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1.  Summary 

This doctoral thesis aimed at the establishment of molecular tools (ARISA and 454-

pyrosequencing) for protist diversity assessments in polar regions and at the application of 

these tools for studying protist diversity in the Fram Strait and in the Central Arctic Ocean. In 

this thesis, three hypotheses were put forward: i) Molecular surveys of genetic protist 

diversity, obtained by 454-pyrosequencing, constitute an adequate tool for assessing natural 

protist diversity ii) Water masses in the Arctic Ocean and in the Fram Strait are characterized 

by distinct protist communities and iii) Complex hydrographical and environmental situations 

can be evaluated via genetic information.  

A comprehensive study of protist diversity is required, because so far investigations were 

biased towards big size cells (≥2 µm). A correct identification of smaller cells is almost 

impossible due to the small size and lack of morphological markers. However, a proper 

survey of protist diversity demands the inclusion of all size classes. This is of particular 

relevance, considering the fact that small cells were observed to dominate protist assemblages 

at certain times, according to abiotic circumstances. The Arctic Ocean constitutes in two ways 

an important research area: on the one hand, it experiences intense variations in the light 

regime based on seasonality and sea ice; and on the other hand, it is assumed to be affected 

more severely by climate change than other world oceans. Since marine microorganisms are 

highly responsive to environmental forcing, changes will likely impact the protist community 

structures. Against the background of ongoing environmental changes in the Arctic, a study of 

protist diversity is further crucial in order to get a baseline for the assessment of future 

community structure changes. 

 

i) The assay of the 454-pyrosequencing suitability was carried out by using different wide-

employed methods for reconciliation, sharing the same (clone library and ARISA) and 

different drawbacks (light microscopy and HPLC). The use of 18S rRNA clone library 

sequencing thereby, aimed to compare but also to complement the 454-pyrosequencing data, 

because of the longer sequence lengths that allow a more comprehensive taxon detailed 

analysis. However, the clone library approach was not suitable neither for 454-

pyrosequencing comparison nor for 454-pyrosequencing complementation. While one 

approach, comprising the picoplankton fraction, was biased against haptophytes, the other 

approach, comprising the whole size fraction was biased against diatoms. Moreover, despite 

the comparable high number of ~140 clones per library, the abundant biosphere of 454-

pyrosequencing was not comprehensively recovered. Hence, a consult of previous data
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for 454-pyrosequencing gathered by clone library is not advisable or has to be interpreted 

with caution. The second molecular method, ARISA, reflected community structure shifts that 

were indeed recovered by 454-pyrosequencing. The indicative limitation of ARISA on 

sequence length variances however, makes the method more suitable for a preceded sample 

selection than for a robust 454-pyrosequencing support. The assessment with traditional 

methods as light microscopy and HPLC presented good analogies. Since light microscopy is 

biased against small cells and HPLC against heterotrophic protists, the comparison was 

adapted to the respective limitations. A quantitative comparison of the diatom assemblage 

showed similar percentages within light microscopy and 454-pyrosequencing (≥10 µm filter), 

and approved the use of diatoms for the evaluation of 454-pyrosequencing accuracy. The 

comparison with HPLC was further in accordance with 454-pyrosequencing and agreed in the 

portions of autotrophic protists. In summary, three out of four evaluation methods presented 

good analogies with 454-pyrosequencing data and approved the suitability of the molecular 

method for assessing natural protist diversity.  

 

ii) To address the hypothesis if water masses host specific protist communities, 454-

pyrosequencing was tested in different hydrographic environments for different size classes. 

In the process, the picoplankton community structure was investigated at four stations in the 

Eastern Fram Strait during the expedition ARK XXIV/2. The community structure of all 

protists was analyzed at five stations in the Western Fram Strait (ARK XXV/2) and at eight 

stations in the Central Arctic Ocean (ARK XXVI/3). A relation of water mass, distinguished 

by abiotic factors such as temperature, salinity and/or nutrients, and protist community 

structure was observed in all three studies. However, while the water mass regimes in the 

Fram Strait promoted distinct community structures in protist assemblages of the pico size 

spectrum and the entire size spectrum, populations of the Central Arctic Ocean showed a less 

definite association. In the Eastern Fram Strait picoplankton community (0.2-3 µm) in the 

Atlantic Water was mostly dominated by Phaeocystis cells and in the ice-covered station by 

small dinophytes (e.g. Dinophyte 1). The influence of cold, coastal water at one station 

however, shifted the community structure from a Phaeocystis-based to a Micromonas-based 

protist assemblage. In the Western Fram Strait, the protist community showed a distribution 

pattern that also corresponded to the different water properties. While Polar Water (EGC) was 

dominated by diatoms in recently light exposed stations and by dinoflagellates in a station 

longer exposed to light, the Atlantic Water (WSC) presented a high dominance of 

Micromonas that was not associated with the light availability. The two different 
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protist communities observed in the Polar Water, however, suggest a high influence of light 

availability on the protist assemblage by promoting a protist succession. In the Central Arctic 

Ocean, in contrast, protist communities showed a less pronounced relation to the four water 

masses (Atlantic Water, Pacific Water, Mixed Water I and II) with no switch of dominant 

protist community members. All water masses were mainly dominated by dinoflagellates (e.g. 

Syndiniales 2), and at two stations by Micromonas. In principle, different water masses were 

reflected more significantly by whole community structure changes (ARISA) than by the 

appearance or disappearance of single protists (454-pyrosequencing) in the abundant 

biosphere. In particular, protist communities of the so-called Mixed Water I and II were 

difficult to separate from Atlantic Water and Pacific Water communities. The formation of 

mixed water, e.g. the mixing of two separate water masses, resulted in a combination of the 

abiotic characteristics (temperature, salinity, and nutrients) and of the protist communities. 

Moreover, the high sea-ice concentration and thus low light availability in the Central Arctic 

Ocean represented a strong selective force that eventually led to a unification of the protist 

communities.   

 

iii) 454-pyrosequencing revealed an adequate tool not just for investigating the protist 

diversity but also for reflecting hydrographical situations, as the recirculation of AW in the 

Fram Strait by protist community structure shifts. The hydrographic system of the Central 

Arctic Ocean, including Atlantic, Pacific, and mixed water masses, was not that strongly 

reflected by community structure shifts. The consistent presence of various ice concentrations 

strongly controlled the community composition and promoted heterotrophic and/or 

mixotrophic cells. In this regard, the Arctic protist assemblage presented high contributions of 

dinoflagellates under higher sea-ice concentrations (low light areas) and a higher contribution 

of diatoms under low sea-ice concentrations (high light areas). The strong response of the 

Arctic protist assemblage to the changing light conditions finally hampered the identification 

of water mass associated protist communities and hence, the reflection of the hydrographical 

situations.  

 

This thesis showed the suitability of 454-pyrosequencing for molecular studies of protist 

diversity and biogeography, independent of organisms cell size, or organisms nutritional 

strategy (hetero-, mixo-, or autotrophy). The application of 454-pyrosequencing, to study 

Arctic protist distribution facilitated to reveal even complex hydrographical situations and 

indicated the presence of different microbial habitats in polar regions, determined by water
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mass properties (T, S, and nutrients) and altered by sea ice concentration. This hypothesizes 

an improved differentiation of the microbial habitats in the Central Arctic Ocean under 

continuously sea ice decrease. Moreover, the study of the rare biosphere revealed a constant 

distribution of taxonomic groups. In contrast to the abundant biosphere, the rare biosphere did 

not respond to changing nutrient or sea ice concentrations. 
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2.  General Introduction 

Protists are defined as complex single-celled organisms, where even the simplest member 

possesses a nucleus. The evolution can be dated back to the Proterozoic oceans (1.5 billion 

years). However, the major autotrophic protist groups, as the red algal lineages, evolved just 

recently in the Mesozoic (251-65 million years). This lineage is characterized by holding a 

plastid, derived from red algae by secondary endosymbiosis and includes dinoflagellates, 

coccolithophores, and diatoms (Keeling et al. 2004). The formerly predominant and ancient 

chlorophytes, in turn, began a long-term decline from the Triassic (Falkowski et al. 2004). 

Today, protists are important constituents of the marine environment, composing much of the 

genetic diversity within the eukaryotic domain. Marine autotrophic protists are responsible for 

about half of the photosynthetic activity on this planet (Field et al. 1998, Falkowski et al. 

2004, Simon et al. 2009) and are forming the base of the marine food-web (Priddle et al. 

1992). Large cells (e.g. diatoms) are reported to produce vast seasonal blooms under specific 

hydrographic conditions (Smetacek 2000, Li 2002, Mei et al. 2002), while small cells 

contribute most of the biomass and production in warm and oligotrophic waters (Agawin et 

al. 2000).  

 

2.1  Marine Protists 

2.1.1  Protist Diversity  

Protist systematics has experienced some change after phylogenetic analysis contributed to 

the discussion on taxonomic classification. The eukaryotic phyto- and protozooplankton 

fraction is highly divers and hence caused some controversy between the classical (e.g. light 

microscopy) and the modern (e.g. DNA sequencing) methods. In the historic time course, 

some revisions have taken place, including the consolidation of photosynthetic and 

heterotrophic forms that share recent ancestry but differ in nutritional strategy, such as the 

chloroplast-bearing and heterotrophic crysophytes (Cavalier-Smith & Chao 2006, Caron et al. 

2012). Secondary endosymbiotic acquisition of photosynthesis has the potential to hamper the 

taxonomical classification. In this regard, recent genetic investigations on Guillardia theta 

and Bigelowiella natan revealed a genetic and biochemical mosaicism, with host-, 

endosymbiont-, and foreign algal- derived proteins (Curtis et al. 2012, Gould 2012). 

Nevertheless, debates on taxonomic relationships are declining and taxonomic affiliations are 

coalescing. Protists can be subdivided based on their taxonomic affiliation, on their size class 

(micro-, nano-, and picoplankton) or on their mode of nutrition (autotroph, heterotroph, and 

mixotroph) (Sieburth et al. 1978). The recent phylogenetic scheme consists of eight
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taxonomic supergroups (Figure 2.1). Unikonts consist of two supergroups, such as 

opisthoconts and amoebozoans (Baldauf 2008). Opisthoconts comprise marine protists, as 

choanoflagellates, which are characterized by small cell sizes and heterotrophic nutrition. In 

polar ecosystems they constitute important bacterivorous species (Throndsen 1970). 

Amoebozoans in contrast, are mostly known as benthic and less as pelagic contributors 

(Moran et al. 2007). The cell size is highly variable and can group to the nano- or 

microplankton, while the nutrition is limited on heterotrophy (phagocytosis). 

 

 

Figure 2.1. Consensus phylogeny of the major protist super groups-  

         modified after Caron et al. 2012. 

 

Another supergroup is formed by the archeaplastids, including land plants, chlorophytes, and 

glaucophytes. Red algae are also included, but just with few single-celled taxa because most 

red algae are multi-cellular (Caron et al. 2012). Photosynthesis first arose within this 

supergroup, comprising autotrophic representatives, of all size classes (Adl et al. 2005, 

Baldauf 2008). Chlorophytes, such as Micromonas, constitute important, divers members of 

the pelagic picoplankton fraction (Guillou et al. 2004). Rhizaria are a recent phylogenetic
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group and constitute the next supergroup, which inter alia is characterized by a high diversity 

of free-living unicellular cells (Moreira et al. 2007). The most prominent representatives are 

the heterotrophic planktonic/benthic foraminifers and the planktonic radiolarians, both 

covering a wide cell size range. Alveolates are subdivided into ciliates and dinoflagellates. 

Both groups are highly abundant in the marine environment. In particular, dinoflagellates 

presented in latterly molecular surveys an enormous diversity within the order Syndiniales, 

containing also parasitic forms (Guillou et al. 2008, Caron et al. 2012). Dinoflagellates 

present a variety of cell sizes that embrace all three size fractions, while ciliates are mainly 

represented in the microplankton. Likewise, ciliates are mostly heterotrophic, while 

dinoflagellates have autotrophic, heterotrophic, mixotrophic, and even parasitic 

representatives (Hackett et al. 2004). One exception for heterotrophic nutrition in ciliates is 

the genus Mesodinium, which possesses a photosynthetic capacity after a prey on 

cryptophytes for plastid maintenance (Gustafson et al. 2000, Möller et al. 2011). 

Stramenopiles include diatoms, bloom forming and ecological important members but also 

marine stramenopiles (MAST), which have been discovered by phylogenetic analysis, just 

recently (Massana et al. 2004). As dinoflagellates, stramenopiles cover a wide cell size range, 

starting with small picoplankton cells, such as MAST and Bolidomonas pacifica and ending 

with big microplankton cells, such as Thalassiosira sp. and Fragilariopsis sp. Moreover, the 

group comprises autotrophic (e.g. diatoms) as well as heterotrophic (e.g. MAST) 

representatives. Rhizaria, stramenopiles, and alveolates are summarized to a broader group, 

SAR (or RAS) (Burki et al. 2007, Hackett et al. 2007, Baldauf 2008). Haptophytes and 

cryptophytes are suggested for affiliation into the SAR group as well, however, the evidence 

is not completely achieved (Burki et al. 2007, Hackett et al. 2007). Prominent haptophytes are 

classified into the genus Phaeocystis, in which Phaeocystis pouchetii is particularly abundant 

in the Northern Hemisphere and represented by small solitary cells and large colonial cell 

structures. Cryptophytes in contrast, are mainly small celled organisms and primarily found in 

cold or deep waters (Baldauf 2008). Some haptophytes possess the ability to switch their 

nutrition from autotrophy to heterotrophy (Medlin 2009), while cryptophytes can be 

autotrophic, heterotrophic, and mixotrophic. The last two supergroups, Discicristates and 

Excavates are unicellular protists, most of them are heterotrophic flagellates. However, one 

subgroup, euglenozoa, also includes other nutrition modes as phototrophy, heterotrophy, and 

mixotrophy and is especially common in benthic ecosystems (Buck et al. 2000, Caron et al. 

2012). Eukaryotic protists are distributed abundantly and ubiquitously in the world oceans 

(Caron et al. 2012). The Arctic ecosystem is characterized by protists that are 
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particularly adapted to the local mostly unfavorable environmental conditions (Sakshaug & 

Slagstad 1991). Arctic protists possess pelagic as well as sympagic representatives (Poulin et 

al. 2010) that both contribute significantly to biomass and primary production. 

 

2.1.2  Seasonal Cycles 

Protist communities are considered to be controlled by “top-down” processes, when 

herbivorous grazing mostly limits the standing stock and to be controlled by “bottom-up” 

processes, when nutrient concentrations and light irradiance are the main limiting factors 

(Metaxas & Scheibling 1996, Verity & Smetacek 1996, Smith & Lancelot 2004). The top-

down/bottom-up hypothesis indicates a strong effect of top-down at the top of the pelagic 

food web that weakens toward the bottom (McQueen et al. 1989). This prediction bases on the 

assumption that autotrophic protists are more controlled by resources than by grazing 

(Benndorf et al. 2002). Grazing, on the other hand, was observed to be an important control 

mechanism for heterotrophic protists, as for some nanoflagellates (Weisse 1991). 

Furthermore, small-cell-dominated communities showed a particularly high influence of top-

down control, under micrograzer response. The community structure of big cell protists 

(diatoms or Phaeocystis) was more controlled by bottom-up (Smith & Lancelot 2004). Since 

both regulation processes control protist composition and abundance, they conversely also 

influence primary production. 

Light constitutes the most important factor for primary production and is responsible for the 

pronounced seasonality of algal growth (phytoplankton and ice algae). In polar waters, the 

solar angle, sea ice thickness, and snow cover determine the intensity of light (Mundy et al. 

2005). In the course of increasing ice melt and the break-up of sea ice, light availability 

increases and algal blooms start forming (spring/summer). The second important factors 

limiting primary production are nutrients, such as nitrate (NO3), phosphate (PO4), and silicate 

(SiOH4). Nutrients availability in the ice habitat, is a function of initial nutrient concentration 

during the freezing process, nutrient supply by advective processes or biological uptake, and 

finally nutrient concentrations in surface waters (Gradinger & Ikavalko 1998, Gradinger 

2009). Nutrient availability in the Arctic pelagic habitat on the other hand, is determined by 

the maximum penetration of winter mixing and the horizontal exchange with the Pacific and 

Atlantic basins (Popova et al. 2010). 

Figure 2.2 shows the process of the Arctic primary production along a gradient, running from 

70°N to 85°N. Sympagic ice algae start to grow within (brine channels) and under the ice in 

spring, when light conditions become more favorable and sufficient light penetrates the ice.
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Ice algae possess a high photoacclimation potential that allows them to grow even under low-

light regimes (Kirst & Wiencke 1995, Smetacek & Nicol 2005). The ice algae production 

varies strongly and ranges between 5-10 g C m-2 yr-1 (Legendre et al. 1992, Gosselin et al. 

1997, Leu et al. 2011). Pelagic phytoplankton, has a growth period that starts in April and 

ends in early September (Bluhm et al. 2011), whereas the onset shifts according to the 

longitude or the ice coverage. The annual production of Arctic phytoplankton was referred to 

range between 12-50 g C m-2 yr-1 (Legendre et al. 1992, Gosselin et al. 1997, Leu et al. 2011). 

 

 
 

 Figure 2.2. Overview of the primary production regimes in the European  

 Arctic (Zenkevich 1963, Leu et al. 2011). 

 

Overall, the Arctic Ocean has been characterized as a region of extremely low primary 

production, which strongly depends on the presence of sea ice and the length of 

photosynthetic season (Gosselin et al. 1997). 

Two production regimes can be distinguished, the regenerated production system and the new 

production system (Hill et al. 2005, Li et al. 2009, Tremblay et al. 2009). The regenerative 

system mainly consists of heterotrophic bacteria, small picophytoplankton, and 

nanoflagellates (flagellate-based system), and is based on regenerated nutrients like ammonia 

(Azam et al. 1983, Landry et al. 1997, Ardyna et al. 2011). In contrast, the new production 

system is mostly composed of larger cells, such as diatoms (diatom-based system) using new 

nutrients like nitrate (Cushing 1989). However, while the regenerated production system is 
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associated with strong stratified, nutrient poor waters (25.8- 33.4 PSU), the new production 

system is usually associated with weaker stratified, nutrient rich waters (29.9-33.3 PSU).  

Intense phytoplankton blooms occur under favorable light and nutrient conditions in summer, 

when the sea ice cover decreases and melt-water increases the stratification of the surface 

water layer. The decrease in nutrient concentration initiates the decline of the phytoplankton 

bloom and the numbers of heterotrophic protists increase. The vertical flux of biogenic matter 

changes thereby, from an initially dominated export of autotrophic cells to an export 

dominated more of degraded matter (Figure 2.3) (Wassmann & Reigstad 2011). However, in 

the future, climate change is expected to result in an extension of ice-free periods and in an 

earlier onset of ice algae and phytoplankton blooms (Perrette et al. 2011). Furthermore, the 

sea ice retreat is assumed to cause shifts in the protist composition, from ice algae to plankton 

algae, and to alter the water surface light penetration (Stroeve et al. 2007, Soreide et al. 2010). 

Since autotrophic protists are intimately linked to the ice cover, as previously referred, timing, 

quantity, and quality of the primary production and matter flux will consequently be 

influenced (Arrigo et al. 2008).  

In order to assess the influence of less sea ice, a net primary production (NPP) algorithm was 

calculated for the Arctic Ocean, based on combined satellite Chl a data (Sea-WIFS/MODIS) 

of twelve years. The study reported an increase of 20 % of total annual NPP between 1998 

and 2009 that was largest on the nutrient rich continental shelves of the Chukchi, East 

Siberian, Laptev, and Kara Sea. This gain was attributed to increases in the extent of open 

water (+27 %) and in the duration of open water seasons (+45 days) (Arrigo & van Dijken 

2011). However, for most parts of the Arctic Ocean, the increasing light availability will not 

result in an increase in algal growth because nutrients, which are essential for algal growth, 

will not increase. A stable stratification, formed by low-density water of the river discharge 

and Pacific Water inflow, will impede a vertical nutrient supply by mixing events (Tremblay 

et al. 2009). As a consequence, nutrients will be depleted faster and heterotrophic processes 

may last longer. The vertical export of autotrophic and degraded organic matter will behave 

accordingly (Wassmann & Reigstad 2011). The nutrient depletion may additionally cause 

shifts in the taxonomic composition of phytoplankton (Tremblay et al. 2009). The whole 

scenario will favor smaller plankton cells (<2.0 µm) that will in turn provide more strength to 

the microbial loop (Li et al. 2009, Tremblay et al. 2009, Moran et al. 2010). It follows that 

irradiance increase should only have a maximum impact on NPP in areas where nutrient 

supply is sustained, as mostly observed in coastal regions (Ardyna et al. 2011). 
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 Figure 2.3. Bloom development and carbon export in the Arctic Ocean under A)  

 today’s climate and B) future climate (Wassmann & Reigstad 2011). 

 

2.2  Investigation Areas 

2.2.1  Fram Strait and “Hausgarten” 

The Fram Strait (~500 km wide and 2600 m sill depth) separates the Svalbard archipelago 

from the northeast Greenland shelf (Forest et al. 2010) and presents the only deep water 

connection to the Central Arctic Ocean (Rudels et al. 2000, Fahrbach et al. 2001, Langehaug 

& Falck 2012). 

Hydrographically, the Fram Strait is characterized by a two-directional current system, 

transporting warm and saline Atlantic Water via the West-Spitzbergen Current (WSC) 

northwards and cold, less saline Polar Water (PrW) via the East Greenland Current (EGC) 

southwards (Figure 2.4). The boundary between both currents generally occurs at 4-6°E in the 

upper water layer and exhibits a mesoscale eddy field (Hop et al. 2006). The EGC conveys 

the export of vast sea ice masses. On the way south, the current is augmented by Recirculating 

Atlantic Water (RAW) that originates from the WSC and mixes with the outflowing Pacific 

Water (PW) (Rudels et al. 2012). The intensity of the Atlantic Water (AW) recirculation is 

variable. In 2010, the RAW e.g. extended over the entire Fram Strait and dominated the upper 
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water layer of the EGC (Rudels et al. 2012). The WSC is the northernmost extension of the 

Norwegian Atlantic Current (Aagaard et al. 1987). On the way to the Arctic Ocean at 78-

80°N, the WSC splits up in three branches, due to the topographic structure. Thereby, two 

branches head northwards, one following the shelf edge of Svalbard (Svalbard Branch) and 

the other following the northwestern slope of the Yermak Plateau (Yermak Branch). The third 

branch (RAW) recirculates and transports a significant volume of AW back to the Nordic 

Seas (Schauer et al. 2004).  

 

 

  Figure 2.4. Scheme of the hydrographical situation in the Fram Strait.  

 

The Alfred Wegener Institute is running a deep-sea long-term observatory called 

“Hausgarten” (HG) in the Eastern Fram Strait (WSC), since 1999 (Figure 2.5). The 

“Hausgarten”-observatory is situated between 78-80°N latitude and between 3-7°E longitude 

and was established to investigate impacts of environmental changes (Soltwedel et al. 2005). 

Sixteen stations are orientated in two transects, one running from south to north (eight 

stations) and one from east to west (eight stations). The central station HGIV connects both 

transects. Nutrient rich AW, but seasonally varying sea-ice concentrations characterize the 

“Hausgarten” area (Soltwedel et al. 2005).  
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Figure 2.5. Map of the deep-sea long-term observatory “Hausgarten”      

         (www.awi.de/en/research/deep_sea/deep_sea_ecology/     

         deep_sea_long_term_observatory_hausgarten/). 

 

The strength of the WSC, and consequently the inflow of AW into the Arctic Ocean, is, as the 

sea-ice concentration, also to a great extend variable and differs with the seasons, inter-

annualy, and over longer time periods. Seasonal variations include a lower AW inflow during 

the summer months and a stronger one during the winter months (Beszczynska-Möller et al. 

2012). Inter-annual and longtime variations are largely attributed to the North Atlantic 

Oscillation (NAO). The NAO is defined as a large-scale alternation of atmospheric pressures 

between the Icelandic low and the Azores high. This climatic phenomenon is most 

pronounced during winter but affects the North Atlantic climate throughout the year. In this 

respect, a positive, strong NAO index is correlated with an increased inflow of AW, while in 

conclusion a negative, weak NAO index is correlated with a lower inflow in the Arctic Ocean. 

Since 1976, 60 % of the variance in the annual ice flux through the Fram Strait was explained 

by the winter NAO index (Dickson et al. 2000). The correlation of the AW inflow and the 

NAO was also confirmed by Schlichtholz & Goszczko (2006), who further pointed that in 

case of a positive NAO index, strong westerlies advect warmer air masses to the Nordic Seas 

area, which reduce the local heat loss to the atmosphere and may result in warmer AW, 

entering the Arctic Ocean. In fact, most of the temperature increase in the Arctic Ocean is

http://www.awi.de/en/research/deep_sea/deep_sea_ecology/%20%09%20%20%09%09%09%20%20%20%20%20%20%20deep_sea_long_term_observatory_hausgarten/
http://www.awi.de/en/research/deep_sea/deep_sea_ecology/%20%09%20%20%09%09%09%20%20%20%20%20%20%20deep_sea_long_term_observatory_hausgarten/
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attributed to a strengthening and warming of the WSC, which has the greatest potential to 

flow far into the Arctic Ocean (Schauer et al. 2004, Beszczynska-Möller et al. 2012).  

In summary, the Fram Strait is crucial for understanding interactions of the Arctic and the 

Atlantic and for estimating changes in sea ice concentration, because 90 % of the heat 

exchange and 75 % of the mass exchange take place in that area (Wadhams 1983, Hop et al. 

2006). Thereby, the WSC is of great importance because recently, warmer AW progressing 

far towards the Arctic Ocean has been reported (Holliday et al. 2009).  

 

2.2.2  Central Arctic Ocean 

The Central Arctic Ocean is an ice covered ocean, surrounded by continental landmasses and 

thus can be defined as a Mediterranean Sea (Figure 2.6). One third of the Arctic Ocean is 

characterized by shallow mean depths of about 30 to 50 m (Chukchi, East Siberian, and 

Laptev Sea) and 400-600 m (Barents and Kara Sea), respectively. Altogether, the Central 

Arctic Ocean can be subdivided in seven regions namely Laptev Sea, East Siberian Sea, 

Chukchi Sea, Beaufort Sea, Greenland Sea, Barents Sea, and the Kara Sea. However, only 

four openings facilitate an exchange with other oceans. In this respect, the Barents Sea, the 

Canadian Arctic Archipelago, and the Fram Strait connect the Arctic Ocean with the North 

Atlantic, while the shallow Bering Strait is the connection with the Pacific Ocean (Rudels et 

al. 1991). The water masses in the Arctic Ocean are formed by the advection of Pacific and 

Atlantic Water, which are both characterized by different salinities of ~32.5 (PW) and ~35.0 

PSU (AW), and by different nutrient signatures. Supplementary, interactions like freezing and 

melting processes or river run-offs lead to new water mass formations. The surface water 

layer, Polar Mixed Layer, is distinguished by low temperature and low salinity from a more 

saline, underlying halocline that ranges between 50 and 250 m. The Atlantic Layer is found at 

depth of 400 to 600 m and is characterized by higher salinity and temperature (>0 °C) (Rudels 

et al. 1991). In contrast to AW, the PW is found in shallower depths due to the lower density.  

The Arctic Ocean is affected by a large net freshwater input. Freshwater constitutes an 

important factor, forming a stratification and enabling the formation of sea ice by inhibiting 

the upward heat transfer, from the subjacent AW, to the sea surface, ice, and atmosphere 

(Rudels 2010). Input sources comprise river runoffs from the vast Eurasian and North 

American landmasses, precipitation over the Eurasian shelves (Norwegian coastal current), 

and ice melt. The annual mean freshwater input thereby, splits up in 38 % river discharge, 30 

% inflow through the Bering Strait, and 24 % net precipitation (Serreze et al. 2006). In turn,
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 freshwater sinks are mainly formed by the outflow through the Canadian Archipelago, the 

Fram Strait, and by ice formation (Rabe et al. 2011). Most of the low saline water is found in 

the Beauford Gyre, where the Ekman convergence leads to a storage (Serreze et al. 2006). 

 

 

 

Figure 2.6. The Arctic Ocean. A) Overview of the topography, obtained by mean sea 

                surface model (MSS; scale ranges from -30 to +70 m) and water currents 

     (red: Atlantic Water, blue: Pacific Water and grey: Transpolar Drift)    

               (modified after Farrell et al. 2012) B) Overview of Arctic regions and basins. 

 

The Arctic freshwater content undergoes seasonal as well as interannual variability. However, 

the interplay of factors, controlling the variability, is still not recovered in full dimension. 

Prominent seasonality is proven for net precipitation, river run off, Bering Strait inflow, and 

Fram Strait ice flux. Sea ice is of pivotal importance in the Central Arctic Ocean, because it 

reduces the effect of wind-driven mixing events and thus contributes to a stable vertical 

stratification. The ice coverage underlies large seasonal differences in the extent and the 

thickness, that are smallest in winter and largest at the end of summer (Serreze et al. 2007) 

(Figure 2.7). However, ice flux is highest during winter and lowest during summer months. 

Interannual variability is strongly influenced by the amount of sea ice flowing out through the 

Fram Strait (Vinje 2001, Serreze et al. 2006).  The classification of sea ice is based on the age. 

We distinguish between seasonal sea ice and perennial sea ice, whereas the latter endured at
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least one melt period (Perovich & Richter-Menge 2009). An overall downward trend of the 

ice coverage is evident. In this respect, the ice extent has experienced a series of strong 

summer minima in the period from 2002 onwards (Stroeve et al. 2012b) (Figure 2.8). 

Numerous studies reported the decline of the Northern Hemisphere sea ice cover, thickness 

and the shift from primarily perennial ice to seasonal ice (Anderson et al. 2003, Rigor & 

Wallace 2004, Lindsay & Zhang 2005, Stroeve et al. 2005, Stroeve et al. 2007, Rothrock et al. 

2008, Kwok et al. 2009, Perovich & Richter-Menge 2009, Perovich 2011, Stroeve et al. 

2012a, Stroeve et al. 2012b). The sea ice decrease is attributed to thermodynamic and 

dynamic processes (Serreze et al. 2007). Thermodynamic factors, as for example the increase 

in air temperature, reduce ice growth and enhance ice melt by extending the melt season 

(Perovich et al. 2007, Markus et al. 2009). Further, the strengthening and warming of the AW 

inflow through the Fram Strait and of the PW inflow through the Bering Sea in summer, 

enhance the ice melt (Schauer et al. 2004, Shimada et al. 2006, Perovich & Richter-Menge 

2009). 
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Figure 2.7. Arctic average sea ice extent in the A) Winter maximum (January) and B)        

 Summer minimum (August-September) from 2009 to 2012. Figures derived 

 from the Sea Ice Index courtesy of the National Snow and Ice Data Center. 

 (www.nsidc.org/data/seaice_idex). 

 

 

 Figure 2.8. Arctic sea ice dynamic during the last years: presented in average for the period 

 1979 to 2000 and for three summer minima (2005, 2007, and 2012). Data 

 derived from the National Snow & Ice Data Center, from Scanning Multichannel 

 Microwave Radiometer and Special Sensor Microwave/Imager under the 

 implementaion of the NASA Team sea ice  algorithm (Meier et al. 2006).  

http://www.nsidc.org/data/seaice_idex
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2.3  Molecular Methods 

The use of molecular methods has played an important role in our recent understanding of 

microbial diversity by becoming a key to access the phylogenetic and functional diversity 

(Pace 1997, Marande et al. 2009). Traditional methods like the observation by light or 

electron microscopy led to a detailed knowledge concerning the diversity, abundance, and 

distribution of larger protists that possess important morphological characteristics, which 

remain intact throughout sampling, preservation, and examination procedures (e.g. cell size, 

cell shape or skeletal structure) (Caron et al. 1999). Smaller cells lack those morphological 

features that facilitate the acquisition of accurate identifications and thus cannot be identified 

by microscopy (Massana & Pedros-Alio 2008) (Figure 2.9). 

 

 
Figure 2.9. Size class dependent resolution of morphological features. Photo of   

 Fragilariopsis sp. (Bayer-Giraldi et al. 2011); Photo of Micromonas sp. by the 

 Worden Lap (USA). 

 

Here, the molecular methods have a benefit, because they are size independent. Molecular 

methods used in this study, address two aspects: on the one hand, the DNA fragment length 

heterogeneities in the ribosomal operon that allow an assessment of microbial community 

structure (Caron et al. 2004); on the other hand, ribosomal DNA sequences itself (Caron et al. 

2012). Hence, they are both based on the extraction of total DNA from an environmental 

sample and on the amplification of a marker region from the ribosomal operon by PCR. One 

important marker gene for eukaryotic diversity studies is the nuclear-encoded 18S rRNA 

gene, coding for the ribosomal small subunit. It has an evolution rate, slow enough to allow 

phylogenetic investigations, even between distantly related organisms. Further, it consists of 

well-conserved as well as of fast evolving regions, allowing a classification at different
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taxonomic levels (Vaulot et al. 2008). In this study, both general approaches were used, 

whereas fragment length heterogeneity was analyzed by ARISA (Automated Ribosomal 

Intergenic Spacer Analysis) and DNA sequence was analyzed by clone library construction 

and 454-pyrosequencing.  

 

2.3.1  Automated Ribosomal Intergenic Spacer Analysis (ARISA)  

ARISA provides a quick snapshot of the community structure and relies on the fragment 

length of a specific DNA region (Baldwin et al. 1995), the “Internal Transcribed Spacer 

Region” (ITS). It is located between the 18S and 28S rRNA gene and characterized by a high 

length heterogeneity that allows discrimination between single species. Until recently, ARISA 

has been mostly applied to investigate prokaryotic community structures (Smith et al. 2010). 

Hence, the application on eukaryotic community structure analysis has to our knowledge not 

been carried out so far.  

However, the use of ARISA is not adequate for taxonomic analysis because the method 

suffers from several biases. In this respect, different taxa can sometimes yield fragments of 

the same length and hence, cannot provide unambiguous taxonomic information (Caron 

2012). Furthermore, not all fragments may be detected, concluding that the sensitivity of 

ARISA to reflect the total species richness of a community is limited (Bent et al. 2007). 

Nevertheless, fragment analysis allows a quick and low-cost fingerprint of community 

structures that can help to reduce the number for further and more explicit investigations.  

A brief insight of the process is presented in Figure 2.10. After DNA isolation, the ITS region 

is amplified under the usage of one fluorescence labeled primer. Fragment lengths are 

detected by capillary electrophoresis in a sequencer, whereas the obtained electropherogram is 

subsequently interpreted and transformed to a one-zero-matrix to compare the respective 

community structures. 

 

 
   Figure 2.10. Scheme of the ARISA procedure. 
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2.3.2  Clone Library Analysis 

Since sequencing surveys of the small subunit ribosomal RNA (SSU rRNA) regions have 

been applied to study protist genetic diversity, a huge hidden diversity and new taxa as e.g. 

picobiliphytes were recorded (Not et al. 2007, Huse et al. 2008, Marande et al. 2009). The 

SSU 18S rRNA gene is part of the ribosomal functional core and thus all-round exposed to 

similar selective forces (Moore & Steitz 2002). Therefore, it is the most utilized marker gene 

in phylogenetic studies (Chenuil 2006).                    

Clone libraries were considered as gold standard approach for conducting molecular surveys 

of marine protist diversities (Massana & Pedros-Alio 2008, Not et al. 2009, Palatinszky et al. 

2011). Thereby, particularly the obtained sequence lengths of 1000-2000 bp constitute a 

benefit that allows reliable phylogenetic analysis. In this respect, numerous studies were 

carried out in the last years to investigate the protist diversity in the Arctic and Southern 

Ocean (Diez et al. 2001, Lopez-Garcia et al. 2001, Lovejoy et al. 2002, Lovejoy et al. 2006, 

Lovejoy 2007, Potvin & Lovejoy 2009, Lovejoy & Potvin 2011). However, defiance the great 

achievement of clone libraries, in analyzing protist diversity within environmental samples, 

the method suffers from PCR biases that can affect the representation of single species within 

a protist assemblage due to a reduced amplification of the 18S rRNA gene. In this regard, 

Wagner et al. (1994) suggested two major ways that lead to PCR bias: PCR selection and 

PCR drift. The first (selection) comprises primer affinity, which can be different according to 

the template secondary structure (hampered access) or G+C content (poor denaturation) 

(Huber et al. 2009). In fact, primers were shown to discriminate for and against certain 

sequences (Caron et al. 2004, Countway et al. 2005). The second (drift) is assumed to be 

caused by stochastic variation in the interactions of PCR reagents in the early cycles of the 

reaction that might be induced by low template concentrations or experimental error and 

hence, are not reproducible (Polz & Cavanaugh 1998). Other factors as extracellular DNA, 

multiple rDNA gene copy number (Zhu et al. 2005), chimera, and heteroduplex formation 

(Huber et al. 2009) have the potential to mask the real diversity as well. Huber et al. (2009) 

further showed that clone library diversity is highly dependent on the amplicon size, whereas 

the smallest amplicon presented more diverse community members because of a more readily 

detection of divergent and lower abundant taxa. The finding was attributed to an easier 

proceeding of the PCR reaction based on the inability of polymerases to amplify long 

fragments as efficiently as short fragments and the higher amplification efficiency of the 

smaller primer set (Suzuki & Giovannoni 1996, Huber et al. 2009). Nevertheless, the 

strongest bias is formed by the limited throughput (Bent & Forney 2008). In this respect,
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rRNA gene libraries of ~100 clones were found to overlap only little in their species lists and 

thus provide just basic information on the community structure (Stoeck et al. 2006, Cheung et 

al. 2010).  

Figure 2.11 shows a short scheme of the clone library procedure. After the DNA isolation 

from the environmental sample, 18S rDNA (1800 bp) is amplified and subsequently 

incorporated in a vector plasmid. Following, each vector is transferred into a E. coli cell and 

plated on a AGAR-medium (+Kanamycin). Only vectors that have successfully inserted the 

18S rDNA fragment, provide a Kanamycin resistance and permit the E.coli cell to grow on 

the medium. Before final sequencing, the 18S rDNA is isolated and reamplified.  

 

 
 

  Figure 2.11. Scheme of the clone library procedure. 

 

2.3.3  454-Pyrosequencing 

Sogin et al. (2006) first introduced the use of 454-pyrosequencing sequencing of short 

hypervariable regions (SSU rRNA) to characterize microbial communities. The region V4 is 

the largest and most complex of the hypervariable regions and ranges from about 230 to >500 

bases in eukaryotic protists (Nickrent & Sargent 1991). Initially, several studies tested the 

utility of 454-pyrosequencing by comparing the results with reads developed using the well-

established clone library approach (Krober et al. 2009, Nasidze et al. 2009). All these 

comparisons highlighted the application of the new method and further described it as a 

powerful tool, particularly for addressing questions about rare phylotypes (Sogin et al. 2006, 

Huber et al. 2007). In fact, 454-pyrosequencing is actually more and more replacing 

traditional Sanger sequencing because of the greater sampling depth (Kunin et al. 2010). 
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Further advantages are the elimination of cloning bias and the complete sequencing of short 

reads in a single run, which maximizes the number of sampled organisms, while it minimizes 

chimera formation (Huse et al. 2008). However, since 454-pyrosequencing comprises an 

amplification step, the method suffers from the same PCR bias as previously discussed in the 

clone libraries. 

In particular, the small sequence lengths allow no detailed phylogenetic analysis and limits 

the use of 454-pyrosequencing to a nevertheless, adequate screening tool for protist diversity, 

due to the sampling depth (Stoeck et al. 2010). The growing database of DNA sequence 

information further offers the possibility for greatly improving the existing molecular tools 

(Caron et al. 2009). Altogether, 454-pyrosequencing has revolutionized surveys of microbial 

diversity because of the delivery of the enormous number of sequence reads in a single 

experiment (Medinger et al. 2010). 

Figure 2.12 shows a brief scheme of the 454-pyrosequencing procedure. First, the target 

region (V4) is amplified from the environmental DNA sample. Following, a DNA library is 

prepared where short adaptors are ligated onto the sequence ends, in which one contains a 

5’biotin tag that immobilizes the library onto special capture beads. Each bead thereby 

contains one single strand (sst) DNA sequence. Afterwards, the ”bead-bound“ library is 

amplified in a water-in-oil mixture (microreactor). The amplicons (bead-immobilized clonally 

amplified DNA fragments) are put onto a picotiterplate, where sequence reagents (buffer and 

nucleotides) are flown over and sstDNA is extended. The incorporation of a nucleotide results 

in a light signal generating reaction, which is recorded by the instrument. 

 

 

  Figure 2.12. Scheme of the 454-pyrosequencing procedure. 
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2.4  Hypotheses and Outline 

2.4.1  Hypotheses 

The progress in molecular biology and the development of new molecular tools, led to the 

allotment of a large quantity of new to date unidentified species that initiated an enormous 

increase of investigations on protist genetic diversity. These investigations revealed some 

methodological bias that caused some criticism. Those critics mainly address the problem of 

multiple rDNA gene copy numbers that might lead to a wrong estimation of the quantitative 

contribution of a respective taxon to protist communities. Until now, the applicability of 

molecular tools is still under evaluation, leading to the first objective of this thesis. It 

addresses the applicability of new molecular tools for protist diversity surveys by comparing 

454-pyrosequencing data with different classical approaches such as light microscopy, HPLC, 

and clone libraries.   

 

Hence, the first hypothesis to be tested is:”Molecular surveys of genetic protist diversity 

obtained by 454-pyrosequencing, constitute an adequate tool for assessing natural protist 

diversity.” 

 

454-pyrosequencing is a recent method not often been used in the past to investigate protist 

diversity in oceanic regions. Studies concerning the protist assemblage in the Central Arctic 

Ocean via 454-pyrosequencing are particularly scarce due to the difficult accessibility of the 

area. Molecular surveys of protist diversity are further lacking in the Fram Strait, despite the 

better geographical accessibility. However, the protist diversity in the Fram Strait is of 

particular interest because of the variable environmental conditions that may affect the protist 

community structure. Hence, another objective was to analyze protist diversity in relation to 

different water mass distribution, characterized by different abiotic conditions and addressing 

the second hypothesis: 

 

“Water masses in the Arctic Ocean and in the Fram Strait are characterized by distinct 

protist communities” 

 

Further questions, such as (1) Which molecular approach is appropriate to elucidate water 

mass related protist compositions? and (2) Are there organisms that are particularly suitable 

for tracing water masses? shall be answered. 
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Based on the previous questions the third hypothesis developed was: “Complex 

hydrographical situations can be evaluated via genetic information.” 

 

In this regard, the investigation of protist diversity and distribution at the entrance of the 

Central Arctic Ocean, the Fram Strait that constitutes an appropriate model area, because of 

the variable environmental conditions, is addressing well the third hypothesis. Further 

questions such as: (1) Can the circulation and recirculation patterns in the Fram Strait be 

evaluated based on the protist assemblage? and/or (2) Are, based on the findings in the Fram 

Strait, those approaches still valuable in the Central Arctic Ocean under the coincidental 

presence of various ice concentrations? will be answered below. 

 

2.4.2  Outline 

Publication I 

Molecular assessment of marine microbial diversity, derived from sequence analysis, is 

mainly based on two approaches: clone library and 454-pyrosequencing. Both methods 

deliver taxon-specific protist surveys, but differ in the cloning bias. So far, more protist 

sequences were obtained by clone library than by 454-pyrosequencing, due to the longer 

implementation of the former method. However, the higher throughput and the ongoing 

improvement of the sequence length of 454-pyrosequencing is likely to increase the 

application of the method in future. Hence, a comparison of the molecular methods is 

important in order to assess the comparability of both data sets. In publication I clone library 

data and 454-pyrosequencing data are compared and address the first hypothesis by 

evaluating the analogy of protist diversity, obtained by the two different molecular methods. 

The investigation comprises on the one hand, the entire protist community composition at one 

station in the Antarctic and on the other hand, the picoplankton community composition at 

four stations in the Fram Strait. Furthermore, the study addresses the question if clone library 

is suitable to serve as a backbone for 454-pyrosequencing data, because of the longer 

sequence lengths and thus higher taxonomic resolution.  
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Publication II 

The purpose of this manuscript was to apply 454-pyrosequencing at four sampling sites in the 

Eastern Fram Strait, to study the diversity of small picoeukaryotes and to test the second and 

third hypothesis. Picoplankton is supposed to show a particularly high water mass correlation 

because of their cell size dependent high buoyancy in relation to water mass density. 

Moreover, 454-pyrosequencing was put through an internal review process to assess the 

reproduction of the protist composition after fractionated filtration. Cell breakage is supposed 

to constitute a major bias, reducing the accuracy of the fractionation process. Estimation of a 

filtration bias over the three size classes included a detailed investigation of ubiquitous, 

multiple (micro-/picoplankton and nano-/picoplankton), and unique occurring phylotypes and 

an adjustment of the major taxonomic group distribution with previous published data. 

Furthermore, the comparability of protist diversity, obtained by 454-pyrosequencing and 

classical light microscopy, was assessed by comparing the proportion of diatoms (first 

hypothesis).  

 

Publication III and IV 

Both manuscripts investigate protist diversity of the entire size fraction, using 454-

pyrosequencing, and address the second hypothesis, concerning water mass specific 

communities and the third, concerning the evaluations of complex hydrographical situations. 

In this respect, Publication III studies the protist assemblages of five stations along a transect 

in the Western Fram Strait that encompass Polar and Atlantic Water. HPLC complemented 

the study to evaluate the molecular data with pigment data. Publication IV focuses on the 

Central Arctic Ocean and the protist community structure at eight sampling sites, within four 

distinct water masses. The manuscript further analyzes the influence of the persistent Arctic 

sea ice cover on the protist composition, with emphasis on the abundant and rare biosphere.  
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3.  Publication 

3.1  List of Publications 

This doctorial thesis is based on the following publications: 

 

I. CHRISTIAN WOLF,  ESTELLE S. KILIAS AND KATJA METFIES 

        Investigating eukaryotic protist diversity – A comparison of clone library and 454-

        pyrosequencing data 

       Journal of Phycology: submitted  

 

II. ESTELLE S. KILIAS, EVA-MARIA NÖTHIG, CHRISTIAN WOLF AND KATJA METFIES 

       Picoplankton community composition in the Eastern Fram Strait 

       FEMS Microbiology Ecology: submitted 

 

III. ESTELLE S. KILIAS, CHRISTIAN WOLF, EVA-MARIA NÖTHIG, ILKA PEEKEN AND 

KATJA  METFIES   

       Protist distribution (the abundant biosphere) in the Western Fram Strait (Arctic     

       Ocean) in summer investigated via molecular techniques 

       Journal of Phycology: submitted 

 

IV. ESTELLE S. KILIAS, GERHARD KATTNER, CHRISTIAN WOLF, STEFAN FRICKENHAUS 

AND KATJA METFIES 

                 A molecular survey of protist diversity through the Central Arctic Ocean 

                  Protist: to be submitted (final formatting) 

 

Further contributions: 

 

 CHRISTIAN WOLF, ILKA PEEKEN, MIRKO LUNAU, STEPHAN FRICKENHAUS, ESTELLE S. 

 KILIAS AND KATJA METFIES 

 Oceanographic fronts in the Southern Ocean determine biogeographic differences in 

 eukaryotic protist communities – new insights based on 454-pyrosequencing 

 Polar Biology: submitted  
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 CHRISTIAN WOLF, ILKA PEEKEN, STEPHAN FRICKENHAUS, ESTELLE S. KILIAS AND 

 KATJA METFIES  

 Regional variability in eukaryotic protist communities in the Amundsen Sea 

 Antarctic Science: accepted 

 

 STEFAN THIELE, ISABELLE SCHULZ, CHRISTIAN WOLF, BERNHARD M. FUCHS, PHILIPP 

 ASSMY, KATJA METFIES, VICTOR SMETACEK, ESTELLE S. KILIAS AND RUDOLF 

 AMMANN  

 Comparison of classical methods with modern molecular approaches for the 

 investigation of pico- and nanoplankton assemblages 

 To be submitted (final correction) 

 

3.2  Statement of Contributions 

Publication I 

The experiments were planned together with Christian Wolf and Katja Metfies. Sampling was 

carried out by Katja Metfies. Laboratory work and data analysis was performed by Christian 

Wolf and me. The publication was written in equally contribution of Christian Wolf and me. 

 

Publication II 

The experiments were planned together with Katja Metfies. Sampling was carried out by 

Katja Metfies. Laboratory work and data analysis was accomplished by me. Molecular data 

analysis pipeline was developed in collaboration with Christian Wolf. Microscopy was carried 

out by Eva-Maria Nöthig who further significantly contributed to the discussion and review 

process. The publication was written by me.  

 

Publication III 

The experiments were planned together with Katja Metfies. Molecular experiments and data 

analysis was performed by me. Molecular data analysis pipeline was developed in 

collaboration with Christian Wolf. HPLC was conducted by Ilka Peeken. Eva-Maria Nöthig 

significantly contributed to the discussion and review process. The publication was written by 

me.  
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Publication IV 

The experiments were planned together with Katja Metfies. Sampling, laboratory work and 

data analysis was accomplished by me. Nutrients measurements were contributed by Gerhard 

Kattner. Bioinformatical support was provided by Stephan Frickenhaus. Molecular data 

analysis pipeline was developed in collaboration with Christian Wolf. The publication was 

written by me. 
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3.3 Publication I 

 

INVESTIGATING EUKARYOTIC PROTIST DIVERSITY – A COMPARISON OF 

CLONE LIBRARY AND 454-PYROSEQUENCING DATA 

Christian Wolf 1* Estelle Kilias1* and Katja Metfies* 

*Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 

Bremerhaven, Germany 
1First author 

 

Abstract 

We compared two molecular approaches, i.e. sequencing of 18S rRNA clone libraries and 

454-pyrosequencing, which are commonly used for describing protist diversity. The 

comparison was conducted with four Arctic water samples, focusing on the picoplankton (0.4-

3 µm), and with one Antarctic water sample, examining the whole size spectrum (>0.4 µm). 

We found different outcomes between the two different methods. Both approaches revealed 

phylotypes that were not found with the other approach. The abundant biosphere, defined by 

the 454-pyrosequencing approach, was not fully recovered by the clone library approach. We 

found a bias of the cloning method against several groups, e.g. haptophytes in the Arctic 

samples and diatoms in the Antarctic sample. In summary, prior cloning data have to be 

handled with care, when compared with 454-pyrosequencing data. Additionally, cloning data 

are only of limited suitability as backbone for phylogenetic analysis of 454-pyrosequencing 

data. 

 

Key index words 

18S rRNA gene, 454-pyrosequencing, Clone library, Eukaryotic protists, Genetic diversity, 

Phytoplankton 
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Introduction 

Until recently, the majority of phylogenetic investigations of the eukaryotic protist diversity 

were based on the analysis of 18S rRNA gene clone libraries. Sequencing of 18S rRNA gene 

clone libraries provides sequence information of the complete gene and allows a reliable 

phylogenetic characterization (Diez et al. 2001, Lovejoy et al. 2006). These studies 

contributed significantly to elucidate eukaryotic phytoplankton diversity and community 

composition in the marine environment. They revealed a huge hidden diversity, especially 

originating from the picoeukaryotic size fraction. Representatives of all major phytoplankton 

taxa could be found in the sequence libraries (Diez et al. 2001, Lovejoy et al. 2006, Lovejoy 

& Potvin 2011). However, it is expected that the real diversity is even higher than observed in 

the libraries (Diez et al. 2001, Lopez-Garcia et al. 2001, Moon-van der Staay et al. 2001).  

In summary, sequencing of the 18S rRNA gene is a reliable approach (Diez et al. 2001, 

Lovejoy et al. 2006, Cheung et al. 2010, Lovejoy & Potvin 2011). It is used as a gold standard 

in molecular assessments of phytoplankton diversity. The 18S rRNA gene is such a widely 

employed and valuable ‘bar-code’ to assess eukaryotic phytoplankton diversity, because of its 

slow evolutionary rate and its occurrence in all eukaryotic organisms (Amann & Kuhl 1998, 

Vaulot et al. 2008). It is sufficiently slow to allow differentiation between organisms at 

different taxonomic levels (Vaulot et al. 2008).  

However, quantitative interpretation of 18S rRNA clone libraries is challenged in various 

ways, e.g. by the presence of multiple gene copies that may not be identical in all species and 

thus falsify the diversity and community structure. Furthermore, sequencing of 18S rRNA 

gene clone libraries has a number of other drawbacks, such as its vulnerability towards a 

potential bias induced by primer specificity (Farris & Olson 2007) and the production of 

chimerical sequences (Berney et al. 2004), a disparate incorporation rate within the cloning 

process and a limited throughput (Bent & Forney 2008). Additionally, the analysis is time-

consuming and cost-intensive. 

The introduction of the 454-pyrosequencing technology for the assessment of microbial 

communities is an attractive alternative to the sequencing of clone libraries. It is independent 

of the cloning step and allows high-resolution sequencing of microbial sequences (Margulies 

et al. 2005). Furthermore, compared to the analysis of clones, the massively parallel 

pyrosequencing provides more sequences and uncovers more organisms by less chimera 

formation and less costs (Huse et al. 2008). In respect of the vast microbial diversity, the 

greater sampling depth is advantageous and even allows elucidating the diversity of the rare 

biosphere (Sogin et al. 2006). However, one caveat of the pyrosequencing approach is the
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tendency to overestimate the number of rare phylotypes, because of sequencing errors. Such 

errors will run the risk of inflating the diversity estimates, due to the fact that every single 

read is considered to represent a community member (Kunin et al. 2010). An additional 

caveat is the short sequence length of approximately 500 bp, which results in a less robust 

phylogenetic affiliation. Here, the clone library approach is advantageous over the 454-

pyrosequencing approach because it delivers longer sequences that cover the whole 18S 

rRNA gene and are better suited for phylogenetic analyses (Diez et al. 2001, Lovejoy et al. 

2006). 

Regarding the advantages and drawbacks of 18S rRNA gene clone libraries and 454-

pyrosequencing for the assessment of protist communities, we would like to address three 

main questions in this study: (i) How do the choice of a molecular method influence our 

understanding of protist diversity and community structure? (ii) Do clone library data reflect 

the abundant biosphere? (iii) Are clone library data suitable to serve as backbone for 

phylogenetic analysis of 454-pyrosequencing data?  

To answer these questions, we analyzed four samples from the Arctic Ocean, comprising the 

picoeukaryotic fraction (0.4-3 µm) and one sample from the Southern Ocean, comprising the 

whole size fraction (>0.4 µm). We choose the sampling setup to exclude possible bias 

induced by cell size or geographical location. 

 

Material and Methods 

Location and sampling 

The study area comprises four stations, located in the Fram Strait (Arctic Ocean), as well as 

one station from the Southern Ocean (Figure 3.1). All samples are part of other larger studies 

(Kilias et al. submitted., Wolf et al. submitted). The four Arctic stations extended between 2-

6°E longitudes and 78-80°N latitudes and were sampled during the ARK XXIV/2 cruise 

onboard the RV Polarstern in July 2009. The Antarctic station, located at 164.9°W longitude 

and 69°S latitude, was sampled during the RV Polarstern cruise ANT XXVI/3 in February 

2010. The Arctic samples were collected at the subsurface maximum chlorophyll layer with a 

rosette system, fitted with Niskin bottles and appointed with depth, temperature, salinity, and 

fluorescence profilers. The Antarctic sample was collected using the ship pumping system 

(membrane pump), located at the bow at 8 m depth below the surface. In both cases, 1.5 l of 

sea water were successively filtered with a pressure of 200 mbar onto Isopore Membrane 

Filters (Millipore, USA) with a pore size of 10 µm, 3 µm and finally 0.4 µm. The filters were 

stored at -80°C until further treatment in the laboratory. 
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DNA extraction 

DNA extraction was carried out with the E.Z.N.A TM SP Plant DNA Kit (Omega Bio-Tek, 

USA) following the manufacturer’s instructions. DNA concentration was determined with a 

NanoDrop 1000 system (Thermo Fisher Scientific, USA). 

 

Clone library construction 

The 18S rRNA gene of the Arctic samples was amplified using the specific primers 82F (5’-

GTA AAA CTG CGA ATG GCT CAT-3’) and 1528R (5’-TGA TCC TTC TGC AGG TTC 

ACC TAC-3’) and genomic DNA isolated from the 0.4 µm filter as template. The 

amplification of the Antarctic sample was conducted using the primer combination 300F (5’-

AGG GTT CGA TTC CGG AG-3’) and 1200R (5’-CAG GTC TGT GAT GCC C-3’), 

because the former combination resulted in a poor PCR product. Furthermore, the whole 

protist assemblage was used for the methodological comparison of the Antarctic sample. In 

this respect, the 18S rRNA gene of each fraction was amplified and equal volumes of each 

PCR product were pooled before the purification. The PCR reaction mixture contained 1 x 

HotMaster Taq Buffer containing 2.5 mM Mg2+ (5 Prime, USA), 0.4 U of HotMaster Taq 

polymerase (5 Prime, USA), 10 mg/ml BSA, 10 mM dNTP-mix (Eppendorf, Germany), 10 

µM of each Primer and 1 µl of template DNA in a final volume of 20 µl. PCR reactions were 

carried out in a Mastercycler (Eppendorf, Germany) under the following conditions: an initial 

denaturation at 94°C for 3 min, 35 cycles of denaturation at 94°C for 45 s, annealing at 55°C 

for 1 min and extension at 72°C for 3 min, and a final extension at 72°C for 10 min. The 

purification of the resulting PCR fragment was carried out with the Gel Purification Kit 

(Invitrogen, USA), following the manufacturers protocol. Subsequently, the fragment was 

cloned into the pDrive Cloning Vector (QIAGEN, Germany) taking advantage of the PCR 

Cloning Kit (QIAGEN, Germany) and transformed into TOP10 chemo-competent E.coli cells 

(Invitrogen, USA). Positive colonies were screened for similar inserts by performing a 

restriction fragment length polymorphism (RFLP) analysis, using the multicut enzyme Hae III 

(New England Biolabs, USA). Clones with a similar RFLP pattern were considered to display 

the same phylotype and grouped into an OTU (operational taxonomic unit). One to two 

representatives of each OTU were sequenced using the 300F (see above) and 528F (5’-GCG 

GTA ATT CCA GCT CCA A-3’) primer under the following conditions: an initial 

denaturation step at 96°C for 1 min, 25 cycles of denaturation at 96°C for 10 s, annealing at 

50°C for 5 s and extension at 60°C for 4 min. The terminal sequencing was carried out on an 

ABI Prism 310 Genetic Analyzer (Applied Biosystems, USA). 
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454-pyrosequencing 

The hypervariable V4 region of the 18S rRNA gene was amplified taking advantage of the 

primer combination 528F (5’-GCG GTA ATT CCA GCT CCA A-3’) and 1055R (5’-ACG 

GCC ATG CAC CAC CAC CCA T-3’). The PCR mixtures were composed as described 

previously for the clone library construction. Reaction conditions were as following: an initial 

denaturation at 94°C for 3 min, 30 cycles of denaturation at 94°C for 45 sec, annealing at 

59°C for 1 min and extension at 72°C for 3 min, and a final extension at 72°C for 10 min. 
Subsequently, the amplicons were purified with the Mini Elute PCR Purification Kit 

(QIAGEN, Germany). In case of the Antarctic sample, an equal volume of PCR reaction of 

each size fraction was pooled and purified with the MinElute PCR purification kit (Qiagen, 

Germany) following the manufacturer’s instructions. Pyrosequencing was performed on a 

Genome Sequencer FLX system (Roche, Germany) by GATC Biotech AG (Germany). 

 

Data analysis  

The two raw sequences of each sequenced clone were assembled with the software Lasergene 

10 (DNASTAR, USA) and a consensus sequence was built. All sequences (clone consensus 

sequences and 454-pyrosequencing reads) were checked for errors (reads with many 

unresolved bases) implied by the sequencing process and sequences with more than one 

uncertain base (N) were removed. Remaining sequences were checked for possible chimera 

formation by applying the detecting software UCHIME 4.2.40 (Edgar et al. 2011) and all 

sequences considered being chimeric were excluded from further analysis. Residual 

sequences were added to the Lasergene 10 software (DNASTAR, USA) and clustered into 

OTUs at the 97 % similarity level. Subsequently, singletons from the 454-pyrosequencing 

data were removed. Consensus sequences of OTUs were aligned using the software HMMER 

2.3.2 (Eddy 2011). Subsequently, taxonomical affiliation was determined by placing the 

consensus sequences into a reference tree, consisting of 1200 high quality 18S rRNA gene 

sequences of Eukarya from the SILVA reference database (SSU Ref 108), using the software 

pplacer 1.0 (Matsen et al. 2010). The compiled reference database is available on request in 

ARB-format. Detected non-phytoplankton sequences originating from metazoans and fungi 

were removed. Rarefaction curves were computed using the freeware program Analytic 

Rarefaction 1.3. In case of the clone library sequences, a phylogenetic tree was generated 

using MEGA version 4 (Tamura et al. 2007) on the basis of Maximum Parsimony principles 

by the application of the Juke Cantor model and 1000 bootstrap restarts. The clone library 

sequences generated in this study have been deposited at GenBank under Accession No. 
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JX840877-JX840942. The 454-pyrosequencing reads were deposited at GenBank`s Short 

Read Archive (SRA) under Accession No. SRA058841 (Arctic samples) and SRA056811 

(Antarctic sample). 

 

Results 

The five clone libraries resulted in a total of 698 high quality clones (Table 3.1). After the 

RFLP analysis of 182 (HG1 and HGS3) to 117 (ANT25) clones, a total of 134 Arctic and 64 

Antarctic clones were sequenced. Non-target sequences (metazoan and fungi sequences) were 

only found in the pooled ANT25 clone library (6 %), while chimeras were formed in all clone 

libraries (6-19 %), except in library HG4 (0 %). Final clustering of the residual sequences 

resulted in seven (HG4) to 24 (HGS3) different phylotypes. 

In total, between 7539 (HG4) and 45772 (ANT25) 454-pyrosequencing reads were obtained. 

The analytical process revealed 2-6 % of chimeric sequences. The quality filtering reduced 

the initial read number to a final range of 5220 (HGN4) to 30561 (ANT25) reads, that 

resulted in 709 (HG4) to 1153 (ANT25) different phylotypes, based on a clustering at the 97 

% similarity level. 

The clone library and 454-pyrosequencing approach provided different numbers of 

phylotypes that differ by several levels of magnitude. The rarefaction curves present an 

estimation of the local species richness based on the respective approach (Figure 3.2). Two 

Arctic clone libraries (HG1 and HGN4) present a rarefaction curve that is saturated or almost 

saturated, while the species richness of the residual Arctic and the Antarctic clone library is 

not totally covered. The 454-pyrosequencing rarefaction curve for sample ANT25 reached the 

plateau, whereas the curves of the four Arctic samples (HG1, HG4, HGN4 and HGS3) ended 

in the slope phase. 

 

Comparison of clone library and 454-pyrosequencing data set - Arctic 

In total, 47 different phylotypes have been identified in the clone libraries from the Arctic 

samples (Figure 3.3 and Table 3.2). The number of phylotypes in each sample ranged from 

seven (HG4) to 24 (HGS3). Most phylotypes (32) grouped within the alveolates, whereas the

 majority of 30 phylotypes affiliated with dinoflagellates and only two with ciliates. 

Picobiliphytes, cryptophytes, rhodophytes, and stramenopiles were represented by two, three, 

one and two phylotypes, respectively. Seven phylotypes affiliated with chlorophytes, of which 

five were closely related to Micromonas pusilla. The majority of the phylotypes (37) were 

just present at one of the different stations. Only ten phylotypes could be found in more than
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one station. Three phylotypes (ARK_3, ARK_5, and ARK_15) were present in three samples. 

There was no phylotype, which was recovered from all samples. Samples HGN4 and HGS3 

showed the highest similarity with five shared phylotypes. The most abundant phylotype in 

the clone libraries was ARK_15, and affiliated with Micromonas pusilla in the phylogenetic 

tree. This phylotype contributed 77.1 % of the clones in sample HG1, 65.9 % in sample HG4, 

and 47.5 % in sample HGN4. In sample HGS3, the phylotype was not found at all. In this 

sample, the phylotypes ARK_12 (Syndiniales clone) and ARK_14 (Geminigera cryophila) 

showed the highest clone abundance with 26.6 % and 23.7 %, respectively. 

In total, 709 to 1014 phylotypes were obtained by 454-pyrosequening. The data set was 

composed of 18.2-51.4 % dinoflagellates, 1-3.4 % ciliates, 16.3-33.1 % haptophytes, 0-0.9 % 

rhodophytes, 0.5-2.2 % cryptophytes, 3.4-42.2 % chlorophytes, and 14.7-16.8 % 

stramenopiles. In contrast, the clone libraries did neither contain haptophytes, nor 

rhodophytes, 0.6-28.1 % cryptophytes, 4.3-82.9 % chlorophytes, 1-2.2 % stramenopiles, 3.5-

64.3 % dinoflagellates, and 0.7-9.7 % ciliates. 

Thirteen out of the 47 clone library phylotypes (27.7 %) could not be recovered in the 454-

pyrosequencing data set. The clone libraries of samples HG1, HG4 and HGS3 each covered 

20 % of the abundant phylotypes of the 454 data set (data not shown). The clone library of 

sample HGN4 covered none of the abundant 454 phylotypes.  

 

Comparison of clone library and 454-pyrosequencing data set - Antarctic 

In the clone library generated from the Antarctic sample (ANT25), 19 different phylotypes 

have been found (Figure 3.4 and Table 3.3). The majority of these phylotypes belonged to 

alveolates (10). Among the alveolates, eight phylotypes affiliated with dinoflagellates, 

whereas one belonged to the ciliates and Syndiniales, respectively. There were two 

phylotypes belonging to the haptophytes, whereas both were close to the genus Phaeocystis. 

Five phylotypes of the library belonged to the stramenopiles, at which two were 

representatives of diatoms. One cryptophyte, belonging to the genus Geminingera, and one 

picobiliphyte were found. 

The 454-pyrosequencing revealed 1153 different phylotypes. The relative abundance of the 

phylotypes retrieved from the library and the respective relative abundance in the 454-

pyrosequencing data set are shown in Table 3.3. Four out of the 19 clone library phylotypes 

(21.1 %) were not found in the 454 data set. From the 12 abundant phylotypes in the 454 data 

set (data not shown), only four (33.3 %) were found in the clone library. The phylotype with 

the highest relative abundance was the same in both data sets (clone ANT_13). The 454-
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pyrosequencing data set was composed of 30.8 % haptophytes (39.5 % in the clone library), 

1.2 % chlorophytes (0 %), 1.6 % cryptophytes (1 %), 1.1 % rhodophytes (0 %), 22.9 % 

diatoms (2 %), 9.5 % other stramenopiles (5.8 %), 23.6 % dinoflagellates (42.5 %), 2.5 % 

Syndiniales (1.9 %), and 6.8 % ciliates (4.8 %). 

Both the Arctic and Southern Ocean samples showed that ~20 % of the phylotypes retrieved 

via the cloning approach were not found in the 454-pyrosequencing data, and only 20-30 % of 

the abundant phylotypes of the 454-pyrosequencing data were found via the cloning 

approach. 

 

Discussion 

Although, culture-independent methods as traditional clone library and the novel 454-

pyrosequencing are often used for screening microbial community structures (Diez et al. 

2001, Lovejoy et al. 2006, Cheung et al. 2010), studies that directly compare both approaches 

are scarce. To our knowledge, those studies primarily focused on the genetic diversity of 

prokaryotes (Zhang et al. 2011). Here, we present the first comparison of both molecular 

methods for eukaryotic protists. The comparison has been carried out on picoeukaryotic 

protists in the Arctic and on the whole protist assemblage (covering all size classes) in the 

Antarctic. Independent of the size fractionation or geographical location, the two methods 

showed high discrepancies in distribution as well as in relative abundance. 

 

(I) How does the choice of a molecular method influence our understanding of protist 

diversity and community structure? 

Our data suggest that our understanding of protist diversity and community structure is 

strongly dependent on the molecular method used. According to the Arctic clone library data, 

the picoplankton communities were mainly dominated by chlorophytes, while haptophytes 

were absent. In contrast, the 454-data suggest that haptophytes are dominating in these 

samples and chlorophytes are less abundant. It can be excluded that it is hard or impossible to 

clone haptophytes, because numerous Phaeocystis sp. clones have been found in the Antarctic 

library. However, phylotypes that affiliated particularly to small non-colonial haptophytes 

have been already reported to occur in merely small numbers in clone library data (Lovejoy et 

al. 2006, Potvin & Lovejoy 2009). Amacher et al. (2011) also proved that it is possible to 

retrieve Emiliania huxleyi (belonging to haptophytes) sequences via cloning. Additionally, we 

have checked the suitability of the used primers. All primers matched with haptophytes 

(including Phaeocystis and Emiliania) in the reference database. Nevertheless, it cannot be
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excluded, that primer efficiency could be an explanation for the observed discrepancy. There 

are several studies showing that different primer sets applied on the same sample resulted in 

different diversity and abundance patterns (Jeon et al. 2008, Potvin & Lovejoy 2009, Stoeck 

et al. 2010). Mismatches between the primers and the 18S rRNA genes sequences (Liu et al. 

2009), and primer competition (Potvin & Lovejoy 2009) are considered to be responsible for 

it. However, the primer sets used in this study covered all major taxonomic groups. 

Nevertheless, we observed that the primer set used for the Arctic samples might be biased 

against haptophytes and the primer set used for the Antarctic sample against diatoms. 

Another explanation for the discrepancies between the clone libraries and the 454 data sets 

could be the mutual impact of organisms during the PCR or cloning step. Amacher et al. 

(2011) showed that certain co-occurring organisms bias the recovery of organisms in clone 

libraries. Our data suggest that Micromonas sp. might influence the cloning efficiency of 

other organisms, especially on Phaeocystis sp. Micromonas sp. sequences were 

overrepresented in the Arctic clone libraries and no Phaeocystis sequences were retrieved. 

However, in three of the four 454-pyrosequencing samples, Phaeocystis sp. was more 

abundant than Micromonas sp. Thus, if Micromonas sp. occurs in sufficient abundance, it 

might have been favored during the cloning step. In contrast, in the Antarctic clone library, 

we observed a bias against diatoms. The 454-pyrosequencing revealed a tenfold higher 

diatom abundance than the clone library. Here, our data suggest that dinoflagellates or 

Phaeocystis had a repressing effect on diatoms during the cloning step.   

Although, the picoeukaryotic and the whole protist approach both showed high differences 

between the clone libraries and the 454-pyrosequencing data, the aberration was higher for 

picoeukaryotes. Beside the previously discussed bias induced by the use of different primer 

sets, another possible bias may rely on the interpretation of the RFLP patterns. The 

interpretation of RFLP patterns may be biased because of incomplete DNA digestion, variable 

DNA load of the gels, similar cutting sites among species, or limited sensitivity of the 

detection technique (Wu et al. 2000). In this regard, the whole size community may be 

represented by more distinct patterns, while patterns of picoeukaryotes could be more similar.  

This would lead to a reduced picture of picoeukaryotic diversity, because a limited number 

(1-2) of representatives were sequenced for each interpreted group. Altogether, we have 

shown that the two different methods revealed different community compositions and the 

clone library approach even defalcated whole taxonomical groups. 
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(ii) Do clone library data reflect exclusively the abundant biosphere? 

A recent assumption of previous studies (Pedrós-Alió 2006) is that clone libraries cover at 

least the abundant biosphere of protist communities. However, our results suggest that the 

clone library data did not cover the whole abundant biosphere of the 454-pyrosequencing data 

set. All clone libraries missed over 50 % of the abundant biosphere, identified by 454-

pyrosequencing. It should be mentioned that of the missing 50 %, most phylotypes were 

affiliated to Phaeocystis (Arctic samples) and to diatoms (Antarctic sample). In addition, we 

found phylotypes in the clone libraries that were not recovered in the 454-pyrosequencing 

data. This is most pronounced in the Arctic samples and supported by the 454-pyrosequening 

rarefaction curves, which showed that the samples were not exhaustively sequenced. Thus, 

with a higher sequencing effort the additional sequences in the clone libraries might have 

been recovered by the 454-pyrosequencing. In contrast, the rarefaction curves of the clone 

libraries simulate that the total diversity was sufficiently recovered, although the 454 

approach revealed far more phylotypes. Our data support the common sense that the concept 

of rarefaction curves is questionable. The calculation is biased by the presence of multiple 

18S rRNA gene copies. Additionally, the removal of singletons in the 454 approach during 

the analytical process consequently leads to a saturated curve (e.g. in the Antarctic sample). 

The calculation for clone library data is biased by the limited throughput, the low number of 

phylotypes retrieved, and the overrepresentation of single phylotypes (e.g. Micromonas sp. in 

the Arctic samples). 

We have observed that groups, which showed a low abundance in the 454 data (<2 % in 

total), can also be retrieved via the cloning approach. However, this observation does not 

apply to all of the clone libraries, suggesting that the recovery of OTUs in clone libraries is 

random. 

 

(iii) Are clone library data suitable to serve as a backbone for phylogenetic interpretation of 

454-pyrosequencing data? 

Based on the findings and remarks discussed above, the suitability of clone library data to 

serve as backbone for 454-pyrosequencing data is only limited, because the recovery of 

phylotypes extremely differs between the two methods, especially when focusing on 

picoplankton.  

 

In conclusion, we have shown that our understanding of protist diversity and structure 

assessed with molecular methods varies strongly depending on the molecular method used.
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Furthermore, we suggest that comparisons of new 454-pyrosequencing data with previously 

published clone library data of protist diversity have to be handled with careand should not be 

over interpreted. Moreover, the cloning approach seems not to be adequate in general to 

resolve the abundant biosphere and appears to be of very limited suitability as backbone for a 

refined phylogenetic analysis of OTUs identified by 454-pyrosequencing data. 
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Table 3.1. Summary of recovered clones and 454-pyrosequencing reads. 

 

 HG1 HG4 HGN4 HGS3 ANT25 
Clone library:      
High quality clones 175 179 101 139 104 
Phylotypes 16 7 13 24 19 
454-pyrosequencing:      
Total reads 9830 7539 7938 8786 45772 
High quality reads 8154 5434 5220 7020 30561 
OTUs (97 %) 754 709 829 1014 1153 
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Table 3.2. Phylogenetic affiliations of the Arctic clone phylotypes and their relative abundance in the libraries and the 454-pyrosequencing data set. 

 

Phylotype Closest match 
(Maximum identity %) Taxonomic group Clones (%) / 454 (%) 

HG1  HG4 HGN4 HGS3 
ARK_1 Bolidomonas pacifica (92) Stramenopiles 1.1 / 2.8 - / 0.7 1.0 / 0.2 - / 0.5 
ARK_2 Clone EU793918.1 Dinoflagellates 0.6 / 0.8 - / 0.5 - / 0.5 - / 2.6 
ARK_3 Clone HM135092.1 (98) Dinoflagellates 0.6 / 0.4 - / 0.4 4.0 / 0.9 7.2 / 0.2 
ARK_4 Clone JF791003.1 (98) Dinoflagellates - / - - / - 5.0 / - - / - 
ARK_5 Clone GU819790.1 (98) Dinoflagellates - / 0.24 1.1 / 0.2 3.0 / 0.5 1.4 / 1.7 
ARK_6 Micromonas pusilla (99) Chlorophytes 2.9 / 1.4 - / 1.9 - / 0.3 - / 1.3 
ARK_11 Clone HQ438132.1 (94) Dinoflagellates - / - - / 0.2 8.9 / 0.7 - / 0.1 
ARK_12 Syndiniales EU793925.1 (95) Dinoflagellates - / 0.2 - / 0.1 - / 0.8 26.6/ 0.6 
ARK_13 Gyrodinium AB120001.1 Dinoflagellates - / - - / - 4.0 / - 5.0 / - 
ARK_14 Geminigera cryophila (99) Cryptophytes 0.6 / 0.4 - / 0.1 - / - 23.7 / 0.1 
ARK_15 Micromonas pusilla (99) Chlorophytes 77.1 / 14.4 65.9 / 1.1 47.5 / 0.4 - / 1.1 
ARK_16 Clone AY295399.1 (91) Ciliates 8.0 / 1.2 - / 0.8 - / 0.4 0.7 / 0.2 
ARK_17 Clone EU682572.1 (97) Ciliates 1.7 / 0.3 - / 0.3 - / 0.2 - / 0.1 
ARK_20 Clone HQ43812.9 (98) Dinoflagellates 1.1 / - - / 0.0 - / - - / 0.1 
ARK_21 Clone JN934892.1 (95) Picobiliphytes 1.1 / 0.0 - / 0.0 - / 0.0 - / 0.0 
ARK_25 Gyrodinium sp. (98) Dinoflagellates 0.6 / 0.4 - / - - / 0.1 - / - 
ARK_26 Woloszynskia sp. (99) Dinoflagellates 0.6 / 0.4 - / 0.0 - / 0.1 - / 0.2 
ARK_29 Micromonas pusilla (99) Chlorophytes 0.6 / 3.0 0.6 / 1.1 - / 0.1 - / 0.6 
ARK_30 Clone HQ222463.1 (98) Picobiliphytes 0.6 / - - / 0.0 - / - - / 0.0 
ARK_31 Micromonas pusilla (99) Chlorophytes 2.3 / - / - / - / 
ARK_33 Clone AJ420693.1 (96) Rhodophytes 0.6 / - - / - - / - - / - 
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Table 3.2. continued 

 

 

 

Phylotype Closest match 
(Maximum identity %) Taxonomic group 

Clones (%) / 454 (%) 
HG1 HG4 HGN4 HGS3 

ARK_38 Clone EU682636.1 (97) Chlorophytes - / - 1.7 / - - / - - / - 
ARK_46 Micromonas pusilla (91) Chlorophytes - / - 0.6 / - - / - - / - 
ARK_47 Syndiniales EU793375.1 (90) Dinoflagellates - / - 29.6 / - - / - - / - 
ARK_58 Clone EU793946.1 (88) Dinoflagellates - / - - / 0.1 10.9 / - 0.7 / - 
ARK_60 Clone EU793957.12 (92) Dinoflagellates - / - - / - 2.0 / - - / - 
ARK_62 Clone EU682577.1 (98) Dinoflagellates - / - - / - 6.9 / - - / - 
ARK_68 Clone EF172940.1 (98) Dinoflagellates - / - - / 0.1 4.0 / 0.1 - / 0.0 
ARK_69 Clone JF826365.1 (91) Dinoflagellates - / 0.1 - / 0.3 2.0 /0.1 - / 0.1 
ARK_70 Clone HQ438143.1 (95) Dinoflagellates - / 0.0 - / 0.1 1.0 / 0.1 1.4 / 0.1 
ARK_72 Clone EU793201.1 (98) Dinoflagellates - / - - / - - / - 0.7 / - 
ARK_76 Clone EU793383.1 (90) Dinoflagellates - / 0.1 - / 0.1 - / - 2.2 / 0.2 
ARK_78 Clone EF195735.1 (90) Cryptophytes - / 0.3 - / 0.3 - / 0.2 0.7 / 0.1 
ARK_82 Clone EU793221.1 (94) Dinoflagellates - / - - / - - / - 1.4 / 0.0 
ARK_83 Clone EU793700.1 (94) Dinoflagellates - / 0.2 - / 1.0 - / 1.1 2.2 / 1.3 
ARK_86 Clone EU793708.1 (92) Dinoflagellates - / 0.1 - / 0.0 - / 0.0 0.7 / 0.1 
ARK_87 Clone HM561117.1 (95) Dinoflagellate - / - - / - - / 0.0 5.0 / - 
ARK_90 Clone HQ222399.1 (95) Dinoflagellates - / - - / - - / - 1.4 / 0.1 
ARK_91 Clone FJ537539.1 (92) Dinoflagellates - / - - / - - / - 2.9 / - 
ARK_92 Bolidomonas pacifica (95) Stramenopiles - / 0.1 - / - - / 0.1 2.2 / 0.1 
ARK_93 Bathycoccus prasinos (98) Chlorophytes - / 8.0 - / 5.3 - / 1.3 4.3 / 2.2 
ARK_97 Clone JF826393.1 (91) Dinoflagellates - / - - / - - / - 1.4 / - 
ARK_100 Clone AF290050.2 (95) Dinoflagellates - / 0.5 - / 0.5 - / 0.4 1.4 / 0.4 
ARK_102 Clone GU819971.1 (95) Dinoflagellates - / - - / 0.0 - / 0.0 3.6 / - 
ARK_103 Clone EU818505.2 (97) Dinoflagellates - / - - / 0.0 - / 0.0 0.7 / - 
ARK_104 Clone EU793381.1 (96) Dinoflagellates - / 0.2 - / 0.0 - / 0.0 2.2 / 0.4 
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Table 3.3. Phylogenetic affiliations of the Antarctic clone phylotypes and their relative    

       abundance in the library and the 454-pyrosequencing data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phylotype Closest match 
(Maximum identity %) Taxonomic group Clones (%) / 454 (%) 

ANT_1 clone SGPX577 (98) Dinoflagellates 2.9 / - 
ANT_2 Gyrodinium fusiforme (99) Dinoflagellates 2.9 / - 
ANT_3 clone SIF_2C7 (99) Dinoflagellates 3.9 / <1 
ANT_4 clone B16 (98) Dinoflagellates 1.0 / <1 
ANT_5 clone SHAX878 (95) Dinoflagellates 2.9 / <1 
ANT_6 clone CNCIII51_20 (99) Dinoflagellates 20.2 / 8.7 
ANT_7 Azadinium spinosum (99) Dinoflagellates 7.7 / 1.0 
ANT_8 Gyrodinium rubrum (96) Dinoflagellates 1.0 / <1 
ANT_9 DH147-EKD20 (94) Syndiniales 1.9 / <1 
ANT_10 Salpingella acuminata (99) Ciliates 4.8 / 3.9 
ANT_11 clone KRL01E30 (87) Picobiliphytes 2.9 / <1 
ANT_12 Geminigera cryophila (99) Cryptophytes 1.0 / <1 
ANT_13 clone B1 (99) Haptophytes 21.2 / 19.9 
ANT_14 clone B1 (99) Haptophytes 18.3 / 4.3 
ANT_15 clone F11N10 (91) Diatoms 1.0 / <1 
ANT_16 Hemiaulus sinensis (96) Diatoms 1.0 / <1 
ANT_17 clone RA070625T.073 (96) Stramenopiles 2.9 / - 
ANT_18 clone CNCIII05_73 (93) Stramenopiles 1.9 / - 
ANT_19 clone 14H3Te6QW (95) Stramenopiles 1.0 / <1 
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Figure 3.1. Map of the sampling stations located within A) the long-term observatory    

        “Hausgarten” (Fram Strait, Arctic) and B) the Southern Ocean. 
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Figure 3.2. Rarefaction curves of A) clone libraries and B) 454-pyrosequencing. 
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Figure 3.3. ARK24: Phylogenetic tree based on the 18S rRNA gene sequences retrieved from  

 the clone libraries and rooted with Staurosira sp. Calculation of the tree has been

 performed with maximum likelihood under the implementation of the Juke-

 Cantor model and 1000 bootstraps replications. The symbols are standing for the 

 respective station, where the clone had been found. The triangle stands for HG1,

 the circle for HGS3, the rhombus for HGN4 and the square for HG4. 
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Figure 3.4. ANT25: Phylogenetic tree based on the 18S rRNA gene sequences retrieved from 

  the clone libraries and rooted with Micromonas pusilla. Calculation of the tree 

  has been performed with maximum likelihood under the implementation of the 

  Juke-Cantor model and 1000 bootstraps replications. 
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Abstract 

The investigation of marine eukaryotic picoplankton community composition is limited by 

missing morphological features for proper identification and requires the application of 

molecular methods. In this study, we used 454-pyrosequencing to investigate the picoplankton 

communities at four stations in the Eastern Fram Strait. At one station (HG4), 454-

pyrosequencing was put through an evaluation process to assess permeability of fractionated 

filtration. The resulting data were in accordance with the accepted size distribution of the 

observed taxa. Only few phylotypes occurred in more than one size fraction, suggesting an 

adequate filtering procedure. Furthermore, 454-pyrosequencing data were evaluated in a 

quantitative comparison with microscopy diatom counts at one station. The diatom 

contribution, revealed by both methods, was in good accordance.  

The picoeukaryotic communities were dominated by phylotypes affiliating with Micromonas 

pusilla, Phaeocystis pouchetii, and syndiniales in the phylogenetic tree. The picoplankton 

community was similar at three out of four stations that displayed similar abiotic conditions 

(T and S). At the fourth station, slightly different abiotic parameter resulted in a significantly 

different picoeukaryote community composition. This observation is particularly interesting 

in regard to the ongoing environmental change in the Arctic and highlights the need to fill the 

gaps of knowledge concerning picoplankton community compositions. 
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454-pyrosequencing, Picoeukaryotes, Diatoms, Arctic Ocean 
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Introduction 

Picoplankton is gaining increasing attention because of its importance for all marine 

ecosystems in terms of biomass and primary production (Li 1994, Worden et al. 2004). 

Picoplankton was found to dominate within photosynthetic and heterotrophic processes over 

much of the world’s oceans (Whitman et al. 1998) and is a major contributor to protist 

assemblages in oligotrophic waters, attaining abundances of 102 to 104 cells ml-1 (Ishizaka et 

al. 1997, Li 2009, Massana 2011). In the Arctic Ocean, the picophytoplankton can constitute 

significant contributors to primary production (Degerlund & Eilertsen 2010). A large surface-

area-to-volume ratio enables an effective nutrient uptake and a concomitant prevention of 

rapid sinking (Li et al. 2009). Picophytoplankton obtained particular attention after 

Richardson and Jackson (2007) reported that picophytoplankton can also have an important 

impact to organic carbon flux to deeper waters. Until then, the general picophytoplankton was 

assumed to be recycled within the microbial food web (Azam et al. 1983) and to contribute 

only partially to the carbon export (Michaels & Silver 1988).  

 A number of molecular surveys reported that the Arctic Ocean picoeukaryotic phytoplankton 

is dominated by a pan-Arctic ecotype of the mamiellophyte Micromonas, which is especially 

adapted to cold temperatures (Lovejoy et al. 2007, Marin & Melkonian 2010). Other typical 

picoplankton genera like Ostreococcus were further observed to attain high abundances in 

Arctic waters (>105 cells ml-1) by producing even small “blooms” (Countway & Caron 2006).  

Recent studies predict increasing abundances of picoplankton under the ongoing warming of 

the Arctic, also because cell size is suggested to decrease with increasing temperatures 

(Moran et al. 2010). Therefore, it is crucial to get an overview of current picoplankton 

community composition and distribution patterns. So far, the knowledge about picoplankton 

community compositions is scarce, however, representatives can be found in all major 

taxonomic algal classes (Simon et al. 1994, Veldhuis et al. 1997, 2005). The discovery of 

phylotypes in the picoplankton community that have until now been associated with bigger 

size classes were often explained by artifacts of cell breakage or sloppy feeding (Massana et 

al. 2004b, Romari & Vaulot 2004). 

In the past, investigations concentrated on evaluations of the complex diversity of the nano- 

and picoplankton fraction using different molecular approaches, all based on the analysis of 

ribosomal genes, such as clone library sequencing, DGGE, and RISA (Diez et al. 2001, 

López-García et al. 2001, Moon-van der Staay et al. 2001, Hamilton et al. 2008, Not et al. 

2008, Potvin & Lovejoy 2009, Vigil et al. 2009). These methods revealed a huge hidden 

diversity, in particular within the picoeukaryotes, and revolutionized hitherto assumptions of 
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protist community structure. The slow evolutionary rate and the abundant occurrence in single 

cells, makes the 18S rDNA a widely employed “bar-code” to assess eukaryotic picoplankton 

diversity (Amann & Kuhl 1998, Vaulot et al. 2008). Recently, the use of 454-pyrosequencing 

technology for the investigation of picoplankton communities allows a more detailed survey 

of the diversity, because it provides higher numbers of ribosomal sequences than clone library 

sequencing.  

In this study, we use the 454-pyrosequencing approach, in order to get a higher resolution 

insight into picoplankton community composition in the Eastern Fram Strait, where no 454-

pyrosequencing data are available so far. This includes an assessment of the permeability of 

fractionated filtration and a validation of the molecular data with classical light microscopy. 

 

Material and Methods 

Sampling area 

The sampling was performed during the ARK XXIV/2 expedition, onboard the RV Polarstern 

in July 2009 (07/11/09-07/18/09) at the deep-sea long-term observatory HAUSGARTEN of 

the Alfred Wegener Institute for Polar and Marine Research. The observatory is located at 78-

80°N and 3-7°E close to the coast of Svalbard, in the Fram Strait (Figure 3.1).  

Water samples have been taken in or close to the chlorophyll maximum by collecting 

seawater with Niskin bottles deployed as a rosette sampling system on a CTD (Conductivity 

Temperature Depth system) frame (Table 3.1). For subsequent filtration, 2 l water subsamples 

were taken with polycarbonate bottles. Protist cells were filtered into three fractions with 

Isopore Membran Filters (Millipore, USA) (10 µm, 3 µm, and 0.4 µm) at 200 mbar. Finally, 

the filters were stored in Eppendorf tubes at -80°C until further processing.  The 0.4–3 µm 

fraction was used for the assessment of picoplankton composition at four stations (HG1, HG4, 

HGN4, and HGS3). The protist composition, collected on all three filters, was analyzed at 

HG4.   

 

Microscopy  

Protist cells were stored in brown glass bottles before counting. In 50 ml aliquots a minimum 

of 50-100 cells of the dominant species or groups were counted with an inverted microscope 

at four different magnifications (100–400x) using phase contrast according to Utermöhl 

(1958).  
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DNA isolation 

After an initial incubation of the filter in lysis buffer, DNA extraction was carried out with the 

E.Z.N.A TM SP Plant DNA Kit (Omega Bio-Tek, USA) following the manufacturer’s 

instructions. DNA concentration was determined with a NanoDrop 1000 system (Thermo 

Fisher Scientific, USA). 

 

Next Generation Sequencing 

For subsequent 454-pyrosequencing, the V4 region (~670 bp) of the 18S rDNA was amplified 

with the primer set 528F (GCG GTA ATT CCA GCT CCA A) and 1055R (ACG GCC ATG 

CAC CAC CAC CCA T) (Elwood et al. 1985). The PCR reaction mixture contained 1x 

HotMasterTaq buffer Mg2+ 2.5 mM (5’Prime,USA), 0.4 U HotMaster Taq polymerase 

(5’Prime), 10 mg/ml BSA, 10 mM (each) dNTP (Eppendorf, Germany), 10 µM each Primer, 

1 µl of template DNA (~20 ng/µl) in a final volume of 20 µl. PCR amplification was carried 

out in a MasterCycler (Eppendorf, Germany) under the following conditions: first, an initial 

denaturation step at 94°C for 3 min succeeded by 35 cycles (denaturation at 94°C for 45 s, 

annealing at 55°C for 1 min, extension at 72°C for 3 min), and followed by a final extension 

at 72°C for 10 min. The resulting PCR products were purified with the MinElute PCR 

purification kit (Qiagen, Germany) following the manufacturer’s instructions. Pyrosequencing 

was performed on a Genome Sequencer FLX system (Roche, Germany) by GATC Biotech 

AG (Germany). 

 

Data analysis of 454-pyrosequencing 

Sequences with a length less than 300 bp were excluded from the analysis to guarantee further 

analysis of the whole V4 region. Moreover, sequences that exceeded the general amplicon 

size of >670 bp were also excluded. To avoid the inclusion of chimeras in the following 

clustering process a chimera-detecting software, UCHIME (Edgar et al. 2011) was applied. 

The building of artificial operational taxonomic units (OTUs) was achieved by clustering the 

remaining reads, using the software package Lasergene Seqman Pro (DNAStar, USA). A 

threshold of 97 % was applied to minimize the danger of overestimating the diversity and to 

better compare the data with previous analysis, because 97 % similarity has often been 

utilized in former studies (Kunin et al. 2010, Behnke et al. 2011). All singletons, defined as an 

OTU composed of one single sequence that only occurs once in the whole analysis were 

removed to evade possible errors induced by the assembly of sequencing progress (Table 3.2). 

The consensus sequences were placed into a reference tree build up by 1200 high-quality-
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sequences containing representatives of proxys of all main eukaryotic phyla. This involved 

the use of the pplacer 1.0 software (Matsen et al. 2010). We used a cutoff of 80 % probability 

instead of a NCBI blast to increase the reliability of the taxonomic affiliation. Sequences that 

affiliated with non protist phyla in the tree were excluded from further analyses. The 

remaining reads were aligned with the SILVA aligner (Pruesse et al. 2007) and placed into a 

reference database tree containing around 50000 eukaryotic sequences from the SILVA 

reference database (SSU Ref 108).  

The analysis of phylotype distribution over the fractionated size classes (Figure 3.2 and 3.3) 

was conducted according to the previous referred instructions, including a quality trimming 

and a clustering of the sequences. This has inter alia the advantageous of getting identical 

descriptions for identical phylotypes. Subsequent, all phylotypes were screened for identical 

representatives in one of the three size fractions to discriminate between ubiquitous, unique, 

and multiple (micro-/picoplankton and nano-/picoplankton) occurrences. For the sake of 

clarity, phylotypes of the respective occurrences were summarized in the context of similar 

taxonomic affiliation, because of the high phylotype numbers. As the sequencing effort 

differed strongly over the three size classes the investigation was not based on the OTU 

numbers but on the relative abundances of the single phylotypes. This is necessary, because 

higher sequence numbers are assumed to result in higher OTU numbers. The use of the 

relative abundances qualifies the differences between the three size classes and further 

displays the allotments of the respective phylotypes in the single size classes. Phylotypes that 

displayed a percentage of at least 1 % in one of the size classes and thus belonged to the 

abundant biosphere were listed according to their occurrence in the supplemental table (Table 

3.6). The 454-pyrosequencing reads were deposited at GenBanks’s Short Read Archive 

(SRA) under the Accession No. SRA058841. 

 

Results and Discussion 

The objective of this study was to investigate picoeukaryote community compositions in the 

Eastern Fram Strait. This involved 454-pyrosequencing, which has proven to generate reliable 

environmental surveys of genetic diversity (Sogin et al. 2006, Cheung et al. 2010, Stoeck et 

al. 2010), an evaluation of the fractionation, and the 454-pyrosequencing data (>10µm 

fraction) in comparison to microscopic counts, respectively.  
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Microscopy and 454-pyrosequencing (>10 µm fraction) 

At station HG4 the contribution of diatoms to the protist community (>10 µm) was assessed 

with 454-pyrosequencing and light microscopic counts, in order to evaluate the consistency 

between both methods. We focused on diatoms, because taxonomic surveillance of diatoms 

with light microscopy is relatively easy and they are reported to be most commonly 

represented in the size range from 10 to 200 µm (Winder et al. 2009). The relative 

contribution of diatoms to the protist community (>10 µm) within both approaches were in 

good agreement. According to 454-pyrosequencing diatoms contributed ~8 % to the protist 

community (>10 µm), while the contribution was ~6 % according to light microscopic counts. 

The diatom composition however differed regarding to the applied method (Table 3.3). While 

Fragilariopsis sp. (~5 %) was a major contribution to the diatom assemblage, identified by 

the light microscopy approach, it was not recovered in the 454-pyrosequencing. In contrast, 

Pseudo-nitzschia sp. (~4 %) and Actinocyclus sp. (~3 %) were found to dominate in the 454-

pyrosequencing, but were less abundant in the light microscopy analysis. In general, light 

microscopy and 454-pyrosequencing data coincided well in the relative abundance of diatoms 

and in the apportionment in pennate and centric diatoms. Differences just emerged after a 

taxonomical and closer affiliation. The reason for the discrepancy is probably based on the 

use of different indicative ‘markers’ within both approaches. In this respect, diatom 

characterization is delimited by features of the cell wall, which are not always visible under 

the use of light microscopy. One example comprise representatives of Pseudo-nitzschia that 

are difficult to recognize under the light microscope and demand the implementation of a 

scanning electron microscope (Morales et al. 2001). The use of 454-pyrosequencing is based 

on variances in the nucleotide sequence of the hypervariable V4 region. In this study, the V4 

region of most recovered diatom species correspond in the nucleotide sequence to 83-89 %. 

However, Fragillariopsis sp. and Pseudo-nitzschia sp. presented an identity proportion of ~99 

% which was higher than the threshold (97 %) used for OTU generation. Consequently, both 

species were not differentiated. Deviations for the centric diatom composition and proportion 

in contrast, are probably a result of different multiple rDNA copy numbers or PCR induced 

biases (Caron et al. 2004, Countway et al. 2005, Zhu et al. 2005). In this regard, Thalassiosira 

sp. presented the highest discrepancies between both approaches but was at the same time also 

characterized by a high rDNA copy number (Zhu et al. 2005). Nevertheless, the overall good 

accordance in diatom proportion suggests that 454-pyrosequencing might be suited to 

adequately reflect the natural protist composition. 
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Protist distribution over the size classes 

Numerous studies highlight the danger of cell breakage, squeezing of flexible cells through 

filter pores, and sloppy zooplankton feeding (Massana et al. 2004b, Romari & Vaulot 2004), 

leading to false interpretations of protist size distributions. Acknowledging this, we assessed 

the quality of the filtration procedure by comparing species, identified by 454-sequencing in 

the different size fractions, with the expected size of the species. This involved a detailed 

comparison of the phylotype composition in the three size classes (>10 µm, 10-3 µm, and 3-

0.4 µm) (Figure 3.2). In order to facilitate the illustration of the results, phylotypes were 

grouped according to their affiliation to major taxonomic groups (e.g. haptophytes, 

chlorophytes, cryptophytes, stramenopiles, dinoflagellates and ciliates) and to ubiquitous, 

multiple, and unique occurrences (Figure 3.3 and Table 3.6).  

In general, the contribution of the major taxonomic groups to the different size fractions was 

in good accordance with the size range, expected for a respective taxonomic group (Figure 

3.2). This finding supports the accuracy of the filtration process. Phylotypes, assigning to 

haptophytes, were observed in all size fractions. They were most abundant in the picoplankton 

fraction (3-0.4 µm), where they contributed 31 %. The contribution within the nano- and 

microplankton was less and decreased to a share of 17 % and 9 %, respectively. This is 

consistent with published data that report haptophyte species from all size fractions, such as 

Coccolithus pelagicus or Emiliania huxleyi. Both species are important contributors to the 

nano-plankton communities in North Atlantic Waters (Tyrrell & Taylor 1996, Cubillos et al. 

2012). Another important haptophyte, Phaeocystis pouchetii, in contrast, pass through a life 

cycle where the transition from one phase to another comprises small free-living cells of few 

microns in diameter, grouping to nanoplankton, as well as colonies displaying millimeters in 

diameter, grouping to microplankton (Rousseau et al. 2007). As we extended the maximum 

size definition of picoplankton from 2 to 3 µm, small free-living cells also grouped into the 

picoplanktonic fraction and led to a general high representation of the species in all size 

fractions. In this study, a phylotype that assigned to Phaeocystis pouchetii was ubiquitously 

observed in all three size classes. It contributed ~6 % of all sequence reads of the micro- and 

picoplankton fraction, while the contribution to the nanoplankton-fraction was ~14 % (Figure 

3.3 and Table 3.6).  

Unique haptophyte phylotypes were less abundant, whereas the highest proportions (~3 %) 

were recovered in the picoplankton fraction, affiliating to the genus Phaeocystis. Apart from 

Phaeocystis pouchetii, no other haptophyte was shared between the micro and picoplankton 

and just a small number between the nano and picoplankton. These observations suggest that 
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for haptophytes “carry-over” from a larger size fraction to a smaller size fraction is only a 

minor problem.  

Chlorophytes were mainly prominent in the picoplankton (19 %) and showed less percentage 

in the other size fractions (<0.5 %). This finding is in line with other observations that 

reported a predominance of chlorophytes in the picoplankton, with prominent representatives 

of the genera Bathycoccus, Ostreococcus, and Micromonas (Eikrem & Throndsen 1990, 

Throndsen & Kristiansen 1991, Rodriguez et al. 2005, Lovejoy et al. 2007). Ubiquitous 

chlorophytes consisted mainly of one phylotype (Micromonas pusilla) that accounted for ~6 

% in the picoplankton, but for <0.1 % in the bigger size fractions. Unique chlorophyte 

phylotypes were limited to the picoplankton and mostly characterized as Micromonas pusilla 

or Bathycoccus prasinos. Identical phylotypes, recovered in the micro- and picoplankton or in 

the nano- and picoplankton, respectively were scarcely observed. Chlorophytes almost 

exclusively occurred in the picoplankton, and the minute proportion of ubiquitous phylotypes 

in the micro-and nanoplankton suggests only a limited transfer of chlorophytes from the larger 

size fractions to the picoplankton fraction. We speculate that the occurrence of phylotypes 

that assigned to Mameliales in the microplankton could be induced by possible attachment of 

picoplankton on big size cells.   

Cryptophytes were the only group that presented no predominance in one of the size fractions, 

which is likely an artifact of limited sequence numbers. Representatives, such as Rhodomonas 

sp. or Cryptomonas sp., are mainly reported within the nanoplankton (Lafarga-De la Cruz et 

al. 2006). However, the almost absence of cryptophytes at HG4 facilitated no proper 

comparison of the three size classes, which is also reflected by missing ubiquitous and unique 

occurring phylotypes. In fact, no cryptophyte phylotype was observed that contributed to 

more than 1 % to the protist assemblage, regardless the size fraction.  

Stramenopiles displayed the highest contributions in the micro- (18 %) and picoplankton (15 

%). Stramenopiles consist of species that embrace a wide size range, including picoplankton 

species (e.g. Bolidomonas pacifica) as well as microplankton species (e.g. diatoms). 

Moreover, marine stramenopiles (MAST), a novel group, were observed to cover a wide size 

range, ranging from 2 to 20 µm (Lin et al. 2012). In regard to this, for the evaluation of the 

size fractionation, stramenopiles were subdivided into diatoms, MAST, and undefined 

stramenopiles. However, the percentages of ubiquitous phylotypes along the three groups 

were small, not exceeding 1.6 %. The proportion of unique phylotypes in contrast was higher. 

In this respect, picoplankton presented the highest share of (~8 %) within the undefined 

stramenopiles and of ~1 % within the MAST, while unique diatoms were primarily limited to 



 
Chapter 3  

58 
 

the microplankton.  Micro- and picoplankton shared just a few phylotypes within one of the 

three subgroups. The share between nano- and picoplankton was higher for MAST and 

undefined stramenopiles, but just composed of several phylotypes of low abundance (~0.1 %). 

The low abundance of ubiquitous and the higher abundance of unique phylotypes suggest that 

stramenopiles do not highly bias the picoplankton fraction but cover a wide cell size 

spectrum.   

Dinoflagellates constituted in all three cell size classes an important contributor of the protist 

assemblage. Maximum proportion of 71 % was found in the nanoplankton size class, followed 

by smaller shares of 34 and 31 % in the micro- and pico-cell-size-classes, respectively. 

Indeed, dinoflagellates were often reported to cover a wide cell size spectrum, including all 

three size fraction, whereas a particular predominance however, was observed in the nano- 

and microplankton size classes (Silva & Faust 1995, Levinsen et al. 1999). The life cycle of 

dinoflagellates (e.g. Gymnodiniales) results in the pass through of different cell stages of 

different cell sizes (Figueroa et al. 2008).  

For the more detailed tracing of phylotype distribution we further split the group up and 

distinguished between dinoflagellates and parasitic syndiniales. Ubiquitously abundant 

dinoflagellate phylotypes constituted almost half of the dinoflagellate assemblage in the 

nanoplankton, and just ~15 % for the micro-, and ~5 % for the picoplankton, respectively. On 

the contrary, the proportion of ubiquitous syndiniales phylotypes was much lower, ranging 

about ~7 % in all size classes, whereas half of the share in the picoplankton was attributed to 

four phylotypes. Size class restricted dinoflagellate phylotypes were mostly recovered in the 

nanoplankton (~9 %) and much less in the micro and picoplankton (~2 %). In contrast, unique 

syndiniales phylotypes were mainly recovered in the picoplankton fraction, where they were 

represented by a vast but low abundant diversity. Micro-and picoplankton dinoflagellates 

shared just a little number of identical phylotypes, while in contrast nano-and picoplankton 

shared a relatively high proportion. The same aspect was observed for syndiniales phylotypes 

in the nano-/picoplankton. However, some phylotypes were at least also found to be 

exclusively represented in the micro- and picoplankton. The presence of single dinoflagellate 

phylotypes in all size fractions could be either due to broad cell size ranges, including 

unknown small dinoflagellates or cell breakage or free dissolved DNA (Massana et al. 2004a). 

So far, the known minimal size of dinoflagellates and also ciliates is 5 to 10 µm (Massana 

2011).  

Overall, knowledge about picoplankton dinoflagellate representatives is limited and supposed 

to be mainly composed of parasitic syndiniales phylotypes (Guillou et al. 2008). Within this 
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study we confirmed this assumption by finding a high dominance of syndiniales phylotypes in 

the picoplankton fraction. The observation that syndiniales phylotypes were also recovered in 

the other size fractions suggests that either syndiniales microbes cover a bigger size spectrum 

than previously assumed or that syndiniales sequences observed in the micro- and 

nanoplankton size classes actually belong into the picoplankton fraction. In this case, the 

small parasitic syndiniales cells might be attached to bigger host cells throughout the filtration 

process and thus were recovered in the respective size fractions. Until today, syndiniales have 

been reported in a great variety of marine hosts, including dinoflagellates, radiolarians, 

ciliates, crabs, or copepod eggs (Groisillier et al. 2006). 

Ciliates were scarcely observed in the pico and nano size fraction (<2 %) but accounted for 37 

% in the microplankton community. Ciliates have been reported to mainly contribute to the 

microplankton in most studies. Representatives, such as Strombidium sp. or Strobilidium sp., 

covered cell sizes of >20 µm (Montagnes 1996, Quevedo & Anadon 2001). The dominance in 

the microplankton fraction was also confirmed by the primarily occurrence of ubiquitous 

phylotypes (~12 %) and the exclusively occurrence of unique phylotypes (~20 %) in the >10 

µm size fraction. These phylotypes were mainly characterized as tintinnids, whereas some 

were described in more detailed as Cymatocylis sp. No observation was made concerning a 

multiple occurrence of ciliate phylotypes in the nano- and picoplankton. However, we found a 

few phylotypes that were solely recovered in the micro- and picoplankton. As previously 

referred, ciliates are not assumed to contribute to the picoplankton size fraction. Some studies 

reported the presence of ciliates in picoplankton assemblages (Romari & Vaulot 2004, Medlin 

et al. 2006, Worden 2006, Cheung et al. 2008), which is indeed most likely an artifact of cell 

breakage, induced by the fragile nature, but finally does not entirely exclude the existence of 

undescribed pico-ciliates (Cheung et al. 2008). Nevertheless, the major contribution of ciliates 

in the microplankton (Perez et al. 2000) was in line with our data. 

In summary, the distribution of the major taxonomic groups over the three size classes was in 

good accordance with the accepted assumption of taxa size distribution and suggest a good 

representation of protist diversity by 454-pyrosequencing. Information on ubiquitous or 

multiple (nano-/picoplankton) represented phylotypes further served as an indication for 

filtration bias on the picoplankton fraction. However, we have to keep in mind that the 

presence of multiple cell stages during protist life cycles (e.g. dinoflagellates and Phaeocystis 

sp.) and the limited knowledge of real picoeukaryotic representatives hamper declarations on 

filtration bias. Nevertheless, the number of multiple occurring phylotypes and their proportion 

was generally low and just higher in case of dinoflagellates and haptophytes. Hence, our 
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results suggested on one hand, an adequate recovery by the 454-pyrosequencing and on the 

other hand, an adequate filtering procedure, where cell breakage did not greatly shape the 

protist fraction and where picoplankton composition in the following is not highly biased by 

bigger cell sizes. Moreover, we showed that small cells, such as syndiniales, have the 

potential to bias the nano and microplankton fraction.     

 

Picoplankton diversity 

On the basis of the preceded quality check of the filtration procedure we can presume a 

largely pure picoplankton fraction. The 454-pyrosequencing of the picoplankton resulted in an 

average read number of 8523 raw reads (Table 3.2). The analytical process of the 454-

pyrosequencing data includes surveillance of the sequence quality, which consists of the 

removal of small reads (<300 bp) to guarantee the investigation of the whole V4 region, a 

chimera check, a subsequent removal of singletons (OTUs represented but just one sequence) 

after the clustering, and the exclusion of non target reads (metazoans and fungi). The filtering 

removed about two third of the initial sequence number and left in average 2280 high quality 

reads for the picoplankton fraction, while the clustering resulted in ~220 OTUs (operational 

taxonomic units).  

All four stations presented different community structures within the smallest cell size 

fraction (3-0.4 µm). The distribution of the major taxonomic groups is presented in Figure 

3.4, while a more detailed overview of a selection of the abundant biosphere (≥1 % of total 

reads) is listed in Table 3.5. In fact, not all phylotypes could be taxonomically assigned in 

detail, whereas the problem accounted for the abundant and rare biosphere to the same extent. 

The taxonomical assignment of the consensus sequences was conducted by using a cutoff of 

80 % probability, whereas reads that presented a smaller percentage were excluded. However, 

this was generally uncommon. Most common was the task that the consensus sequences did 

not match to an analogous sequence in the database. In this respect, the consensus sequence 

was affiliated to the next higher nodal point in the phylogenetic tree. A schedule of the 

quantitative analysis of phylotype recovery in our reference database, which is in turn based 

on a selection of the SSU Ref 108 SILVA database, is presented in Table 3.4. In some 

occasions, several OTUs clustered within one reference species. This could be a result of 

different species strains or may suggest that different taxonomic groups require different 

diversity thresholds, because of diverse intraspecific variances. In this respect, a study on the 

intraspecific diversity of the dinoflagellate Alexandrium catenella revealed a high variance of 

0-2.9 % (Miranda et al. 2012), suggesting that other species may indeed comprise higher 
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discrepancies. In average, we were able to characterize 54 % of all picoplankton phylotypes at 

the four stations, which accounted for ~67 % in the picoplankton assemblages. In contrast, 46 

% of the phylotypes were not recovered in our reference database and thus not 

comprehensively characterized. However, these phylotypes accounted for ~33 % in the 

picoplankton assemblage. Dictyochophytes and most of the MAST and dinophytes phylotypes 

showed a good recovery, suggesting a good representation of these groups in our database, 

while syndiniales phylotypes showed the highest numbers of unrepresented phylotypes and 

thus were not sufficiently represented. The comparison of represented and unrepresented 

phylotypes shows that picoplankton diversity is basically not completely retrieved by our 

reference database. Public databases may contain more picoplankton sequences, however, 

these sequences are often deposited without taxonomic affiliation. Picoplankton 

characterization is a difficult task because the cells are difficult to bring in clonal culture, a 

prerequisite for the proper molecular characterization. However, some picoplankter will 

probably be unculturable and thus the possessing of the whole insitu diversity in culture is 

utopian (Massana 2011). By applying our pipeline we were able to reliably assign 

picoplankton sequences at least to higher taxonomic levels and to assess how they were 

organized in taxonomic units.   

 

Picoplankton communities and ecology at the four stations 

HG1 was located most east and showed lowest salinity, temperature, and no ice coverage. The 

freshwater supply of the Kongsfjord highly influenced the abiotic characteristics and finally 

resulted in an alteration of Atlantic Water properties. The picoplankton community at HG1 

was characterized by a very high contribution of chlorophytes (60 %), while other taxonomic 

groups (haptophytes, stramenopiles, and dinophytes) showed less, but almost equal 

percentages of 11 to 14 % (Figure 3.4). In this respect, haptophytes were mainly represented 

in the abundant biosphere by Phaeocystis pouchetii, stramenopiles by Bolidomas pacifica, and 

dinophytes by Prorocentrales 1 (Table 3.5). However, the abundant biosphere was strongly 

dominated by Micromonas pusilla. Micromonas was represented by two phylotypes, in which 

one (Micromonas pusilla 1) was particular dominant (45 %) and grouped to the cold adapted, 

arctic ecotype (CCMP2099) (Lovejoy et al. 2007). The other phylotype (Micromonas pusilla 

2), was less abundant (~2 %) and could not be affiliated to a particular ecotype. Bathycoccus 

prasinos was further an abundant contributor, accounting for 9 %. Prasinophytes are reported 

to contribute in high portions to picophytoplankton in marine waters (Not et al. 2004). The 

genus Micromonas was recently assigned to a new group, mamiellophytes (Marin & 
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Melkonian 2010) and thus does not belong to the prasinophytes anymore. The order 

Mamiellales consists of three characteristic representatives such as Ostreococcus tauri, 

Micromonas pusilla, and Bathycoccus prasinos (Eikrem & Throndsen 1990, Chretiennotdinet 

et al. 1995, Lovejoy et al. 2007), in which the latter two were predominant in this study. The 

dominance of Micromonas is in accordance with other studies that observed a more prevalent 

occurrence in Arctic stations than in Atlantic Water influenced stations (Not et al. 2005, 

Lovejoy et al. 2007, Brugel et al. 2009). Considering the dominance of Micromonas in Pacific 

Waters, showing lower salinity and temperature and the dominance of Micromonas sp. 1 at 

HG1, we suggest that the freshwater influenced the abiotic conditions, which favored the 

growth of the cold adapted phylotype. Another aspect that might have had a positive effect on 

the relative abundance of Micromonas at HG1 is the coastal influence. In this regard, a 

previous study, assessing the potential ecological niche portioning of three Micromonas 

pusilla lineages found particular high cell abundances in two lineages in coastal areas (Foulon 

et al. 2008).  

The northern station, HGN4, was characterized by a relatively warm temperature of ~6° C 

and a relative high salinity (35.1 PSU), and thus displayed general Atlantic Water properties 

that are characterized by an average temperature of 3.52°C and salinity of 34.7 PSU, 

respectively (Montgomery 1958). Moderate ice coverage of ~30-50 % led to a limited light 

penetration into the water column. HGN4 showed no abundance of Micromonas at all, but 

maximum shares of dinoflagellates (59 %). Stramenopiles and haptophytes both accounted for 

~15 %, whereas just the latter group was represented in the abundant biosphere by 

Phaeocystis pouchetii (~14 %). The maximum contribution was attributed to the 

dinoflagellate Dinophyte 1, accounting for about 22 %. Dinophytes cover a wide spectrum of 

nutritional strategies, including autotrophy, heterotrophy, and even mixotrophy. In this regard, 

about half of the species are heterotrophic and show no plastids, while the other half is 

characterized by the presence of plastids and can be autotrophic or mixotrophic (Gomez 

2012). The ice coverage at HGN4 probably suggests a predominance of heterotrophic or at 

least mixotrophic dinoflagellates.  

Dinoflagellates of small cell sizes have already been reported but thereby, the minimal cell 

size of e.g. Gyrodinium sp. ranged around 7 µm (Jakobsen & Hansen 1997) and hence 

grouped in the nanoplankton. Syndiniales are considered to be picoplankton dinoflagellates. 

However, because the order is assumed to be exclusively composed by parasitic organisms, 

that parasite inter alia on other dinoflagellates (Groisillier et al. 2006, Guillou et al. 2008) 

cells are often not included in dinoflagellate studies. Nevertheless, the knowledge of 
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picoeukaryotic diversity and in particular of dinoflagellates is scarce, and the existence of 

possible picoplankton representatives, excluding syndiniales, can be just speculative.  

The majority of dinoflagellate phylotypes at HGN4 grouped within the order of syndiniales, 

in which one half was represented by sequences in our database, while the other half was 

missing. In principle, syndiniales phylotypes were low abundant and just represented by four 

phylotypes in the abundant biosphere. Two of them were recovered at HGN4. Yet, the order 

syndiniales is supposed to be solely marine and to pass through picoplanktonic life stages 

(Yih & Coats 2000, Guillou et al. 2008). Since we found the highest percentages of 

syndiniales at stations that further presented the highest shares of dinoflagellates we highly 

suggest that recovered syndiniales phylotypes were mainly consistent of dinoflagellate 

parasites. Confirming, HG1 displaying the lowest proportion of dinoflagellates, showed in 

return no syndiniales phylotype within the abundant biosphere. 

HG4, the most westerly located sampling site, showed lower temperature but similar salinity 

and ice condition as previously measured at HGN4. The western station was dominated by 

haptophytes and dinophytes, both accounting for ~30 % of the total picoplankton assemblage. 

The high share of dinoflagellates again leads to the assumption that the ice coverage promoted 

the growth of heterotrophic microbes. However, dinoflagellates were not represented by 

abundant phylotypes as Dinophyte 1 or Prorocentrales 1, as observed at HGN4 and HG1, 

respectively but by a numerous quantity of rare phylotypes (<1 %). Chlorophytes and 

stramenopiles were less abundant, having 19 and 15 %, respectively. Stramenopiles were 

represented by Chrysophyte 1, Bolidomonas pacifica, and two MAST phylotypes, in which 

Bolidomonas (<2 µm) and MAST (<5 µm) are known to constitute typical picoplankton 

representatives (Guillou et al. 1999a,b, Massana et al. 2006, Lin et al. 2012). Overall, HG4 

showed smaller percentages of chlorophytes within the abundant biosphere, than HG1. In this 

regard, both phylotypes of Micromonas pusilla accounted together for 9 %, while 

Bathycoccus prasinos also presented a smaller contribution of about 5 %. The dominance of 

haptophytes relied on the abundant allotment of Phaeocystis pouchetii (28 %). Phaeocystis 

pouchetii was observed at all stations in abundant proportions, while the picoplankton size 

fraction is most likely represented by solitary, flagellate cells. In this regard, a dominance of 

such solitary cells and a minor proportion of colonial cells were found in spring/early summer 

close to Svalbard Islands (Wassmann et al. 2005). Moreover, Phaeocystis pouchetii was 

reported to contribute in high quantity to the spring bloom in the Atlantic sector of the Arctic 

Ocean and in the Barents Sea (Degerlund & Eilertsen 2010), whereas the predominance in the 

Barents Sea was inter alia associated with the high salinity of the Atlantic Water (Rat'kova & 
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Wassmann 2002, Reigstad et al. 2002). The dominance of Phaeocystis pouchetii at HG4 and 

HGS3 and the low share at HG1 in this study, also suggests the preference of the species to 

Atlantic Waters.  

The southern station, HGS3 was much alike HGN4 in temperature and salinity. However, the 

station was not ice covered. Here, dinophytes contributed (41 %) to the total picoplankton 

assemblage. Based on the high abundances of dinoflagellates at the ice influenced stations 

HGN4 and HG4, a survey of the previous ice situation at HGS3 was done with satellite 

images, retrieved by MODIS data (Spreen et al. 2008). However, the data showed that HGS3 

has been ice-free over the last two months. Hence, considering the high abundance of 

dinoflagellates at HGN4, HG4, and HGS3 we assume that the high percentages at HGN4 and 

HG4 were not solely attributed to the local ice concentration but probably also a result of 

picoplankton advection by the West-Spitzbergen Current (WSC) or natural spring to summer 

succession. The latter aspect, however, finally cannot be addresses because of the missing 

nutrient values. Picoplankton in this study was not exclusively dominated by the chlorophyte 

Micromonas pusilla, as for instance reported in the East Canadian Arctic (Lovejoy et al. 

2007), but also by dinoflagellates, probably heterotrophic, that constituted a dominant 

contributor in three out of four stations, profiting inter alia from unfavorable light conditions. 

The proportion of stramenopiles (14 %), haptophytes (26 %), and chlorophytes (14 %), 

further showed good analogies with HG4. In this regard, the abundant biosphere of HGS3 was 

as HG4 mainly characterized by Phaeocystis pouchetii and contributed to an analogous 

percentage of 25 %. Moreover, both stations presented similar proportions of Micromonas sp. 

1 (~6 %) and 2 (~2 %). The high similarity of picoplankton community structure at HGS3 and 

HG4, in addition to the fair similarity with HGN4 picoplankton assemblage, suggests a high 

influence of water mass (WSC). The change of picoplankton diversity and community 

structure across oceanographic barriers was also reported by Hamilton et al. (2008).  

In summary, most recovered species in this study were allocated to the picoplankton size 

class, which again points to a reliable fractionation during the filtration process. No metazoan 

or diatom phylotypes were found in the picoplankton dataset. The picoplankton community in 

the Eastern Fram Strait was dominated by chlorophytes such as Micromonas pusilla and 

haptophytes as Phaeocystis pouchetii. Further, high abundances of dinoflagellates in the 

picoplankton size class were found, suggesting that dinoflagellates, including syndiniales 

phylotypes, constitute another dominant picoplankton group, beside the chlorophyte 

Micromonas pusilla. The diversity of picoeukaryotes in the Eastern Fram Strait showed, a 

water mass related distribution which is in line with former studies (Lovejoy et al. 2002, 
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Hamilton et al. 2008).  

In this respect, picoplankton communities displayed higher resemblances at HG4, HGS3, and 

HGN4, while HG1 affected by different abiotic conditions, displayed variations in the 

community structure. Our finding that small variations in abiotic conditions (e.g. temperature 

and salinity) have the potential to affect picoplankton community structure implies that the 

size class will likely respond with community structure changes to prospective changes in 

abiotic factors. Nevertheless, big proportions of picoplankton sequences were not recovered in 

our reference database, but could be affiliated to taxonomic units at least. This implies that 

more high-throughput sequencing in different spatial and temporal scales has to be carried out 

on the picoplankton size class in order to close the concurrent gaps in our databases. In the 

course, the additional construction of clone libraries might shed light by facilitating a more 

precise insight of the genetic diversity. Moreover, further isolates of picoplankton cells for 

clonal cultures have to be done to investigate picoplankton not just on the diversity but also 

on the physiological basis.  
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Table 3.1. Coordinates and abiotic conditions at the sampling site, taken in a time slot of 7 

        days in July 2009. 

  

Station-ID Longitude 
°E 

Latitude 
°N 

Sampling depth 
[m] 

T 
[°C] 

S 
[PSU] 

Ice cover 
[%] 

HG1 (East) 6.102 79.134 15 1.9 34.4 0 
HG4 (West) 4.196 79.067 25 4.2 34.9 50 
HGN4 (North) 4.478 79.729 30 5.9 35.1 30-50 
HGS3 (South) 5.07 78.607 40 6.7 35 0 
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Table 3.2. 454-pyrosequencing data processing and phylotype (OTU) apportionment in the 

        abundant and rare biosphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 HGIV    HGI  HGN4  HGS3  
 0.4 µm  3 µm  10 µm  0.4 µm  0.4 µm  0.4 µm  
total sequences  9830  22326  27602  7539  7938  8786  
final sequences  2744  14031  5948  2533 2407  1438  
OTU numbers  301  1073  697  189  233 164  
abundant biosphere [≥1 %]  19  9  12  13  11  13  
rare biosphere [<1 %]  282  1064  685  176 222 151 
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Table 3.3. Diatom composition (cell counts) in the light microscopy and 454-pyrosequencing 

       (>10 µm) approach. 

 

 
light 

microscopy [%] 
454- 

pyrosequencing [%] 
pennate/ 
centric 

Fragilariopsis sp.  4.5 - p 
Pseudo-nitzschia spp.  1.7 4.2 p 
Chaetoceros sp.  0.02 - c 
Thalassiosira spp.  0.2 3.2 c 
Actinocyclus sp.  0.03 1.1 c 
other protists  93.7 91.6 - 
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Table 3.4. Quantitative comparison of represented and unrepresented picoplankton 

phylotypes in the sequence data bank. Represented phylotypes affiliate to a 

reference sequence in the phylogenetic tree, while unrepresented phylotypes 

affiliate to the next higher nodal point.   

 

  represented phylotypes new (unrepresented) phylotypes 
  HG1 HG4 HGN4 HGS3 HG1 HG4 HGN4 HGS3 
Stramenopiles:         
undef.Stramenopiles 2 4 4 3 3 3 3 2 
Diatoms 3 - 1 4 2 1 3 3 
MASTs 5 4 5 3 - 1 1 2 
Pelagophytes 1 - 1 1 3 1 - - 
Dictyochophytes 4 3 2 2 - - - - 
Chrysophytes 4 2 4 2 1 2 2 1 
Biosecophytes 1 1 - 1 - 1 - 1 
Coscinodiscophytes - - 1 - - - -  
Labyrinthulids - - 2 1 1 1 - 2 
Alveolates:         
undef. Alveolates 1 2 - - - 2 3 2 
Dinophytes 12 11 9 11 2 4 2 3 
Syndiniales 17 22 19 15 15 25 21 23 
Ciliates 1 2 1 1 2 - 1 1 
Chlorophytes 5 7 2 5 6 5 7 6 
Haptophytes 4 4 4 3 5 4 3 1 
Cryptophytes - 1 - - 4 4 1 2 
Rhodophytes - - 1 - 2 1 1 3 
undef. Eukaryotes 1 3 3 1 1 2 4 - 
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Table 3.5. Summary of the abundant biosphere (≥1 % of the total reads) along the four     

       sampled stations. Data are presented in percent [%].  

 

 HG1 HG4 HGN4 HGS3 
Stramenopiles:     
Chrysophyte 1 1.3 4.0 - - 
Marine Stramenopile (MAST) 1 - 1.2 - - 
MAST 3 - 1.2 - - 
Bolidomonas pacifica 3.1 1.3 - - 
Pelagophyte 1 - - - 1.9 
Alveolates:     
Dinophyte 1 - - 22.4 - 
Prorocentrales 1 4.1 - 2.1 - 
Gymnodiniales 1 - - - 1.5 
Gymnodiniales 2 - - 1.6 - 
Syndiniales 1 - 1.5 1.2 - 
Syndiniales 2 - 2.3 - - 
Syndiniales 3 - - 1.2 - 
Syndiniales 4 - - - 1.1 
Ciliate 1 2.7 1.9 1.3 - 
Ciliate 2 - 6.0 - - 
Haptophytes:     
Phaeocystis pouchetii 9.3 29.6 13.9 25.2 
Chlorophytes:     
Micromonas pusilla 1 45.0 6.2 - 6.3 
Micromonas pusilla 2 2.3 2.7 - 2.0 
Bathycoccus prasinos 9.5 5.4 1.3 3.0 
undefined Eukaryotes:     
undef. Eukaryote 1 - - 1.9 - 
undef. Eukaryote 2 - - 1.1 - 
undef. Eukaryote 3 - - - 2.2 
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Figure 3.1. Map of the investigation area: Deep-sea long-term observatory 

“HAUSGARTEN”, indicating sampling stations. 
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Figure 3.2. Distribution of the major taxonomic groups in the three size classes (>10 µm, 10-

         3 µm and 3-0.4 µm) at HG4, obtained by 454-pyrosequencing. 
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Figure 3.3. Detailed phylotype distribution in the three size-classes. A) ubiquitous, B) unique 

         and multiple occurrences: C) micro-/picoplankton and D) nano-/picoplankton. 
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Figure 3.4. Histogram of the major taxonomic group apportionment in the picoeukaryotic 

          fraction over the four sampling sites. 
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Table 3.6. Schedule of abundant phylotype (>1 %) distribution over the three size classes (>10 µm, 10-3 µm and 3-0.4 µm) and their taxonomic 

       affiliation in the NCBI data base (E-value= 0). Uc.= uncultured; * broad cell size range due to life cycles.  

Occurrence Description  10 µm 
[%] 

10-3 µm 
[%] 

3-0.4 µm 
[%] Accession max. 

identity general size division Sample-ID 

ub
iq

ui
to

us
 

Cymatocylis sp. 9.50 0.00 0.00 JQ924046.1 99 Microplankton ArkXXIV2_C721 
Dinoflagellate 0.40 1.00 0.30 AF290050.2 99 no information ArkXXIV2_C769 
Dinoflagellate 0.10 1.90 0.50 FJ431597.1 99 no information ArkXXIV2_C1791 
Gymnodiniales 10.80 32.70 2.90 FJ431812.1 99 Micro-/Nano-/Picoplankton* ArkXXIV2_C59 
Gymnodiniales 6.90 4.60 0.40 FJ431836.1 99 Micro-/Nano-/Picoplankton* ArkXXIV2_C571 
Gymnodiniales 3.20 4.80 0.60 JQ639761.1 98 Micro-/Nano-/Picoplankton* ArkXXIV2_C271 
Gymnodiniales 0.40 1.20 0.00 FJ431807.1 99 Micro-/Nano-/Picoplankton* ArkXXIV2_C1790 
Gymnodinium sp. 0.20 1.90 0.10 AF022196.1 99 Micro-/Nano-/Picoplankton* ArkXXIV2_C371 
Syndiniales 0.10 0.30 1.20 EU793554.1 99 Picoplankton ArkXXIV2_C58 
Syndiniales 0.10 0.00 2.00 FJ431860.1 97 Picoplankton ArkXXIV2_C1806 
Syndiniales 0.10 0.10 1.40 EU793772.1 94 Picoplankton ArkXXIV2_C309 
Phaeocystis pouchetii 6.30 12.50 6.10 AF182114.1 99 Micro-/Nano-/Picoplankton* ArkXXIV2_C180 
Bolidomonas sp. 0.20 1.20 0.40 HQ912557.1 99 Nano-/Picoplankton ArkXXIV2_C1362 
Micromonas pusilla 0.10 0.10 5.80 JF794057.1 99 Picoplankton ArkXXIV2_C38 

m
ul

tip
le

 

Tintinnopsis sp. 1.20 - 0.00 AB640670.1 98 Microplankton ArkXXIV2_C1375 
Cercozoa - 0.10 1.30 JF698748.1 99 Micro-/Nano-/Picoplankton ArkXXIV2_C966 
Alveolate - 0.00 3.10 HM561124.1 99 no information ArkXXIV2_C1349 
Stramenopile - 0.00 1.60 FJ431721.1 98 no information ArkXXIV2_C1159 
Micromonas pusilla - 0.10 2.80 AY954993.1 99 Picoplankton ArkXXIV2_C185 
Micromonas pusilla - 0.00 1.60 AY954993.1 98 Picoplankton ArkXXIV2_C186 
Phaeocystis pouchetii - 0.00 3.70 AF182114.1 98 Micro-/Nano-/Picoplankton* ArkXXIV2_C1909 
Phaeocystis pouchetii - 0.00 1.20 AF182114.1 98 Micro-/Nano-/Picoplankton* ArkXXIV2_C1729 
Uc. marine eukaryote - 0.00 1.70 HQ869207.1 98 no information ArkXXIV2_C1852 

http://www.ncbi.nlm.nih.gov/nucleotide/403314483?report=genbank&log$=nucltop&blast_rank=2&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/13447471?report=genbank&log$=nucltop&blast_rank=28&RID=BTDCRWMY01R
http://www.ncbi.nlm.nih.gov/nucleotide/222092095?report=genbank&log$=nucltop&blast_rank=2&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/222092310?report=genbank&log$=nucltop&blast_rank=97&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/222092334?report=genbank&log$=nucltop&blast_rank=9&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/387769010?report=genbank&log$=nucltop&blast_rank=28&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/222092305?report=genbank&log$=nucltop&blast_rank=1&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/2501978?report=genbank&log$=nucltop&blast_rank=11&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/190701705?report=genbank&log$=nucltop&blast_rank=3&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/222092358?report=genbank&log$=nucltop&blast_rank=24&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/190701923?report=genbank&log$=nucltop&blast_rank=25&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/15558929?report=genbank&log$=nucltop&blast_rank=3&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/329343386?report=genbank&log$=nucltop&blast_rank=7&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/337289617?report=genbank&log$=nucltop&blast_rank=14&RID=BT3P8TBE01R
http://www.ncbi.nlm.nih.gov/nucleotide/399152301?report=genbank&log$=nucltop&blast_rank=4&RID=BTCDAB7C01R
http://www.ncbi.nlm.nih.gov/nucleotide/329024847?report=genbank&log$=nucltop&blast_rank=3&RID=BTCARYBN014
http://www.ncbi.nlm.nih.gov/nucleotide/304441615?report=genbank&log$=nucltop&blast_rank=3&RID=BTCSCAKJ016
http://www.ncbi.nlm.nih.gov/nucleotide/222092219?report=genbank&log$=nucltop&blast_rank=27&RID=BTCNNTNZ016
http://www.ncbi.nlm.nih.gov/nucleotide/65427922?report=genbank&log$=nucltop&blast_rank=56&RID=BTCFKSAC01R
http://www.ncbi.nlm.nih.gov/nucleotide/65427922?report=genbank&log$=nucltop&blast_rank=58&RID=BTCHAGTV01R
http://www.ncbi.nlm.nih.gov/nucleotide/15558929?report=genbank&log$=nucltop&blast_rank=5&RID=BTCZXPCH016
http://www.ncbi.nlm.nih.gov/nucleotide/15558929?report=genbank&log$=nucltop&blast_rank=5&RID=BTCUYZ5H016
http://www.ncbi.nlm.nih.gov/nucleotide/373864277?report=genbank&log$=nucltop&blast_rank=1&RID=BTCXB5EA014
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Table 3.6. continued 

 

Occurrence Description ≥ 10 µm 
[%] 

10-3 µm 
[%] 

3-0.4 µm 
[%] Accession max. 

identity general size division Sample-ID 

un
iq

ue
 

Tintinnid 6.73 - - JX567398.1 99 Microplankton ArkXXIV2_C1302 
Cymatocylis sp. 3.27 - - JQ924046.1 98 Microplankton ArkXXIV2_C1802 
Cymatocylis sp. 1.64 - - JQ924046.1 99 Microplankton ArkXXIV2_C437 
Coccolithus sp. 1.02 - - AJ544117.1 99 Micro-/Nanoplankton ArkXXIV2_C843 
Uc. marine eukaryote 1.36 - - HM581790.1 95 no information ArkXXIV2_C439 
Phaeocystis pouchetii - - 1.38 AF182114.1 98 Micro-/Nano-/Picoplankton* ArkXXIV2_C756 
Micromonas pusilla - - 1.99 DQ025753.1 98 Picoplankton ArkXXIV2_C37 
Bathycoccus prasinos - - 3.05 FO082268.1 99 Picoplankton ArkXXIV2_C13 
Bathycoccus prasinos - - 4.02 FO082268.1 98 Picoplankton ArkXXIV2_C221 
Uc. marine eukaryote - - 1.41 HQ867227.1 99 no information ArkXXIV2_C1717 

http://www.ncbi.nlm.nih.gov/nucleotide/408690457?report=genbank&log$=nucltop&blast_rank=2&RID=BTPT78ZB016
http://www.ncbi.nlm.nih.gov/nucleotide/403314483?report=genbank&log$=nucltop&blast_rank=2&RID=BTPVNJP501R
http://www.ncbi.nlm.nih.gov/nucleotide/403314483?report=genbank&log$=nucltop&blast_rank=2&RID=BTPHTPCZ016
http://www.ncbi.nlm.nih.gov/nucleotide/32879327?report=genbank&log$=nucltop&blast_rank=1&RID=BTPPGSYA01R
http://www.ncbi.nlm.nih.gov/nucleotide/336318110?report=genbank&log$=nucltop&blast_rank=1&RID=BTPN1DTW01R
http://www.ncbi.nlm.nih.gov/nucleotide/15558929?report=genbank&log$=nucltop&blast_rank=5&RID=BTPER47U014
http://www.ncbi.nlm.nih.gov/nucleotide/63115360?report=genbank&log$=nucltop&blast_rank=26&RID=BTPCA5JX016
http://www.ncbi.nlm.nih.gov/nucleotide/392512965?report=genbank&log$=nucltop&blast_rank=1&RID=BTP52TN1016
http://www.ncbi.nlm.nih.gov/nucleotide/392512965?report=genbank&log$=nucltop&blast_rank=1&RID=BTP7G6UV01R
http://www.ncbi.nlm.nih.gov/nucleotide/373862297?report=genbank&log$=nucltop&blast_rank=1&RID=BTPGDTSK01R
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Abstract 

For the first time, diversity and distribution of the whole protist community (micro-, nano-, 

and picoeukaryotes) was analyzed comprehensively by using 454-pyrosequencing and high-

pressure liquid chromatography (HPLC), at five stations in the Western Fram Strait during 

summer 2010. Three stations (T1; T5; T7) were located in cold Arctic water with lower 

salinity (<33 PSU) and different extents of ice concentrations. One station (T6) was located in 

cold modified Atlantic water with intermediate salinity (~33 PSU) and high ice-

concentrations, and one station was located in warm Atlantic water with high salinity (~35 

PSU) and no ice-coverage at all (T9). General trends in community structure, according to 

prevailing environmental settings, observed with both methods coincide well. At two stations 

(T1 and T7), located in Arctic waters and characterized by lower ice concentrations, diatoms 

(Fragilariopsis sp., Porosira sp., Thalassiosira spp.) dominated the protist community. The 

third station in Arctic waters (T5) was ice-covered, but has been ice-free for ~4 weeks prior to 

sampling. At this station, dinoflagellates (Dinophyceae 1 and Woloszynskia sp.) were 

dominant, reflecting a post-bloom situation. In Atlantic waters, the protist communities were 

dominated by picoeukaryotes, e.g. Micromonas spp. irrespective of ice-concentration or 

temperature. Based on our results, 454-pyrosequencing has proven to be an adequate tool to 

provide comprehensive information on the composition of Arctic protist communities. 

Furthermore, we show that a few, but well-chosen samples can be sufficient to detect 

community structure patterns in a dynamic environment.  
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Introduction 

Global warming is transforming ecosystems on an extraordinary scale. Changes in the Arctic 

are more intense than in other regions, e.g. the Arctic Ocean has been facing a drastic 

decrease of sea ice cover during the past decades (IPCC 2007). The ongoing environmental 

change requires evaluations of its impact on pelagic systems. These impacts could include 

species expansions into new areas with more tolerable abiotic conditions, intermingling of 

formerly non-overlapping species or even species extinctions. All these events have in 

common that they cause changes of biodiversity and thus affect the marine ecosystems, as 

well as biogeochemical cycling in the Arctic (Wassmann et al. 2011).  

Marine phytoplankton forms the basis of the food-web and displays a major contributor to 

pelagic systems. The taxonomic composition as well as the biomass of phytoplankton 

influences the Arctic marine food-web, including its trophic interactions and the fluxes of 

essential nutrients into the euphotic zone (Falkowski et al. 1998, Wassmann et al. 2011). In 

this respect, a shift in the autotrophic community from a diatom to a flagellate-based system 

could result in less POC (particulate organic carbon) export to the benthos and enhanced 

recycling in the water column (Moran et al. 2012). In order to evaluate consequences of 

environmental change at the base of the Arctic food-web, it is necessary to gain information 

on the temporal dynamics of phytoplankton compositions and their variability in relation to 

changing environmental conditions (Wassmann et al. 2011). 

Phytoplankton occurs in a broad size spectrum, ranging from single cells with a size <0.5 µm 

to long chains of cells with sizes >200 µm. Within this broad size range, cells with a size of  

>20 µm are described as microplankton, those ranging from 2-20 µm are described as 

nanoplankton, while the term picoplankton describes cells in the size range from 0.2-2 µm 

(Sieburth et al. 1978). The size distribution has a big influence on the pelagic food-web and 

thus has the potential to affect the rate of POC export to deep water (Legendre & Le Fèvre 

1991). Larger phytoplankton cells from the microplankton produced seasonal blooms under 

specific hydrographic conditions (Legendre et al. 1993, Li 2002, Mei et al. 2002), and 

significantly contribute to carbon flux (Michaels & Silver 1988). Periods outside the 

microphytoplankton bloom can be dominated by small flagellates, e.g. picophytoplankton that 

also account during this time for a major part of the prevalent chlorophyll biomass (Rat'kova 

& Wassmann 2002, Gescher et al. 2008). Thus, picoeukaryotic cells are considered as 

fundamental component of marine ecosystems (Sherr & Sherr 2000). In the past, however, a 

common theory was that picoeukaryotes were recycled within the microbial loop in the upper 

water layers (Azam et al. 1983). This assumption changed recently after it was shown that 
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picoplankton was incorporated into large aggregates that were able to sink rapidly into deep 

water layers (Richardson & Jackson 2007, Tremblay et al. 2009).  

Hitherto, a number of publications described evaluations of the complex diversity of the 

protist assemblages. Studies have focused on either the microplankton fraction (Booth & 

Horner 1997, Tremblay et al. 2006, Hegseth & Sundfjord 2008) or on the small size fraction 

e.g. nano- and picoplankton (Diez et al. 2001, Lopez-Garcia et al. 2001, Moon-van der Staay 

et al. 2001, Lovejoy et al. 2006, 2007). To our knowledge, studies that include protists from 

all size classes are scarce and lacking. Based on the different impact of the respective size 

fractions on the marine ecosystem, information on the whole protist community structure is 

needed, because environmental changes are expected to cause shifts in size class. Recent 

investigations in the area of the North Atlantic indicate that rising temperatures promote a 

shift in the phytoplankton community towards small cells  (Daufresne et al. 2009, Moran et al. 

2010), suggesting a higher relevance of this size class and an urgent need to include those 

cells in phytoplankton studies. 

In the past, a considerable number of marine surveys took advantage on ribosomal sequence 

information, which contributed to broaden our understanding of phytoplankton diversity and 

community structure, including all size fractions (Medlin et al. 2006, Not et al. 2008). 

Cloning and sequencing of genes, coding for the small- or large subunit, is a widely applied 

approach to gain insight into protist phylogeny, diversity, and community structure. However, 

characterization of microbial communities by sequencing of ribosomal sequences is labor-, 

time-, and cost-intensive. Recently, the 454-sequencing high throughput approach allows to 

assess microbial communities with less effort, but high resolution based on sufficient deep 

taxon sampling (Margulies et al. 2005, Stoeck et al. 2010). 

In order to elucidate the impact of changing environmental factors on Arctic phytoplankton 

communities, sea ice dynamics, salinity, temperature, and currents need to be considered, as 

particularly eukaryotic picoplankton community structure in a marine habitat is strongly 

impacted by shifts in circulation patterns and changing hydrographic conditions (Greene & 

Pershing 2007). The variable hydrographical and sea ice conditions in the Fram Strait present 

an excellent observation area to analyze the polar eukaryotic phytoplankton communities in 

the presence of changing abiotic factors. With depths up to 5000 m, the Fram Strait represents 

the only deep connection between the central Arctic Ocean and the Nordic Seas (Rudels et al. 

2000, Fahrbach et al. 2001). The hydrography of the Fram Strait is characterized by the 

inflow of warm and saline Atlantic Water (AW), via the West-Spitzbergen Current (WSC), 

which constitutes the major heat advection towards the Arctic Ocean. In contrast, the East
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Greenland Current transports cold and less saline Polar Water (PW) out of the central Arctic 

Ocean along the east Greenland site. A significant amount of the AW recirculates directly in 

the Fram Strait, partly mixing with the colder water and also returning southwards (Rudels et 

al. 2005).  

Considering the sensitivity of the Arctic Ocean to global warming and the expected shift in 

protist size fraction, this study aims to provide information on the genetic diversity and the 

distribution of eukaryotic protists within the Fram Strait by taking advantage of new 

molecular methods that for the first time facilitate to analyze the whole size spectrum, 

detecting even small cell classes. By achieving this, the present work also relates the 

corresponding protist composition to prevailing environmental conditions for a better 

understanding of impacts from future changes in the Arctic Ocean. In this study, High 

Performance Liquid Chromatography (HPLC) was applied to provide information on the 

distribution of the main autotrophic phyla by using the CHEMTAX® program (Mackey et al. 

1996, Higgins et al. 2011). To complement and to provide more detailed information on the 

local protist diversity, the 454-pyrosequencing approach was used.  

 

Material and Methods 

Sampling area 

The sampling was performed during the ARK XXV/2 expedition aboard the RV Polarstern in 

July 2010, on a transect navigated from 11°58.362’ - 0°30.498’W longitude and at 78°50’ N 

latitude (Figure 3.1). Water samples were taken in the euphotic zone by collecting seawater 

with 12 l Niskin bottles deployed on a CTD (conductivity, temperature, depth system) (Table 

3.1). In total, five samples were taken in the upper 15 m water depth and used for further 

molecular analysis. The sampling sites covered diverse environmental conditions, such as 

difference in ice coverage, ice melt, salinity, and temperature. For subsequent filtration, 2 l 

water subsamples were transferred into polycarbonate bottles. Protist cells were collected by 

fractionated filtration, through Isopore Membran Filters (Millipore) with three different sizes 

(10 µm, 3 µm, and 0.4 µm) at 200 mbar low pressure. Finally, the filters were transferred into 

Eppendorf tubes and stored at -80°C until further processing. 

 

Chlorophyll a from satellite data 

In order to get an overview of the phytoplankton developmental stage during the 

investigation, the area-averaged chlorophyll a concentrations from remote sensing 

observations of the Moderate Resolution Imaging Spectrodiometer (MODIS), provided by
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the Goddard Earth Science Data and Information Services Center (GES DISC) (Acker & 

Leptoukh 2007), were depicted from the month of April through August 2010 (Figure 3.2).  

 

HPLC 

For HPLC-pigment analyses, 1-2 l seawater was filtered on GF/F filters, immediately frozen 

in liquid nitrogen, and stored at -80°C until further analysis in the laboratory. The pigment 

analysis was carried out taking advantage of a Waters HPLC-system. This system was 

equipped with an auto sampler (717 plus), a pump (600), a Photodiodearray detector (2996), a 

fluorescence detector (2475), and finally the EMPOWER software. The filters were 

homogenized for 20 sec with 50 µl internal standard (canthaxanthin), 1.5 ml acetone, and 

small glass beads in a Precellys® tissue homogenizer. Subsequently, a centrifugation was 

performed, in which the supernatant liquid was kept and filtered through a 0.2 µm PTFE filter 

(Rotilabo). An aliquot of 100 µl was transferred to the auto sampler (4°C), and mixed with 1 

M ammonium acetate solution (ratio: 1:1). Subsequently, the liquid was injected into the 

HPLC-system. The analysis of the pigments was conducted by reverse-phase HPLC, by the 

utilization of a VARIAN Microsorb-MV3 C8 column (4.6x100 mm), and a HPLC-grade 

solvent (Merck). The mixture of solvent A was built up of 70 % methanol and 30 % 1 M 

ammonium acetate whereas solvent B contained 100 % methanol (gradient modified after 

Barlow et al. 1997). Eluting pigments were detected by absorbance (440 nm), and 

fluorescence (Ex: 410 nm; Em: >600 nm). Retention times served to identify the pigments by 

comparing them with the retention times of pure algal extracts, and pure standards. To assure 

the identity of each pigment diode, array absorbance spectrum (390-750 nm) were compared 

with the library from the injected standards. Pigment concentration was quantified, based on 

the peak areas of external standards. Concentrations of external standards were 

spectrophotometrically determined using extinction coefficients of Bidigare (1991), and 

Jeffrey et al. (1997). A normalization of the pigment concentrations to the internal standard 

(canthaxanthin) was finally achieved to counteract possible bias by volume change and 

experimental losses. The taxonomic structure of the phytoplankton classes was calculated 

from marker pigment ratios using the CHEMTAX® program (Mackey et al. 1996). 

Microscopic examination of representative samples was used to identify the various taxa and 

to constrain the pigment ratio as suggested by (Higgins et al. 2011). The resulting 

phytoplankton group composition was expressed in chlorophyll a concentrations to determine 

their relative contribution to the total phytoplankton biomass.  
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DNA isolation 

DNA extraction was carried out with the E.Z.N.A TM SP Plant DNA Kit Dry Specimen 

Protocol (Omega Bio-Tek), following the manufacturer. To assure a maximum of DNA 

concentration, the elution step was adjusted by an additional transfer of the 60 µm eluted 

DNA solution into the binding column. 

 

Next Generation Sequencing 

For subsequent 454 sequencing, the V4 region of the 18S rRNA gene was amplified with the 

primer set 528F (GCG GTA ATT CCA GCT CCA A), and 1055R (ACG GCC ATG CAC 

CAC CAC CCA T) (Elwood et al. 1985). The PCR reaction mixture contained 1x 

HotMasterTaq buffer Mg2+ 2.5 mM (5’Prime), 0.4 U HotMaster Taq polymerase (5’Prime), 

10 mg/ml BSA, 10mM (each) dNTP (Eppendorf), 10 µM of each Primer, 1 µl of template 

DNA (~20 ng/µl) in a final volume of 20 µl. PCR amplification was carried out in a 

MasterCycler (Eppendorf) under the following conditions: first, an initial denaturation step at 

94°C for 3 min, succeeded by 35 cycles (denaturation at 94°C for 45 s, annealing at 55°C for 

1 min, extension at 72°C for 3 min), and followed by a final extension at 72°C for 10 min. 

The resulting PCR products were purified taking advantage of the Mini Elute PCR 

Purification Kit (QIAgen). The purified amplicon was sequenced by GATC Biotech GmbH 

(Germany) taking advantage of a 454 GS FLX sequencer (Roche).   

 

Data analysis of 454-pyrosequening 

Sequences, shorter than 300 bp were excluded from the analysis to guarantee further analysis 

of the whole V4 region. Chimeric sequences were detected using the chimera-detecting 

software  UCHIME 4.2 (Edgar et al. 2011), and excluded from further analysis. Operational 

taxonomic units (OTUs) were generated by aligning the remaining reads using the software 

package Lasergene Seqman Pro (DNAStar). A threshold of 97 %, and a match size of 50 bp 

was applied to minimize the danger of overestimating the diversity, and to allow a 

comparison of the current data set with other published data that used the 97 % similarity 

threshold (Kunin et al. 2010). All singletons (defined as an OTU composed of one single 

sequence, i.e. that only occurs once in the whole analysis) were removed to evade possible 

errors induced during the sequencing process. The consensus sequences of the OTUs were 

placed into a reference tree, build up by 1200 high-quality sequences, containing 

representatives of all main eukaryotic phyla. This involved the use of the pplacer software 1.0 

(Matsen et al. 2010). Sequences that affiliated with non-protist phyla in the tree were
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excluded from further analyses. The remaining reads were aligned with the SILVA aligner 

(Pruesse et al. 2007), and placed into the ARB SSU reference database tree containing around 

50 000 eukaryotic sequences (Ludwig et al. 2004). The 454-pyrosequencing sequences were 

deposited at GenBank`s Short Read Archive (SRA) under Accession No. SRA061498. 

 

Results 

Environmental characteristics 

The investigated transect in the Western Fram Strait was located in a hydrodynamic zone 

composed of two water masses that could be designated oceanographically (temperature and 

salinity) as the warm West Spitzbergen Current (WSC) in the East and the cold East 

Greenland Current (EGC) in the West (Figure 3.1). In the westerly section of the transect (T1 

to T7), the temperatures were around the freezing point ranging from -1.5 to 0.7°C. In the 

more eastern section of the transect the temperatures were higher and reached up to 4.9°C at 

T9. The salinity was lowest in the western section of the transect (30.7–32.8 PSU) and 

increased towards east. T6 showed higher salinity (>33 PSU) than T1, T5, and T7, however 

maximum salinity (34.2 PSU) was observed at T9. These data suggest that the stations T1, T5, 

and T7 were located in Arctic waters of the EGC and T6 and T9 were located in Atlantic 

water of the recirculating branch of the WSC.  

The ice conditions during the sampling period were not evenly distributed along the transect. 

A large polynya with patchy ice-coverage stretched out along the east Greenland coastline. 

This influenced three of the sampling sites (T1, T5, and T6) and resulted in variable ice 

coverages, in which the ice concentration was highest in the East (T6; 80 %) and declined 

towards the West (T1: 30 %) (Figure 3.1). In contrast, station T7 and T9 were virtually not ice 

covered. However, while T7 was directly located at the ice edge and thus still affected by the 

prevailing ice cover, T9 was located in moderate distance and served as an example for a 

sampling site, located in the open ocean with no ice coverage at all during the sampling 

period.   

 

Chlorophyll a biomass 

The area-averaged chlorophyll a concentrations obtained by remote sensing observations 

showed similar values over the whole transect, ranging around ~0.4 mg m-3 within our 

investigation period in July. Concerning the entire growth period in the area of the transect, a 

peak in biomass (chlorophyll a >1.5 mg m-3) was observed in June at the more eastern stations 

T6 and T9 (5°W-0°E). At the western stations, the chlorophyll a values remained low 
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throughout the whole growth season with an almost linear increase from April to August 

2010.  

 

Diversity analysis  

HPLC 

The results of the HPLC analysis are presented in Figure 3.3. To facilitate the comparison 

with the 454-pyrosequencing reads, the HPLC data set was adjusted by removing the 

chlorophyll a values originating from cyanobacteria. The residual pigment patterns were used 

to identify main phytoplankton divisions such as haptophytes, chlorophytes, cryptophytes, 

stramenopiles, and dinoflagellates. In summary, the majority of the samples were dominated 

by stramenopiles, dinoflagellates, and chlorophytes, while cryptophytes contributed less in the 

phytoplankton community, never exceeding 11 % (T9). The relative contribution of the three 

dominating groups to the phytoplankton community varied at the different sampling sites. 

Stramenopiles accounted for up to the half of the autotrophic assemblage at station T1 (50 %), 

T5 (54 %), and T7 (52 %), while they accounted to a lesser extent to the protist assemblages 

at the other two stations. With the exception of station T6, dinoflagellates were observed with 

a proportion of 20 to 43 % at all remaining sampling sites. The highest contribution of 

dinoflagellates was observed at the western station T5 (43 %). Chlorophytes exhibited the 

lowest proportion, counting for 4 % and 1 % at station T1 and T5, respectively. However, 

they displayed a high contribution at T6 (59 %) and were strongly represented at T9 (24 %).  

To achieve a better insight of the community shifts along the transect, each station was 

analyzed successively. Starting at the western station, T1, we found a community structure 

that was dominated by stramenopiles and dinoflagellates, accounting for 82 % of the total 

community. The residual fraction of 18 % was primarily composed by haptophytes (13 %), 

and some chlorophytes (4 %). A similar community structure was observed at T5, where 

stramenopiles and dinoflagellates cumulated abundance up to 97 %. At station T6, 

phytoplankton composition changed. Here, we observed a dominance of chlorophytes (59 %), 

a smaller proportion of stramenopiles (28 %), and an absence of dinoflagellates. In 

comparison to the other stations, cryptophytes (5 %) and haptophytes (7 %) accounted for a 

higher share to the protist community at T6 however, the overall contribution remained minor. 

At T7, one half of the protist community consisted of stramenopiles and the other half was 

composed by dinoflagellates (24 %), chlorophytes (15 %), and haptophytes (8 %). Finally, 

protist community composition was the most balanced in the open ocean reference station, 

T9. Haptophytes as well as chlorophytes constituted approximately a quarter of the total 
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assemblage, while dinoflagellates (20 %), stramenopiles (18 %), and cryptophytes (11 %) 

were sharing the remaining assemblage. 

 

454-pyrosequencing 

The sequencing of the five water samples resulted in 10141-44713 raw sequences. Quality 

filtering, including chimera check and removal of short reads (<300 bp), reduced the number 

of reads to 5706 (T6)–23034 (T9) quality checked sequences (Table 3.2). Subsequent 

clustering of the quality checked sequences resulted in 526 (T1)-1108 OTUs (T9) (Figure 

3.4). The OTUs were composed on one hand, of few OTUs that were represented by many 

reads (abundant taxa) and on the other hand, of many OTUs that were represented by just a 

few reads (rare taxa). 

A quantitative comparison of the abundant biosphere (>1 %) along the stations, didn’t reveal 

major differences in the OTU numbers. It ranged between a small spectrum of five OTUs at 

T5 to ten OTUs at T9. Both stations, presented a protist community that was dominated by 

stramenopiles (83 and 87 %), haptophytes (11 and 7 %), and dinoflagellates (~6 %). In 

contrast, major contributors to phytoplankton community at T6 and T9 were chlorophytes, 

consisting 72 % of the reads at T6 and 52 % at T9. The residual assemblage was composed of 

alveolates, of which ciliates presented a higher share than dinoflagellates. Ciliates contributed 

up to 15 % of the reads at T6, and 28 % of the reads at T9, while only 6 and 7 % of the reads 

were associated to dinoflagellates. In comparison to the previous stations (T1 and T7), 

haptophytes represented a small portion of 5 % (T6) and 8 % (T9) of the reads. Furthermore, 

stramenopiles contributed only for 1 % and 4 %, respectively to the whole protist community. 

T5 displayed a complete different protist composition. Dinoflagellates dominated the read 

assemblage with a proportion of 90 %, while haptophytes (2 %), stramenopiles (2 %), and 

ciliates (3 %) were less represented in the protist community. The qualitative species 

composition of the abundant biosphere (Table 3.3) was very similar at T1 and T7, but 

differences were observed for the quantitative composition of the protist communities. The 

portion of Phaeocystis sp. and Prorosira sp. was two-fold higher at T1 than at T7. The genus 

Thalassiosira was the most abundant in both stations, represented by four different 

phylotypes: Thalassiosira sp.1 dominated at T1 (23 %), but accounted for 7 % of the reads at 

station T7. The most abundant phylotype at T1 (9 %) and T7 (10 %) was assigned to 

Thalassiosira sp. 3. Furthermore, an OTU closely related to Gyrodinium sp. was also 

observed to account for similar proportions at T1 (3 %) and T7 (2 %). In contrast, 

Fragilariopsis sp. was present in the abundant biosphere of T1 (3 %), but contributed to the 
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rare biosphere at T7 (<1 %). The qualitative resemblance of the abundant biosphere of T6 and 

T9 was also much alike. In this respect, the protist community at T6 and T9 was dominated by 

chlorophytes that were represented by two phylotypes of the genus Micromonas, and one of 

the genus Bathycoccus. Bathycoccus sp. was in both stations a minor contributor (~2 %), 

while Micromonas accounted for 57 % (T6) and 41 % (T9) of the sequence reads. One 

phylotype, Micromonas sp. 1, contributed 90 % of the total OTUs, while the other one, 

Micromonas sp. 2, made only a small contribution to the protist assemblage. Phaeocystis sp. 

accounted for similar proportion of the protist community as previously observed at T1 and 

T7, by showing 3 % at T6 and 6 % at T9, respectively. OTUs assigned to dinoflagellates 

made only a minor contribution to the protist community at T6 (2 %) and T9 (3 %). 

Stramenopiles, e.g. diatoms, were neither present in the abundant biosphere at T6, nor at T9. 

Ciliates contributed to the abundant community at T9, but just one phylotype was shared with 

T6 (Ciliophora 1; 3 %). In summary, ciliates composed for 13 % at T9, in which the 

proportion of the single phylotypes ranged between 2 and 4 %. Station T5, showed a different 

picture of the protist community. The abundant biosphere of T5 was constituted exclusively 

by dinoflagellates, which were represented by five different phylotypes accounting for 74 % 

of the total reads. Two phylotypes, Dinophyceae 1 and Woloszynskia sp. contributed a higher 

proportion of the total read abundance (32 % and 27 %, respectively), while the residual 

phylotypes accounted for 1 to 9 %. The majority of phylotypes that were abundant in one of 

the stations could at least be found within the rare biosphere of one of the other stations. 

Exceptions were mainly restricted to station T1 and T7. 

 

Discussion 

The purpose of this study was to investigate protist assemblages in the physically complex 

environment of the Western Fram Strait, taking advantage of 454-pyrosequencing, in order to 

provide a baseline for similar future investigations in the fast changing Arctic Ocean. Prior to 

an interpretation of our results, in the light of the respective environmental conditions, we 

start the discussion with a comparison between the 454-pyrosequencing and the HPLC data. 

On one hand, we analyzed our samples with both techniques to proof the significance of using 

molecular tools in polar plankton ecology and on the other hand, to point out some pros and 

cons for the use of both methods, in combination, for assessments of plankton ecology.  

 

454-pyrosequencing and HPLC  

In the last years, nucleic acid based screening tools have experienced a rapid development,
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enabling deep taxon sequencing, which allowed the consideration of even the rare biosphere 

(Sogin et al. 2006). In this publication, 454-pyrosequencing was applied to analyze the 

genetic diversity of the whole protist size spectrum in the Western Fram Strait, while HPLC 

was used as an evaluation of the 454-pyrosequencing results. To our knowledge, an 

evaluation of 454-pyrosequencing data with an established pigment-based method like HPLC 

has not been exercised so far. The first thing to consider is that both methods rely on different 

markers, the 18S rDNA gene (Vaulot et al. 2008) and photosynthetic pigments (Wright et al. 

1991), respectively. Thus, 454-pyrosequencing detects all, autotrophic, mixotrophic, and 

heterotrophic protists, while the detection of protists with HPLC is restricted to autotrophic 

cells. Consequently, an appropriate evaluation of 454-pyrosequencing data with HPLC 

demands the consideration of these methodological differences. In this study, five samples 

from different locations in the Western Fram Strait were analyzed with both methods, which 

results give good agreement considering the main protist shifts. In this respect, the 

contribution of haptophytes and chlorophytes to the protist communities at the different 

sampling sites coincided well. Both taxa have mostly or exclusively (chlorophytes) 

autotrophic contributors (Baldauf 2008). Thus, HPLC and 454-pyrosequencing detect the 

same group of species (autotrophs) and consequently result in similar protist observations. 

Furthermore, HPLC and 454-pyrosequencing were in strong accordance for cryptophytes.  

Only two stations (T6 and T9) showed slight elevated numbers in the HPLC data. The main 

differences between the results of HPLC and 454-pyrosequencing sets were observed for the 

dinoflagellates and stramenopiles. In this case, particularly station T1, T5, and T7 were 

affected. In comparison to 454-pyrosequencing, HPLC is overestimating the proportion of 

dinoflagellates at T1 and T7, while the proportion is underestimated at T6. In contrast, 

stramenopiles are underestimated at T1 and T7, while they appear as overestimated at T6. If 

the proportions of dinoflagellates and stramenopiles are summed up, HPLC and 454-

pyrosequencing give similar relative amounts of the two taxa to the protist community. The 

underestimation of dinoflagellates at T6 could be explained by the fact that HPLC is limited 

on autotrophs, while 454-pyrosequencing also detects heterotrophic protists that are present in 

both taxa. Apart from that, HPLC has the tendency to underestimate the abundance of 

dinophytes, because a diatom marker pigment (fucoxanthin), has been reported to occur to 

some extent within several dinoflagellates, and may lead to an overestimation of diatoms 

(stramenopiles) (Irigoien et al. 2004). The critical point in retrieving a pigment based 

phytoplankton composition is the input ratio of the marker pigments (reviewed in: (Higgins et 

al. 2011)). In particular, dinoflagellates are in this regard underestimated (Higgins et al. 
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2011). Indeed, the effect of symbiosis may influence the interpretation of pigment signatures, 

as dinoflagellates have been reported with characteristics specific for chrysophytes (Jeffrey et 

al. 1975), haptophytes (Bjørnland and Liaaen-Jensen, 1989), and green algae (Watanabe et al. 

1987,  1990).  

In contrast, the presence of several copies of the rRNA operon that are not identical for the 

different protist taxa could explain the underestimation of dinoflagellates at T1 and T7 by 

454-pyrosequencing. Diatoms, and especially the genus Thalassiosira, were found to hold a 

high number of rRNA copies (Zhu et al. 2005). This effect is more essential for the big sized 

compared to the small sized cells, because latter have a smaller genome size and therefore 

limited rRNA copy numbers (Vaulot et al. 2008). As the cell size plays a critical role, diatoms 

could be overrepresented in case of the simultaneous presence of small dinoflagellates. 

In summary, based on the evaluation of HPLC data with autotrophic taxa, 454-

pyrosequencing proved to be a reliable molecular tool in polar plankton ecology that 

facilitates a profound overview of the whole protist assemblage, and a quick compass of 

community structure shifts, including information on the taxa involved. 

 

Protist distribution in an environmental context 

Future investigations of climate change consequences on the diversity and distribution of 

Arctic protist require first a characterization of the “standing stock” and the respective 

environmental factors, influencing geographical expansion (Lovejoy et al. 2007, Hamilton et 

al. 2008). A variety of different approaches is suitable to assess protist composition. Most of 

them are based on microscopic analysis. However, common light and epifluorescence 

microscopic approaches are not well suited for taxonomic characterization of the very small 

size classes, of partly nano- and mainly picoplankton. Picoeukaryotes are too small to be 

recognized, and informative morphological features to differentiate them from another one are 

missing (Massana & Pedrós-Alió 2008). Consequently, an investigation of this planktonic 

fraction requires the use of molecular methods, like 454-pyrosequencing, which is size 

independent. The present work is one of the first studies that took advantage of molecular 

methods to analyze the whole size range of protists in the hydrodynamic zone of the Western 

Fram Strait, including picoeukaryotic cells. 

The investigated transect passed through the confluence zone of the West Spitzbergen Current 

(WSC) and East Greenland Current (EGC). The study area comprised both Atlantic and Polar 

Water and was characterized by a dynamic sea ice condition. Our five stations were selected 

under the aspect of characteristic physical factors. In this respect, two stations were chosen in 
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the Atlantic Water, showing total ice coverage (T6) and no ice coverage (T9), and three were 

chosen in the EGC, situated in the marginal ice zone of east Greenland, showing moderate ice 

coverages (T1, T5, and T7). The latter water samples were all located in the upper water layer 

(15 m) of the same water mass. Since the ice condition can highly influence the biomass and 

the diversity of protists, a survey of the previous ice situation (four weeks) was done with 

satellite images, retrieved by MODIS data (Spreen et al. 2008). These satellite images showed 

a pack-ice tongue that had shifted over the geographical position of T5. Until then, T5 had 

been ice-free for at least six weeks before the surveys, while T1 and T7 showed high ice 

coverages that recently had started to melt. Chlorophyll a concentration, that also derived 

from the MODIS data, concur with our biomass measurements and showed at all five stations 

low Chl a concentrations, suggesting no bloom event during the sampling period. 

Stations T1 and T7 were dominated by centric diatoms that grouped into the genera 

Thalassiosira and Porosira and by a pennate diatom of the genus Fragilariopsis. All three 

genera have been previously reported in that area during main biomass increase (Booth & 

Smith 1997, vonQuillfeldt 1997). The similar abundant species composition at T1 and T7 is 

likely to be caused by the ongoing ice melt at both stations. In this respect, the ice may 

constitute a possible source of the abundant protists assemblage by releasing protist cells into 

the water column, as first reported by Garrison et al. (1987). Moreover, the formation of a 

stabilizing melt water lens facilitated the cells to persist for a longer period in the light 

exposed water surface. Another aspect might be the initial stock of protists at the sampling 

stations. Since both stations were located in the same water mass a similar source-population 

could have been prevalent. In fact, water masses were previously reported to be associated 

with the distribution of protist and even bacterial assemblages (Lovejoy et al. 2002, Galand et 

al. 2009).  

The third station (T5) was located in the same water mass but displayed in contrast, a 

completely different community that was exclusively dominated by dinoflagellates. As 

previously discussed, in certain species assemblages, 454-pyrosequencing might overestimate 

the dinoflagellates relative abundance. As a consequence, dinoflagellates could be less 

abundant, however, still dominant. In this respect, the most abundant phylotypes encountered 

were Dinophyceae 1, Woloszynskia sp., and Gyrodinium sp. These observations are in 

accordance with previous findings that report small forms of Gyrodinium spp. to be abundant 

during periods characterized by low phytoplankton biomass (Hansen 1991).  Furthermore, 

heterotrophic dinoflagellates are active phytoplankton grazers, and thus good indicators for 

post bloom events (Strom & Strom 1996, Levinsen et al. 2000, Poulsen & Reuss 2002). 
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Hence, the presence of many dinoflagellates might indicate a more advanced protist 

succession at T5, where the diatoms have already been grazed or sunk into deeper water 

layers. In retrospect, the ice conditions, in which T5 had been ice-free for a relatively long 

time, support our assumption. Beyond any doubt, the classification of abundant diatom or 

dinoflagellate sequences to the genus level was beneficial for these ecological interpretations. 

The benefit for ecological interpretation was also observed at the stations T6 and T9, located 

in Atlantic Water of the recirculating WSC. Even though T6 was ice-covered, while T9 was 

not ice-covered at all, both stations presented a similar protist community that was very 

different from the ones previously discussed and situated in the Polar Water. In the warmer, 

more saline Atlantic Water at both stations, picoeukaryotes such as Micromonas spp. and 

Bathycoccus sp. were found to be abundant. The most abundant phylotype, Micromonas sp. 1 

could be assigned to a Micromonas strain (CCMP 2099) already sampled in the Baffin Bay 

(Slapeta et al. 2006) as well as in the North Water Polynya between Ellesmere Island and 

Greenland (Lovejoy et al. 2007). Those studies identified in general five Micromonas clades 

(A-E), in which one (Ea) included exclusively Arctic phylotypes (Slapeta et al. 2006, Lovejoy 

et al. 2007). Micromonas sp. 1 is part of the Arctic Ea clade, that contains strains of 

Micromonas sp., growing faster under low light and low temperature (Lovejoy et al. 2007). 

The other abundant strain, Micromonas sp. 2, could not be assigned in detail, but resembled 

more the residual four identified clades A-C that contain strains with worldwide distributions 

(Slapeta et al. 2006), which might be an indication of Atlantic Water inflow.  

Ciliates were another dominant group at T6 and T9, showing higher diversity at T9. This 

group occurs in higher abundance in the presence of small-celled protists and in the open 

ocean (Hansen 1991, Nielsen & Kiorboe 1994). Although, we cannot make any statements on 

the prevalent nutrient conditions, which would finally approve the post bloom stage, we can 

refer to previous studies that analyzed the local nutrient concentration. These studies observed 

low and almost depleted nitrate concentrations apart from a limited protist biomass in late 

summer (Lara et al. 1994, Pesant et al. 1996, Booth & Smith 1997, Kattner & Budeus 1997). 

This supports our hypothesis of the post bloom stage at T6 and T9, and points to a shift from a 

productive to a regenerative system, which is composed of regenerated nutrients and mainly 

characterized by small size protists and an active microbial loop (Cushing 1989, Landry et al. 

1997, Falkowski et al. 1998). In this scenario, the recirculating West Spitzbergen Current 

could have transported the protist communities of stations T6 and T9, in which the higher ice 

coverage at T6 further constrained the autotrophic biomass.    
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In summary, the protist distribution observed on the transect in the Western Fram Strait could 

be particularly related to the previous and the prevailing ice coverage. The protist community 

in long-light exposed areas was composed mainly of dinoflagellates, while diatoms dominated 

in areas with ongoing sea ice melt and, finally picoeukaryotes (Micromonas) displayed 

highest abundances in highly ice-covered and open ocean areas. However, water mass 

characteristics such as salinity and temperature further influenced the community structure 

and supported a high abundance of small cells (Micromonas and Bathycoccus) in the warm 

and saline Atlantic Water. In conclusion, our data suggest that less ice coverage, higher 

temperatures, and higher salinity promote the abundance of picoeukaryotes. Our observations 

in combination with predictions of sea ice decline and increasing water temperatures in the 

Arctic, suggest that small picoeukaryotic cells might become more abundant and further 

distributed, if abiotic conditions in the Arctic Ocean become more favorable for them. This 

hypothesis is in agreement with other studies that predicted a shift towards smaller cells in the 

presence of higher water temperatures (Li et al. 2009). The molecular technique, 454-

pyrosequencing, proved to be a valuable and appropriate tool for retrieving protist community 

structure shifts, including all size fractions in a highly dynamic system like the Western Fram 

Strait. In this respect, this study has shown that a limited number of five samples with an 

appropriate preselection based on a set of distinct environmental conditions can be sufficient 

to interpret ecological features. 
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Table 3.1. Coordinates, chlorophyll a, and ice content of surface water samples along the 

         transect. 

 

 

Station-
ID CTD Date Longitude 

W 
Latitude 

N 
Sampling 
depth [m] 

Chl a 
[ng/l] 

Ice coverage 
[%] 

T1 237 23/07/2010 11°58.362‘ 78°50.418‘ 15 357 30 
T5 231 23/07/2010 8°0.361‘ 78°49.92‘ 5 368 40 

T6 223 22/07/2010 4°55.932‘ 78°50.088‘ 15 321 80 

T7 220 21/07/2010 3°53,688‘ 78°49.992‘ 5 1399 20 

T9 204 18/07/2010 0°30,498‘ 78°49.998‘ 15 692 0 
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Table 3.2. 454-pyrosequencing- Summary of the read quantities during the analysis process. 

 

 

 

 

 

 

 

 T1 T5 T6 T7 T9 

raw  reads number 44 713 18 163 10 141 38 126 36 691 

quality filtering 33 511 12 457 4435 26 522 13 657 

final reads number 11 202 17 125 5706 11 604 23 034 

OTU (threshold: 97 %) 526 795 531 745 1108 
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Table 3.3. Summary of the phylotypes representing the abundant biosphere (≥1 %), r refers to   

 the occurrence of the phylotype in the rare biosphere (<1 %). 

 

Phylotype T1 [%] T5 [%] T6 [%] T7 [%] T9 [%] 

Phaeocystis sp. 1177 10.5 r r 160 2.8 504 4.3 1336 5.8 

Micromonas sp. 1 r r r r 2936 51.5 r r 8680 37.7 

Micromonas sp. 2 r r r r 298 5.2 - - 839 3.6 

Bathycoccus sp. - - r r 117 2.1 - - 405 1.8 

Prorosira sp. 1239 11.1 r r r r 744 6.4 r r 

Thalassiosira sp. 1 2597 23.2 r r r r 828 7.1 r r 

Thalassiosira sp.  2 1134 10.1 r r r r 672 5.8 r r 

Thalassiosira sp. 3 957 8.8 r r r r 1134 9.8 r r 

Thalassiosira sp. 4 194 1.7 r r r r 132 1.1 r r 

Fragilariopsis sp. 284 2.5 r r - - r r r r 

Gyrodinium  sp. 323 2.9 1514 8.8 r r 248 2.1 345 1.5 

Dinophyceae 1 r r 5518 32.2 102 1.8 r r 603 2.6 

Woloszynskia sp. r r 4643 27.1 r r r r r r 

Dinophyceae 3 r r 864 5.0 r r r r r r 

Symbiodinium sp. r r 191 1.1 r r r r - - 

Ciliophora 1 r r r r 146 2.6 - - 477 2.1 

Ciliophora 2 r r r r r r r r 833 3.6 

Ciliophora 3 r r r r r r r r 604 2.6 

Ciliophora 4 - - r r r r r r 999 4.3 
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Figure 3.1. A) Map and ice coverage (MODIS) of the transect running from 11°58.362’ to 

         0°30.498’W longitude along 78°50’N latitude, taken in July 2010 (ARKXXV/2); 

         B) Temperature [°C] and salinity [PSU] profile. Water samples have been taken 

         within the chlorophyll maximum layer (exception: T1). 
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Figure 3.2. Seasonal development of area-averaged chlorophyll a concentration obtained by 

          remote sensing observations. Two different areas have been selected: 12°W - 

          4°W, 78°N - 80° N, solid line, representing the stations T1, T5, T7, and 5°W - 

          0°E, 78°N - 80° N, scattered line, representing T6 and T9, respectively. The    

          period of our investigation was in July. Concentrations are derived from MODIS 

          data. 
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Figure 3.3. Histogram of the main taxonomic groups in the surface water samples A) High 

         Performance Liquid Chromatography (HPLC) and B) 454-pyrosequencing. 
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Figure 3.4. Biomass, species richness (OTU number) and main protist groups along the 

decreasing ice concentration. A) biomass (chlorophyll a: Chl a ng/l), B) species 

richness (OTU number), C) chlororphytes [%], D) dinophytes [%] and E) 

diatoms [%]. T1, T5, and T7 are situated in cold and less saline polar water of 

the East Greenland Current, T6 and T9 belong to the warmer and saltier water of 

the recirculation branch of the West Spitzbergen Current. 
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Abstract 

In the Central Arctic Ocean surveys of the eukaryotic protist assemblage are scarce although 

they are the major primary producers. In late summer 2011, samples were collected, during 

the ARK XXVI/3 expedition of the RV Polarstern to study Arctic protist community 

structures, including the whole size fraction by implementation of ARISA and 454-

pyrosequencing. Protist assemblages were related to water masses and the environmental 

factors, temperature, salinity, ice coverage, nitrate, phosphate, and silicate. The diversity 

analysis was focused on the abundant (≥1 %) and rare biosphere (<1 %) to reveal mutual 

relationships. Dinoflagellates and chlorophytes (Micromonas sp. 1) were dominant at all 

stations. A relation between the protist community structure and water masses was highly 

supported by ARISA and partially by 454-pyrosequencing. However, sea ice showed a 

stronger influence on the local community structure than nutrients, making statements on the 

water mass influence more difficult. No significant correlation was found between the 

abundant and rare biosphere. However, relative contributions of major taxonomic groups 

revealed an unexpected stable community structure within the rare biosphere, indicating that 

this biosphere not only serves as a protist reservoir, but further provide these reservoirs in 

constant taxonomic relations. 
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Introduction 

Eukaryotic protists are the major primary producers in the Central Arctic Ocean and 

constitute the base of the Arctic marine food-web (Caron et al. 2012). The Arctic Ocean 

promotes the occurrence of species that are especially adapted to the harsh environment 

(Sakshaug & Slagstad 1991). Local conditions, such as multiyear ice vs. annual sea ice or 

limitations of light and/or nutrient have the potential to alter the phytoplankton composition 

(Li et al. 2009, Tremblay et al. 2009). In particular, small cells, defined as picoeukaryotes, 

(0.2-2.0 µm) benefit from the oligotrophic conditions in the Arctic Ocean because of higher 

rates of nutrient uptake (Hein et al. 1995) and reduced metabolic requirements (Grover 1991). 

Numerous studies already demonstrated the importance of picoeukaryotes in terms of 

biomass, production, and diversity (Li 1994, Diez et al. 2001, Lopez-Garcia et al. 2001, 

Moon-van der Staay et al. 2001, Worden et al. 2004, Lovejoy et al. 2006, 2007), particularly 

in oligotrophic habitats. Micro- (>20 µm) and nanoplanktonic (20-2 µm) fractions however, 

are also significant for the Arctic ecosystem because of their potential to build up high 

biomasses during bloom periods and their high relevance for the carbon and nutrient flux to 

the deep ocean (Tremblay et al. 1997, Brown & Landry 2001a, b, Le Borgne et al. 2002). 

Arctic surface waters are mainly sourced by Atlantic Water (AW), entering through Fram 

Strait and Barents Sea, and Pacific Water (PW), entering through Bering Strait (Rudels et al. 

1991, Jones et al. 1998). Both water masses are characterized by specific nutrient signatures. 

The Arctic surface water is often nutrient limited because of a strong vertical stratification 

that impedes an upward supply from deeper water layers (Tremblay et al. 2009) and 

consequently restrains the inhabiting protist community. Different water masses have already 

been reported to host different protist assemblages (Lovejoy et al. 2002), nevertheless, so far 

no molecular study has been carried out in the Central Arctic Ocean.   

Sea ice retreat, thinning of multiyear ice or even a replacement of multiyear ice by annual sea 

ice (Stroeve et al. 2007) constitute environmental conditions that strongly influence the light 

regime in the Arctic surface water. Since autotrophic protists are dependent on a good light 

and nutrient regime for photosynthesis, the prevailing limitations lead to the general 

description of the Arctic Ocean as a region of low phytoplankton productivity (15 g C m-2yr-1) 

(Gosselin et al. 1997), where the timing of primary production is more affected by light 

irradiance, whereas the new production is more determined by nutrient supply (Carmack et al. 

2006). 

In principal, studies regarding the diversity and biogeography of microbial eukaryotic 

plankton are scarce for the Central Arctic Ocean because of the limited accessibility. Thus, 
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investigations of eukaryotic protist communities are patchy with only little spatio-temporal 

resolution. Moreover, protist communities in those areas have not been analyzed consistently, 

due to the application of different tools. Most previous investigations were based on 

microscopy or flow cytometry. However, these methods are limited in respect to 

comprehensive assessments of the whole phytoplankton community. Microscopy is well 

suited for species specific analyses of the microplankton fraction, but microscopy of the nano- 

and picoplankton fraction is challenging because of the small sizes and insufficient 

morphological features. In contrast, molecular methods, such as molecular fingerprinting 

techniques like ARISA (automated ribosomal intergenic spacer analysis) and 454-

pyrosequencing, are independent of size and morphological features because of their focus on 

length and sequence heterogeneity (Caron et al. 2012). Thus, they include all size fractions in 

surveys of protist communities. Previous studies have shown the power of ribosomal genes 

(rRNA-genes) analysis for comprehensive protists assessments (Ebenezer et al. 2012). Genes, 

coding for the rRNA are particularly well suited for molecular investigations of microbial 

diversity. The ubiquitous presence in eukaryotic organisms and the low evolutionary rate 

make the 18S rDNA a good marker (Amann & Kuhl 1998, Vaulot et al. 2008). Molecular 

fingerprints, as ARISA, have frequently been used for quick comparisons of microbial 

communities and bases on the comparison of the specific fragment lengths of the intergenic 

spacer region (ITS), localized between the 18S rDNA and 28S rDNA (Caron et al. 2012). 

However, most studies, taking advantage of ARISA, focused on the investigation of 

prokaryotes (Smith et al. 2010) while in our study the method was applied for a primary 

screening of eukaryotes. 

454-pyrosequencing allows assessing microbial communities with less effort, but with high 

resolution based on sufficient deep taxon sampling (Margulies et al. 2005, Stoeck et al. 2010). 

This new approach allows including the rare biosphere in investigations of microbial 

communities, which has been previously missed by the classical approaches (Sogin et al. 

2006). The rare biosphere contains most of the protist diversity (Pedrós-Alió 2006) and is 

suggested to play a key role in ecological buffering (Caron & Countway 2009, Caron et al. 

2012). However, the vast majority of rare phylotypes (bacteria) was never detected to become 

abundant so far (Galand et al. 2009a, Kirchman et al. 2010) and information about 

distribution and influence of abiotic parameters remains scarce.  

Considering the ongoing changes in the Arctic Ocean by global warming and its implications, 

it is crucial to understand the joint role of environmental factors on the protist distribution and 

to provide detailed data on the prevalent taxa. Hence, the objective of this study is to address 
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the questions: (i) Are water masses in the Central Arctic Ocean characterized by distinct 

protist communities? (ii) Is ice-concentration a driving factor that shapes the protist 

community in the water column? (iii) What is the contribution of the rare biosphere to the 

protist communities in the Central Arctic Ocean?  

 

Material and Methods 

Study area and sampling program 

The samples were collected from 5 August to 7 October 2011 during the ARK XXVI/3 

expedition of the RV Polarstern to the Central Arctic Ocean (Figure 3.1). Twenty-four 

stations were sampled for the determination of the local protist community structure as well as 

for temperature, salinity (S), chlorophyll a (Chl a), and nutrients (Table 3.1). Meltpond 

quantity, floe size, ice concentration, ice thickness, and snow thickness were further 

categorized to assess the light penetrability (doi:10.1594/PANGEA.803312). Ice thickness 

was embraced in first year ice category I (0.3-0.7 m), II (0.7-1.2 m), III (>1.2 m), and 

multiyear ice (>2 m).  

Water samples have been taken in the upper water layer (1-200 m) by a rosette sampler 

equipped with 24 Niskin bottles and a CTD probe. Two l subsamples were taken in PVC 

bottles and filtered on GF/F (Whatman) filters for the chl a and on Isopore Membran Filters 

(Millipore) for the eukaryotic protist determination. Protist cells were collected by 

fractionated filtration through three different sizes (10 µm, 3 µm, 0.4 µm) at 200 mbar. The 

fractionated filtration facilitates a separated amplification in the subsequent PCR step and thus 

minimizes the danger of under-amplifying picoeukaryotes, due to the limited gene copy 

number. Filters were stored in Eppendorf tubes at -80°C until further processing. The samples 

were subjected to ARISA analysis for a quick community structure overview and a subset of 

eight samples was analyzed by 454-pyrosequencing for a more comprehensive diversity 

insight.  



Measurement of chlorophyll a and dissolved inorganic nutrients 

Chlorophyll a concentrations were determined by filtering 0.5-2 l of seawater through 

Whatman GF/F glass fibre filters and stored at -20°C. The filters were extracted in 90 % 

acetone and analyzed with a Turner-Design fluorometer according the method described in 

Edler (1979) and Evans & O'Reily (1983). Calibration of the fluorometer was carried out with 

standard solutions of chlorophyll a (Sigma, Germany). To quantify the concentration of 

dissolved inorganic nutrients (nitrate, nitrite, ammonium, phosphate, silicate) samples were 
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measured directly on board and analyzed according to standard methods (Kattner & Becker 

1991, Kerouel & Aminot 1997) with a nutrient analyzer (Evolution III, Alliance Instruments).  

 

DNA isolation 

DNA extraction was carried out with E.Z.N.A TM SP Plant DNA Kit Dry Specimen Protocol 

(Omega Bio-Tek, USA) following the manufacturer’s protocol. Subsequently, the extracts 

were stored at -20°C until analysis. A NanoDrop 1000 (Thermo Fisher Scientific, USA) was 

used to measure the isolated DNA concentration. 

 

 ARISA (Automated Ribosomal Intergenic Spacer Analysis) 

Initially, identical DNA volumes of each size class (10 µm, 3 µm, and 0.4 µm) of each sample 

were pooled. The amplification of the eukaryotic ITS region from the protist samples was 

carried out with the fluorescently (dye 6-FAM; 6-Carboxyfluorescein) labeled primer, 1528F 

(GTA GGT GAA CCT GCA GAA GGA TCA), modified after Medlin et al. (1988) and the 

primer ITS 2 (GCT GCG TTC TTC ATC GAT GC) (White 1990). The PCR reaction mixture 

contained 1 x HotMasterTaq buffer Mg2+ 2.5 mM (5’Prime, USA), 0.4 U HotMaster Taq 

polymerase (5’Prime, USA), 10 mg/ml BSA, 10 mM (each) dNTP (Eppendorf, Germany), 10 

µM each Primer, 1 µl of template DNA (~20 ng/µl) in a final volume of 20 µl. The PCR 

amplification was carried out in a MasterCycler (Eppendorf, Germany) under the following 

conditions: first an initial denaturation step for 3 min at 94°C succeeded by 35 cycles 

(denaturation at 94°C for 45 s, annealing at 55°C for 1 min, extension at 72°C for 3 min) and 

followed by a final extension at 72°C for 10 min. The PCR reaction in the analysis was 

carried out in triplicate for each of the samples. Finally, the size of the PCR fragments was 

determined by capillary electrophoresis with an ABI 310 Prism Genetic Analyzer (Applied 

Biosystems, USA). 

 

Data processing of ARISA 

The analysis of the electropherograms was carried out with the GeneMapper v4.0 software 

(Applied Biosystems, USA). To exclude fragments originating from primers or primer 

dimmers a threshold of 50 bp for peaks was applied.  

A binning was carried out in R (Ramette, 2009; R Development Core Team, 2008). The 

resulting data were converted to a presence/absence matrix. Differences in the phytoplankton 

community structure represented by differences in the respective ARISA profiles were 

determined by calculating the Jaccard index with an ordination of 10000 restarts under the 
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implementation of the R package Vegan (Oksanen 2011). MetaMDS plots were calculated 

and possible clusters were identified using the hclust function of the same R package. An 

ANOSIM was conducted to test the significance of the clustering, while a Mantel test (10000 

permutations) was used to test the correlation of the protist community structure distance 

matrix and the environmental distance matrix. For the Mantel test and for the subsequently 

performed PCA the ade4 R package was applied (Dray & Dufour 2007). 

 

Next Generation Sequencing 

For subsequent 454-pyrosequencing, the V4 region of the 18S rDNA was amplified with the 

primer set 528F (GCG GTA ATT CCA GCT CCA A) and 1055R (ACG GCC ATG CAC 

CAC CAC CCA T) (Elwood et al. 1985). In total, eight samples were analyzed (Table 3.2). 

The PCR was carried out according to the PCR protocol for ARISA. The resulting PCR 

products were purified with the Mini Elute PCR Purification Kit (QIAgen, Germany) and sent 

to GATC Biotech AG (Germany) where the final pyrosequencing was conducted with a 454 

Genome Sequencer FLX system (Roche, Germany).   

 

Quality control and data processing of 454-pyrosequening 

Sequences with a length less than 300 bp were excluded from the analysis to guarantee the 

analysis of the whole V4 region. Furthermore, sequences with a length longer than the 

amplified fragment (~670 bp) were removed as well. Chimeras were detected by the use of 

the chimera-detecting software, UCHIME 4.2.40 (Edgar et al. 2011) and also excluded. 

Artificial operational taxonomic units (OTUs) were generated, aligning the remaining high 

quality reads using the software package Lasergene 10 Seqman Pro (DNAStar, USA). A 

threshold of 97 % was applied to minimize the danger of overestimating the diversity. The 

application of the 97 % similarity threshold further insures a comparison of our data set with 

previously published data, using the same threshold. Moreover, it has been shown that the 97 

% threshold is capable of removing most of the sequencing errors (Kunin et al. 2010) and 

displaying the original protist diversity (Behnke et al. 2011). All singletons, defined as an 

OTU composed of one single sequence that only occurs once in the whole analysis, were 

removed to evade possible errors induced by the assembly of the sequencing progress. The 

consensus sequences were placed into a reference tree based on 1200 high-quality sequences 

containing representatives of proxys of all main eukaryotic phyla, originating from the SSU 

Ref 108 SILVA database. This involved the use of the pplacer 1.0 software (Matsen et al. 

2010). Sequences that affiliated with non protist phyla in the tree under a threshold of 99 % 
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were excluded from further analyses. The remaining reads were aligned with the SILVA 

aligner (Pruesse et al. 2007) and placed into the ARB reference database tree containing 

around 50000 eukaryotic sequences (Ludwig et al. 2004). Based on the limited sequence 

length obtained by 454-pyrosequencing, we identified phylotypes to the genus but not to the 

species level. Multiple phylotypes that clustered to the same genus but differed in at least 3 % 

were numbered. Rarefaction curves were calculated using the freeware program Analytic 

Rarefaction 1.3.  

 

Results 

Physical and chemical environment 

Twenty-four stations were sampled in the Central Arctic Ocean representing four regions with 

different water masses: Atlantic Water (AW), Mixed Water I (MWI), Pacific Water (PW), 

and Mixed Water II (MWII) (Table 3.1). Based on the combination of temperature, salinity, 

and nutrients, stations 202 to 218 were allocated to the AW, stations 220 to 227 to the MWI, 

stations 233 to 250 to the PW, and stations 257 to 290 to MWII. AW stations were on average 

characterized by lowest temperature (~ -1.69°C), highest salinity (~32.95), nitrate (2.99 µM), 

and silicate (~5.65 µM), while stations in the PW mass displayed lower salinity (~30.51), 

nitrate (~1.33 µM), and silicate (~4.45 µM). Properties of the MWI were in between the ones 

of the AW and PW or similar to either of them, whereas the MWII displayed a clearer 

classification and was characterized by lowest salinity (30.29), nitrate (~0.48 µM), silicate 

(~3.09 µM), but highest temperature (~ -0.16°C). 

The ice concentration was at least 70 % at the stations in AW, MWI, PW and at half of the 

stations located in MWII.  At one station in MWII the ice concentration was ~10 % and three 

stations were ice-free. The ice-thickness in the area of AW and MWI was 1.2–2 m at the 

majority of stations. In contrast, in the area of PW and MWII the ice-thickness was less than 

1.2 m at most of the stations. The floe size in AW and PW was >100 m at most of the stations, 

while the flow size at stations located in MWI and MWII was mostly <100 m. High numbers 

of meltponds were observed in the AW (~50 %) and MWI (~40 %). The number declined 

towards the last Pacific stations and was further reduced in the MWII. 

The chlorophyll a (chl a) concentrations were generally low (0.04–0.85 µg/l) and appeared 

not always as a distinct peak. The highest mean concentration of chl a was observed in MWII 

(~0.36 µg/l), while the concentrations in AW (~0.19 µg/l) and MWI (~0.18 µg/l) were 

significantly lower and lowest in PW (~0.08 µg/l).  
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ARISA 

Twenty-three stations were used for the ARISA, including one station (222) with two depths, 

to control the applicability of the method. The analysis resulted in 260 different fragments of 

the ribosomal ITS-region that ranged between 50 to 444 bp in size. The average fragment 

number in a sample was 76, in which the maximum number (444) was found at station 239 

(PW) and the minimum (50) at station 202 (AW). In total, 54 fragments were unique, 

occurring just once in the analysis, while four fragments were ubiquitously found in all 

samples. The similarity between the ARISA profiles of all samples was calculated by the 

Jaccard index and presented in a metaMDS plot (Figure 3.2a).  

Subsequent to an à priori grouping the samples segregated into five different clusters (A-E), 

in which some were located in proximity. An ANOSIM analysis to test the significance of à 

priori grouping resulted in an R-value of 0.44 and p-value of 0.001, suggesting significant 

differences between the groups. Cluster A included samples that originated from the AW 

(205-218) and from the MWI (220-227) water mass. Cluster B consisted of just one AW 

sample (202) that presented a highly different ARISA profile and hence was considered as an 

outlier. Cluster C included exclusively samples from PW, while the Cluster D (257 to 276) 

and Cluster E (280 and 285) contained samples from MWII.  

The clustering was in good accordance with the water mass properties at the sampling 

stations. In the PCA (Figure 3.2b) the à priori clusters were together with their correlations 

with the abiotic factors (temperature (T), ice thickness (it), floe size (fl), nitrate (NO3), 

phosphate (PO4), and silicate (Si)). The physical factors (T, it and fl) explained most of the 

differences in the protist community structures, while the impact of salinity and nutrients was 

limited. Cluster D and E were separated from the other clusters by lower nutrient 

concentrations and the majority of samples in cluster C originated from locations with lower 

nutrient concentrations. However, cluster A and B contained samples from stations with 

significant differences in nutrient concentrations, even though the protist communities were 

highly similar.  

 

454-pyrosequencing 

A subset of eight samples was chosen for a detailed analysis of the protist composition based 

on the ARISA results. Each water mass was represented by two samples and each cluster by 

at least one sample. In total, 454-pyrosequencing resulted in an average of 42366 raw reads 

per sample. Quality filtering left on average 21585 high quality reads that clustered in 156 

(sample 202) to 3372 (sample 245) OTU’s. The rarefaction curve (Figure 3.3) presents the 
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local species richness that was yielded by the pyrosequencing and serves as a reference of the 

covered diversity in the samples. The curves show no saturation, suggesting that the diversity 

was not completely covered at all stations, regardless of the final read number. However, the 

curve of station 245 was close to the plateau phase while station 202 and 218 already ended in 

the early slope phase.  

 

Diversity of the whole and abundant biosphere  

The relative abundance of the major taxonomic groups is presented in Figure 3.4. The 

variability in the protist composition was assessed by calculating the standard deviation of the 

different taxon contributions. The whole (A) and the abundant (C) biosphere showed a high 

similarity in the taxonomical apportionment which was around  9 % for haptophytes, 15 % for 

chlorophytes, 2 % for cryptophytes, 1 % for rhodophytes, 7 % for stramenopiles, 15 % for 

dinoflagellates, and 3 % for ciliates.  

Alveolates were the prominent taxonomic group at all stations except of 272. Dinoflagellates 

were far more abundant than ciliates and contributed between 41 and 62 % to the protist 

community, in which the abundant biosphere was well represented with a minimum share of 8 

% (MWII; 272) and a maximum share of 49 % (AW; 212). Ciliates never exceeded 10 % of 

the protist community and were in general not found within the abundant biosphere. 

Chlorophytes presented high read abundances at all sampling sites with highest proportions in 

the MWII (272; 44 %) and in the AW (202; 43 %), which were almost exclusively composed 

of abundant phylotypes. The proportions of chlorophytes at the other stations varied around 

~3-15 %. The so far observed high analogy of both biospheres did not apply to the 

stramenopiles. In this regard, the share of the whole biosphere ranged between 2-13 %, with 

two maxima of ~20 % (227 and 280), while the abundant biosphere showed no stramenopiles 

in the AW and at station 272 in the MWII. Similarly, cryptophytes and rhodophytes 

contribution to the whole biosphere (maximum: 212 (~5 %)) were not reflected by the 

abundant biosphere which presented rhodophytes in just two (212 and 280; ~1 %) and 

cryptophytes in just one station (212; 3 %). Haptophytes, in turn, again coincided well in both 

biospheres, having a minimum at 212 (~0 %) and a maximum at 272 (~26 %).  

In detail, the abundant biosphere counted in total 39 phylotypes at eight stations. The AW 

(202 and 212) showed the smallest diversity with seven phylotypes and the highest number of 

21 to 22 missing phylotypes. In the MWI (218 and 227), the diversity increased to 10 and 11 

phylotypes, whereas the number of missing abundant phylotypes decreased to 11 phylotypes. 

PW (235 and 245) showed a similar diversity as the MWI, with 10 and 12 phylotypes. The 
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amount of absent phylotypes further decreased from six to three at station 245. The diversity 

of the abundant biosphere in the MWII was very variable and showed on the one hand, a low 

diversity of seven abundant phylotypes (272), but on the other hand, the highest diversity of 

14 phylotypes (280). Missing phylotypes ranged between 11 (272) and 6 (280).   

Only two phylotypes were found in the abundant biosphere of all stations, as Micromonas sp. 

1 and Syndiniales 2. The remaining abundant phylotypes were found in the rare biosphere or 

were absent in at least one of the samples. Micromonas sp.1 was found at all stations in high 

read abundances, although the percentages differed strongly. A high proportion was observed 

in the AW (202; 41 %), while in the MWI the proportion decreased to 2 % at station 218. The 

contribution of Micromonas sp. 1 in the PW was moderate (13 and 16 %), but subsequently 

increased to a maximum proportion of 42 % in the MWII (272). The second ubiquitously 

abundant phylotype, Syndiniales 2, was found in maximum proportion in the AW at station 

212 (44 %) and in similar high proportions in the MWI (~31 %). The percentages decreased 

in the PW (~17 %), reaching a minimum of ~11 % in the MWII.  

Phaeocystis sp. 2 and Gyrodinium sp. 1 were also widely distributed, even though far less 

abundant. Phaeocystis sp. 2 presented the highest shares of 9 and 12 % in the MWI (218) and 

PW (235), respectively. However, its contribution to MWII was low (~3 %) and even rare (< 

1 %) at the AW station 212. In contrast to Phaeocystis sp. 2, Phaeocystis sp. 1 was only 

abundant in the transition zone of MWI and PW, showing a maximum proportion of 10 % at 

station 227 (MWI). Chrysochromulina sp., represented by two phylotypes, showed similar 

characteristics as Phaeocystis sp., in which one phylotype (Chrysochromulina sp.1) was more 

widely distributed than the other (Chrysochromulina sp.2). The latter was just abundant in the 

MWII, contributing 23 % (272) and 6 % (280). Micromonas sp. 3 (6 %) and Pyramimonas sp. 

(2 %) were limited to the MWI (227). Picobiliphytes were only found in the AW (212) and 

marine stramenopiles (MAST) phylotypes only in the PW (245). Dictyocha sp. was abundant 

at one station in the MWII (280; 10 %). Fragilariopsis sp. constituted the only diatom that 

was partially found in the abundant biosphere. The highest values (218; 5 % and 227; 6 %) 

were obtained in the MWI. Syndiniales were the most diverse group represented by nine 

phylotypes however, this group was mostly limited to the PW with the exception of two 

phylotypes (Syndiniales 1 and 9). 

 

Diversity of the rare biosphere 

The rare biosphere (<1 %) accounted in general for 29 % of the whole biosphere. The 

variability of the taxonomical contributions was, for the majority of the taxa, smaller than for 
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the whole or abundant biosphere. Haptophytes contributed 3 %, chlorophytes 3 %, 

cryptophytes 2 %, rhodophytes 1 %, stramenopiles 5 %, dinoflagellates 9 % and ciliates 8 %. 

In general, the composition reflected the dominant taxonomical structure of the previous 

described biospheres. Reads of alveolates and particularly of dinoflagellates were most 

abundant, where the contribution of dinoflagellates ranged between 29 (MWII; 272) and 59 % 

(MWI; 218), and the one of ciliates between 4 (AW; 212) and 28 % (MWII; 272). 

Chlorophytes were most abundant at station 202 (AW; 10 %) and 272 (MWII; 9 %) and 

showed the lowest contribution to the rare biosphere at station 235 (PW; 2 %). Stramenopiles 

varied between 12 (MWI; 218) and 25 % (MWI; 212). Cryptophytes and rhodophytes were 

present at most of the stations and were more important contributors of the rare than of the 

abundant biosphere. The relative contribution of haptophytes varied between 8 (MWI; 218) 

and 11 % (MWII 280).  

The detailed analysis of the rare biosphere was difficult because most phylotypes could not be 

exactly assigned to the genus level. A section of precisely identified phylotypes that ranged 

between 0.1 and 0.99 % in abundance is given in Table 3.3. Within the section, not a single 

phylotype was found exclusively in rare portions, because in at least one station they were 

abundant or absent. In this respect, flagellates as Telonema sp. or dinoflagellates as 

Pelagodinium sp. and Prorocentrum sp. were rare at all stations except at 202 and 212, 

respectively, both located in the AW.  

MAST’s were represented by three phylotypes (1, 2 and 3). While MAST 1 and 2 also 

contributed to the abundant biosphere (245), MAST 3 was exclusively rare. The proportions 

of MAST 1 and 2 were variable and often did not exceed 0.1 %. However, exceptions were 

found in the AW (212) and MWII (280), where both phylotypes accounted for 0.2 to 0.8 %. 

In contrast, MAST 3 was completely missing in the AW and at the first station of the MWI 

(218) but in general presented higher portions than MAST 1 and 2. Maximum portions of 

MAST 3 were observed in the PW (235; 0.8 % and 245; 0.7 %).  

Diatoms further displayed a higher diversity within the rare biosphere. In addition to 

Fragilariopsis sp., two phylotypes were found that affiliated to Florella sp. and Diadesmis sp. 

While Diadesmis sp. occurred in the transition zone of the AW (212) and MWI (218), 

Florella sp. was completely missing in the AW water mass and presented the highest portion 

in the PW (235; 0.4 %) and MWII (272; 0.3 %). 
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Discussion 

Protist community structure and water masses 

Protist communities are transported by the different water masses, which contain distinct 

assemblages (Lovejoy et al. 2002, Galand et al. 2009a). Thus, hydrographical structures can 

be considered as tracer for protist distribution. However, water mass influence might be less 

in the Central Arctic Ocean because microbial communities are not just constrained by 

density and nutrient availability but also by the variability of sea ice coverage. To investigate 

the importance of water mass influence and to obtain a first insight in the community 

structures the ARISA approach was employed. The results revealed water mass specific 

community structures because samples clustered according to the respective water masses, in 

which the AW and MWI communities clustered together, while PW communities formed one 

and MWII, two separate clusters. The findings, obtained by ARISA, suggest that the protist 

composition is indeed linked to hydrographic regimes, which is in line with the correlation 

between water mass and archaea, bacteria, and protist distribution (Gradinger & Baumann 

1991, Hamilton et al. 2008, Galand et al. 2009b,c). However, differences between the clusters 

were in general small, suggesting an additional factor that influences surface water 

communities in the Arctic Ocean.  

A correlation between water masses and the 454-pyrosequencing analyses was also partially 

observed but less pronounced than with the ARISA analysis. One reason for the weaker 

recovered relationship of water mass and the taxonomical protist community structure is 

probably due to the limited sample number, in which six out of the eight samples clustered 

closely in the ARISA approach and hence showed no big differences. We extended our 

investigation therefore from a preliminary taxonomic group based analysis to a 

comprehensive phylotype specific analysis of the abundant and rare biosphere. 

Ubiquitous abundant phylotypes constitute a problematic issue because they address 

environmental changes just in terms of abundance shifts. In this regard, Phaeocystis sp.2, 

Gyrodinium sp.1, and Syndiniales 2 showed no clear water mass association and only varied 

in relative contributions. Micromonas sp.1 further presented no distinct biogeography. 

Dominant contributions of Micromonas sp.1, as observed at station 202 and 272, were likely 

shaped by a previous protist succession that returned to the picoplankton dominated 

oligotrophic state. This assumption is confirmed by the local low nutrient values. However, 

the observation that minimum portions of Micromonas were limited to MWI and that similar 

portions of Micromonas were observed in the PW, suggests an influence of water mass on the 

distribution. Micromonas was often reported to contribute significantly to Arctic protist 
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assemblages (Lovejoy et al. 2002, 2006, 2007, Potvin & Lovejoy 2007, 2009, Lovejoy & 

Potvin 2011). Phylogenetic analysis revealed the existence of distinct phylotypes, in which 

one (CCMP2099) affiliated to Micromonas sp. 1 and has been found predominantly in the 

Arctic Ocean (Slapeta et al. 2006, Lovejoy et al. 2007).  

Other phylotypes displayed more distinct water mass relations based on presence/absence 

patterns, such as Pyramimonas sp., missing in the AW and being abundant in the MWI, or 

Stramenopile 1 and Dictyocha sp. that were also absent in the AW. Fragilariopsis sp. was 

rare in the AW but displayed the highest contribution in the MWI, where AW and PW mixed 

and provided an adequate nutrient regime. Fragilariopsis constituted another significant 

Arctic protist, with F. cylindrus as the most significant cold water diatom of the polar oceans 

(von Quillfeldt 2004), dominant in sea ice and water column (Mock et al. 2006).  

Statements on the distribution of rare phylotypes were difficult to make because most 

phylotypes could not be characterized in detail. Most sequences were not recorded in the 

database because rare phylotypes are not cultivable, a prerequisite for a proper identification. 

However, recorded phylotypes, as e.g. MASTs showed distribution profiles. MASTs are 

reported to be important contributors to the rare biosphere (Massana et al. 2006b). From the 

three phylotypes none was recovered at station 202 (AW), just as Pelagodinium sp., which 

presented a significant contribution in the MWI. 

The implementation of ARISA point to different, water mass related protist community 

structures, however, the distribution of major taxonomic groups, obtained by 454-

pyrosequencing at eight samples, did not approve statements according to water mass 

specificity thoroughly. Nevertheless, a more detailed insight within the abundant and rare 

biosphere revealed some distinct distribution patterns, which lead to the suggestion that a 

coupling of water mass and protist diversity is also common in the Central Arctic Ocean but 

less pronounced. 

 

Protist community structure and ice coverage 

Two physical factors, ice thickness and floe size, explained most of the variances between the 

community structures of the abundant biosphere. However, some community structure 

differences (e.g. 218 and 235) were also attributed to nutrient concentrations. An influence of 

the ice coverage was not observed on the community structure of the rare biosphere. General 

assumptions that physical factors, particularly light irradiance controlling factors, are mostly 

influencing protist community structure have previously been referred (Mundy et al. 2005); 

however, light irradiance was not directly measured in this study and just assessed indirectly 
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by ice conditions.  

Most of the eight stations (except 272 and 280) showed an ice concentration of at least 80 %. 

The analysis of the major taxonomic groups had a relatively stable distribution, pointing to a 

strong controlling effect of sea ice concentration on the protist assemblage. Dinoflagellates 

dominated the protists community structure throughout all sampling sites. The prominence of 

heterotrophic dinoflagellates in the Central Arctic Ocean has previously been reported, 

contributing 30 to 40 % to the total biomass (Sherr et al. 1997, Rat'kova & Wassmann 2002, 

Richardson et al. 2005). Such flagellate-based systems are mainly consistent of small 

picophytoplankton and nanoflagellates that are supported by low regenerated nutrient 

concentration (Azam et al. 1983, Landry et al. 1997, Ardyna et al. 2011), as found during our 

sampling period.  

Two stations (202; AW and 272; MWI), that were not characterized by a dominance of 

dinoflagellates but by chlorophytes, showed a high abundance of small size cells. The high 

abundance of picoplankton was found to be positively correlated with increasing sea ice 

concentration (Booth & Horner 1997). This finding confirms the relatively high contribution 

of chlorophytes, observed at our stations. However, the maximum portion was found at 

station 272, which was merely ice covered (10 %). Based on the enhanced light availability 

over a longer period, it is reasonable to presume that station 272 was characterized by a post-

bloom scenario. Periods outside short blooming events are often dominated by small cells as 

nano-and picophytoplankton (Not et al. 2005) and the generally low nutrient concentrations at  

this station further confirm this assumption.  

Stramenopiles constitute another important taxonomical group in the Arctic Ocean (Lovejoy 

et al. 2006). The group includes light dependent and light independent representatives as 

autotrophic diatoms and heterotrophic MAST, respectively, and ought to respond to changing 

ice concentrations. The highest contribution of diatoms was in fact observed at the completely 

ice free station 280 (MWII) but also at station 227 with a high ice concentration of small ice 

floes (~20-100 m) and many meltponds. The high abundance of meltponds is suggested to 

affect the light climate and to consequently favor algal growth, (Gradinger 1996, Perovich et 

al. 1998, Mundy et al. 2009). Station 227 showed the highest contributions of the ice algae, 

Fragilariopsis sp., which has been released into the water column presumably by sea ice melt. 

The diatom was observed to possess a high tolerance to salinity changes (Sogaard et al. 2011), 

which inter alia facilitates an active growth in the surface water after sea ice release. In 

contrast, heterotrophic MAST were found in maximum percentages at station 245, which was 

characterized by the worst light conditions due to big floe sizes (100 % ice concentration) 



 
Chapter 3  

124 
 

with only few meltponds. In situ experiments have shown that MAST increase in cell 

abundance, even under no light treatments (Massana et al. 2006a) which is in particular 

advantageous in the central, permanent ice-covered Arctic Ocean.  

 

The contribution of the rare biosphere to the protist communities 

Many studies focus on the diversity, distribution, and function of the rare biosphere (Pedrós-

Alió 2006, 2007, Sogin et al. 2006, Caron et al. 2009, Galand et al. 2009a). In particular, the 

distribution of the rare biosphere has led to many discussions, in which a cosmopolitan 

distribution is suggested due to the high dispersal and low loss rates. A biogeographical 

distribution is proposed, where rare phylotypes inhabit an area according to ecological 

mechanisms equivalent to those that account for the abundant representatives (Martiny et al. 

2006, Kirchman et al. 2009). In our study, the rare biosphere showed a high genetic diversity, 

however, only a limited number of phylotype could be identified in detail due to the limited 

representation in data bases. Prerequisite of increasing the hit rate in databases is the 

generation of clonal cultures, however, clonal cultures of the rare biosphere are extremely 

difficult to establish. In our samples, the rare biosphere was characterized by a more diverse 

diatom and dinoflagellate assemblage, where diatoms were increased by e.g. a low-saline 

water diatom Diadesmis sp. and a marine diatom Florella sp. (Navarro 2002, Antoniades et 

al. 2005), while dinoflagellates were increased by Pelagodinium sp. and Prorocentrum sp. A 

comparison with the abundant biosphere revealed that rare phylotypes were not exclusively 

rare but occasional abundant at stations, characterized by specific environmental conditions. 

The pattern of the rare biosphere showed a constant distribution of the major taxonomic 

groups across the Central Arctic Ocean that strengthened the assumption of a role as backup 

community. The ecological role of the rare biosphere as a backup or seed reservoir, enhancing 

the biological buffer capacity to environmental changes, has been suggested by several 

studies (Sogin et al. 2006, Caron & Countway 2009). The observed constant taxonomical 

distribution, however, has not been referred so far. One explanation of the stable distribution 

may rely on the assumption that the low abundance of rare phylotypes provides a perfect 

refuge from grazing mortality (Fenchel & Finlay 1983, Pernthaler 2005, Pedrós-Alió 2006).  

 

Summary and Conclusion 

Water mass associated protist distribution patterns in the Central Arctic Ocean were generally 

difficult to investigate because factors such as sea ice coverage additionally influence the 

community composition. Physical environmental factors, like light ice-coverage and light 
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availability, were more important for the community structure than nutrient concentrations. 

Ice coverage favored heterotrophic and small size protists, e.g. dinoflagellates and 

chlorophytes, instead of stramenopiles, e.g. diatoms. Nevertheless, community structures 

(ARISA) and several abundant phylotypes like Pyramimonas sp., Dictyocha sp., and 

Fragilariopsis sp. as well as rare phylotypes like Pelagodinium sp. and Diadesmis sp. showed 

water mass associated distributions. The rare biosphere in the Arctic Ocean is an autonomous 

system without a significant correlation with the abundant biosphere or the different water 

masses. The relative contribution of the major taxonomic groups within the rare biosphere 

was unexpectedly uniform, and we support the hypothesis of a seed-reservoir function. We 

further suggest that the rare biosphere not just provides backup protists in case of 

environmental changing conditions (Sogin et al. 2006), but also provides these protists in 

constant taxonomic relations. 
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Table 3.1. Hydrological and biological properties encountered in the chlorophyll maximum (Abbreviations: Ic= ice concentration; It= ice thickness; 

       fl= floe size; Mp= melt pond). Nutrients are given in µM. Bold-marked station were further used for 454-pyrosequencing.  

Station-ID Date (m/d/yr) Longitude Latitude Depth [m] S  NO3 PO4 Si T [°C] Ic [%] It [m] fl [m] Mp [%] Chl a [ng/l]  

202 08/14/2011 59°55.91'E 85°48.19'N 25 33.48 3.61 0.29 1.8 -1.72 90 0.7-1.2 100-500 50 0.32 A
tlantic W

ater 

205 08/15/2011 59°15.00‘E 86°19.64‘N 10 33.28 0.88 0.13 0.98 -1.71 80 > 1.2 > 2000 30 0.81 
207 08/16/2011 61°14.23‘E 86°42.5‘N 25 33.69 2.3 0.26 2.42 -1.68 100 > 1.2 100-500 50 0.31 
209 08/17/2011 58°29.30‘E 86°59.25‘N 14 32.84 1.2 0.23 2.82 -1.73 90 > 1.2 20-100 30 0.17 
212 08/19/2011 59°57.42'E 88°1.10'N 10 32.80 2.65 0.45 5.07 -1.69 100 0.7-1.2 > 2000 40 0.06 
216 08/21/2011 60°42.18‘E 89°35.98‘N 20 32.16 4.78 0.96 13.29 -1.67 90 > 1.2 20-100 50 0.24 
218 08/22/2011 148°06.72'E 89°57.86‘'N 20 32.42 5.55 0.99 13.2 -1.69 90 > 1.2 100-500 50 0.19 M

ixed W
ater  

I 

220 08/24/2011 116°42 ‘W 89°14.9‘N 18 32.18 3.09 0.65 8.48 -1.64 90 > 1.2 100-500 20 0.19 
222 08/26/2011 128°15‘W 88°44.2‘N 10 30.49 0.53 0.55 6.3 -1.62 100 > 1.2 20-100 40 0.24 
222 08/26/2011 128°15‘W 88°44.2‘N 25 31.92 1.13 0.42 5.12 -1.59 100 > 1.2 20-100 40 0.17 
227 08/29/2011 155°02.72'W 86°51.64'N 10 31.02 0.3 0.34 4.12 -1.59 80 > 1.2 20-100 40 0.10 
233 09/02/2011 132°21.55‘W 83°55.95‘N 25 29.95 0.02 0.67 1.58 -1.31 90 0.7-1.2 500-2000 40 0.04 Pacific W

ater 

235 09/03/2011 130°02.34'W 83°1.80'N 50 30.75 3.42 0.96 7.28 -1.47 100 0.7-1.2 500-2000 40 0.11 
239 09/05/2011 164°12.36‘W 84°04.41‘N 25 30.12 0.58 0.26 3.83 -1.46 100 > 1.2 500-2000 20 0.15 
245 09/09/2011 166°24.86'E 84°47.67'N 18 30.32 1.3 0.26 5.57 -1.6 100 0.7-1.2 500-2000 10 0.04 
250 09/11/2011 139°54.35‘E 84°23.24‘N 25 31.44 1.33 0.26 3.97 -1.54 80 0.3-0.7 100-500 40 0.08 
257 09/13/2011 124°54.20‘E 83°19.97‘N 10 30.47 0.61 0.19 2.35 -1.65 90 0.3-0.7 20-100 20 0.23 

M
ixed W

ater  
II 

259 09/14/2011 117°56.78‘E 83°8.92‘N 10 30.95 1.04 0.24 3.0 -1.69 70 0.3-0.7 20-100 20 0.85 
260 09/14/2011 114°39.51‘E 82°59.65‘N 10 31.72 - - - -1.74 70 0.7-1.2 100-500 50 - 
272 09/19/2011 119°58.14'E 81°46.50'N 10 31.60 0.11 0.14 1.55 -1.64 10 0.3-0.7 < 20 0 0.27 
276 09/20/2011 121°19.8‘E 80°38.6‘N 10 30.83 0.29 0.18 3.16 -0.09 0 0 0 0 0.19 
280 09/21/2011 124°07.59'E 79°8.84'N 10 30.54 0.55 0.21 3.66 0.87 0 0 0 0 0.35 
285 09/22/2011 125°48.11‘E 78°29.59‘N 10 30.55 0.08 0.16 4.85 1.58 0 0 0 0 0.39 
290 09/23/2011 128°09.40‘E 77°07.60‘N 10 25.66 - - - 3.05 0 0 0 0 0.26 
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Table 3.2. Analytical process and quality control of the 454-pyrosequencing data. 

 

Station-ID total reads reads ≥ 300bp chimeras singletons non target final reads OTUs 
202 8898 7645 3260 1275 1250 1860 156 
212 24981 23022 8662 4493 2841 7026 713 
218 8557 6016 1770 1428 1 2817 385 
227 26161 23033 1354 4115 930 16634 804 
235 70490 65477 11060 13766 5568 35083 1823 
245 140918 124036 11988 28166 3189 80693 3372 
272 23079 19065 4476 3707 1168 11952 640 
280 35850 31236 2840 8438 3340 16618 1356 
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Table 3.3. Phylotypes, relative contribution in percent to the A) abundant biosphere (≥1 %) 

        and B) rare biosphere (<1 %) at all stations, r refers to the occurrence in the rare 

        biosphere, a to the abundant biosphere and x to no occurrence at all. 
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Figure 3.1. Map of the investigated stations in the Central Arctic Ocean during a expedition 

         of the RV Polarstern (ARK-XXVI/3) from August to October 2011. 
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Figure 3.2. A) metaMDS plot of the community structure relations along the stations (red: 

          Atlantic Water; green: Mixed Water I; blue: Pacific Water; yellow: Mixed Water 

          II); B) PCA of the environmental factors and the ARISA grouping. 
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Figure 3.3. Rarefaction curve of the 454-pyrosequencing data after quality control (red: 

Atlantic Water; green: Mixed Water I; blue: Pacific Water; yellow: Mixed Water 

II). 
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Figure 3.4. Distribution of the main protist groups in the Arctic Ocean A) for the whole 

          biosphere, B) for the rare biosphere (<1%), C) for the abundant biosphere (≥1%). 

          The dashed border alludes to the single water masses (AW, MWI, PW, and 

          MWII). 

 

 

 

 

 

 

 
 
 



 
Chapter 3  

133 
 

References 
Amann R, Kuhl M (1998) In situ methods for assessment of microorganisms and their 

activities. Curr Opin Microbiol 1:352-358 
Antoniades D, Douglas MSV, Smol JP (2005) Quantitative estimates of recent environmental 

changes in the Canadian High Arctic inferred from diatoms in lake and pond 
sediments. J Paleolimnol 33:349-360 

Ardyna M, Gosselin M, Michel C, Poulin M, Tremblay JE (2011) Environmental forcing of 
phytoplankton community structure and function in the Canadian High Arctic: 
contrasting oligotrophic and eutrophic regions. Mar Ecol-Prog Ser 442:37-57 

Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) The ecological role 
of water-column microbes in the sea. Mar Ecol-Prog Ser 10:257-263 

Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more 
accurate pictures of protistan community complexity using pyrosequencing of 
hypervariable SSU rRNA gene regions. Environ Microbiol 13:340-349 

Booth BC, Horner RA (1997) Microalgae on the Arctic Ocean Section, 1994: species 
abundance and biomass. Deep-Sea Res Part II-Top Stud Oceanogr 44:1607-1622 

Brown SL, Landry MR (2001a) Mesoscale variability in biological community structure and 
biomass in the Antarctic Polar Front region at 170 degrees W during austral spring 
1997. J Geophys Res-Oceans 106:13917-13930 

Brown SL, Landry MR (2001b) Microbial community structure and biomass in surface waters 
during a Polar Front summer bloom along 170 degrees W. Deep-Sea Res Part II-Top 
Stud Oceanogr 48:4039-4058 

Carmack E, Barber D, Christensen J, Macdonald R, Rudels B, Sakshaug E (2006) Climate 
variability and physical forcing of the food webs and the carbon budget on panarctic 
shelves. Prog Oceanogr 71:145-181 

Caron DA, Countway PD (2009) Hypotheses on the role of the protistan rare biosphere in a 
changing world. Aquat Microb Ecol 57:227-238 

Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A (2012) Marine Protistan 
Diversity. In: Carlson CA, Giovannoni SJ (eds) Annual Review of Marine Science, 
Vol 4, Book 4: 467-493 

Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, Dennett MR, Moran 
DM, Jones AC (2009) Defining DNA-Based Operational Taxonomic Units for 
Microbial-Eukaryote Ecology. Appl Environ Microbiol 75:5797-5808 

Diez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic 
picoplankton in different oceanic regions by small-subunit rRNA gene cloning and 
sequencing. Appl Environ Microbiol 67:2932-2941 

Dray S, Dufour AB (2007) The ade4 package: Implementing the duality diagram for 
ecologists. J Stat Softw 22:1-20 

Ebenezer V, Medlin LK, Ki JS (2012) Molecular Detection, Quantification, and Diversity 
Evaluation of Microalgae. Mar Biotechnol 14:129-142 

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity 
and speed of chimera detection. Bioinformatics 27:2194-2200 

Edler L (1979) Phytoplankton and Chlorophyll: Recommendations on methods for marine 
biological studies in the Baltic Sea. (ed) BMB Publ. Vol 5. pp 1-38 



 
Chapter 3  

134 
 

Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene-Sequences 
from the hypotrichous ciliates Oxytricha nov. and Stylonychia pustulata. Mol Biol 
Evol 2:399-410 

Evans CA, O'Reily JE (1983) A handbook for the measurement of chlorophyll a in 
netplankton and nanoplankton, (eds) Vol 9:1-44 

Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic, free-living protozoa. 
Microbial Ecol 9:99-122 

Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009a) Ecology of the rare microbial 
biosphere of the Arctic Ocean. Proc Natl Acad Sci U S A 106:22427-22432 

Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C (2009b) Unique archaeal 
assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing (vol 7, 
pg 860, 2009). Isme J 3:1116-1116 

Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC (2009c) 
Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic 
circulation. Environ Microbiol 11:971-980 

Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of 
phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res Part II-Top 
Stud Oceanogr 44:1623-1644 

Gradinger R (1996) Occurrence of an algal bloom under Arctic pack. Mar Ecol-Prog Ser 
131:301-305 

Gradinger RR, Baumann MEM (1991) Distribution of phytoplankton communities in relation 
to the large-scale hydrographicaql regime in the Fram Strait. Mar Biol 111:311-321 

Grover JP (1991) Resource competition in a variable environment-Phytoplankton growing 
according to the variable internal stores model. Am Nat 138:811-835 

Hamilton AK, Lovejoy C, Galand PE, Ingram RG (2008) Water masses and biogeography of 
picoeukaryote assemblages in a cold hydrographically complex system. Limnol 
Oceanogr 53:922-935 

Hein M, Pedersen MF, Sandjensen K (1995) Size-dependent nitrogen uptake in micro- and 
macroalgae. Mar Ecol-Prog Ser 118:247-253 

Jones EP, Anderson LG, Swift JH (1998) Distribution of Atlantic and Pacific waters in the 
upper Arctic Ocean: Implications for circulation. Geophys Res Lett 25:765-768 

Kattner G, Becker H (1991) Nutrients and organic nitrogenous compounds in the marginal ice 
zone of the Fram Strait. J Mar Syst 2:385-394 

Kerouel R, Aminot A (1997) Fluorometric determination of ammonia in sea and estuarine 
waters by direct segmented flow analysis. Mar Chem 57:265-275 

Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the 
western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ 
Microbiol 12:1132-1143 

Kirchman DL, Moran XAG, Ducklow H (2009) Microbial growth in the polar oceans - role of 
temperature and potential impact of climate change. Nat Rev Microbiol 7:451-459 

Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: 
pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ 
Microbiol 12:118-123 

 



 
Chapter 3  

135 
 

Landry MR, Barber RT, Bidigare RR, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST, 
McCarthy JJ, Roman MR, Stoecker DK, Verity PG, White JR (1997) Iron and grazing 
constraints on primary production in the central equatorial Pacific: An EqPac 
synthesis. Limnol Oceanogr 42:405-418 

Le Borgne R, Feely RA, Mackey DJ (2002) Carbon fluxes in the equatorial Pacific: a 
synthesis of the JGOFS programme. Deep-Sea Res Part II-Top Stud Oceanogr 
49:2425-2442 

Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eukaryotic 
ultraphytoplankton-Measurements from flow cytometric sorting. Limnol Oceanogr 
39:169-175 

Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest Algae Thrive As the 
Arctic Ocean Freshens. Science 326:539 

López-García P, López-López A, Moreira D, Rodríguez-Valera F (2001) Diversity of free-
living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol 
Ecol 36:193-202 

Lovejoy C, Legendre L, Martineau MJ, Bacle J, von Quillfeldt CH (2002) Distribution of 
phytoplankton and other protists in the North Water. Deep-Sea Res Part II-Top Stud 
Oceanogr 49:5027-5047 

Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial 
eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085-
3095 

Lovejoy C, Potvin M (2011) Microbial eukaryotic distribution in a dynamic Beaufort Sea and 
the Arctic Ocean. J Plankton Res 33:431-444 

Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau MJ, Terrado R, Potvin M, Massana R, 
Pedrós-Alió C (2007) Distribution, phylogeny, and growth of cold-adapted 
picoprasinophytes in arctic seas. J Phycol 43:78-89 

Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, 
Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, 
Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, 
Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, 
Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids 
Res 32:1363-1371 

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman 
MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He 
W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, 
Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, 
Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile 
JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, 
Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, 
Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in 
microfabricated high-density picolitre reactors. Nature 437:376-380 

 
 
 



 
Chapter 3  

136 
 

Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-
Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, 
Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting 
microorganisms on the map. Nat Rev Microbiol 4:102-112 

Massana R, Guillou L, Terrado R, Forn I, Pedrós-Alió C (2006a) Growth of uncultured 
heterotrophic flagellates in unamended seawater incubations. Aquat Microb Ecol 
45:171-180 

Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006b) Distribution and abundance 
of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515-
1522 

Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-likelihood and 
Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC 
Bioinformatics 11:1-16 

Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically 
amplified eukaryotic 16S like rRNA coding regions. Gene 71:491-499 

Mock T, Krell A, Glockner G, Kolukisaoglu U, Valentin K (2006) Analysis of expressed 
sequence tags (ests) from the polar diatom fragilariopsis cylindrus. J Phycol 42:78-85 

Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from 
picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607-610 

Mundy CJ, Barber DG, Michel C (2005) Variability of snow and ice thermal, physical and 
optical properties pertinent to sea ice algae biomass during spring. J Mar Syst 58:107-
120 

Mundy CJ, Gosselin M, Ehn J, Gratton Y, Rossnagel A, Barber DG, Martin J, Tremblay JE, 
Palmer M, Arrigo KR, Darnis G, Fortier L, Else B, Papakyriakou T (2009) 
Contribution of under-ice primary production to an ice-edge upwelling phytoplankton 
bloom in the Canadian Beaufort Sea. Geophys Res Lett 36,L17601 

Navarro JN (2002) Florella pascuensis sp nov., a new marine diatom species from Easter 
Island (Isla de Pascua), Chile. Diatom Res 17:283-289 

Not F, Massana R, Latasa M, Marie D, Colson C, Eikrem W, Pedros-Alio C, Vaulot D, Simon 
N (2005) Late summer community composition and abundance of photosynthetic 
picoeukaryotes in Norwegian and Barents Seas. Limnol Oceanogr 50:1677-1686 

Oksanen J, Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos, 
P., Stevens, M.H.H. & Wagner, H (2011) Vegan: Community Ecology Package.  

Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 
14:257-263 

Pedrós-Alió C (2007) Dipping into the rare biosphere. Science 315:192-193 
Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological 

implications. Nat Rev Microbiol 3(7):537-546 
Perovich DK, Roesler CS, Pegau WS (1998) Variability in Arctic sea ice optical properties. J 

Geophys Res-Oceans 103:1193-1208 
Potvin M, Lovejoy C (2007) Comparisons of inshore and offshore arctic marine 

picoeukaryotes. J Phycol 43:160 
Potvin M, Lovejoy C (2009) PCR-Based Diversity Estimates of Artificial and Environmental 

18S rRNA Gene Libraries. J Eukaryot Microbiol 56:174-181 



 
Chapter 3  

137 
 

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) 
SILVA: a comprehensive online resource for quality checked and aligned ribosomal 
RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188-7196 

Ramette A (2009) Quantitative Community Fingerprinting Methods for Estimating the 
Abundance of Operational Taxonomic Units in Natural Microbial Communities. Appl 
Environ Microbiol 75:2495-2505 

Rat'kova TN, Wassmann P (2002) Seasonal variation and spatial distribution of phyto- and 
protozooplankton in the central Barents Sea. J Mar Syst 38:47-75 

Richardson K, Markager S, Buch E, Lassen MF, Kristensen AS (2005) Seasonal distribution 
of primary production, phytoplankton biomass and size distribution in the Greenland 
Sea. Deep-Sea Res Part I-Oceanogr Res Pap 52:979-999 

Rudels B, Larsson AM, Sehlstedt PI (1991) Stratification and water mass formation in the 
Arctic Ocean-Some implications for the nutrient distribution. Polar Res 10:19-31 

Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine 
ecosystems-A physiological view. Polar Res 10:69-85 

Sherr EB, Sherr BF, Fessenden L (1997) Heterotrophic protists in the Central Arctic Ocean. 
Deep-Sea Res Part II-Top Stud Oceanogr 44:1665-1682 

Slapeta J, Lopez-Garcia P, Moreira D (2006) Global dispersal and ancient cryptic species in 
the smallest marine eukaryotes. Mol Biol Evol 23:23-29 

Smith JL, Barrett JE, Tusnady G, Rejto L, Cary SC (2010) Resolving environmental drivers 
of microbial community structure in Antarctic soils. Antarct Sci 22:673-680 

Sogaard DH, Hansen PJ, Rysgaard S, Glud RN (2011) Growth limitation of three Arctic sea 
ice algal species: effects of salinity, pH, and inorganic carbon availability. Polar Biol 
34:1157-1165 

Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl 
GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". 
Proc Natl Acad Sci U S A 103:12115-12120 

Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) 
Multiple marker parallel tag environmental DNA sequencing reveals a highly complex 
eukaryotic community in marine anoxic water. Mol Ecol 19:21-31 

Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: 
Faster than forecast. Geophys Res Lett 34,L090501 

Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay JE (2009) Late summer 
phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong 
numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55-70 

Tremblay JE, Klein B, Legendre L, Rivkin RB, Therriault JC (1997) Estimation of f-ratios in 
oceans based on phytoplankton size structure. Limnol Oceanogr 42:595-601 

Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic 
phytoplankton (≤ 3 µm) in marine ecosystems. Fems Microbiol Rev 32:795-820 

von Quillfeldt CH (2004) The diatom Fragilariopsis cylindrus and its potential as an indicator 
species for cold water rather than for sea ice. Vie Milieu 54:137-143 

White TJ, Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of 
fungal ribosomal RNA genes for phylogenetics. (ed) New York: Academic Press, Inc. 
pp 315-322  



 
Chapter 3  

138 
 

Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine 
picophytoplankton: The importance of the eukaryotic component. Limnol Oceanogr 
49:168-179 

 
 
 
 



 
Chapter 4  

 

139 
 

4.  Synthesis  

The Arctic Ocean is a permanent ice covered ocean, which comprises of shallow shelf seas 

and two deep basins: the Eurasian and Canadian Basin (Rudels et al. 1991, Meincke et al. 

1997). During the last decades, environmental changes have affected the Arctic Ocean more 

severely than other world oceans (ACIA 2005, IPCC et al. 2007). In this regard, the sea ice 

cover constitutes a sensitive indicator of climate change (Serreze & Francis 2006), whereas 

the latest record low was just reported during the summer of 2012. Different sea ice 

conditions, such as seasonal sea ice, annual sea ice, and multiyear ice, together with nutrient 

and light limitations, constitute harsh environments for the local microorganisms. 

Arctic protist communities, experience an interaction of environmental factors that present a 

wide range of fluctuations, constrain their biomass, and promote the occurrence of special 

adaptations (Sakshaug & Slagstad 1991, Sherr et al. 2003, Carmack et al. 2004, Sakshaug 

2004, Greene & Pershing 2007). These adaptations, however, might be of disadvantage in 

case of rapid changing environmental conditions. In this respect, recent changes in the Arctic 

Ocean are exposing the local protist community to additional environmental pressure and 

have the potential to result in regime shifts of protist communities. Tracing those shifts from 

the start is crucial and demands a comprehensive  sampling, including all marine protists. 

The implementation of molecular methods facilitated a detailed insight into the complex 

protist diversity and shared the advantage of size-independence and of ecotype 

characterization. In order to deliver detailed information on the Arctic protist taxonomy, an 

investigation procedure was established that is based on molecular methods, such as ARISA 

and 454-pyrosequencing, and the respective data processing. Hence, the two main objectives 

of the thesis are to evaluate the analyses pipeline under the additional use of classical methods 

(light microscopy and HPLC), and to apply the new pipeline for getting an overview of the 

Arctic protist diversity. In this context, three hypotheses were put forward: 

 

Molecular surveys of genetic protist diversity obtained by 454-pyrosequencing, constitute an 

adequate tool for assessing natural protist diversity 

 

In the last decades, molecular biology has provided powerful sets of alternative diversity 

approaches to the classical microscopy, such as clone library sequencing and 454-

pyrosequencing (Caron & Gast 1995, Stoeck et al. 2010). The general principle, the 

sequencing of indicative marker genes for the assignment of taxonomical relationships within 

protists, is shared by both molecular approaches. One marker gene, the 18S rRNA gene, has 
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frequently been used for diversity studies in which the whole 18S rRNA gene (clone library) 

or a part, e.g. the V4 region (454-pyrosequencing), was analyzed. These studies have 

deepened our understanding of protist diversity by the inclusion of small planktonic cells 

(picoplankton) and rare distributed cells (rare biosphere) (Diez et al. 2001, Diez et al. 2004, 

Lovejoy et al. 2006, Stoeck et al. 2006, Lovejoy et al. 2007, Stoeck et al. 2010, Lovejoy & 

Potvin 2011). However, there have been some concerns on the use of 454-pyrosequencing as 

single approach to investigate protist assemblages because of the limited sequence length and 

thus limited depth of taxon characterization (Wommack et al. 2008). Further, the PCR step 

generates some bias that can hamper the interpretation of sequence based molecular tools. 

Therefore, an obvious suggestion to test the applicability of 454-pyrosequencing, is the 

comparison with other indicative methods of protist diversity, such as clone libraries, ARISA, 

HPLC, and light microscopy.  

Clone library sequencing differs from 454-pyrosequencing in the need of a cloning step of a 

template DNA, into a bacterial vector. Alternatively, 454-pyrosequencing generates clonal 

representatives of the template DNA and thus sidesteps a cloning step (Margulies et al. 2005). 

The first manuscript (Publication I), focused on the comparison of both molecular 

approaches that use the diversity in ribosomal RNA genes (rRNA) as categorizing marker. 

The comparison was applied once for the picoplankton and once for the whole plankton size 

community, in order to further assess, how an extensive or limited comprehension of the 

protist assemblage changes the outcome. The method comparison presented high 

discrepancies of protist diversity in both size treatments that were dependent on the respective 

method and that even did not coincided for the abundant biosphere. In this regard, clone 

library sequences, were strongly biased against haptophytes (picoplankton) and diatoms 

(whole size fraction). The underrepresentation of haptophytes in clone library surveys has 

also previously been reported (Liu et al. 2009, Marie et al. 2010, Sorensen et al. 2012). In 

contrast, other groups such as chlorophytes (picoplankton) were highly overrepresented.  

Primer specificity might be one explanation for the bias against haptophytes and diatoms. The 

test of both primer sets, concerning possible sequence mismatches, however, indicates no 

binding error. Furthermore, the underrepresentation of haptophytes and diatoms can be due to 

a disparate incorporation rate during the cloning process, where some groups were ligated 

more preferentially than others (Bent & Forney 2008). The protist composition constitutes 

under this aspect an important factor that can influence the data outcome. This would explain 

the differences in haptophyte recovery in both size treatments as well as the 

overrepresentation of Micromonas in the picoplankton library. Altogether, the results lead to 



 
Chapter 4  

141 
 

the conclusion that 454-pyrosequencing is a more suitable approach to generate protist 

diversity surveys, because of the higher throughput and thus smaller danger of missing 

important phylotypes and taxonomic groups. Inferring on that conclusion, the use of clone 

library data to complement diversity surveys of 454-pyrosequencing with regard to a better 

taxonomical resolution is not advisable and at most applicable for a section of abundant 

protists (e.g. Micromonas pusilla). Furthermore, the results support no use of previously 

generated clone library data to compare or to complete the diversity picture obtained by 454-

pyrosequencing. 

Another molecular tool that can be used for assessing community structure differences and for 

sustaining 454-pyrosequencing data is ARISA. In contrast to 454-pyrosequencing, where the 

nucleotide sequence is the indicative marker, ARISA is based on the fragment length of the 

small subunit rRNA, located between the 18S and 28S rRNA. The applicability of this 

method was tested in Publication IV, because of the large data set. Large data sets are a 

prerequisite for the ordination of ARISA data because the number is associated with the stress 

values, an indicator for the robustness of the positioning in the diagram. Small data sets lead 

to false positive (<0.1) stress values, and thence to misinterpretations. The employment of 

ARISA showed reliable results and distinguished between closely related and unrelated 

community structures. This observation was also confirmed by the 454-pyrosequencing 

approach that further defined the driving key players, for community shifts. However, since 

ARISA does not provide detailed information on the taxonomic composition, it is more 

suitable to serve as a preceded tool for filtering interesting samples and minimizing the 

sample number than to serve as a comparison method. Moreover, the presence of species that 

may possess equal fragment lengths (Ranjard et al. 2001) and thus cannot be separated, 

further constrains the applicability of ARISA.  

HPLC is a pigment based approach for studying autotrophic protist diversity and relies on the 

presence of characteristic photosynthetic pigments for characteristic groups. As a result, a 

comparison with 454-pyrosequencing data is likely to differ in the proportion of taxonomic 

groups, comprising heterotrophic protists. Publication III investigated the protist assemblage 

in the Western Fram Strait by using both methods. The data were in good accordance for 

principal autotrophic groups such as chlorophytes, haptophytes, and cryptophytes. In contrast, 

main differences were observed inter alia in the dinoflagellate relations. Dinoflagellates 

comprise several nutrition strategies that include, besides autotrophy, also heterotrophy and 

mixotrophy. Moreover, HPLC has the tendency to underrate dinoflagellate proportions as a 

result of misleading pigments (Irigoien et al. 2004, Higgins et al. 2011), whereas symbiosis 
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also showed to influence the pigment signature and thus led to further underrepresentation 

(Jeffrey et al. 1975, Watanabe et al. 1987, Bjørnland & Liaaen-Jensen 1989, Watanabe et al. 

1990). The suffering of 454-pyrosequencing from different, cell size associated, multiple 

rRNA gene copies that are particularly pronounced for diatoms and dinoflagellates, caused 

more discrepancies (Zhu et al. 2005). Cell size, however, also constitutes an important issue 

for the HPLC analysis because concentrations of some accessory pigments are dependent on 

protist cell size and on environmental conditions as light and nutrient availability (Latasa 

1995, Goericke & Montoya 1998, Schluter et al. 2000). Studies on pigment concentration 

observed an increase of light protecting pigments and a decrease of light harvesting pigments 

during high light and low nutrient periods (Latasa 1995, Schluter et al. 2000, Schluter et al. 

2006). In summary, HPLC and 454-pyrosequencing suffer from a cell size dependent bias, 

which magnitude is not entirely assessable. Nevertheless, both methods coincided well in 

autotrophic protists proportions, approving the suitability of 454-pyrosequencing for 

generating protist surveys. Moreover, the fact that pigment concentrations are responsive to 

environmental conditions and that a presetting of pigment ratio is required for accurate protist 

diversity representation, urge for caution in the use of HPLC. Furthermore, the constant 

adjustment of the pigment ratio is not practicable and still needs an adaptation for the Arctic 

Ocean. These drawbacks makes the application of 454-pyrosequencing for studying the Arctic 

protist diversity more suitable.  

Light microscopy has been the standard method for assessing protist diversity over many 

years and is still very suitable for analyzing the micro- and nanoplankton fraction. This 

method depends on phenotypic, characteristic markers. However, some species lack those 

morphological features and thus cannot be characterized properly. Cell size further constitutes 

a limiting factor because small cells as picoplankton are not detected. Based on the 

limitations, a comparison with 454-pyrosequencing is only advisable for the >10 µm filter, 

which also guarantees a proper identification by microscopy. Publication II compared the 

percentages of diatoms obtained by microscopy to the one obtained by 454-pyrosequencing. 

Diatoms were chosen as a reference group because of their size dimension, ranging between 

10 and 200 µm (Winder et al. 2009). This size range facilitated on the one hand an almost 

complete recovery on one size filter (454-pyrosequencing) and on the other hand, a proper 

microscopic quantification. The results of both methods were in good accordance and 

coincided in the general diatom proportion and in the more detailed comparison of pennate 

and centric diatom percentages. Differences were observed on the genus level, where 

microscopy counts referred to high cell numbers of Fragilariopsis and 454-pyrosequencing 
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analysis to higher read numbers of Pseudo-nitzschia, Actinocyclus, and Thalassiosira. The 

missing of Fragilariopsis in the 454-pyrosequencing is based on the 99 % similarity of the V4 

region sequence of Fragilariopsis and Pseudo-nitzschia. Since we used a threshold of 97 %, 

both diatoms were not differentiated. The genus Thalassiosira is reported to hold high rRNA 

copy numbers, which leads to a general overrepresentation in molecular data sets (Zhu et al. 

2005). Overall, the well coincidence of diatom proportion in both methods, supports the 

molecular data and the use of microscopy for 454-pyrosequencing evaluation. However, we 

have to keep in mind that, in contrast to 454-pyrosequencing, microscopy analysis may be 

subjective (Schluter et al. 2000, Havskum et al. 2004). The dependence on the taxonomic 

skills of the operator, which is particularly relevant for the classification of ambiguous algal 

taxa, constitutes just one error source. Furthermore, the non-random distribution of protists 

within the counting chambers, the influence of the detrital load on the counting efficiency, 

and the high numerical variability of different taxa in a protist community represent other 

methodological biases (Willén 1976, Kalff & Knoechel 1978, Sandgren & Robinson 1984, 

Duarte et al. 1990, First & Drake 2012). Hence, under the perspective of getting a quick 

overview of the whole protist diversity, including all size fractions, the use of 454-

pyrosequencing is more appropriate.  

Concluding, all methods that are used for protist monitoring have limitations that bias the 

picture of the natural protist diversity. However, a monitoring of protist diversity has to 

include all protists regardless of cell size, nutrition or abundance. In this respect, the basic 

limitations of light microscopy, leads to difficulties in the investigation of small cell 

communities, while the drawbacks of HPLC restrict the diversity analysis of autotrophs in 

new regions that are characterized by new pigment ratio. All molecular methods suffer from a 

PCR bias. The usage of molecular methods for 454-pyrosequencing evaluation however, is 

despite the same bias, qualified because additional biases and the use of different primer sets 

reduces the danger of artificial similarities in molecular data. Since ARISA presents 

community structure shifts and supports, no information on taxonomical differentiation the 

molecular method can just strengthen the major changes in protist composition. Clone library, 

in contrast, delivers a comprehensive taxonomical resolution of the protist diversity, which is 

not limited by cell size or nutrition. The uneven cloning bias and the small throughput, 

however, confine the application for diversity analysis. Overall, the good accordance in 

protist diversity of 454-pyrosequencing and particularly the non-molecular methods proved 

the suitability of the molecular approach to generate reliable protist surveys. Furthermore, 

454-pyrosequencing has the great advantage of being independent of protist cell size, 
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nutrition, and abundance, important aspects for comprehensive protist diversity studies. The 

limited sequence length and the problem of multiple rRNA gene copy number urge, at 

present, for some attention and demands the need of a second method to support the 

molecular data, however developments to qualify these biases are promising (e.g. Real-Time 

PCR).  

 

Water masses in the Arctic Ocean and in the Fram Strait are characterized  

by distinct protist communities 

 

Distinct water masses are characterizing the hydrodynamic properties of the ocean and are 

defined by distinct temperature profile, salinity profile, and the chemical composition. 

Differences in density between water masses constitute physical boundaries that can affect the 

dispersion of microbes because of the small cell size and the planktonic lifestyle (Galand et al. 

2009). Consequently, the reduced cell size of nanoplankton and in particular of picoplankton 

impedes an active dispersion (Smetacek 2002, Durham et al. 2009). Many oligotrophic 

oceanic regions present a significant contribution of nano- and picoplankton to the microbial 

community, suggesting a similar significant influence of water mass on their distribution 

(Ishizaka et al. 1997, Li et al. 2009, Massana 2011). Previous molecular surveys reported a 

large influence of water mass on microbial communities in the Arctic Ocean (Lovejoy et al. 

2006, Hamilton et al. 2008, Terrado et al. 2009, Lovejoy & Potvin 2011). However, these 

studies were mostly limited to few oceanic regions (e.g. Frankling Bay, Baffin Bay and 

Beaufort Sea), where they observed a predominance of small alveolates and picoeukaryotes 

(Lovejoy et al. 2007, Terrado et al. 2009). If the theory of water mass correlated, protist 

distribution is still valuable for the Central Arctic Ocean or for the Fram Strait has not been 

tested yet and is part of the following analysis.  

So far, protist surveys in the Fram Strait were conducted by classical approaches as light 

microscopy and HPLC. Publication II and Publication III deepened the investigation of the 

protist assemblage by using 454-pyrosequencing. The evidence for water mass influence was 

interpreted based on presence/absence patterns and/or changes in protist abundance. 

Publication II focused on the distribution of picoplankton in the Eastern Fram Strait, at the 

deep-sea long-term observatory “Hausgarten”. A total of four stations, located most south, 

east, north, and in the center of the observatory, displayed a high association of the 

picoplankton community structure and the water mass properties. All stations were located in 

the West Spitzbergen Current (WSC), transporting AW northwards. Three out of four stations 
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were characterized by similar temperature and salinity regimes and resembled in the 

community structures. However, the variation of abiotic environmental factors in the fourth 

station (HG1), induced by the mixing of freshwater (Kongsfjord) and the associated protist 

community, resulted in a different community structure. Publication III concentrated on the 

whole size fraction of protists in the Western Fram Strait, in order to assess if the water mass 

association of the picoplankton also applies for the whole size community. In fact, the 

comparatively higher momentum of microplankton, relative to the water viscosity, keeps 

larger cells longer moving and thus might result in different distribution patterns (Berg & 

Purcell 1977, Purcell 1977, Mann 2009). Overall, five stations have been analyzed along a 

transect running through the confluence zone of the West Spitzbergen Current (WSC) and the 

East Greenland Current (EGC). Along this transect, two stations were sampled in the AW 

once with high, once with no ice coverage and three stations were sampled in the Polar Water 

(PrW), covering different ice concentrations. The investigation of the entire protist 

community confirmed the high influence of water mass on the protist distribution and showed 

a dominance of chlorophytes in the AW and a dominance of stramenopiles and dinoflagellates 

in the PrW. However, apart from water mass attributes (temperature and salinity), sea-ice 

concentration also influences protist community structure by promoting the development of 

periodical cycles. The melting of sea-ice forms a stratified water layer and induces favorable 

conditions for the formation of phytoplankton blooms (Bauerfeind et al. 2009), which are 

grazed by heterotrophic and mixotrophic protists. The bloom forming and periodical changing 

protist assemblage includes several diatom species (e.g. Thalassiosira sp., Pseudo-nitzschia 

sp., Chaetoceros sp. and Fragilariopsis sp.), while grazers are often represented by 

heterotrophic dinoflagellates and ciliates, indicators for post bloom events (Strom & Strom 

1996, Levinsen et al. 2000, Poulsen & Reuss 2002). The dominance of stramenopiles and 

dinoflagellates in the PrW, under different sea-ice concentrations, suggests such a protist 

succession. However, the overall low chl a concentration finally, does not support a bloom 

scenario before or during the study period. Nevertheless, the bloom forming diatom, 

Thalassiosira sp., was observed in abundant proportions at the melt water influenced stations 

T1 and T7, while consumers of bloom forming diatoms, such as Gyrodinium sp. (Saito et al. 

2006, Sherr & Sherr 2007) were found in abundant proportions at the ice free station T5, 

suggesting a high influence of sea-ice concentration on protist community structure. In 

summary, Publications II and III showed a correlation of protist communities and water 

masses in the Fram Strait that was not dependent on protist size class but partly influenced by 

sea-ice concentration. 
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Publication IV addressed the question of the water mass influence on protist composition in 

the Central Arctic Ocean. Protist community structure changes were analyzed, across twenty-

three stations in the central Arctic, by the application of ARISA, while protist diversity was 

investigated in a selection of eight stations by the use of 454-pyrosequencing.  

ARISA resulted in a clustering of the protist communities according to the distinct water 

masses (Atlantic Water, Pacific Water, Mixed Water I, and Mixed Water II) and facilitated to 

distinguish between ice-free and ice-affected sampling sites. However, the differences 

between the clusters were small. The ordination of the data in a principal component analysis 

(PCA) indicated a stronger influence of sea ice concentration on protist community structure 

than of water mass determining factors (T, S, and nutrients). The effect of water mass on the 

protist composition was also observed in the 454-pyrosequencing analysis, just not as much 

pronounced. Strong evidences of missing phylotypes were less observed than small indices of 

changing phylotype proportions. One reason for the minor recovered relationship of water 

mass and protist community structure is probably due to the limited number of samples. 454-

pyrosequencing analysis comprised two samples of each water mass, whereas six out of eight 

stations clustered close in the metaMDS plot (ARISA). These stations were mostly dominated 

by dinoflagellates, whereas other taxonomic groups showed no big variances as well. The 

other two stations, in contrast, were dominated by chlorophytes and displayed highly different 

community structures in the ARISA. A detailed insight in the abundant (≥1 % relative 

abundance) and rare biosphere (<1 % relative abundance) revealed small indices of water 

mass coupled biogeography. In this respect, abundant phylotypes as Pyramimonas sp. and 

Dictyocha sp. were completely missing in the AW, while Micromonas sp.1 and 

Fragilariopsis sp. presented the lowest and highest proportion in the MWI, respectively. Rare 

phylotypes, as Pelagodinium sp. and all MAST representatives, showed a water mass 

influence by being absent at the first AW station. 

In summary, the influence of large-scale water masses on protist distribution was confirmed 

for the Fram Strait and, in parts, for the Central Arctic Ocean. The answer on the question 

concerning the most suitable method to elucidate water mass related protist structures, is 

positive for both adopted molecular methods: ARISA and 454-pyrosequencing. Depending on 

the objective of the study, the use of ARISA is suitable for tracing general shifts in 

community structure, while 454-pyrosequencing is suggested when investigating the diversity 

of communities. A combination of both tools, however, provides a powerful tool that allows 

the investigation of numerous samples and the filtering of interesting samples for further 

taxonomic analysis.  
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The question regarding possible suitable indicator organisms for different water masses, is 

more difficult to address. Water masses are characterized by the holding of different 

temperatures, salinities, and nutrient signatures. Potential indicative species for water mass 

are rare and have been found more within the zooplankton than within the phytoplankton, as 

for example Themisto compressa, an AW species that was found to spread further north 

(Kraft et al. 2011) or Calanus finmarchicus, a characteristic for North Atlantic Water (Hirche 

& Kosobokova 2007). Although, single species such as Coccolithus pelagicus or single 

diatoms species (e.g. Fragilariopsis cylindrus) show preferences in salinity and temperature 

regimes, the use for water mass indication is limited. In fact, potential indicative species 

should fulfill various requirements. First, they need to be sentinel to water mass defining 

attributes, in order to correspond to changes with presence or abundace shifts, second they 

should not display an ubiquitous distribution, and third possible indicative protists should at 

least not undergo blooming successions, because variabilities in abundance could hence not 

be entirely related to water mass properties. 

In order to confine the search for indicative organisms, it is appropriate to decide at first, 

which group, the abundant or the rare biosphere, is more convenient and might contain 

potential marker species. The rare biosphere is characterized by a high diversity, which is 

assumed to serve as a seed reservoir, enhancing the biological buffer capacity (Sogin et al. 

2006, Caron & Countway 2009). Under this aspect, the rare biosphere comprehends a variety 

of most diverse protists to provide a high number of specialists for different marine habitats or 

changing environmental conditions. Publication IV studied the distribution of the rare 

biosphere in the Central Arctic Ocean. The taxonomic group composition did not differ 

throughout the entire course plot, suggesting a likewise inappropriate composition of single 

protists in the other investigated water masses. Furthermore, the limited insight in the 

diversity makes the rare biosphere deficient to search for water mass indicators. Hence, 

marker species have to be searched within the abundant biosphere. The search of indicator 

species can be further confined, by choosing a size class that covers most of the 

aforementioned requirements. Picoplankton has the advantage that the distribution is 

exclusively controlled by water mass circulation due to the small size and the resulting 

density constrains. Moreover, picoplankton species are not forming blooms and the 

abundance was reported to be positively correlated with temperature increase and nutrient 

decrease (Li et al. 2009, Moran et al. 2010). This can be particularly suitable for tracing the 

circulation of warm and oligotrophic water masses. However, the distribution of picoplankton 

is still a subject of discussion, where one side suggests an ubiquitous distribution (“ubiquity 
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model”), while the other side argues against it (“moderate endemicity model”) (Finlay et al. 

1996, Foissner 1999, Fenchel & Finlay 2004, Lachance 2004, Richards et al. 2005, Finlay et 

al. 2006, Foissner 2006, 2008, Galand et al. 2009). This and the limited knowledge about the 

diversity constrain the use of picoplankton species for water mass identification in the end. 

Publication II, III, and IV, showed no clear evidence of suitable indicator species in the 

abundant biosphere. However, a general trend was observed in the distribution of 

chlorophytes, which were mainly represented by the ubiquitously occurring picoeukaryote 

Micromonas pusilla. In this study, the species showed a preference for warmer and/or nutrient 

limited areas and presented high proportions in AW stations. Moreover, changes in the 

abundance of Micromonas, in the Central Arctic Ocean, were often coupled with different 

water masses. In this respect, Micromonas showed in average the highest proportions in the 

AW and MWII, lowest in the MWI and moderate percentages in the PW. However, the 

similar proportions of Micromonas in two water masses that were characterized by distinct 

properties, finally questions the application of the species as water mass indicator because of 

the limited sensitivity. Overall, the use of the whole protist community to trace water mass 

shifts is more suitable, because of the higher validity, induced by the combination of different 

protists.  

 

Complex hydrographical situations can be evaluated via genetic information 

 

Different hydrographical situations were observed in the Fram Strait, a passage that connects 

the North Atlantic with the Arctic Ocean. Beside the characteristic two-directional boundary 

currents (WSC and EGC) that flow on each side of the passage, the circulation is further 

affected by the bottom topography (Rudels et al. 2000). As a result an intense mesoscale eddy 

field forms on top of the Molloy Ridge and leads to the recirculation of AW to the North 

Atlantic (Schlichtholz & Houssais 2002). The formation of short period and flexible eddies 

further complicates the circulation structure in that area and causes diffusions of the AW 

(WSC) and the PrW (EGC) (Johannessen et al. 1987). 

Publication III investigated the protist community structure along a transect that passed 

through both current systems. Data obtained by 454-pyrosequencing were very suitable to 

distinguish between the community structures of the EGC and the WSC. Moreover, they were 

able to trace more complex situations as the recirculation of the AW. In this regard, the station 

located in the recirculating WSC branch resembled in the protist community structure the one, 

located in the principle current. The similar structure was characterized by a high proportion 
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of Micromonas pusilla that would probably have been missed by the single application of 

light microscopy. However, as most clearly observed in Publication III and, to a lesser 

degree in Publication II, protist communities in the Fram Strait were affected by the 

hydrodynamic situation and in addition by the prevalent sea ice concentration. The presence 

of sea ice influenced in particular the diatom/dinoflagellate relation and showed a diatom-

based system under no/low ice concentrations and a dinoflagellate-based system in 

combination with high ice concentrations. The high abundance of diatoms in areas of no or 

little ice concentration is due to the nutrition strategy because diatoms are autotrophic and 

hence require a good light regime. Dinoflagellates, in contrast, also contain heterotrophic and 

mixotrophic representatives and are thus capable to dominate low light areas of high ice 

concentration. 

Based on the influence of sea ice on the protist assemblage, the question arises if 

hydrodynamic situations can also be recovered in the Central Arctic Ocean, where a perennial 

sea ice coverage influences the local protist communities. Publication IV investigated the 

relation of community structure and water mass at twenty-three stations in the Central Arctic 

Ocean, where most stations were characterized by a sea ice concentration of >80 %. The 

application of ARISA pointed to a small response of protist community structure to local 

hydrography and to a strong influence of ice thickness and floe size on community structure 

shifts. The use of 454-pyrosequencing, on a selection of eight stations, revealed a stable 

distribution of the major taxonomic groups at almost all stations that was characterized by a 

high dominance of dinoflagellates. The high abundance of heterotrophic dinoflagellates and 

small flagellates has also been observed in the Central Arctic Ocean by previous studies 

(Sherr et al. 1997, Rat'kova & Wassmann 2002, Sherr et al. 2003, Richardson et al. 2005, 

Terrado et al. 2008). The similar observations lead to the suggestion that the perennial ice 

coverage promotes the growth of particular groups that mask the influence of hydrography. 

For example, as previously observed in the Fram Strait, the Arctic protist assemblage 

presented high contributions of dinoflagellates in low light areas and higher contributions of 

diatoms in high light areas, where the sea ice was characterized by low thickness or small floe 

sizes. Previous studies of Sherr et al. (2003) and Terrado et al. (2008) also reported the 

significance of light irradiance for protist distribution. 

In summary, ARISA and 454-pyrosequencing were appropriate to recover complex 

hydrographical systems in marine habitats. Shifts in the protist community structure were 

detected for the EGC as well as for the WSC. Moreover, molecular data were suitable to trace 

even weaker structures as the recirculation branch of the WSC. However, tracing those 
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hydrographical situations was constrained by the coincidental presence of sea ice, which 

masked the protist community structure by fostering small flagellates and dinoflagellates, and 

thus decreased the range of indicative variations. Consequently, hydrographical induced 

community shifts displayed a higher resolution in no or low ice covered areas, as the Fram 

Strait, and a lower resolution in high ice covered areas, as the Central Arctic Ocean. 
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5.  Outlook 

A wealth of literature describes the biodiversity, biogeography, and biogeochemical role of 

nano- and microplankton in many oceanic regions. Most of these investigations were carried 

out in coastal areas. Less attention has been paid to open oceans, while high-productive areas 

were investigated more exhaustively than areas of lower productivity. Overall, just a few 

studies were carried out in the permanent ice covered Central Arctic Ocean and hence, 

information on marine ecosystem function in that area is scarce. Comprehensive 

investigations, however, are of particular interest with regard to the actuality that 

environmental conditions in the Arctic Ocean are changing fast and profoundly. At present, 

we assume that the temperature increase promote the occurrence of picoeukaryotic cells 

which will affect the food-web structure by enforcing the microbial loop. Furthermore, the sea 

ice decrease and the better light climate in surface water are not expected to increase the 

average protist biomass in the Central Arctic Ocean because offshore nutrient availability will 

not change accordingly.  

However, in order to understand the response of the Arctic marine ecosystem more 

comprehensively, more information concerning the protist diversity, distribution, physiology 

and interactions is needed. At the present time, we are far away from capturing the natural 

protist diversity and we have not yet understood the forces that are driving the protist 

composition and distribution in full detail. Therefore, we have to address the gaps of 

knowledge concerning the protist diversity, including for instance detailed information on key 

species, on pelagic/sympagic-associated protists and on intraspecific diversities, in order to 

assess the potential of species to adapt to a spectrum of different abiotic factors. Moreover, 

information on autotrophic, mixotrophic, and heterotrophic representatives is needed to fully 

understand protist interactions, their role in the food-web, and in biogeochemical pathways. 

To achieve all this, more sampling has to be carried out in different Arctic regions that 

encompass water column and sea-ice communities. Analyzing the effects of different abiotic 

and biotic factors on protist behavior further demands the combination of field research and 

laboratory research. Field research includes protist surveys at harsh environmental conditions, 

as e.g. the polar night period, and a monitoring of protist diversity and community structure. 

Such a monitoring allows thereby investigations on seasonal successions, on invasive species, 

and on consequences of temperature increase and sea ice decrease. Laboratory research 

includes in-situ experiments of protist cultures and environmental samples that are performed 

under different abiotic and biotic factors and that study the specific response of single protists 

(e.g. key species), the competition for nutrients and light, the predator-prey relations, the 
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succession, and the relations of autotrophic, mixotrophic, and heterotrophic species within the 

protist community. Microcosm experiments are crucial because they provide information on 

the physiology of protists, which are important for estimating the ecophysiological response 

to environmental change.  

The actual lack of knowledge concerning Arctic protist diversity, distribution, physiology, 

processes, and food-web interactions also constitutes an important drawback for modeling 

studies. Hence, filling these gaps will greatly improve predictions concerning the influence of 

environmental change on the Arctic marine ecosystem.   

One method that facilitates an increase of knowledge in protist diversity and distribution is 

454-pyrosequencing because it includes even small and rare species. The field of 454-

pyrosequencing development is a fast-moving area of research, where latest inventions 

enhance the read length of DNA from actual 500 bp to up to 1000 bp (Ebenezer et al. 2012). 

The increase in DNA read length will improve assessments of protist diversity and 

distribution in future. Moreover, apart from a comprehensive diversity analysis on inter- and 

intraspecific level, 454-pyrosequencing can be applied to study the expression of genes (e.g. 

transporter genes) that are associated with protist responses on environmental stress. Hence, 

the ability of 454-pyrosequencing to investigate the influence of environmental changes on 

protist communities by providing information on the protist diversity, distribution, and on the 

protist stress level makes the method a particularly suitable tool for protist studies and will 

increase the application in future. 
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7. Appendix 

Appendix 1. A) Temperature and B) Salinity distribution of the “Hausgarten” in summer

 2009 (ARKXXIV/2). The distribution of both parameters is presented for the 

 surface water layer. Stations (HGN4, HG4, HG1, and HGS3) have been

 sampled between the 11th and 18th July.  
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Appendix 2. A) Temperature and B) Salinity distribution of the Western Fram Strait in          

 summer 2010 (ARKXXV/2). The distribution of both parameters is presented 

 for the surface water layer. Stations (T1-T9) have been sampled between the 

 18th and 23rd July. 
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Appendix 3. A) Temperature and B) Salinity distribution of the Central Arctic Ocean in late 

 summer/fall 2011 (ARKXXVI/3). The distribution of both parameters is 

 presented for the surface water layer. Stations (202-280) have been sampled 

 between the 14th August and 21st September. 
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Appendix 4.  3D metaMDS plot of picoplankton community structure in the “Hausgarten”.         

 Community structure changes were calculated by the implementation of the                 

 Jaccard-index and put into a multidimensional graph with no axis unit. The 

 stress value refers to the reliability of the positioning. Each station is 

 represented by two depths and marked in different colors (grey: HGN4, blue: 

 HG4, green: HG1 and yellow: HGS3). 
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Appendix 5. 3D metaMDS plot of the protist community structure in the Western Fram          

 Strait. Community structure changes were calculated by the implementation of 

 the Jaccard-index and put into a multidimensional graph with no axis unit. 

 The stress value refers to the reliability of the positioning. The stations (T1, 

 T5, T6, T7 and T9) were taken between 5 and 15 m depth. 
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Appendix 6. 3D metaMDS plot of the protist community structure in the Central Arctic                      

 Ocean. Community structure changes were calculated by the implementation of 

 the Jaccard-index and put into a multidimensional graph with no axis unit. 

 The stress value refers to the reliability of the positioning. The color code 

 refers to stations of the same water masse (red: Atlantic Water, green: Mixed 

 Water I, blue: Pacific  Water and yellow: Mixed water II), while the first 

 number presents the station number and the second the sampling depth. 
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Appendix 7. Seasonal development of the area-averaged chl a concentration (MODIS) in the  

                     “Hausgarten”, obtained by remote sensing observation. 
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Appendix 8. Seasonal development of the area-averaged chl a concentration (MODIS) in the  

                      Western Fram Strait, obtained by remote sensing observation. 
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