estimators.

Furthermore we propose the concept of alink strength, to
summarize the hypothesis test results of different estimators.
If no outcome is significant, it is zero, if three out of five
employed estimators yield a significant similarity, the link
strength is 3/5 and if all tests for null correlation were re-
jected the link strength is equal to unity. The advantage of
this approach lies in its robustness due to the different esti-
mators, and in the easy consideration of uncertain data sets.
If the uncertainty of the time series can be modeled, for ex-
ample using the Monte Carlo techniques in age modeling
software such as StalAge (Scholz and Hoffmann, 2011) or
COPRA (Breitenbach et al., 2012), it can be incorporated in
the link strength considerations in a straightforward manner.

In this paper we will investigate how well each of these
estimators identify the strength and the delay time of ac-
tual coupling between paleoclimatic processes from irregu-
lar and age-uncertain time series. First we review the sim-
ilarity measures (XC, MI), and develop a event synchro-
nization function (ESF) based on the concept of ES. We
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simulate artificial stalagmites with linearly and nonlinearly
coupled proxy time series based on autoregressive (AR)
and threshold-autoregressive (TAR) models. Using these and
the stalagmite time series from Dandak (Sinha et al., 2007;
Berkelhammer et al., 2010) and Wanxiang (Zhang et al.,
2008) caves, we investigate how the similarity estimators per-
form for irregular, age-uncertain and autocorrelated time se-
ries, and how they are impacted by age uncertainty.

2 Methods

In this section we first give necessary definitions for time se-
ries and similarity measures, and derive the ESF and the link
strength concept.

2.1 Time series

Time series are a collection of measurements of specific
properties of a dynamical process, together with the time
when the observation (or measurement) took place. The in-
dividual data points of the series are often regarded as obser-
vations of processes, which may be deterministic, stochastic,
or a combination of both. In classical time series analysis the
observation times of the processXt are expected to be reg-
ular and certain, and the observation values to be measured
exactly.

In contrast to this, for irregular time series no unique sam-
pling rate can be defined, and the observation times cannot
be directly related to an index anymore, but have to be given
explicitly for each measurement.

Definition 1 (Irregular time series) An irregular time se-
ries x(t) = (t i,xi) is defined by its observation timest i and
the respective observationsxi , wherei = 1, . . . ,N . The two
vectors have a common lengthNx , with tx

1 < tx
2 < · · · < tx

Nx

as observation times.

In the following we focus on the age-uncertain paleoclimate
proxy time series for which a growth model of the archive has
been combined with pointwise age information, for exam-
ple from uranium/thorium measurements. Input data to this
age modeling are (i) a dating table with its entries contain-
ing depths, associated age estimates and their uncertainties,
usually given as standard deviations, and (ii) the proxy ob-
servations.

Definition 2 (Dating table) A dating table D =

(Di,T i,σ Ti
)i=1,...,Ndat contains Ndat pointwise age es-

timatesT i taken at depthsDi and their corresponding age
standard deviationsσ Ti

.

Definition 3 (Proxy observation series)Proxy observation
seriesXd

= (dj ,xj ) are given forj = 1, . . . ,Nobs measure-
ment depthsdj and proxy measurementsxj .

For paleoclimate archives, the ages at few depths are esti-
mated, with some uncertainty. Age models are then created to

Fig. 2. Significant similarities between the time series at two loca-
tions, X and Y, can arise from(a) direct physical coupling,(b) a
teleconnection,(c) a common driving mechanism or(d) by chance
as false positives.

interpolate from these few dates to a time axis for the proxy
time series, which is sampled much more densely in depth
than the dating table. Thus, an age model is defined here as
one potential depth–age relationshipt i(zi) out of the possi-
ble ensemble of age modelsT. For Monte Carlo (MC) age
modeling, wholeensemblesof age models,T are created,
sampling the probability space inherent in the dating table
(cf. def.2). By convention, usually themost likelyage model
is selected as the time axis for proxy time series (Breitenbach
et al., 2012; Scholz and Hoffmann, 2011). Finally the dating
table is combined with the proxy observation series using a
single-age model to form a time-uncertain time series.

2.2 Estimating similarity of irregular time series

Similarity measures reflect statistical properties of time se-
ries, which may not reflect the same climatic parameters. Dif-
ferent estimators focus on different characteristic properties
related to the distributions of the observations. We summa-
rize them in Table1.

Assume that the processesX andY generated time series
x(t) andy(t). These processes, and the time series, are simi-
lar if, for example, coeval minima or maxima were observed.
Comparison can then give information about functional re-
lationships between processes underlying time series: given
that two processesX andY are not independent, there may
either be a causal relationship or they are both driven by a
globalcommon driver, or there are unobservable intermedi-
ate processes, as illustrated in Fig.2. A significant similarity
estimate may therefore arise for such physical reasons – or
as a false positive of the statistical test. If a transfer function
between these two processes exists in a formYt = F(Xt+`),
this results in a repetition of a pattern, though maybe dis-
torted, that occurs inXt at t0 and inYt at a timet = t0 + `

later. A similarity estimator can help identifyF and quan-
tifies the similarities in the contemporary evolution of two
time series:

Definition 4 (Similarity estimator) A similarity estimator
S = F ((tx,x)(ty,y)) reflects the similarity betweenx(t)

andy(t) to a numeric value in an interval [a,b], S : x(t) ×

y(t) →[a,b].

For most similarity measuresa = −1, b = 1 is considered,
but for different estimators different bounds exist. Here we
only require that the relationship between true dependency

www.clim-past.net/10/107/2014/ Clim. Past, 10, 107–122, 2014
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Table 1.Properties, parameters and references of the similarity estimator algorithms for irregularly sampled time series developed and tested
in this paper.

Estimator
(abbr.)

Quantif. property Parameter choice References

1 (gXCF) Gaussian-kernel-based XCF
(goodness of linear fit to scatter
plot)

h = 0.25 Rehfeld et al.(2011);
Babu and Stoica(2010)

2 (tiXCF) interpolation + Pearson correlation
(goodness of linear fit to scatter
plot)

1t = max(1tx ,1ty) Rehfeld et al.(2011); basics, for
example, inChatfield(2004)

3 (gMI) Gaussian-kernel-based MI (rela-
tive non-randomness in joint vs.
marginal distribution)

h = 0.5, τ = 3 Rehfeld et al.(2013); basics, for
example, in Cover and Thomas
(2006)

4 (iMI) interpolation + MI (relative non-
randomness in joint vs. marginal
distribution)

1t = max(1tx ,1ty),
nbins= 10

Rehfeld et al.(2013); basics, for
example, in Cover and Thomas
(2006)

5 (ESF) Relative timing of extreme events q = 0.8 based onQuian Quiroga et al.(2002);
Malik et al. (2010)

and estimated similarity is monotonically increasing, which
is what we test for using artificially generated time series. If
the delay timè in the transfer function is nonzero, a similar-
ity function gives the similarity between two time series for
increasing delay:

Definition 5 (Similarity function) A similarity function
S(`) gives the estimated similarity over different lag times`:

S(`) = S(`·1t) = f
(
(tx,x), (ty

+ `·1t,y))
)
. (1)

The spacing of the lag vector is uniform and depends
on the mean time resolution of the time series:1t =

max(1tx,1ty). To indicate that we are focusing on bivari-
ate similarity we also use the alternative notationS(X,Y )

which does not explicitly refer to the possible lags.

Similarity measures as required in this context should be
symmetric, reflexive, translation and scale invariant (Batyr-
shin et al., 2012). The estimators presented here fulfill these
requirements.

2.2.1 Kernel-based estimators for Pearson correlation

Pearson correlation is defined as the mean over coeval prod-
ucts of standardized observations (Chatfield, 2004). For ir-
regular time series the inter-sampling time intervals vary
and the classical definition cannot be applied.Rehfeld et al.
(2011) tested different correlation estimators for irregular
time series and found that a Gaussian-kernel-based estimator
performed best. In the definition of the correlation function
ρ̂(k1t) at the lagk1t :

ρ̂(k1t) =

∑Nx

i=1
∑Ny

j=1xiyjbk(t
y
j − tx

i )∑N
i=1

∑N
j=1bk(t

y
j − tx

i )
, (2)

the kernelbk(t
y
j − tx

i ) weights those products higher whose
time lag lies closer tok1t :

bk(d) =
1

√
2πh

e−|d|
2/2h2

, (3)

where h = 1t/4 or 0.25 for the rescaled time axis,tx
i =

t
orig
i /1x

t , and d denotes the distance between the product
inter-observation time and the desired lag,d = t

y
j −tx

i −k1t ;
k denotes the lag index. The standard width parameterh is
chosen to result in a main lobe width of1t , the mean sam-
pling interval or common sampling period in the bivariate
case. Note that the observations have to be standardized to
zero mean and unit variance before the analysis.

2.2.2 Kernel-based estimators for mutual information

Mutual informationI (X,Y ) = Ixy is a measure of the depen-
dency (linear or nonlinear) between two random variables,
X andY . This measure from information theory can be in-
terpreted as the uncertainty reduction in variableX, given
that Y was observed. It is symmetric, that is, relationships
of opposite sign but the same association strength, correla-
tion and anti-correlation give the same MI. By definition, the
measure yields a null result if, and only if, the two random
variables, in this case time series of observations, are inde-
pendent (Kraskov et al., 2004; Cover and Thomas, 2006).

While more complex estimators exist (e.g.,Kraskov et al.,
2004), the simplest estimator is

Îxy =

∑
x,y

px,y log
px,y

pxpy

, (4)

wherepx,y is the two-dimensional joint probability density
function of the variablesX andY andpx resp.py are the
one-dimensional probability distributions ofX resp.Y . The
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unit of measurement of MI depends on thelogarithmchosen
in the estimator: it is measured inbits if the logarithmic base
2 is chosen, and innatsfor the natural logarithm.

In case of irregular sampling, however, the bivariate ob-
servation set(Xt ,Yt ) at regular observation pointst that are
required for a scatter plot is not available. In standard inter-
polation procedures, both(tx,x) and (ty,y) would be re-
sampled to obtain a bivariate set of observations with regular
observation time intervals,(t r,xr,yr). This is undesirable for
paleoclimate records (a) because every interpolation routine
involves an assumption on the dynamics of the underlying
process, and this is difficult to justify for climate data, and
(b) it reduces the observable variability in the process (Schulz
and Stattegger, 1997; Stoica and Sandgren, 2006; Babu and
Stoica, 2010).

There are two main points where this problem can be ad-
dressed: either by reconstructing bivariate observations while
avoiding variance reduction as much as possible or by a mod-
ification of the joint distribution, for example by introducing
weights proportional to the sampling time distance similar
to the Gaussian-kernel-based XC (Rehfeld et al., 2011). For
MI the latter is difficult to achieve. But following the former
solution, the probabilities required for Eq. (4) are straightfor-
ward to derive from relative frequencies.

Algorithmically, this can be described as follows:

1. A local reconstruction of the signal is performed by es-
timating for each pointi in the time seriesX = (tx,x)

a corresponding observation fromY = (ty,y), by es-
timating a local, observation-time weighted meanylr

j

around a time pointtx
i in Y ,

ylr
j =

Ny∑
i=1

bk(d)yi , (5)

with the Gaussian-kernel-based local weightbk(d) de-
fined as in Eq. (3). For MI the standard deviation
of the Gaussian weight function is set toh = 0.5. If
there are less than five observationsyi available in
a time window±31t aroundtx

i this reconstruction
is not performed. Repeating this for each time point
j = 1, . . . ,Nx in X one obtains a new, bivariate set of
observations

Y x
= (tx

i ,xi,y
lr
i ) .

2. Afterwards the procedure is repeated by stepping
throught

y
j , which yields

Xy
= (t

y
j ,x

lr
j ,yj ) .

3. The local reconstructionY x and the original obser-
vationsY are then concatenated into one seriesY r

=

{Y ∪Y x
} combining locally reconstructed and original

observations. Similarly, a time seriesXr
= (X∪Xy) is

obtained.

4. Based on this set of bivariate observations(Xr ,Y r) the
joint density ofX andY can be estimated using stan-
dard binning estimators for MI.

The reconstructed set of bivariate observations can also be
used to construct Gaussian-weighted scatter plots, where the
size of the marker reflects the amount of weight placed on
the reconstructed observation (cf. Figs.4b and5b). MI is dif-
ficult to estimate in practice, first and foremost because of
the large bias effects produced in the inference of the joint
and marginal probabilities. Elaborate algorithms have been
devised to improve this (described, for example, inKraskov
et al., 2004; Papana and Kugiumtzis, 2009; Roulston, 1999),
but no straightforward solution to this has been found yet. We
have tested several algorithms and finally resorted to the most
simple equidistantbinning estimator(Kraskov et al., 2004),
due to its computational efficiency and simplicity. Bias ef-
fects are predominantly tied to the temporal sampling and
length of the time series due to the occurrence of empty bins.
Thus, if necessary, we can estimate and subtract the bias us-
ing uncorrelated processes with the same observation times
as inX andY . However, for use as a similarity measure com-
parable to XCF and ES in the context of paleoclimate net-
works, we only require that the estimated MI be proportional
to the actual association strength. For bivariate normally dis-
tributed and linearly correlatedX andY , MI is by definition
proportional to their estimated correlation coefficientr2

xy :

Ixy = −
1

2
log(1− r2

xy) , (6)

and can, by inversion of this equation, be scaled to the pos-
itive range of the correlation coefficient so thatÎ ∈ [0,1]
(Nazareth et al., 2007). The expected value for mutual infor-
mation of these processes at the lag of coupling is then given
by MI(X(t),Y (t+l)) = −0.5log(1−r2

xy). For the evaluation
of the joint and marginal distributions,nbins = 10 equidis-
tant bins were employed. In principle, the number of bins
should be adapted to the respective length of the time series
involved, to reduce bias effects from empty bins.

2.2.3 Event synchronization function

The concept of event synchronization (ES) was introduced
by Quian Quiroga et al.(2002). The motivation behind the
development was to obtain a simple, fast method that quan-
tifies the synchronization between time series where certain
eventscan be distinguished. The primary application was fo-
cused on neurophysiological signals (Quian Quiroga et al.,
2002; Kreuz et al., 2009), but it was also applied later for the
investigation of rainfall patterns in the Asian monsoon do-
main (Malik et al., 2010, 2011) and Europe (Rheinwalt et al.,
2012).

The main idea behind ES is that two time series are syn-
chronized, if events in time seriesx occur close in time to
events in time seriesy. Considering the temporal order of the
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events (e.g., if an event iny occurredbeforeone inx), it is
also possible to infer which process isleading. In the follow-
ing we will define the event synchronization function, ESF,
further developing the ES concept (Quian Quiroga et al.,
2002; Malik et al., 2010).

Given two time series(tx,x) and(ty,y) that represent ob-
servations of autocorrelated stochastic processes,eventsare
given by the set of observations that are consideredextreme,
in that their observation value lies above or below theq/2
resp.(1− q/2) percentiles of the distributions ofx andy.
The actualvalueof the observation at the event points is not
relevant for the further analysis. Once the events are defined,
only the observationtimesare considered in the event time
vectorst∗

x andt∗
x . Next a temporal thresholdτ is defined to

evaluate the relationship between the events inX andY with
a maximum separation time:

τ = max
(
1tx,min(1t∗x ,1t∗y )/2

)
. (7)

Here,1tx is the mean sampling rate ofX, and1t∗x and
1t∗y are the inter-event times inX andY , respectively.

Subsequently, the co-occurrence of events inX andY is
counted and summed for all events as

C(X|Y ) =

Nx∑
l=1

Ny∑
m=1

Jxy
lm , (8)

whereNx and Ny , respectively, give the total numbers of
events inX andY . The counter variableJxy

lm is defined as

Jxy
lm =


1 if 0 < txl − t

y
m < +τ

1/2 if txl − t
y
m = 0

0 otherwise.

(9)

C(Y |X) is obtained by exchangingX vs.Y in the above ex-
pression, and combining both,

Qxy = Qxy(X,Y ) =
C(X|Y ) + C(Y |X)√

Nx,Ny

, (10)

gives thestrengthof the event synchronization and

qxy =
C(X|Y ) − C(Y |X)√

Nx,Ny

(11)

the direction of the association. Unless double counting of
events occurs, these are normalized to 0≤ Q ≤ 1 resp.−1 ≤

q ≤ 1. Q = 1 corresponds to completely synchronous occur-
rence of events inX andY , andq = 1 implies that all events
in Y precedethose inX.

For the previous studies (Quian Quiroga et al., 2002; Malik
et al., 2010, 2011) local definitions of the temporal threshold
τ were used, preventing, in most cases, events from being
double counted, and adapting it to the local inter-event rate.
The chosen definition ofτ is motivated by the fact that, to

Fig. 3. How much age uncertainty is allowed to still enable re-
liable similarity estimation? Artificial stalagmites with increasing
standard deviations of the ages are evaluated.

be able to compare the results for ES to those obtained from
MI and XCF, a similarity function over thedelayis needed.
Thus, the delayτ cannot be allowed to be arbitrarily large
or small, as inMalik et al. (2010) or Quian Quiroga et al.
(2002).

The ESF is obtained by shifting the observation times of
time seriesX according to the desired lag:

ES(k1t) = Qxy((tx − k1t,x), (ty,y)), (12)

which, using the delay timeτ from Eq. (7), makes it possible
to use the ESF as a similarity function.

2.3 An approach to similarity assessment of
time-uncertain time series

Age uncertainty is a key obstacle to be overcome for a com-
prehensive understanding of past earth system dynamics. To
investigate the potential dependency structure of paleocli-
mate processesX and Y as they are reflected in natural
archives, the contribution of age uncertainty to the uncer-
tainty of the similarityS(X,Y ) is important.

Thus the aim is to estimate the distributionp(S(X,Y )) of
similarity for given data setsX andY , where

X =

[
Dx

= {Dx,T x,σ T x , }Y d
= {dx,x}

]
and (13)

Y =

[
Dy

= {Dy,T y,σ T y },Xd
= {dy,y}

]
. (14)

Both input data sets consist of a dating table (Def.2) D with
dating depth vectorD, the corresponding estimated agesT

and their uncertaintiesσ T y and a set of proxy measurements
Xd resp.Y d (Def. 3), visualized as Step 1 in Fig.3. The
smoothing resulting from the size of the samples in depth
direction,σD, is assumed to be negligible here. The input
proxy measurements are mapped to observation times in the
age modelingprocess. In general, algorithms to assess simi-
larity between time series are not capable of processingprob-
ability distributionsor confidence intervalsinstead of sin-
gleton values, neither for the observation times nor for the
measurement values.

Clim. Past, 10, 107–122, 2014 www.clim-past.net/10/107/2014/
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For Pearson correlation, an analytical approach to propa-
gate the uncertainty around the input data into the correlation
estimate is possible. However, Pearson correlation alone is
insufficient to characterize similarity between paleoclimate
time series in general and in the context of paleoclimate net-
works. Therefore, a Monte Carlo-based approach based on
time series ensembles which are obtained via age modeling
is used here, to keep the flexibility regarding similarity esti-
mators:

1. In a first step the input data setsX andY are processed.
The monotonicity of the depth control variables,d and
D is checked.

2. A Monte Carlo simulation for the uncertain age esti-
mates in the dating table is performed:Nens ages are
drawn fromN (T X

i ,σ T X
i

) andN (T Y
j ,σ T Y

j
), respec-

tively, for all i = 1, . . . ,NX
dtg pointwise age estimates

corresponding toj = 1, . . . ,NY
dtg entries in the dating

table. This results in dating matricesX̂ andŶ with Nens
columns containing the sampled ages. If no distribu-
tion of ages is otherwise given, the ages are expected
to be Gaussian distributed with the given standard de-
viation.

3. The age estimates in each column andX̂ (Ŷ) are in-
terpolated to the depths of the proxy observations:
T = interp( D, X̂,d) which results in a matrix of
reconstruction observation timesT. We used conven-
tional linear interpolation of the ages in COPRA. Thus
we obtain an ensemble of possible age–depth rela-
tionships{T,d} and an ensemble of proxy time series
{T,x}.

4. Each of the members of the ensemble of proxy time
series is used as an input to the similarity statistic
S(X,Y ). This results in a distribution of estimates
p(S(X̂, Ŷ)).

5. Analysis of distributionS(X̂, Ŷ): apart from inspec-
tion of mean, variance and skewness of this distribu-
tion, a hypothesis test can be conducted, comparing
S(X̂, Ŷ) with a distribution obtained from suitable sur-
rogate time seriesS(X̂∗, Ŷ∗).

This approach is general in the sense that it is independent of
the specific functionF([X̂, Ŷ]) that maps the uncertain input
to some output estimate. Apart fromF = S,F may represent
any bivariate statistic, and with minor modification is also
applicable to calculate the influence of sampling uncertainty
on univariate statistics, like the autocorrelation coefficients
or persistence times (Rehfeld et al., 2011; Mudelsee, 2002).
Bivariate similarity assessment is often concerned with es-
timation of a potentialcoupling strengthα (hinting towards
the same process of origin) and/or thelag of coupling` for
model-building. For Pearson correlation, the ratio of shared

vs. total variance between two linearly correlated processes
at a given lag̀ , S(`), is given in the maximum of the cross-
correlation function. While the relation to the overall vari-
ance of the processes does not necessarily hold by defini-
tion for other similarity measures, they, too, will observe the
maximum of their similarity function max(Ŝ), at the lag of
coupling`.

2.3.1 Synthetic data

“True” growth histories for two synthetic stalagmitesSS1
and SS2 and according climate histories are obtained via
simulation. These pseudo-archives are then “dated”, climate
histories are “sampled”. Then the age modeling procedure
is performed and its output is fed into similarity estimation.
Finally, we assess how much of the similarity that was orig-
inally present in the climate history is still recognizable sig-
nificantly, considering the uncertainties. The test strategy is
illustrated in Fig.3.

2.3.2 The synthetic stalagmite

A synthetic (or virtual) stalagmite is grown for the sensitivity
analysis. The main parameters controlled are

– the growth rateλ in mm yr−1,

– the total length of the stalagmite (in mm),

– the type of accumulation (linear growth, or growth
modeled via randomly distributed accumulation rates).

A growth rate of µ(λ(z)) = 1 mm yr−1 is chosen. Lin-
ear growth may be a reasonable first order approximation
(Telford et al., 2004), but microscopically, the growth rates
of natural archives vary. Therefore, Gamma-distributed accu-
mulation times are drawn for each depthzi = {0, . . .,Z}mm
of the stalagmite, with the sampling time step meanµ(λ(z))

determined by the desired growth rate and shape and scale
parametersα andβ as0(α,β) = 0(α,µ(λ(z))/α). This way,
the mean sampling rate can be kept constant, even when the
irregularity of the sampling distribution is changed (Rehfeld
et al., 2011). The cumulative sum of the accumulation times
then gives the “true” ages of the archive at the depthszi :
t true
i (zi) =

∑i
j=1λi .

2.3.3 The simulated climate history

We attach each synthetic stalagmite SS1 and SS2 to a cli-
mate history. The climate/pseudo-proxy simulation is based
on the assumption that SS1 lies in an area whose climate is
controlling that around SS2, through a teleconnection or, for
example, by being situated downstream of the same monsoon
branch (cf. Fig.2). We simulate climate variability using two
different coupling schemes, one linear, one nonlinear, to in-
vestigate how the proposed methods perform.
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Linearly coupled AR(1) processes

Assuming that the archive SS2 samples the same climate
variability as SS1, in the same way though at a later time,
we model such a causal sequence using coupled AR(1) pro-
cesses. Then, thetrueproxy history of climate as recorded in
SS1 is given by

X(t true
i ,zi) = φX(t true

i−1) + σεεi, (15)

and it determines part of the proxy history ofSS2:

Y (t true
i ,zi) = αX(t true

i−`) + σξ ξ i . (16)

Here, ε and ξ are additional Gaussian white noise whose
variancesσε andσξ are scaled such that the variances ofX

andY are equal to unity.α ∈ [−1,1] is the coupling strength
between SS1 and SS2 andφ the autocorrelation of SS1.
Since there is no autocorrelative term inYt , the true similarity
S(X,Y ) is equal to the cross-correlation:S(X,Y ) = ρxy = α

(Rehfeld et al., 2011).

Nonlinear threshold-AR(1) processes

Let us assume that SS1 samples climate variability in a cer-
tain place, and that this can be modeled as in Eq. (15). Then
the climate variability in another place, where SS2 is located,
could be controlled in a nonlinear manner: the processes
are negatively correlated, similar to Eq. (16) with α < 0.
If, however, a threshold in the climate system is exceeded,
X(t) > τ , the correlation changes and might even become
positive. Such a multi-scale behavior can be modeled using
threshold-AR processes (TAR,Tsay, 1989), which are sim-
ilar to the regime-dependent AR modelsZwiers and Storch
(1990) used to model the behavior of the Southern Oscilla-
tion. Assume that the negative couplingα below the thresh-
old τ , hereτ = 0, forX(t−1) 6 τ turns into a positive corre-
lation, with the same magnitude, forX(t − 1) > τ . Then the
proxy history of SS2 can be modeled as

Y (t true
i ,zi) = ακX(t true

i−`) + σ(t true)ξ i , (17)

where theκ = −1 if X(t−1) 6 τ andκ = 1 whenX(t−1) >

τ . For convenience, the variance of the innovation termξ is
scaled such that the overall variance ofY is equal to unity in
both cases.

2.3.4 “Dating” of the synthetic stalagmite

Mimicking the real-life situation, thetrue growth history of
the synthetic stalagmitez(t true) is, in the following, inacces-
sible. The stalagmite is subjected todating along its depth.
The dating table contains the dating depthsD, the estimated
age at these depthsT j , the proxy measurement sample width
σD and the age uncertaintyσ T .

In real life, the stalagmite would be dated using radiomet-
ric dating techniques based on uranium-thorium (Sinha et al.,

2007; Dykoski et al., 2005; Breitenbach et al., 2012) or radio-
carbon (Yadava et al., 2004; Webster et al., 2007), yielding an
estimate ofT (zj ) at a few points. The corresponding dating
uncertainty, in reality dependent on many factors from initial
isotope concentrations, overall age of the core, dating tech-
nique, lab and contamination (Fairchild and Baker, 2012),
often lies between 0.1 to 0.5 % of the age for stalagmites, but
may be considerably higher.

For the synthetic stalagmites, dating “samples” are taken
at equidistant depthsDj and the center points of the assumed
age distribution are taken directly from thetrue age–depth
relationship. The age uncertainty, however, is modeled as in-
creasing proportionally with age, asp·T j . p here denotes
the (im-)precision of the dating and is varied in the following
numerical experiments.

2.3.5 Age modeling for SS1 and SS2

Age modeling aims to reconstruct the “true” depth–age rela-
tionship that is inaccessible in real paleoclimate archives.

Based on the synthetic stalagmite dating tablesDx andDy

for SS1 and SS2, the “observation times” for the proxy ob-
servationsXd andY d , tx and ty , are constructed by inter-
polation from the known ages (see Eq.13). In Monte Carlo-
based numerical frameworks such as StalAge (Scholz and
Hoffmann, 2011) or COPRA (Breitenbach et al., 2012), an
ensemble of age modelsT = {tk,zk}

k=1,...,Nens is created,
which, in their entirety, reflect the age uncertainty of the es-
timated depth–age relationship. Based on this ensemble of
age models, the uncertainty in the similarity estimates can be
inferred, as is visible in Fig.3.

In summary, the test plan is thus as follows:

1. Simulate a growth historyz(t) of a synthetic stalag-
mite of lengthZ mm, corresponding to a “true” age–
depth relationshipt true

i (zi), resp.zi(t
true). For this, as-

sume gamma-distributed growth and an accumulation
rateλ = 1 mm yr−1. Z can be varied to study the influ-
ence of changing time series length.

2. Simulate proxy histories{T ,x}
SS1 and {T ,y}

SS2 ac-
cording to thetrue growth history using coupled au-
toregressive processes (cf. Eqs.16 and17). Forget the
true growth history.

3. Sample the true growth history at the dating depths and
infer corresponding uncertainties.

4. CreateNens surrogate dating tables for SS1 and SS2
with increasing uncertainty of the ages according to
the (im)precisionp (i.e., an ensemble of dating tables).

5. Assess if the estimatesS(X̂, Ŷ) are statistically signif-
icant for the given uncertainty, and how they are influ-
enced by sampling heterogeneity and time uncertainty.

The core of the COPRA algorithm is used for MC simu-
lations.Nens= 2000 MC iterations are used to sample the
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Fig. 4.Testing the similarity measures: for linearly coupled AR time
series (cf. Eq.16) from two synthetic stalagmites, SS1 and SS2, we
give the sample time series(a) and the Gaussian weighted scatter
plot (b). We check the monotonicity of the estimators with increas-
ing coupling strength(c) and how often the maximum of the simi-
larity function correctly coincides with the lag of coupling(d).

probability space and linear interpolation is employed to in-
fer ages between point estimates of the age at depth.

3 Tests on synthetic stalagmites

We evaluate the performance of the different estimators de-
scribed in Sect.2, for which parameter choices and refer-
ences are given in Table1.

3.1 Characterization of linear proxy dependency

We first consider the linear dependency case, where the
proxy history of SS1 is linearly correlated with that of SS2
a lag time ` later. We chose a length for the stalagmite
of L = 100 mm for which we expect the time series to be
roughly 100 yr long (cf. Sect.2.3.2) and linearly correlated,
as in Fig.4a. For each test 100 time series were generated
from AR1 processes (cf. Sect>2.3.3), where processY is
coupled to processX at an intrinsic lag̀ and with a cou-
pling strengthα. The autocorrelation parameter was set to
φ = 0.8, the coupling lag tò = 5 and the coupling parame-
ter toα = 0.6. For such stochastic processes, the true similar-
ity function is single peaked, with its peak height determined
by α, and its location on the lag-axis by the coupling lag`.
The time series are irregular, therefore a direct scatter plot
of the data is not possible. Figure4b shows a weighted scat-
ter plot where the time series have been reconstructed using
Gaussian weights, as for the MI estimation in Sect.2.2.2.

The tests were guided by two questions: do the similar-
ity estimators reflect the actual similarity (here, the coupling
strength at lag̀ , α) truthfully and monotonically? and, how

Fig. 5. Testing the similarity measures for nonlinear threshold-AR
time series (cf. Eq.17). For caption please refer to Fig.4.

well do they identify the lag of coupling̀ as the maximum
of the similarity function?

To answer the first question, we fix the imprecision at zero
(at the dating points) and vary the coupling strength by set-
ting the parameterα in Eq. (16) to values from 0.1 to 1. The
results are given in Fig.4c. The expected value of the similar-
ity, αest, and the variance of the estimate are computed from
the mean and standard deviations of the estimated,αest,i , for
100 realizations for each value of the coupling parameter.
Each of the similarity measures returns estimates whose ex-
pectation values increase monotonically with the actual simi-
larity, αtrue in Eq. (16), except for the ESF, which has a single
reversal which may be due to the low number of MC realiza-
tions (100) for each point in this diagram.

In practical data analysis, the potential lag and strength of
(primary) coupling, identified as the maximum of the sim-
ilarity function is of interest (e.g., for model-building). If
no age uncertainty exists at the dating points, the maximum
of the similarity function is correctly identified in 50–60%
of the ensemble cases. When timescale uncertainty exists
in the time series, this becomes difficult quickly (Fig.4d).
When the fraction of correct identifications has dropped to
1
n`

≈ 0.05, wheren` is the number of lags for whichS(`) has
been estimated, the maxima of the similarity functions are
perfectly uncorrelated. This limit is approached as an impre-
cision of more than 10 % is reached. Increasing imprecision
contained in the time series also results in increasing estima-
tion error (i.e., root mean square error(RMSE)) for the simi-
larity at the lag of coupling,S(`) (results not shown). When
the stalagmite length is increased, the time series length in-
creases and both the RMSE and the false identification rate
decreases for all estimators.
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3.2 Nonlinear dependencies

For the nonlinear TAR model, the time series in Fig.5a are
not as straightforward to compare visually as the linearly
coupled ones in Fig.4a. The weighted scatter plot for these
time series in Fig.5b shows the two different slopes of the
positive and negative correlation regimes above and below
the threshold value of zero.

The comparison of true vs. estimated coupling strengthα

in Fig.5c shows no monotonous behavior for the linear cor-
relation measures and no overall increase of their expected
similarity estimates with the coupling strength. The MI esti-
mators retain a monotonic increase, starting from a consider-
able bias value, while the ESF increases monotonically, but
does not show consistent similarity estimate increases until
the coupling strength is rather large. The monotonicity and
linearity of the response for gMI, iMI and ESF improve con-
siderably when the time series are chosen longer, that is, with
a length of 200 or more (results not shown).

In the identification of the maximum lag the Gaussian MI
succeeds most often for imprecisions up to 2.5 %. For more
imprecise data sets the ESF remains stable, while the other
measures perform worse and worse. The linear estimators,
gXCF and iXCF do not identify the maxima correctly, neither
the coupling strength, nor the lag of coupling.

3.3 Error source attribution

Age uncertainty has a considerable impact on the accuracy
of similarity estimates, as we have shown in the previous
section. But to what extent can this impact be attributed to
the short length of the time series, or the time series irreg-
ularity that results from the increasing age uncertainty? The
uncertainty around the ages in the dating table is, in Monte
Carlo-based age–depth modeling, reflected by drawing dif-
ferent “dates” from distributions around these ages for each
MC realization. These realizations will therefore have dif-
ferent partial slopes between any dateDi and Di+1. This
corresponds to different estimated growth rates for the indi-
vidual segments of the synthetic core. At a proxy sampling
rate over depth that is constant, this will lead to uneven ob-
servation times for the time series which correspond to the
MC realizations, and this irregularity increases with the age
uncertainty. The RMSE ofS(`) is, however, also dependent
on the irregularity of the time series, as it was shown for both
XCF and MI previously (Rehfeld et al., 2011, 2013).

To separate these sources of uncertainty,M = 2000 re-
alizations of coupled climate histories, as defined in2.3.2,
were generated in three different ways:age uncertain, irreg-
ularly and regularly sampled. The age-uncertain ensembles
were the direct product of the age modeling efforts, as in the
previous sections and with same parameter settings (φ = 0.8,
α = 0.9, ` = 5) For the irregular data set the proxy histories
were re-generated with the true coupling strength on the ir-
regular timescales of the age modeling output. To assess the

impact of regular sampling, regular time series of the same
length, average temporal spacing and coupling scheme were
also simulated. We evaluated the performance of the different
estimators for the different sampling schemes at increasing
dating imprecision using theroot mean square error(RMSE)
of the estimators for the target coupling parameterα:

RMSE(αest) =

√
var(αest) + bias(αest)

2 , (18)

where bias(αest) = αtrue− αest.
We did this separately for each sampling scheme to obtain

the RMSEreg, the “baseline” RMSE for each estimator un-
der regular sampling, RMSEirreg for the irregularly sampled
ensembles and the RMSEau for the age-uncertain ensem-
ble. Coupling strength, autocorrelation and time series length
were fixed to the same values for the three different sampling
schemes. To improve the comparability for the MI estima-
tors, the bias offset was estimated from mutually uncorre-
lated time series with the same autocorrelation and length
and subtracted prior to the conversion to the XCF scale.

Based on the assumption that the RMSE should in-
crease from regular to irregular to age-uncertain time se-
ries, RMSEreg < RMSEirreg < RMSEau, the “baseline” con-
tribution is estimated from regular time series as RMSEreg,
the additional contribution from timescale irregularity as
RMSEirreg− RMSEreg and the additional RMSE of the age-
uncertain time series’ similarity as RMSEau− RMSEirreg.

The results, averaged over the realistic imprecision values
(the 2nd–5th points in Figs.4d and5d), are given in Fig.6.

Ideally the RMSE should of course be as small as possi-
ble. For the linear (CAR) case in Fig.3.3, the smallest RMSE
is observed for the ESF and the gXCF, the largest – by far
– for the interpolation-based iXCF. While the regular (esti-
mator) bias is low for the correlation estimators, the contri-
bution of increasing irregularity of the time series sampling
(due to the uncertain inputs) is non-negligible particularly for
the interpolation-based cases. The age uncertainty alone ac-
counts for additional, but generally smaller, error. While a
large amount of the uncertainty of the interpolation-based
estimators, iMI and iXCF, is due to sampling irregularity,
ES has a large RMSE for regular time series, which is even
higher than that for regular to slightly irregular time series.
Therefore the contribution of irregular sampling to the cu-
mulative uncertainty, as depicted in Fig.3.3, is negative, thus
improving the estimation efficiency!

In the nonlinear (TAR) case the picture is quite different.
The correlation-based estimators are not able to tell the cou-
pling strength, regardless of the sampling scheme. The gMI
estimator ranks lowest, with a lower uncertainty contribu-
tion from irregular sampling compared to the iMI estimator.
The ESF, again, improves its accuracy when the time series
are irregular. The overall error level is higher than for the
linear case.
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Fig. 6. Attribution of the uncertainty to its sources for(a) the linear CAR model and(b) the nonlinear TAR model: general (estimator) error
in red, error introduced via irregular sampling (orange) and additional error due to the age uncertainty (yellow). The source-dependent RMSE
was averaged over the second through to fifth imprecision levels given in Figs.4d and5d, as these correspond to the error levels most likely
found in real-world studies. Errorbars indicate the associated standard deviation. For event synchronization the RMSE is lower for irregular
than regular sampling, folding the irregular part of the bar backwards.

Fig. 7. The link strength concept: for each similarity estimator, sig-
nificant results result in a link between the time series. The sum of
these links determine the strength, or weight, of the link.

3.4 The link strength concept

Each of the tested similarity estimators comes with differ-
ent underlying assumptions, estimator bias and variance, and
they refer to different properties of the time series: the good-
ness of a linear fit to the joint distribution (XCF), the sharp-
ness of the joint vs. the marginal distributions (MI) or the
relative positions of extreme points, or events, in the time se-
ries (ES).

Therefore direct results obtained from the different esti-
mators are difficult to compare, and they respond to cou-
pling strength increases differently (Figs.4c and 5c). The
MI estimates, to this end, have to be converted to the XCF
scale and thus are bound to the interval[0,1], not [−1,1] as
for XC. This, together with the substantial and non-negative
bias, induces a different proportionality between the actual
coupling and the inferred association strength. Inferred ES,
on the other hand, increases nonlinearly, but monotonically,
with the coupling.

The main use of similarity measures is to assess the associ-
ation strength between dynamics of processes. This can only
be interpreted properly, if the significance of this estimate is
known. To unify the results obtained from different similarity
estimators, we propose to use alink strengthp(X,Y ), to ho-

mogenize and summarize the results obtained for individual
similarity measures.

The link strengthp(X,Y ) for two observed time seriesX
andY is defined as the relative frequency of significant esti-
mates from theNsim employed estimatorsSi :

p
q

sim(X,Y ) =

∑Nsim
i=1 Pi(X,Y )

Nsim
, (19)

as illustrated in Fig.7. The link strength of the individual es-
timators,P q

i (X,Y ) is recorded on a binary scale:

P
q
i (X,Y ) =


1 if Si symmetric andSxy

i > S
hi,xy
i

1 if Si asymmetric and(
S

xy
i > S

hi,xy
i

)
|

(
S

xy
i < S

lo,xy
i

)
,

0 otherwise,

(20)

whereShi/lo refer to the critical values of a hypothesis test, the
null hypothesis being that bothX andY are autocorrelated,
but mutually uncorrelated, Gaussian distributed stochastic
processes. The significanceq determines the critical values
S

hi,xy
i andS

lo,xy
i which are obtained from theqhi = 1− 0.5q

and qlo = 0.5q quantiles of surrogate similarity estimates
Si(X

∗,Y ∗).
Independent AR(1) surrogate time seriesX∗ andY ∗ are

generated on the same time axes asX andY according to
Eq. (15). The individual AR(1) persistence time for actual
paleoclimate data can be obtained using an efficient least-
squares fitting algorithm (Rehfeld et al., 2011; Mudelsee,
2002). The link strength can be extended to incorporate age
uncertainties by computing the similarities forNmc realiza-
tions of an age model and adding a second summation over
these in Eq. (19).
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4 Application to real stalagmite data

Now after having ensured the efficacy of the estimators using
synthetic data sets, we apply the estimators to real-world sta-
lagmite data sets from India, (the Dandak caveδ18O record
originally published in Sinha et al., 2007), and China (the
Wanxiang record,Zhang et al., 2008). Comparisons of these
data sets have been performed byBerkelhammer et al.(2010)
andRehfeld et al.(2011). Thirteen U/Th dates constrain the
age model of the Dandak cave record, 19 are available for
the Wanxiang cave record. Age modeling was performed on
the full proxy data sets, comprising of 1875 and 703 oxy-
gen isotope measurements over depth and using the COPRA
algorithm with 1000 realizations (Breitenbach et al., 2012).
The time series were cut to the overlapping time period from
600 to 1550 AD and detrended by subtracting the long-term
mean, estimated using a Gaussian kernel smoother with a
width W of 1000 yr.

Berkelhammer et al.(2010) determined an averaged cor-
relation of 0.27 for 50 yr overlapping time windows, while
Rehfeld et al.(2011) found a lag zero correlation coefficient
of 0.290 and 0.295 for iXCF and gXCF, respectively. This
correlation was found to be significant at the 95 % level in
the two-sided test for zero correlation, the null hypothesis
being that the time series are autocorrelated but mutually un-
correlated.

Does this correlation persist, when the age uncertainties
are considered in the analysis? We estimated the similarities
for the two records considering all five estimators of Table1
and for the original records as well as the results from age
modeling, and give the results in Fig.8. The histograms of
similarity estimates for 100 realizations of the age models
show a considerable spread. The mean similarity for the cor-
relation estimators (indicated by the solid red line in Figs.8a
and8b) is higher than that of the 95 % quantile of the sur-
rogate distribution. The mean gMI estimate (8c) is close to
the critical value, while the iMI (8d) and ES (8e) results lie
well below. The median link strength (red line in Fig.8f) is
equal to 0.4. In contrast, the original age models published
by Berkelhammer et al.(2010) andZhang et al.(2008) yield
significant results for all estimators except the ESF, resulting
in an overall link strength of 0.8.

When we compute the similarities using the COPRA en-
sembles for the more sparse Dandakδ18O time series pub-
lished earlier (Sinha et al., 2007) the outcome is quite differ-
ent – the link strength is only 0.2.

5 Discussion

Age uncertainty clearly affects all estimators of similarity for
time series, and it is an illusion that it would be possible to
mitigate the effects of uncertainty on the time axis for any
type of analysis depending on observation times. Even if the
observation – or accumulation – time of a grown archive is

Fig. 8. Estimated lag zero similarities and link strength between
the Dandak and Wanxiang cave records for the overlapping time
period. The results for the age-uncertain ensembles are given in the
dark blue histograms. The red solid line refers to the mean of these
estimates, the light blue stem to the results for the mean timescale.
The dashed lines refer to the respective confidence intervals.
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known precisely at some depths, an observation time recon-
struction from age modeling requires an assumption on the
accumulation behavior which, necessarily, will be wrong to
some extent, as stochasticity and irregularity in the growth
will always be present. This is a fact not challenged by the
choice of a different interpolation routine (e.g., to a contin-
uous cubic spline), which is often preferred by geoscientists
(Breitenbach et al., 2012; Scholz and Hoffmann, 2011). On
the positive side, and although counterintuitive, incorporat-
ing (small) age uncertainty in the analysis might even im-
prove the estimate when a deterministic (thus necessarily
wrong) assumption on the growth of the archive is made.

A low imprecision of 0–0.5 % or an age uncertainty of ap-
proximately 1–2 yr over a period of 200 yr results in minimal
relative estimation error and maximal confidence on the sim-
ilarity peak position for the time series similarity functions
Ŝ. If a similarity analysis for real-world data sets covering a
time span of 100 000 yr was desired, this would amount to an
“allowed” age error of 500 yr at a mean time series resolution
of 500 yr, which is a lower than what is usually found (Tay-
lor et al., 2004). Thus, the resolution desired in the analysis
is necessarily dependent on age uncertainty – only if that is
lower, or comparable, would an analysis of such short time
series with full consideration of age uncertainties be feasible.
One way to achieve higher certainty could be the incorpora-
tion of layer-counted data in the age modeling process, for
example, for annually laminated archives (Breitenbach et al.,
2012).

The similarity estimators tested show different behavior,
dependent on the signal type. The correlation-based estima-
tors perform better for the linear coupling scheme, but fail
for the nonlinear processes.

The gXCF and iXCFerror split is dominated by the age
uncertainty as the largest source of error in the linear CAR
case. Both have small baseline bias for regular sampling.
gXCF estimates coupling strength more effectively, however,
for both age uncertainty and irregular sampling contributions
of iXCF are significantly larger due to interpolation effects.
In the nonlinear coupling scheme there is little difference
whether the time series is regular, irregular or age uncertain
– the correlation-based methods cannot capture such type of
dependencies.

gMI and iMI perform badly on the first glance in the linear
CAR case, as their baseline bias for regular sampling RMSE
is large. However, one needs to take into account that the
RMSE is determined by both variance and bias – and that
MI estimation, especially using binning estimators, is always
associated with a significant positive bias, particularly for
short time series. This bias, however, decreases with increas-
ing time series length. If a direct comparison of MI and XC
estimates is desired, this bias should be subtracted from the
MI estimate prior to scaling it to the correlation scale. In the
nonlinear TAR case the Gaussian-kernel-based version has
the lowest overall RMSE.

TheESF, originally intended for the analysis of event se-
ries, performs well and has the lowest total RMSE, followed
closely by gXCF, in the linear test case. There, its baseline
RMSE dominates the RMSE split, and the RMSE for irregu-
lar sampling islower than that for regular sampling. This is
similar for the nonlinear processes. One reason for this might
be that, for irregularly sampled time series of the same mean
observation time distance, the number of observations spaced
closelytogether is higher, which might increase the chances
to find multiple events spaced closely together, resulting in
effectivedouble-countingof events. The comparably small
contribution from age uncertainty in the linear test indicates
that neither the relative nor the absolute observation time dis-
tance between the time series are crucially important to the
measure. Thus, it is quite a robust similarity measure with re-
spect to age uncertainty and comparable to gXCF for linear
coupling and gMI for nonlinear coupling, which both ulti-
mately depend on the notion of simultaneous observations.

Although the irregularity of the time series is rather low
(the inter-sampling-time distribution is narrow and close
to normally distributed) the estimators that do not require
the time series to be sampled regularly perform better than
the interpolation-based records, which confirms the previous
finding (Rehfeld et al., 2011, 2013) that large sampling ir-
regularity (i.e., the presence of gaps) leads to large interpo-
lation bias, where the adapted estimators gXCF and gMI are
particularly suitable. We have applied the similarity estima-
tors to investigate the similarities between the Dandak and
Wanxiang cave records. We find that the link strength aptly
summarizes the results of the similarity significance tests: the
time series are quite likely to be correlated, but age uncer-
tainty blurs the results. There are several other parameters
which can have a critical impact on the analysis: the choice
of the significance level for link strength estimation, the de-
trending width and the respective resolution of the time se-
ries. The dependence of the results on the detrending param-
eter (Fig.9) illustrates the timescale dependence of the anal-
ysis: a small detrending widthW results in a high-pass fil-
ter and very low link strengths, largeW yields high similar-
ity on larger timescales. This indicates that the paleoclimatic
records are more clearly associated at centennial to multi-
centennial timescales than at decadal timescales, which are
more impacted by age uncertainty. A higher temporal reso-
lution of proxy measurements improves the accuracy of the
estimators, particularly for the data-demanding MI estima-
tors. Bootstrapping of the time series to successively lower
lengths could be used to test the robustness of the estimators
against such effects.

We have only considered five similarity estimators (gXCF,
iXCF, gMI, iMI and ESF) here, but this could be expanded
for other concepts, for example, based on (cross-)recurrence
plots (Romano et al., 2005; Marwan et al., 2007; Marwan,
2002; Lange, 2011), recurrence networks (Feldhoff et al.,
2012), convergent cross mapping (Sugihara et al., 2012) or
distance measures (Lhermitte et al., 2011). The notion of
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Fig. 9.Sensitivity of the link strength result for the original records
of Berkelhammer et al.(2010) andZhang et al.(2008) to changes
in the detrending parameterW of a Gaussian-kernel detrending and
the significance level in the hypothesis test.

a link strength, instead of XC, MI or ES values, makes it
straightforward to extend the analysis to a whole ensemble
of time series, be it from age modeling or out of a database
of paleoclimate records. If age uncertainty does not impact
the cross similarity, the link strength will not drop substan-
tially. The actual value of the link strength can be interpreted
in terms of a “degree of confidence”: if the value is close
to the significance level, a relationship cannot be concluded
with confidence. If the link strength is close to one, all the
estimators return significant similarity estimates and a simi-
larity can be deduced with certainty.

In the future it could be evaluated whetherp values from
the surrogate tests can replace the binary thresholding for the
link strength metric to improve the sensitivity of the link
strength estimate. The ESF alone, however, could be par-
ticularly suitable for the analysis of extreme events since it
does not place strong restrictions on the time series beyond
stationarity, and performs particularly well for irregular time
series.

The NESToolbox containing scripts and programs for the
similarity analysis of age-uncertain time series in Matlab and
the open source software Octave are available with this pa-
per. We also include a function to simulate age uncertainties
that arise for archives for which the chronology is based on
layer counting, trees, ice cores or laminated sediments, so
that these, too, can be investigated using the methods pre-
sented in this paper.

6 Conclusions

In this paper we have investigated similarity estimators that
do not require regular sampling in time and can capture lin-
ear (gXCF) and nonlinear (gMI and ESF) relationships. We
found that interpolation to regular spacing of the observation
times results in worse estimates. By contrast, the adapted
estimators are more efficient in the presence of sampling
time irregularity and cope with age uncertainty better. Ta-

ble1gives a comprehensive overview over the similarity esti-
mators, parameter choices and further references. gXCF and
ESF perform particularly well if the relationship is linear, but
the correlation estimator fails in the presence of nonlinear
coupling, where the ESF and gMI are better suited to infer
dependences. The significance of results from different es-
timators and under varying time series length and sampling
can be unified using the concept of a link strength. It com-
bines similarity estimators and significance tests and is given
by the relative frequency of positive significance tests and
could be especially useful in the analysis of large paleocli-
matic data sets where it is infeasible to check each pair of
time series for similarity individually. We have shown that
age uncertainty is the largest contributor to estimation error
for time series similarity, and for a reliable of similarity func-
tion shape and coupling structure, the timescale imprecision
should be as low as possible. When it exceeds 5 % of the time
series length coupling phenomena on timescales close to the
sampling resolution can no longer be deduced. While time
series irregularity can be well addressed by the use of the
adapted estimators, age uncertainty cannot, and should there-
fore be reduced as much as possible by measuring more ages,
improved dating techniques or the use of additional temporal
information from layer counting (Breitenbach et al., 2012)
where possible. This is, in essence, good news, because the
irregular growth of the archives cannot be reversed, but mea-
surement devices can be optimized.
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