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ABSTRACT

Integral constraints for momentum and energy impose restrictions on parameterizations of eddy potential

vorticity (PV) fluxes. The impact of these constraints is studied for a wind-forced quasigeostrophic two-

layer zonal channel model with variable bottom topography. The presence of a small parameter, given by the

ratio of Rossby radius to the width of the channel, makes it possible to find an analytical/asymptotic solution

for the zonally and time-averaged flow, given diffusive parameterizations for the eddy PV fluxes. This so-

lution, when substituted in the constraints, leads to nontrivial explicit restrictions on diffusivities. The system

is characterized by four dimensionless governing parameters with a clear physical interpretation. The bottom

form stress, the major term balancing the external force of wind stress, depends on the governing parameters

and fundamentally modifies the restrictions compared to the flat bottom case. While the analytical solution

bears an illustrative character, it helps to see certain nontrivial connections in the system that will be useful in

the analysis of more complicated models of ocean circulation. A numerical solution supports the analytical

study and confirms that the presence of topography strongly modifies the eddy fluxes.

1. Introduction

Eddies are omnipresent in the ocean, with the local

maximum of energy on the mesoscale (Kamenkovich

et al. 1986). Eddies redistribute momentum, and in large

areas of the ocean [notably the Antarctic Circumpolar

Current (ACC)] they can increase the kinetic energy of

the mean flow (negative viscosity) and play an important

role in the downward transport of momentum by in-

viscid interfacial form stress.

Numerical models either have to resolve eddies or

parameterize them. Although eddy-resolving models

are becoming increasingly common [e.g., Delworth et al.

(2012) employ a coupled ocean–atmosphere model with

unprecedented horizontal resolution in the ocean from

8km at high latitudes to 28km in the tropics], it is still too

costly to run global eddy-resolving models over the large

time periods (decades and centuries) required for clima-

tological studies. Therefore, coarse models are used in

which eddy effects are parameterized. Correct parame-

terizations must be based on clear physics and satisfy some

basic principles: this is not always the case for some com-

monly used schemes. It is well known that ‘‘. . .the [eddy]

diffusion model does not satisfactorily describe the eddy

[heat, momentum or vorticity] terms. . .’’ (Harrison 1978)

and that harmonic/biharmonic operators of velocity

(temperature and salinity) are used for numerical stabil-

ity rather than for their realism (Killworth 1997).

Green (1970) and Welander (1973) were the first to

propose using parameterizations for eddy fluxes of po-

tential vorticity (PV). This idea was implemented in a

number of recent studies (Wardle and Marshall 2000;

Eden and Greatbatch 2008; Eden 2010; Marshall and
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Adcroft 2010; Ringler and Gent 2011). However, the

coefficients in these parameterizations cannot be se-

lected arbitrarily, as there are integral constraints that

have to be satisfied. The importance of integral con-

straints for the flat bottom case was demonstrated in

Marshall (1981), Ivchenko (1984), Ivchenko et al. (1997),

Olbers (2005), and Ivchenko et al. (2008). Recognizing

the role of constraints, Marshall et al. (2012) propose

a framework for parameterizing eddy potential vorticity

fluxes that is consistent with conservation of energy and

momentum while retaining the symmetries of the orig-

inal eddy flux. The outstanding question of how variable

bottom topography modifies the integral constraints and

affects the parameterization coefficients has not been

fully addressed by previous studies dealing with the pa-

rameterization of eddy PV fluxes. The generalized theo-

rem of Bretherton (GTB), expressing the constraint on

momentum in a channel with variable bottom topog-

raphy, was proven by Ivchenko (1987), and Ivchenko

et al. (2013) were the first to apply this constraint. How-

ever, it is not the only constraint, and parameterizations

of PV fluxes have to satisfy additional requirements

among which are the other integral constraints—the

energy inequality (EI) and the eddy quasigeostrophic

(QG) potential enstrophy inequality.1 The latter is au-

tomatically satisfied if the coefficient of quasigeostrophic

potential vorticity (QPV) diffusivity (CPV) is not nega-

tive (Ivchenko et al. 1997). TheEI constraint has not been

applied for the case with variable bottom topography.

This paper extends previous studies and seeks

d To prove the energy inequality and study its impact on

admissible PV diffusivities in a zonal channel with

variable bottom topography;
d To extend previous results pertaining to how the

integral constraint for momentum (GTB) affects the

parameterization in a zonal channel with complex

bottom topography when the zonal-mean anomaly of

bottom topography differs from zero [in contrast to

Ivchenko et al. (2013)];
d To determine how the PV diffusivities constrained by

the GTB and EI and the bottom form stress (BFS)

respond to the governing parameters; and
d To develop a simple expression linking themean zonal

transport to the governing parameters.

We achieve these aims by considering a simplified

time- and zonally averaged ocean, in a channel con-

figuration, with sinusoidal bottom topography. We

parameterize the eddy transport of potential vorticity as

a diffusive process with unknown diffusion coefficients.

This system is simple enough to be solvable analytically.

The analytical solution thus gives us the flow field (zonal

velocities, etc.) in terms of the unknown diffusion co-

efficients. We then substitute the analytical solution into

mathematical expressions for the integral constraints

introduced above (generalized theorem of Bretherton

and energy inequality). This process results in some very

interesting and useful restrictions on the size of the dif-

fusion coefficients, their variation with depth, and their

dependence on external parameters such as the height

of the bottom topography.

We consider quasigeostrophic dynamics in a two-layer

fluid driven by winds over an uneven bottom. This is

a major simplification of the real dynamics and is used

here as a conceptual tool, allowing us to make the prob-

lem analytically tractable and to illustrate the interaction

between the parameterizations and the flow dynamics.

We use numerical simulations to demonstrate qualitative

agreement of conclusions derived analytically with the

full solution.

The analytical solution is facilitated by the smallness

of the relative vorticity in zonal channels compared to

the planetary vorticity or the ‘‘stretching term’’ in the

expression for the QPV. The order of the differential

equation is set by the relative vorticity term, so that the

equations have a small parameter at the highest deriva-

tive leading to thin boundary layers near the walls. The

small parameter g is the ratio of the Rossby radius to

the width of the channel. Its presence allows us to use

the technique of asymptotic expansion in this parameter.

The paper is organized as follows: We first write down

the main equations (fluid flow and integral constraints)

and discuss the analytical solution (sections 2 and 3).

Although its derivation was presented by Ivchenko et al.

(2013), we briefly recapitulate it for convenience, put-

ting details in the appendix. Section 4 discusses how the

energy and momentum constraints shape the behavior

of the diffusivities. Zonal momentum redistribution by

eddies and net zonal transport in the presence of to-

pography is the subject of section 5. Section 6 describes

a numerical model used for simulations and presents

a comparison with results found with the analytical

model. Section 7 consists of a discussion of the results

and conclusions.

2. Basic quasigeostrophic equations for the zonal
channel and general constraints

a. Equations

Weuse the quasigeostrophic equations for a two-layer

model (McWilliams et al. 1978):

1Note that there are other constraints, arising from local limi-

tations on the amplitude of eddy stresses, as suggested by Marshall

et al. (2012).
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›q1
›t

1 J(C1,q1)5
1

H1

curlzt1F1 and (1)

›q2
›t

1 J(C2, q2)52�curlzv21F2 , (2)

where qi and Ci are quasigeostrophic potential vor-

ticity and streamfunction, respectively; subscripts mark

the layers of constant mean thicknesses Hi and t is the

wind stress divided by the water reference density. The

fluid velocity vi 5 (ui, yi) is expressed as ui 52›Ci/›y

and yi 5 ›Ci/›x in the zonal and meridional directions,

respectively. Lateral friction Fi is biharmonic in the

numerical simulations but is omitted in the analytical

solution and

J(A,B)52
›A

›y

›B

›x
1

›A

›x

›B

›y

is the Jacobian operator, and � is the linear bottom drag.

The layerwise quasigeostrophic potential vorticities qi
are given by

q15=2C1 1 f 2
f 20

g0H1

(C12C2) and (3)

q25=2C2 1 f 1
f 20

g0H2

(C12C2)1
f0
H2

B , (4)

where g0 5 gr21
0 (r2 2 r1) is the reduced gravity; g is the

acceleration due to gravity; ri is the density of layer i;

r0 is the reference density; f and f0 denote the Coriolis

parameter and its reference value, respectively; and B is

the deviation of bottom topography from the constant

depth of H 5 H1 1 H2.

We derive analytical solutions for the time and zonal

mean of Eqs. (1)–(4):

›q1
›t

5 052
›

›y
y01q

0
12

1

H1

›

›y
tx1F1 , (5)

›q2
›t

5 052
›

›y
y02q

0
21 �

›

›y
u21F2 , (6)

q152
›

›y
u11 f 2

f 20
g0H1

(C12C2), and (7)

q252
›

›y
u21 f 1

f 20
g0H2

(C12C2)1
f0
H2

B . (8)

The overbar here denotes the time and zonal average,

and the prime implies the eddy component, that is, the

deviation from the time and zonal mean.

To proceed further, we assume a diffusive parame-

terization for eddy fluxes of QPV in each layer,

y0iq
0
i 52Ki

›qi
›y

, for i5 1, 2, (9)

where Ki $ 0 is the respective CPV. In doing so we

follow numerous studies (Taylor 1915; Green 1970;

Rhines 1977; Marshall 1981; Killworth 1997; Treguier

et al. 1997; Wardle and Marshall 2000; and others)

proposing that the eddy transfer of PV is downgradient.

The presence of a rotational component in eddy fluxes

and problems with its separation (Fox-Kemper et al.

2003) add complexity to this problem. However, we

think that the downgradient assumption of eddy PV flux

presents an appropriate starting point. These parame-

terizations, when substituted into Eqs. (5)–(6), will lead

to a closed set of equations that can be solved for any

Ki. The point, however, is that the solutions should

satisfy certain integral constraints, which in turn restrict

the admissible values forKi. As pointed out by Ivchenko

et al. (2013), the GTB presents one such constraint,

which immediately imposes a link between the layer

diffusivitiesK1 andK2.We shall analyze it in more detail

here and also take into account additional constraints as

explained below.

b. Generalized theorem of Bretherton

We begin by noting that the integration of the time-

and zonal-mean potential vorticity Eqs. (5)–(6) in the

meridional direction for a stationary regime, disregard-

ing horizontal friction, yields

y01q
0
152H21

1 tx and (10)

y02q
0
25 �u2 , (11)

where the constants of integration in Eqs. (10)–(11) are

set to zero because the eddy fluxes, wind stress, and

zonal-mean velocity are enforced as zero on the solid

boundaries in our solutions (Marshall 1981; Ivchenko

et al. 2013).

Combining Eqs. (10)–(11) we find

H1y
0
1q

0
11H2y

0
2q

0
2 52tx1H2�u2 . (12)

This expression is valid for arbitrary bottom topography.

For a flat bottom channel, the meridional integral of

the left-hand side of Eq. (12) becomes zero according to

the Bretherton theorem (Taylor 1915; Bretherton 1966;

McWilliams et al. 1978; Marshall 1981; Ivchenko et al.

2013):
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ðL
0
(H1y

0
1q

0
11H2y

0
2q

0
2) dy5 0. (13)

Hence, for the flat bottom channel, the main force by

wind stress is balanced by the bottom drag:ðL
0
(tx2H2�u2) dy5 0. (14)

It is well known that this balance, valid in the absence

of bottom topography, results in an unrealistically high

transport of the ACC (Munk and Palm�en 1951) if ap-

plied in the Southern Ocean.

Substitution of the diffusive parameterization, Eq. (9),

in the Bretherton theorem, Eq. (13), yields

ðL
0

 
K1H1

›q1
›y

1K2H2

›q2
›y

!
dy5 0. (15)

This expression relates to the first instability criterion

of Pedlosky: ‘‘the potential vorticity gradient must be

somewhere positive and somewhere negative for in-

stability to occur’’ (Pedlosky 1964).

For variable bottom topography the Bretherton the-

orem is replaced by the GTB (Ivchenko 1987; Ivchenko

et al. 2013):ðL
0
(H1y

0
1q

0
11H2y

0
2q

0
2) dy5 f0

ðL
0
y2Bdy . (16)

The term within the integral on the rhs of Eq. (16) is the

bottom form stress, since

f0y2B52p2
›B

›x
, (17)

where p2 is the pressure in the lower layer normalized

by the reference density.

The bottom form stress is an inviscid mechanism that

redistributes momentum. We cannot expect accelera-

tion of the zonal flow by this mechanism, which yields

f0

ðL
0
y2B, 0. (18)

This can be used, in addition to the GTB, as an extra

constraint the solution has to satisfy.

Again, we can substitute the diffusive parameteriza-

tion of eddy QPV fluxes given by Eq. (9) into the GTB,

Eq. (16), to obtain

ðL
0

 
K1H1

›q1
›y

1K2H2

›q2
›y

!
dy52f0

ðL
0
y2 Bdy . (19)

Because of Eq. (18) the rhs of Eq. (19) is positive, and

instability (more accurately, states with nonzero eddy

kinetic energy) in a channel with variable bottom topog-

raphy can occur even if the potential vorticity gradient is

everywhere positive, in contrast to the flat bottom case.

Eddies redistribute the mean zonal momentum, and

following Pedlosky (1964, 1979) and using Eq. (12) this

balance can be written

›

›t
(H1u1 1H2u2)5 0

5 (H1y
0
1q

0
11H2y

0
2q

0
2)1 tx2H2�u2 .

(20)

The first term on the right-hand side of Eq. (20) there-

fore describes the redistribution of zonal barotropic

momentum by eddies.

If we substitute the GTB, Eq. (16), into the meridio-

nally integrated momentum balance Eq. (12), we find

that the wind stress is balanced by the bottom friction

and the bottom form stress:ðL
0
tx dy2

ðL
0
H2�u2 dy1 f0

ðL
0
y2Bdy5 0. (21)

The second term on the left-hand side is commonly

much smaller than the wind stress term in the presence

of topography, and the balance is between the wind

stress and bottom form stress both for a zonal channel

with an uneven bottom and the ACC (Munk and Palm�en

1951; Ivchenko et al. 1996; Stevens and Ivchenko 1997).

Numerical experiments show that even a small zonal

variation in B substantially reduces the zonal transport

(McWilliams et al. 1978; Treguier andMcWilliams 1990;

Sinha and Richards 1999; Wolff et al. 1991). We there-

fore expect that the link between the diffusivities will be

affected by the presence of bottom topography.

c. Energy inequality

By multiplying the instantaneous quasigeostrophic

potential vorticity [Eqs. (1)–(2)] by HiC
0
i, taking the

time and zonal average, summing layer contributions,

and integrating in the meridional direction, we obtain

the budget of the total eddy mechanical (i.e., kinetic and

available potential) energy. The balance is expressed as

›

›t

ðL
0
(KEed

1 1KEed
2 1APEed) dy5 0

52

ðL
0
(H1u1y

0
1q

0
11H2u2y

0
2q

0
2) dy

2

ðL
0
fH1F

0
1C

0
11H2F

0
2C

0
21H2�[(u

0
2)

21(y02)
2]gdy ,

(22)
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where KEed
1 , KEed

2 , and APEed are the eddy kinetic

energy for the upper and lower layers and the eddy

available potential energy, respectively (Ivchenko 1987;

Ivchenko et al. 1997). We assume that the wind is steady

and zonally uniform, depending only on the meridional

coordinate.

The first term on the right-hand side corresponds to

the generation of total eddy mechanical energy by baro-

clinic and/or barotropic instabilities. The second term on

the right-hand side contains dissipation terms due to the

horizontal and bottom friction. For steady-state solu-

tions, the eddy mechanical energy is positive only if the

generation term is positive:ðL
0
(H1u1y

0
1q

0
11H2u2y

0
2q

0
2) dy, 0. (23)

Once again, using the diffusive parameterization of eddy

QPV fluxes, Eqs. (9) and (23) can be rewritten in the

form ðL
0

 
K1H1u1

›q1
›y

1K2H2u2
›q2
›y

!
dy. 0. (24)

This statement agrees with the second instability con-

dition of Pedlosky: ‘‘the product of the zonal velocity

and the potential vorticity gradient must in all cases be

somewhere positive for instability to occur’’ (Pedlosky

1964). In the context of this study, it is this constraint

on the solutions with parameterized eddy fluxes that

leads to further restrictions on the diffusivities. Clearly,

all the constraints discussed thus far (the GTB, nega-

tivity of the form stress, and the energy inequality) are

not independent, yet lead to different limitations.

3. Analytical solution

We set the wind stress to be zonal and to vary as the

sine of the meridional coordinate:

tx5 t0 sin(pyL
21) , (25)

where t0 is the amplitude of zonal wind stress. We also

prescribe the bottom topography deviation B as

B5B0 sin(2pyL
21)[s1 sin(2kpxL21

x )] , (26)

whereB0 is the amplitude of bottom topography and s is

a nondimensional parameter. If s 6¼ 0, the zonal-mean

deviation of bottom topography is not zero, but remains

a function of the meridional coordinate. Other than this,

the topography selected is zonally periodic and takes

zero values at the meridional boundaries (y5 0, L). We

substitute Eq. (9) in the time and zonally averaged

equations for QPV [Eqs. (5)–(6)], omit the lateral fric-

tion, and rewrite them in dimensionless form (Marshall

1981; Ivchenko 1987; Ivchenko et al. 2013):

g
›

›y*

�
s1
›q1*

›y*

�
2

us
uc

cos(py*)5 0 and (27)

g
›

›y*

�
s2
›q2*

›y*

�
1 �*

›u2*

›y*
5 0, (28)

where the asterisk marks dimensionless variables y 5
Ly*, Ci 5LucCi*, qi 5bLqi*, and ui 5ucui*. We also

introduce the following parameters di 5HiH
21, g 5

LRL
21, LR 5 (g0H1H2f

22
0 H21)1/2, � 5 bL�*, and the di-

mensionless CPVs si5Ki(LRuc)
21. The wind amplitude

enters through us5 (pt0)(H1bL)
21, and uc 5 g0bHf22

0 is

the channel velocity scale, chosen so that the stretch-

ing term in QPV balances the meridional variation in

planetary vorticity (Marshall 1981).

We are interested in obtaining an analytical solution

to Eqs. (27)–(28), applying boundary conditions of no

flux through the solid boundaries:

y0iq
0
ij0,L 5 0. (29)

The procedure of solution is similar to that of Ivchenko

et al. (2013), except for the addition of the parameter s

to the topography anomaly (with respect to the refer-

ence depth H). We assume the coefficients Ki (si) to be

constant over the channel, except for two thin boundary

layers near the walls with thickness D � 1, where they

are linearly reduced to zero, which allows us to satisfy

boundary conditions.

Solving equations and analyzing solutions in non-

dimensional form offers some advantages, simplifying

the use of the asymptotic expansion technique (see be-

low) and introducing nondimensional parameters that

reflect the main balances between the terms in the

governing equations. However, a caveat is that non-

dimensional parameters can be dependent on several

physical parameters, which should be kept inmind in the

analysis. The system [Eqs. (27)–(28)] contains a small

parameter g5LRL
21. Its presence allows us to apply an

asymptotic expansion in this parameter and match so-

lutions in the boundary layers with the solution outside

them. The mathematical details of this technique are

the same as in Ivchenko et al. (2013). For convenience,

they are repeated in the appendix. The solutions for the

zonal velocities are given by Eqs. (A15)–(A18), in the

appendix. From these we are able to obtain expressions

for potential vorticities and streamfunctions in each

layer, and from the latter we can obtain the meridional
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velocity in order to calculate the bottom form stress.

After solutions are found, they are substituted in the

constraints discussed above, enabling us to analyze the

limitations on CPV as a function of model parameters.

4. Results: Integral constraints

In this section we substitute the analytic solution de-

rived in the appendix [Eqs. (A15)–(A18)] into the GTB

and energy inequality, given, respectively, by Eqs. (16)

and (24) of section 2. Since the analytic solutions are

functions of the layerwise CPVs, we thus obtain a set

of restrictions on the CPVs that depend on the governing

parameters. The impact of these restrictions on the CPVs

and the behavior of the BFS are illustrated by Figs. 1–5.

a. Integral constraint for momentum (GTB)

The GTB, given by Eq. (19), can be written in di-

mensionless form as

ð1
0

�
d1s1

›q1*

›y*
1 d2s2

›q2*

›y*

�
dy*5

f0S

HLRucb

ð1
0
y2B

*dy*,

(30)

where S is the scaling of y2B, that is,

y2B5 Sy2B
*, (31)

and y2 is obtained from C2 [see appendix Eq. (A6)].

Substituting solutions for the meridional gradients

of QPV and bottom form stress into Eq. (30), we obtain

12D1 6p2aBaU 2 12d1 ReaBaU

58d1 ReaBaTaU23p2aBaTaU23sp3d2aBaRaTaU.

(32)

Equation (32) introduces two nondimensional parameters

involving the CPVs. These are Re 5 usLK1
21, which is an

analog of the Reynolds number, and D 5 �uc(bK2)
21,

which characterizes the relation between the bottom

friction and diffusion of QPV in the lower layer.

Four other nondimensional parameters aB, aR, aT,

and aU are now introduced:

aB 5
LRuc
d1usL

, (33)

aR5
jf0jB0

LH2b
, (34)

aT 5
B0Ljf0jjbjk
HLxd2�

, and (35)

aU 5
�

bLR

. (36)

The parameter a21
B estimates the relative importance of

wind stress and the stretching term in the meridional

gradient of QPV for the upper layer. The parameter aR

measures the ratio between the ‘‘topographic’’ (jf0jB0)H2
21

and planetary bL contributions to the QPV in the

lower layer. The physical sense of parameter aT is the

relative importance of inviscid bottom form stress

against viscous bottom friction. Finally, the parameter

aU is the ratio between the time scale of zonal baro-

clinic Rossby waves and that of dissipation by bottom

friction. Two of these parameters (aB and aU) depend

on the stratification, amplitude of wind stress, bottom

friction, b, Rossby radius, and other parameters, but do

not directly involve the characteristics of topography.

We will call them the ‘‘flow parameters.’’ The two re-

maining parameters (aR and aT) depend on the am-

plitude of bottom topography deviation and will be

referred to as the ‘‘topographic parameters.’’ We apply

our theory for the Southern Hemisphere, where f0 , 0.

Equation (32) can be rewritten for D as a linear

function of Re:

D5M1 Re1M2 , (37)

where

M15

�
2

3
d1aBaTaU 1 d1aBaU

�
and (38)

M252
1

2
(p2aBaU)2

1

4
(p2aBaTaU)

2
1

4
(p3d2aBaRaTaUs) . (39)

Although the relationship between D and Re is linear,

the relationship between K2 and K1 is nonlinear. Since

Re . 0 and D . 0, Eq. (37) yields a critical value Recr:

Re.Recr 52
M2

M1

5
6p21 3p2aT 1 3p3d2aRaTs

8d1aT 1 12d1
.

(40)

This immediately implies that there is an upper bound

on the CPV of the upper layer. Note, that Recr. 0 exists

even for the flat bottom channel (Ivchenko et al. 1997),

which means that if Re , Recr the flow is not unstable

for baroclinic instability.
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The values of Re and Recr decrease nonlinearly when

the amplitude of B0 is increased (Fig. 1a). For fixed Re,

the value ofD increases if the amplitude B0 is increased

for physically meaningful solutions (see Fig. 1b). If B0 is

small and Re insufficiently high, the parameter D could

became negative, which is forbidden. For larger pre-

scribed Re, D increases accordingly. The relationship

D(B0) is linear for fixed Re if s 5 0 and weakly non-

linear if s 6¼ 0. For subsequent calculations we use

the following set of ‘‘standard’’ values: us 5 1.5 3
1022m s21, uc5 1.43 1021m s21, L5 1.53 106m, Lx5
83 106m,H15 103m,H25 43 103m, k5 4, b520.16,

� 5 1027 s21, b 5 1.4 3 10211m21 s21, t0 5 1024m2 s22,

andLR5 43 104m (Marshall 1981; Ivchenko et al. 2013).

In a flat bottom channel, Re 5 69.6 and Recr 5
p2(2d1)

215 24.7 for a prescribed value ofD5 2 (Fig. 2a).

If the bottom topography amplitude B0 is varied be-

tween 0 and 500m, forD5 2, and parameter s560.15,

the critical value Recr is greater than 15. Positive (neg-

ative) values of s yields higher (lower) values of Recr

(see Fig. 2b). This happens because a negative s pro-

vides a negative contribution to the mean meridional

QPV gradient in the lower layer in the central part of the

channel, 1/4 , y* , 3/4, where the wind forcing is stron-

gest [see Eq. (A2)]. Since baroclinic instability plays a

dominant role and the onset of instability requires a

change in the sign of the mean meridional QPV gradi-

ents between the layers, and since this gradient is posi-

tive in the upper layer [see Eq. (A1)], the instability

occurs for a smaller value of the mean vertical shear in

the case of negative s, that is, smaller Recr.

According toEqs. (37) and (38), the slopeM1 of ›D/›Re

is always positive and increases if the amplitude of bottom

topography is increased, since only the parameter aT in

Eq. (38) is linked to the bottom topography (proportional

to B0). Note that the slope ›D/›Re is independent of the

parameter aR and the ‘‘geometric’’ parameter s. For the

flat bottom case, the slope [Eq. (38)] reduces to

›D/›Re5 d1aBaU , (41)

FIG. 1. (a)Re (green) andRecr (blue) versusB0, withD5 2. (b)D versusB forRe5 20 (red), 30

(blue), and 40 (green). In both panels s 5 0 (solid), 20.15 (asterisks), and 0.15 (dashed).
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that is, it becomes proportional to the two flow

parameters.

b. Bottom form stress: Physical mechanism
and dependence on parameters

Since the BFS plays amajor role in zonal currents, like

the ACC, it is important to understand what affects it

and what restrictions it imposes.

The bottom form stress (i.e., the right-hand side of

the GTB) can be written in dimensionless form (for the

Southern Hemisphere) as

BFS5
j f0j

ðL
0
y2Bdy

usbL
2H

5
d1aBaTaU

6p2D
(8d1 Re2 3p22 3sp3d2aR) . (42)

All the parameters in the rhs before the expression in

parentheses are positive, so that the inequality [Eq. (18)]

is satisfied if

Re.
3p21 3sp3d2aR

8d1
. (43)

It is natural that the rhs of Eq. (43) is independent of the

‘‘topographic’’ parameter aT (since it includes friction).

It depends, however, on the geometric parameter s. In

the center of the channel, the meridional gradient of

zonally averaged bottom topography is positive for s, 0

and negative for s. 0 that modifies the planetary part of

QPV gradient. The respective contribution in the ex-

pression for ›q2*/›y* [see Eq. (A2)] is22paRs cos(2py*)

and is negative (positive) for negative (positive) s, which

yields decreasing (increasing) total eddy QPV and ac-

cordingly BFS.

The expression for the BFS [Eq. (42)] can be rewritten

by using the GTB [Eq. (37)]:

BFS5
4d1aT

p2(2aT 1 3)
1

1

D

d1aBaUaT(12 3d2paRs)

2(2aT 1 3)
.

(44)

FIG. 2. Constraints of Re andD by GTB and EI for (a) flat bottom. (b) B0 5 300m. Permissible

values of Re andD based on the EI lie above the corresponding curves andDmust be positive.
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We conclude that

12 3d2paRs. 0 (45)

should be observed if D is small to ensure that

BFS . 0.

The BFS depends nonlinearly on the amplitude of the

bottom topography (Fig. 3a), especially when it is small,

where B0 , 100m. The BFS is higher for small values

of D, and the parameter s only weakly affects the

BFS for small B0, but leads to larger effects for higher

amplitudes of bottom topography (Fig. 3b) because

nondimensional BFS depends on s only via the last

term in the brackets in Eq. (42). The term in brackets,

23sp3d2aR, is proportional to B0, since aR ; B0. This

leads to a small impact of s on BFS for small values

of bottom topography, which increases with increas-

ing B0.

To find the dependence of the BFS on Re we use

Eq. (32), that is, the GTB, and rewrite the BFS as the

sum of fluxes to obtain

›BFS

›Re

5
224d21aT(12 3d2paRs)

(Re8d1aT 112d126p223p2aT 23p3d2aRaTs)
2
.

(46)

The denominator in Eq. (46) is positive, and the BFS is

inversely proportional to Re squared if Re is suffi-

ciently large. The sign of this link depends on the term

(12 3d2paRs): if (12 3d2paRs). 0, then ›BFS/›Re, 0.

Note, that this condition is identical to Eq. (45).

The BFS increases with bottom friction � for a high

enough amplitude of bottom topography B0 (see Fig. 4a).

However, it is interesting to note that the BFS de-

creases when � increases for small B0 (e.g., B0 5 100m

in our figure). For small values ofB0 the contribution of

viscous bottom drag to the mean momentum balance

[Eq. (21)] becomes significant, so that the contribution

of the BFS gets less important with increasing bottom

friction �.

FIG. 3. Dependence of BFS on bottom topography for (a) s 5 0 and (b) D 5 2.
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The BFS decreases also if the geometric parameter s

increases (Fig. 4b) or with increasing parameter D.

The value of BFS as a function of wind stress is higher

for larger values of B0 (Fig. 5a). For smaller wind stress

this dependence is strongly nonlinear, but for higher

wind stress it is independent of wind stress and is a

function of B0. For a high enough wind stress, the

dependence of the BFS on s is insensitive to the stress

value (Fig. 5b), but for smaller values (in the range

of climatological values along the ACC, i.e., about

1024 m2 s22) the BFS displays nonlinear dependence

on wind stress. This happens because the nondimensional

BFS depends on the wind stress via two parameters:

aB ; u21
s ; t21

0 and Re ; us ; t0, which leads to the in-

dependence of nondimensional BFS on the wind stress

for large values of Re; that is, for

Re � (3p21 3sp3d2aR)/(8d1) (47)

[see Eq. (42)]. This last condition corresponds to high

values of wind stress.

c. Integral constraint for energy

The energy inequality [Eq. (24)] can be rewritten in

dimensionless form asð1
0

�
d1s1u1*

›q1*

›y*
1 d2s2u2*

›q2*

›y*

�
dy*. 0. (48)

Substituting solutions for velocities [Eqs. (A15)–(A18)]

and meridional gradients of QPV into this inequality

we find, after some rearrangement,

3d1d2 ReD21 3d1 ReD2 12d1d2D
22 12D2 8pd2aRsD1 24d1aBaU Re2 6p2aBaU 2 3d21aBaU Re2

1 8pd1d2aBaUaRsRe1 8pd1d2aBaUaRsRe2 12p4d22aBaUa
2
Rs

2. 0. (49)

FIG. 4. Dependence of BFS on parameters (a) � and (b) s at B0 5 300m.
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In Eq. (49), the parameters Re and D are linked via the

GTB [i.e., Eq. (37)]; this will introduce the topographic

parameter aT to the EI.

It is straightforward to find an asymptotic value of Re

when D tends to infinity:

lim
D/‘

Re5 4, (50)

so that Re . 4 for any set of external parameters (in-

cluding the flat bottom case) (see Figs. 2a,b).

The asymptotic value of Re 5 4 corresponds to the

averaged value of CPV in the upper layer:

K1,
pt0
4H1b

5 5:63 103 m2 s21 (51)

for the standard set of parameters.

From Eq. (49) and Figs. 2a and 2b, we can see that

there are restrictions on the parameter D, but there is

no asymptotic form as there is for Re.

Note that the parameter D is proportional to the

bottom viscosity �. This means that the limit case of

D 5 0 cannot provide a physically reasonable solution

because in the presence of forcing (wind stress), the sys-

tem must rely on the bottom drag to reach a stationary

regime. The GTB does not exclude the zero value of D.

5. Momentum redistribution by eddies and
zonal transport

Eddies redistribute zonal momentum, locally increasing

or decreasing it. In this section we examine the zonal re-

distribution of momentum by the parameterized

eddies in our analytic solution and investigate how

this redistribution process is modified by the presence

of topography compared to the flat bottom case. We

also use our analytic solution to investigate the pa-

rameters that govern the magnitude of the net zonal

transport. The results are illustrated in Figs. 6–11.

a. Momentum redistribution

We begin by considering the zonal momentum balance,

Eq. (20), which can be rewritten in nondimensional form as

FIG. 5. Dependence of BFS on wind stress, whereD5 2 for (a) variable B0 and (b) variable s.
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›

›t*
(d1u1*1 d2*u2*)52

T0

TR

�
1

aBRe

›q1*

›y*
1

d2aU

D

›q2*

›y*

�
1

T0

TR

1

paB

sin(py*)2
T0

TR

d2aUu2* ,

(52)

where T0 is the characteristic time scale of the process;

that is, t 5 T0t* and TR 5 (bLR)
21 is the time scale as-

sociated with a zonal baroclinic Rossby wave. The first

term on the right-hand side is the eddy redistribution

of momentum, the second term is the external forcing

(by wind), and the last term is the bottom friction. Ac-

cording to Eq. (10), the eddy flux of QPV in the upper

layer depends on wind stress and H1 only (see Fig. 6a).

Eddies increase the vertically integrated mean momen-

tum when the first term on the right-hand side of Eq. (52)

is positive. To find where this happens for a flat bottom

channel, we use the solutions for mean zonal veloci-

ties of Eqs. (A15)–(A18) and substitute them into the

expression for mean meridional gradients of the QPV

[Eqs. (A1)–(A2)], which yields

sin(py*)(d1aBaURe2D)2paBaU . 0. (53)

Therefore from Eqs. (37)–(39) and d1aBaURe2D . 0,

the region where eddies increase the mean zonal baro-

tropic momentum is (see Fig. 6b, red line, the region

where eddy flux is greater than 0)

1

p
arcsin

�
paBaU

d1aBaURe2D

�
5 y1*, y*, y2*

5 12
1

p
arcsin

�
paBaU

d1aBaURe2D

�
. (54)

The bottom topography strongly affects the eddy re-

distribution of zonal momentum, especially at small

amplitudes, when the flow regime changes from a flat

bottom one to one where bottom form stress dominates.

FIG. 6. QPV eddy flux for (a) upper layer and (b) total flux, with D 5 2.

MARCH 2014 I VCHENKO ET AL . 933



Figure 6b, for example, shows that even topography as

small as 1–10m already has a marked impact. In the

center of the jet the eddy flux is positive forB05 1m and

at the flanks it is negative. This distribution is similar to

the flat bottom case, but the integral of the eddy flux is

negative. If B0 exceeds a value of about 10m, the fluxes

become negative at any point and reach the maximum

(by modulus) at the center of the channel. The type of

the curve of the eddy flux is changed from concave

(which pertains to the flat bottom case) to convex (which

pertains to the variable bottom topography channel).

Such a change occurs in the range of amplitude of bot-

tom topography between 10 and 100m. For high enough

B0 increasingD leads to a minor increase of the absolute

value of the negative flux at the center of the channel.

This result is neither obvious nor trivial because in-

creasing D means increasing the relative importance of

bottom drag. However, the increase of D is lifting the

value of Re, because of the GTB, which strongly con-

tributes to the total eddy flux of QPV. The meridional

distribution of the total eddy flux of QPV is sensitive to

the bottom friction (Fig. 7a). If the coefficient of the

bottom friction increases between 1.0 and 2.03 1027 s21

the type of the curve of the total eddy flux changes from

convex to concave (see Fig. 7a). However, the flux does

not change its sign and themeridional integral of the flux

demonstrates only minor variability for fixed topogra-

phy. Increasing the bottom friction from 0.3 to 4 3
1027 s21 yields a change (decreasing) of eddy fluxes of

only 7%. This occurs because the main balance is be-

tween the wind stress and the BFS (which is equal to the

total eddy flux of the QPV), whereas the bottom friction

contribution plays a smaller role [see Eq. (21)].

Eddy fluxes for small wind stress are almost constant

across the channel. However, they tend to a sinusoidal

distribution and increase in amplitude when the ampli-

tude of wind stress t0 increases. This can be anticipated

because the eddy QPV fluxes in the upper layer must be

proportional to tx by Eq. (10), while in the lower layer

they must balance the viscous bottom drag by Eq. (11).

As the amplitude of wind stress t0 increases, the di-

mensional bottom form stress increases to balance it,

FIG. 7. QPV total eddy flux for (a) variable bottom friction with B0 5 300m,D5 2, and s 5 0

and (b) variable wind stress.
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while the bottom drag remains relatively small. The total

eddy QPV flux becomes dominated by the upper-layer

QPV flux, whose profile resembles that of the wind

stress (Fig. 7b).

Eddy fluxes for smallD are almost constant across the

channel (Fig. 8a). However, increasing D yields re-

distribution of eddy fluxes, increasing (by modulus) in

the center of the channel, but decreasing on the flanks.

This happens because the relative importance of the

eddy fluxes in the lower and upper layers is proportional

to the Re/D, and since Re is a linear function ofD from

the GTB, their ratio is inversely proportional to D, and

this means that the total eddy flux becomes dominated

by the upper-layer eddy flux of QPV, whose profile re-

sembles the wind stress [see Eq. (10)].

The geometric parameters contributes to the total eddy

QPV flux through the term proportional to s cos(2py*),

which is positive for negative s at the center of the

channel. Because in the total eddy fluxes the upper-layer

contribution is dominant and negative, this means re-

duction in the amplitude in the center of the channel

compared to the case s . 0 (Fig. 8b).

b. Zonal transport

Deriving an expression for the total transport of the

Antarctic Circumpolar Current is a challenging task for

the dynamics of the SouthernOcean. Its difficulty hinges

on the need to properly address the penetration of mo-

mentum downward and its balance with the bottom

form stress. Both processes are mediated by eddies and

using an unsatisfactory parameterization would yield

incorrect velocities and unreasonable transport.

Using our results for zonal velocities [Eqs. (A15)–

(A18)], we can calculate the zonal transport. We can

write the following expression for the transport T in

dimensional form:

T5LHuc

 
2d21Re

p2
1

2d1Re

d2p
2D

2 d212
1

d2D

!
. (55)

According to this expression, the transport appears to

depend on both parameters Re and D, but one of them

can be eliminated by using the GTB. Substituting Re as

a function of D from Eq. (37) yields

FIG. 8. QPV total eddy flux withB05 300m for (a) variableD and s5 0, and (b) variable s and

D 5 2.
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T5LHuc

" 
2d1
p2

1
2

d2p
2D

! 
3D

2aBaTaU 1 3aBaU

1
6p21 3p2aT 1 3sp3d2aRaT

8aT 1 12

!
2 d212

1

d2D

#
.

(56)

Equation (56) predicts an inversely proportional de-

pendence of the transport on the amplitude of bottom

topography B0 (see Fig. 9a). Increasing the prescribed

parameter D results in an increased total transport

(see Fig. 9b). This result is not obvious because D is

proportional to the bottom friction. The BFS is in-

versely proportional to D [see Eq. (44)], and increas-

ing D implies a decrease in the major term opposing

the wind (i.e., BFS). Also, according to Eq. (56), the

transport can be split into three terms: a term linearly

increasing withD, a term independent ofD, and a term

inversely proportional to D. Their sum is increasing

with D. Note that the term proportional to D in Eq.

(56) is

T1 5LHuc
6d1

p2aBaU(2aT 1 3)
D .

It is inversely proportional to the parameter aU, which

is proportional to the bottom viscosity �. The term D/aU

is independent of �, and the term T1 depends on � only

via aT. Increasing � makes aT smaller. The total trans-

port quickly decreases with increasing B0. There is a

linear relationship between the transport and param-

eter s (not shown). This parameter can strongly affect

the transport as B0 is varied, especially if B0 is high (see

Fig. 9a). Note that the transport depends on the topo-

graphic parameter aR only if the zonal average of the

bottom topography deviation is not zero (s 6¼ 0).

The stationary total zonal transport was calculated

for fixed D 5 2, which corresponds to a value of the

CPV in the lower layerK25 500m2 s21. The coefficient

in the upper layer has been calculated by using the

GTB. The transport in the flat bottom case reaches

an unrealistically high value of 1744 Sverdrups (Sv;

1 Sv [ 106m3 s21) with the value of K1 5 322.6m2 s21.

FIG. 9. Dependence of zonal transport on B0 for (a) variable s and D 5 2, and (b) variable D

and s 5 0.
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The CPV in the upper layer is smaller than that in the

lower layer, which agrees with Marshall (1981). The

transport with variable bottom topography drops down

drastically, depending on B0. The CPV in the upper

layer strongly increases compared to the flat bottom

channel and is higher than the value of K2. This co-

efficient decreases linearly when the parameter s

increases.

It is of interest to estimate the range of values of

the CPV in the lower layer and the parameter D. The

termD increases when transport increases (for fixedB0)

(see Fig. 10a). However, the value of D only increases

slightly for small transports, but after about 250 Sv their

increase is more substantial.

It is possible to evaluate the CPV for the fixed B0

and variable transport from Eq. (56). The value K2 de-

creases nonlinearly with increasing transport (see Fig.

10b). ForB05 300m and s5 0, coefficientK2 decreases

from about 970m2 s21 to about 115m2 s21. For small

transports the values of K2 vary strongly for different s,

but for transport more than about 350 Sv they are close

to each other.

The zonal transport increases linearly with the wind

stress (Fig. 11a). For a fixed CPV in the lower layer

(K2 5 500m2 s21), the coefficient K1 increases non-

linearly with wind stress (Fig. 11a). There is only weak

sensitivity of the total transport to the bottom friction

(Fig. 11b), which is not surprising since the main bal-

ance for wind stress is provided by inviscid BFS. The

increase in Re yields an increase of transport for the

same � (Fig. 11b).

6. Numerical model and experiments with the
eddy-resolving model

Since our analytical treatment relates to the time- and

zonal-mean model with parameterized fluxes, we carry

out numerical simulations with a full two-layer model to

illustrate the predictions of the analytical model. We do

not deal with parameterizations here, but concentrate

FIG. 10. Dependence of D and K2 on transport with variable s and B0 5 300m for (a) D and

(b) K2.
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on eddy fluxes in the presence of topography and show

that they behave rather similarly to the predictions of

the analytical model, showing also rather similar sensi-

tivity to the governing parameters. We limit ourselves to

a qualitative comparison because the analytical results

above are obtained for constant K1 and K2, while nu-

merical fluxes do not obey Eq. (9) with constant CPV.

The numerical model is implemented on a C grid and

uses the Arakawa Jacobian (Arakawa 1966) preserving

both energy and enstrophy. The time stepping and

implementation of boundary conditions may introduce

small nonconservative effects. The boundary conditions

for the streamfunctions follow the implementation of

McWilliams (1977) and McWilliams et al. (1978). The

computational mesh is 800 by 150 points with dx5 dy5
10km. Cyclic boundary conditions are applied in the

zonal direction. On solid walls we require that ›2Ci/›y
2 5

0 (free slip) and that =4Ci 5 0 (additional boundary

condition required for biharmonic viscosity). Time step-

ping follows the third-order Adams–Bashforth method.

The parameters are selected so as to be in agreement

with the analytical model; in particular, the bottom

topography is given by Eq. (26). All simulations are run

for 20 years, and the results are averaged over the last

10 years. It takes a model about 10 years to reach

a quasi-stationary level of energy. Although the next

10-yr period is still insufficient to reach truly stationary

statistics, the deviations are already rather moderate

for the eddy fluxes. The runs have been performed for

three amplitudes of topography: 100, 300, and 500m.

For each of them, we run for three values of parameter

s 520.15, 0, and 0.15 and three values of bottom drag

coefficient corresponding to the inverse of 30, 115, and

360 days (high, standard, and low friction).

Figures 12 and 13 illustrate the behavior of the time-

and zonal-meanmeridional eddy QPV flux and the form

stress for different �, but fixed s5 0.15 and for different

s and fixed �5 1027 s21 (standard friction), respectively.

According to Eq. (10), the zonal-mean meridional PV

flux in the upper layer should repeat the wind profile,

and numerical simulations for the upper layer show this,

as the lateral viscosity contribution is rather small, with

FIG. 11. Dependence of transport, K1 and K2 on parameters for (a) variable wind stress, with

D 5 2, and (b) variable �.
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some spread due to insufficiently long averaging time.

The eddy flux in the lower layer, however, is modified by

the presence of topography and becomes progressively

more negative and loses its amplitude as the amplitude

of the bottom topography B0 is increased. This modi-

fication is compensated by the BFS, and the GTB is

maintained with a very high accuracy. Note that the

compensation of eddy flux with the BFS is not local, but

involves redistribution of flux even in this zonal-mean

picture.

According to Fig. 13, varying s in the selected range

leads to relatively small changes. Variations in the bot-

tom drag coefficient modify the balance to a larger ex-

tent, as follows from Fig. 12. The low bottom drag

corresponds to a more barotropic flow, with larger veloc-

ities in the lower layer, and more negative mean meridio-

nal QPV flux. In general, an increase in the topographic

amplitude and a reduction in bottom drag have similar

impact on the fluxes.

This time- and zonal-mean picture is very different

from the 2D patterns of time-mean fluxes. The latter are

FIG. 12. Dependence of time- and zonal-mean eddy (a) QPV

fluxes q0i y
0
i Hi and the (b) BFS on the meridional coordinate for

various amplitudes of topography [100m (blue), 300m (red), and

500m (green)] and bottom drag � 5 1/115 (thick lines), 1/30 (thin

lines), and 1/360 (thin dashed lines) day21 from the numerical eddy-

resolving experiment. The flux in the upper layer is defined by

wind, so all curves collapse to the same negative sine profile. High

friction (thin curves) makes the eddy flux in the lower layer more

positive, that is, closer to the flat bottom situation. The case with

the smallest friction and topography deviations (dashed blue) shows

strong oscillations in the jet position, and the curves for it are based

on a longer integration.

FIG. 13. As in Fig. 12, but for the parameter s5 0.15 (thin lines),

0 (thick lines), and 20.15 (thin dashed lines). Variable s leads to

some spread, but longer averaging is needed to estimate its effect

reliably.
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dominated by large rotational contributions associated

with the topography. For this reason, we did not attempt

to fit the simulated fluxes with Eq. (9).

We note however, that the change in the role of BFS

as s and � are varied is similar to that derived analyti-

cally. The contribution from BFS in the GTB increases

in absolute value with reduction in � and increase in the

topographic amplitude, as could be expected. The sen-

sitivity to friction is the largest for small topographic

variations and shows a tendency to saturation as B0 is

increased. Variations in s lead to small changes in the

BFS contribution on the level of several percent. Dis-

cussing them would require much longer averaging.

7. Summary and discussion

Both the energy inequality and generalized theorem

of Bretherton impose strong restrictions on the eddy PV

transfer coefficients. If the chosen CPVs fail to satisfy

these constraints, the resulting equations violate the basic

laws of energy or momentum conservation.

We explore this issue in an elementary way, taking

time- and zonal-mean QG two-layer equations, param-

eterizing the eddy PV fluxes as downgradient (with

constant layer diffusivities), solving the equations, and

analyzing the limitations on the diffusivities (CPVs).

We demonstrate that the bottom topography plays an

important role in these restrictions, especially for mo-

mentum. It explicitly enters the GTB, which should be

satisfied by solutions with parameterized QPV fluxes.

Any failure to do so leads to violation of the major mo-

mentum balance in zonal flows (like the ACC) between

the wind stress and the bottom form stress (Munk and

Palm�en 1951; Ivchenko et al. 1996; Stevens and Ivchenko

1997).

The energy inequality requires that the parameter

Re must be greater than the critical value Recr 5 4,

which means that the CPV in the upper layer (main

thermocline) must be less than a certain critical value,

depending on the amplitude of the wind stress, the layer

thickness, and the planetary vorticity gradient b, for any

type of bottom topography or flat bottom case. For the

standard set of parameters this value is K1 , 5.6 3
103m2 s21.

Because of these restrictions, the parameterization

for eddy PV fluxes allows only limited freedom in the

choice of coefficients. If we select the value for the co-

efficientK1 in the upper layer (which has to comply with

the EI), the value of the coefficient in the lower layer

K2 is then prescribed by the GTB. We found a linear

relationship betweenD and Re set by the GTB, which is

nonlinear between K1 and K2. The link between the

coefficients (or parameters Re andD) strongly depends

on bottom topography, that is, on its amplitude, zonal,

and meridional variability. For flat bottom topography,

the GTB requires that the parameter Re . p2(2d1)
21.

The values of Recr for variable bottom topography

and the slope of the line D(Re) are strongly dependent

on the parameters of bottom topography. For example,

changing the mean zonal average value of topography

(the parameter s in the case considered) shifts the value

of Recr. If D is fixed, the parameter Re has a nonlinear

dependence onB0 (decreasing), but remains higher than

Recr; forB0 in the range between 10 and 500m, the range

of Re is within a factor of 3 of its lowest value. The CPV

in the upper layer is larger than in the lower layer; the

dependence of K1 on the amplitude of the bottom to-

pography is nonlinear, but it increases for higher values

of B0. For the topography considered here, the value of

K1 (for K2 fixed) substantially depends on the meridio-

nal gradient of zonally averaged bottom topography.

The bottom form stress shows a strong nonlinear de-

pendence on the amplitude of the bottom topography

for not very high values of B0, less than about 100m.

The analytical solution developed here allows us to

emphasize the importance of the GTB. For example, it

shows that increasing the parameter D leads to an in-

crease of the magnitude of the total eddy flux, which is

not immediately apparent (why should a higher bottom

friction yield a higher eddy flux?). The relative impor-

tance of the eddy fluxes in the lower and upper layers is

proportional to Re/D, and since Re is a linear function

ofD from the GTB, their ratio is inversely proportional

to D, and this means that the total eddy flux becomes

dominated by the upper-layer eddy flux of QPV.

The solution also allows one to calculate the total

zonal transport as a function of external parameters and

of diffusivities (or one of Re and D) that should be

chosen from observation or numerical simulations. It is

rather sensitive to the amplitude of bottom topography,

which drastically reduces the transport from unrealisti-

cally high values for the flat bottom case to plausible

values even for moderately large B0.

Admittedly, the approach taken here is a simplifi-

cation and with just two layerwise constant QPV dif-

fusivities the constraint provided by the GTB is much

more restrictive than it would be for many layers,

leaving alone the limitations of the quasigeostrophic

approximation. However, we would like to stress that

while the presence of constraints is well recognized,

the fact that they are affected by bottom topography is

mentioned less frequently. We see the results pre-

sented here as posing the question about the implica-

tions of these constraints for more realistic, primitive

equation models, which would be of great interest to

explore.
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APPENDIX

Asymptotic Solutions

Expressions for meridional gradients of QPV are

obtained by taking the time and zonal average of the

potential vorticity [Eqs. (3)–(4)] and then differentiating

with respect to y. In nondimensional form these are

›q1*

›y*
52

g2

d1d2

›2u1*

›y*2
1 11

1

d1
(u1*2 u2*) and (A1)

›q2*

›y*
52

g2

d1d2

›2u2*

›y*2
1 12

1

d2
(u1*2u2*)

2 2paRs cos(2py*), (A2)

where aR 5 (jf0jB0)(LH2b)
21 is the dimensionless

parameter that measures the ratio between the topo-

graphic, that is, (jf0jB0)H2
21 and planetary bL contri-

butions to the QPV in the lower layer.

The boundary conditions [Eq. (29)] in nondimen-

sional parameterized form, using Eq. (9), yields 
si
›qi*

›y*

!�����
0,1

5 0. (A3)

One cannot expect the PV gradients on the walls to be

zero, since in that case a large planetary PV gradient

would require unphysically large gradients of the rela-

tive vorticity. So we have to require zero values of CPV

on the walls. Coefficients si (CPV) are free parameters,

and as the first step we consider them to be constant in

each layer almost everywhere except the thin boundary

layers near walls (D � 1), where we assume them to be

proportional to the distance to the wall:

s15

r5 const D# y*# 12D

r
y*

D
0# y*#D

r
(12 y*)

D
ð12D)# y*# 1

.

8>>>>>><>>>>>>:
(A4)

The coefficient of diffusivity in the lower layer s2 is s2 5
Qs1 at any point, 0# y*# 1. The term Qmust be found

from integral constraint (16).

We set the time-averaged streamfunctions Ci and

corresponding velocities in the form of a product of a

meridionally varying function Q(y) and a zonally vary-

ing Fourier series:

Ci(x, y)5Q(y)

"
11 �

2N

l51

al sin(lpxL
21
x )

1 �
2N

l51

bl cos(lpxL
21
x )

#
. (A5)

To satisfy zonal periodicity (i.e., Cij0 5CijLx
), the odd

modes have to be excluded, that is

Ci(x, y)5Ci(y)

"
11 �

2N

l52

al sin(lpxL
21
x )

1 �
2N

l52

bl cos(lpxL
21
x )

#
, (A6)

where l is constrained to be even. If this expression is

substituted into Eq. (30) most of the components will

have zero contribution; the only nonzero component

corresponds to l 5 2k (i.e., the wavenumber of the to-

pography), therefore we use b 5 b2k. Note that Q(y) is

equal to the zonal-averaged value Ci(y).

The nondimensional QPV [Eqs. (27)–(28)] for D #

y*# 12D (i.e., away from the thin boundary layers) can

be rewritten in the following form:

1

Re

d2q1*

dy*2
2 cos(py*)5 0 and (A7)

1

D

d2q2*

dy*2
1

du2*

dy*
5 0, (A8)

where Re 5 (usL)K1
21 and D 5 (�uc)(bK2)

21 are the

nondimensional parameters [see details after Eq. (32)].

Eq. (A7) represents the main dynamical balance in

the upper layer, where the external forcing (curl of

wind stress) is balanced by the eddy fluxes of the QPV.

Eq. (A8) is the main dynamical balance for the lower

layer, where the eddy fluxes of the QPV are balanced by

bottom friction.

Equations similar to Eqs. (A7)–(A8) can be written

for the southern and northern boundary layers, that is,

for the southern boundary, 0 # y* , D:
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d

dy*

�
y*

dq1*

dy*

�
2ReD cos(py*)5 0 and (A9)

d

dy*

�
y*
dq2*

dy*

�
1DD

du2*

dy*
5 0. (A10)

Similar equations can be written for the boundary layer

near the northern wall, that is, 1 2 D , y* # 1 (not

shown).

The system of equations is solved with boundary

conditions that match QPV fluxes and velocities at the

boundaries of the regions, that is, at y* 5 D, 1 2 D. As

the forcing at the walls goes to zero, then

ui*j0,15 0, (A11)

(see Marshall 1981).

Our system has a small parameter g, which charac-

terizes the ratio of the Rossby deformation radius to

the channel width. Substituting Eqs. (A1)–(A2) into

Eqs. (A7)–(A10), one obtains a system of equations

with a small parameter at the highest derivative. Also

in the equation for the lower layer there are regular sin-

gularities at the points y*5 0 and 1. To solve the system

we use an asymptotic expansion by a small parameter and

to eliminate difficulties related to regular singularities we

use a Frobenius method (Nayfeh 1973; Ivchenko et al.

1997), which is an asymptotic expansion in power series

in the vicinity of regular singularities. We present ui* in

the form of the following asymptotic series:

ui*(y*)5 u
(0)
i (y*)1 gu

(1)
i (y*)1 g2u

(2)
i (y*)1 � � �

1 eui(0)(z)1 geui(1)(z)1 g2 eui(2)(z)1 � � �
1 ’ui

(0)(j)1 g’ui
(1)(j)1 g2’ui

(2)(j)1 � � � .
(A12)

Here, z and j are ‘‘stretched coordinates’’; z 5 y*g21

and j 5 (1 2 y*)g21; u
(j)
i (y*) is a basic system of func-

tions; and eui(j)(z) and ’ui
(j)(j) are a system of ‘‘correction

functions,’’ which are important only near the walls and

exponentially decreasing with distance; that is,

eui(j)(z)/ 0, as z/‘ and (A13)

’ui
( j)(j)/ 0, as j/‘ . (A14)

The asymptotic solutions for the mean zonal velocities

away from the boundaries, D # y* # (1 2 D), are

u1*5

�
Red1
p

1
Red1
Dd2p

�
sin(py*)2 d12

1

Dd2

1
2paRs

D
cos(2py*)1O(g2) and (A15)

u2*5
Red1
Dd2p

sin(py*)2
1

Dd2
1
2paRs

D
cos(2py*)1O(g2).

(A16)

The asymptotic solutions for the mean zonal velocity

in the southern thin boundary layer 0 # y* , D can be

written as

u1*5 (ReDd12 d1)[12 exp(2
ffiffiffi
d

p
2z)]1

y*

DDd2
[(ReDd12 1)1 2pd2aRs cos(2py*)]

2 g

�
(ReDd12 d1)

4DDd2
z exp(2

ffiffiffi
d

p
2z)

�
2 g

"
(ReDd12 d1)

4DD
ffiffiffi
d

p
2

z2 exp(2
ffiffiffi
d

p
2z)

#
1O(g2) , and (A17)

u2*5
y*

DDd2
[(ReDd12 1)1 2pd2aRs cos(2py*)]2 g

(ReDd1 2 d1)

DDd2
z exp(2

ffiffiffi
d

p
2z)1O(g2) . (A18)

Similar solutions can easily be obtained for the northern

thin boundary layer 1 2 D , y* # 1.

Note that in the rhs of Eqs. (A15)–(A18) there are

now the terms proportional s, which were not present in

the case with zero value of the zonally averaged bottom

topography (Ivchenko et al. 2013).
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