
 

 

 

Course of studies: Master of Science Biology 

 

 

Master Thesis: 

 

Response of the cold-water coral 

Desmophyllum dianthus to future 

CO2 concentrations 

 

Submitted by: Astrid Böhmer 

 

 

First supervisor: Carin Jantzen, PhD, Alfred- Wegener-Institute Helmholtz 
Centre for Polar and Marine Research, Bremerhaven, 
Germany, carin.jantzen@gmx.net. 

 
Second supervisor:  
 

 
Prof. Pedro Martínez Arbizu, PhD, Senckenberg am Meer, 
German Centre for Marine Biodiversity Research, 
Wilhelmshaven, Germany, pmartinez@senckenberg.de. 

 

Oldenburg, December 2013 

 

 

 



Acknowledgements 

 

First of all I would like to thank my family, who made my biology study possible. Special 

thanks goes to my mum, Karin Soot-Böhmer, as she always found encouraging words 

to bring me back on track. 

Many thanks go to Dr. Carin Jantzen for scientific support, supervising me and revising 

this thesis. She gave me the freedom to develop my own ideas and to gain a lot of 

practice in laboratory and aquarium work. I also thank Prof. Dr. Pedro Martínez Arbizu 

for the supervision and the interest in the topic of this thesis.  

Special thanks go to Ulrike Holtz, Richard Steinmetz and Ruth Adelheit for a very 

intense and helpful technical support. I am especially grateful to Ulrike and Richard, 

who spent several hours together with me at cold 10°C to keep the experiments 

running.  

I am indebted to Jürgen Laudien, Gertraud Schmidt, Tina Sandersfeld, Sandra Maier, 

and Lalita Putchim, who took over important tasks in times of my absence. I especially 

want to thank Jürgen for co-supervising and regular helpful input. I am equally thankful 

to Gertraud, who provided the basics for the statistical analysis. I also thank Rainer 

Knust for providing computers and corresponding software. I further thank Ursula 

Liebert and Alexander Buschmann for continual organizational support. 

I am incredibly grateful to Sandra Maier, Tina Sandersfeld, Kristina Kunz, Nina Hörner 

and Alexandra Segelken-Voigt for being my faithful fellow campaigners, who gave me 

the essential energy, calming words and most important a good friendship. I also thank 

Janine Stiller and Maria Kolaxidi for being my second hand in stressful times. 

Many thanks go to Kristin Tietje for proof-reading this thesis and always being a good 

friend. I am also grateful to Sebastian Kock for long library hours and late night working 

sessions. I am further indebted to the ‘Rebenstraßen-team’ (Julia Borrmann, Dennis 

Metzner, Imke Gollan, Mela Determann, Marianne Hamm, Marcel Severith and Oliver 

Richters) for cooking several meals, relaxing brakes and calming words. 

I also thank the communication and media team of the Alfred-Wegener-Institute 

Helmholtz Centre for Polar and Marine Research in Bremerhaven, Germany, Kristina 

Charlotte Bär and Lars Grübner, for wonderful pictures and video records. 

 

 



Table of contents 

Acknowledgements 

 

List of figures …………………………………………………………………………………….  1 

List of tables ……………………………………………………………………………….........  2 

Abstract …………………………………………………………………………………………..  4 

 

1. Introduction  

1.1 Ocean acidification ……………………………………………………………………..  5 

1.2 Desmophyllum dianthus ……………………………………………………………….  8 

1.3 Calcification ……………………………………………………………………………..  9 

1.4 The Chilean fjord system – Fjord Comau …………………………………………… 11 

1.5 Objectives and working strategy ……………………………………………………... 12 

 

2. Material and Methods         

2.1 Study area: Comau Fjord, Chile ……………………………………………………… 13 

2.2 Corals …………………………………………………………………………………… 15 

 2.2.1 Sampling and preparation of Desmophyllum dianthus ……………………… 15 

 2.2.2 Cultivation of corals ……………………………………………………………... 16 

 2.2.3 Cleaning of corals ……………………………………………………………….. 18 

 2.2.4 Feeding of corals ………………………………………………………………... 18 

 2.2.5 Calyx surface area ………………………………………………………………. 18 

2.2.6 Coral length …………………………………………………………………….... 19 

2.2.7 Coral volume …………………………………………………………………….. 20 

2.4 Growth rates …………………………………………………………………………… 20  

2.5 Respiration rates ……………………………………………………………………… 22 

2.6 Polyp extension …………………………………………………………………......... 23  

2.7 Coral tissue analysis …………………………………………………………………..24 

 2.7.1 Tissue preparation ………………………………………………………………. 24 

 2.7.2 Ash free dry mass ……………………………………………………………….. 25 

 2.7.3 Protein content of coral tissue …………………………………………………. 26 

2.8 Total alkalinity …………………………………………………………………………. 26 

2.9 Nutrients ……………………………………………………………………………….. 28 

2.10 Carbonate chemistry ………………………………………………………………... 28 

 2.11 Statistical and graphical analysis ……………………………………………......... 28 

 

3. Results 

3.1 Water parameters ……………………………………………………………………… 30 

3.1.1 pH and temperature …………………………………………………………….. 30 

3.1.2 Nutrients ………………………………………………………………………….. 31 

3.1.3 Carbon system and calcium solubility ……………………………………....... 34 

3.1.4 Salinity and oxygen ……………………………………………………………... 34 

3.2 Corals …………………………………………………………………………………… 34 

3.2.1 Calyx surface area and coral length …………………………………………... 34 

3.2.2 Growths rates ……………………………………………………………………. 36 

3.2.3 Respiration rates ………………………………………………………………… 37 

3.2.4 Polyp extension ………………………………………………………………….. 38 



3.2.5 Ash free dry weight ……………………………………………………………… 39 

 

4. Discussion 

4.1 Water chemistry ……………………………………………………………………….. 40 

4.1.1 Aragonite saturation status …………………………………………………….. 40 

4.1.2 Dissolved inorganic carbon …………………………………………………….. 41  

4.1.3 Variations in CO2 measurements ……………………………………………… 41 

4.1.4 Variations in total alkalinity ……………………………………………………... 42  

4.2 Corals …………………………………………………………………………………… 43 

4.2.1 Growth rates ……………………………………………………………………... 43 

4.2.1.1 Growth performance …………………………………………………. 43  

4.2.1.2 A comparison among studies ……………………………………….. 44 

4.2.1.3 Measuring growth rates ……………………………………………… 44 

4.2.1.4 Acclimation ……………………………………………………………. 45 

4.2.1.5 Adaptation …………………………………………………………….. 46 

4.2.1.6 Temperature ………………………………………………………….. 46 

4.2.1.7 Age …………………………………………………………………….. 47 

4.2.2 Respiration rates ………………………………………………………………... 48 

4.2.3 Polyp extension …………………………………………………………………. 50 

4.2.4 Methodical considerations ……………………………………………………... 51 

4.2.4.1 Corals in aquaria ……………………………………………………………… 51 

4.2.4.2 Ash free dry weight …………………………………………………………… 51 

 

5. Conclusions ……………………………………………………………………………. 53 

 

6. References ……………………………………………………………………………… 54 

 

7. Appendix ………………………………………………………………………………… 61

         

Eidesstattliche Erklärung 

 



1 

 

List of figures 

  

Figure 1 Dense aggregations of Desmophyllum dianthus specimens under 

an overhang in the fjord Comau, Patagonia. 
 

9 

Figure 2 Map of the Chilean Fjord system (41.47 °S – 56.00 °S); in detail 
the Fjord Comau. Numbers 1 to 4 are indicating the sample sites: 
(1) Liliguapi (2) Swall-Huinay (3) Cross-Huniay (4) Punta Gruesa 
(after Sokol, 2012). 
 

14 

Figure 3 Desmophyllum dianthus specimens were glued to a screw, which 
was attached to a coral holder to put corals in their natural 'upside 
down’ position. 
 

15 

Figure 4 Cultivation of corals in aquarium system. Circuit 1 contained the 
control coral group (n=16) and circuit 2 the treatment coral group 
(n=16). Level 1 maintained macroalgae and Eheim pumps, which 
pumped the water up to Level 2 (excluded corals) and 3 
(experimental corals). Red and green arrows indicate the water 
flux between tanks. Green arrows mark the reconnection of 
aquarium tanks. Every six weeks either the red arrow system or 
the green arrow system was running at Level 3.Yellow triangles 
indicate light constructions for each level. 
 

17 

Figure 5 Example photograph of corals’ calyx surface area indicated in red. 
The area measured 593.28 mm2. 
 

19 

Figure 6 Coral photographs from 4 different perspectives (A, B, C and D). 
Photograph A was taken for length analysis indicated by the red 
arrow.  
 

20 

Figure 7 Polyp extension of Desmophyllum dianthus assigned to three 

different ranks (1 = fully retracted, 2 = half extended, 3 = fully 
extended). 
 

24 

Figure 8 PH values over experimental time for circuit 1 and 2. Values are 
expressed as means for every week. 
 

 
30 

Figure 9 Temperature values over experimental time for circuit 1 and 2. 
Values are expressed as means for every week. 
 

31 

Figure 10 
A, B, C, D 

Nutrient variations over experimental period for NO3
- (A), PO4

- (B), 
NO2

- (C) and NH4
+ (D) within circuit 1 and 2. 

 

32 

Figure 11 Growth rates of corals under ambient and low pH conditions over 
time. Values are expressed as means ± SD. 
 

36 

Figure 12 Respiration rates of corals under ambient and low pH conditions 
over time. Values are expressed as means ± SD. 
 

38 

Figure 13 Polyp extension of corals under ambient and low pH conditions 
over time. Values are expressed as means ± SD. 

39 



2 

 

List of tables 

 

Table 1(A) Overview of water parameters within circuit 1 (ambient pH) and 
2 (low pH) during experimental period. Measurements were 
replicated as follows: TA (one time a week); pH and temperature 
(every 20 minutes, 24 hours a day), oxygen and salinity (daily). 
Forms of inorganic carbon and calcium solubility were calculated 
with ‘co2sys.xls’, a calculator for the CO2 system in seawater for 
Excel/VBA (Lewis and Wallace 1998). Values are expressed as 
(means ± SD).  
 

33 

Table 1(B) Differences (P) between water parameters and numbers (N) of 
repeated measures within circuit 1 and 2. Significant values are 
highlighted with (*). 
 

33 

Table 2(A) Overview of inorganic nutrients within circuit 1 (ambient pH) and 
2 (low pH) over experimental period. Measurements were 
carried out minimum 2 times a week with quick tests (JBL GmbH 
& Co KG, Germany). Values are expressed as (means ± SD). 
 

33 

Table 2(B) Overview of nutrient differences (P) and numbers (N) of 
repeated measures within circuit 1 and 2. Significant values are 
highlighted with (*). 
 

33 

Table 3 Differences (P) between the control (ambient pH) and the 
treatment coral group (low pH) at the beginning, in the middle 
and at the end of experiment for coral length and calyx surface 
area; after 1, 3, 6, 8, 10 and 24 weeks for growth and respiration 
rates; and within the first and last 3 months of experiment for 
polyp extension. Significant values are highlighted with (*). 
 

35 

Table 4 Overview of Repeated Measures ANOVA for coral length, calyx 
surface area, growth and respiration rates, and polyp extension. 
Shown are the effect of time and low pH (treatment), F (quotient 
of variances within and between groups (control coral group 
(ambient pH) and treatment coral group (low pH)) and df 
(degrees of freedom). Significant values (P) are highlighted with 
(*). 
 

35 

Table 5 Differences (P) within the control coral group (ambient pH) and 
the treatment coral group (low pH) of start-and end values for 
coral length, calyx surface area, growth and respiration rates 
after 1 and 24 weeks; for polyp extension after the first and last 3 
months of experimental period. Significant values are highlighted 
with (*). 
 

36 

Table 6 Influence of varying temperatures on the carbonate system of 
sea water, calculated at ambient and lowered pH conditions. 
 

47 

 
 
 

 
 
 

 
 
 



3 

 

Table 7 Overview of corals physiological response measured as growth 
rates, respiration rates and polyp extension for each treatment. 
Values are given as means ± SD after 1, 3, 6, 8, 10 and 24 
weeks for growth and respiration rates; and per day over 28 
days for polyp extension. 
 

61 

Table 8 PH and-temperature differences between circuit 1 and 2. Values 
are given in units respectively for pH and temperature (in °C) 
and represent the difference between mean values measured for 
each week (1-24) of experiment. 
 

62 

Table 9 Overview of pH and temperature values within circuit 1 and 2 
over experimental period. Values are expressed as means ± SD 
and averaged for week 1-24. 
 

63 
 

Table 10 Overview of nutrient values within circuit 1 and 2 over 
experimental period. Values are expressed as means ± SD and 
averaged for week 1-24. (n.a.) indicates that no measurements 
were conducted. 

64 

 



 

4 

 

Abstract 

Future atmospheric carbon dioxide (CO2) concentrations are considered to increase 

drastically (up to 500ppm) until the end of the century. Dissolution of CO2 will cause a 

reduction of the aragonite saturation state in the oceans, due to ocean acidification. 

Aragonite is the orthogonal crystal form of calcium carbonate and is formed by coral 

skeletons. The cold-water coral Desmophyllum dianthus, from the Patagonian fjord 

Comau, was found to thrive at and even below the aragonite saturation horizon and at 

pH conditions, which are predicted for the future. The aim of the present study was to 

find out D. dianthus’ thresholds towards lowered pH by the investigation of corals’ 

physiology and behavior. 

Corals’ response (i.e. calcification rates (mass increase), respiration rates (oxygen 

uptake), and polyp extension) was quantified in vitro over a time period of 6 months to 

examine a possible acclimation potential. 32 D. dianthus specimens were separated in 

one control coral group (n = 16), maintained at ambient pH (~8.0) and one treatment 

coral group (n = 16) maintained at lowered pH (~7.8) in aquaria. Sea water pH was 

controlled by CO2 addition.  

A lowered pH of ~7.8 did not have a significant effect on D. dianthus’ growth and 

respiration rates, as values at ambient pH were equal regarding growth rates 

(0.19 ± 0.13% cm-2 d-1 (ambient pH), 0.19 ± 0.10% cm-2 d-1 (low pH)) and similar 

regarding respiration rates (22.07 ± 15.07µmol O2 cm-2 d-1 and 23.71 ± 7.56µmol O2 

cm-2 d-1, respectively). Respiration was even higher at lowered pH conditions, although 

not significantly. Also corals’ behavior was not significantly influenced by lowered pH, 

whereby polyp extension was higher, although not significantly, at lowered pH 

(75.4 ± 34.6%) compared to ambient pH (68.3 ± 40.0%). However, polyp extension 

within the last three months of experiment was higher at lowered pH (P=0.035). Corals 

additionally showed higher growth rates at the end of experiment, compared to the 

beginning, but not significantly though. 

A possible acclimation potential of corals was shown by elevated polyp extension, 

which might be related to increased oxygen uptake within the last weeks of experiment. 

D. dianthus might have adapted to low pH conditions in the fjord Comau, as corals are 

able to up-regulate their internal pH, adjusting calcification processes to highly 

unfavorable conditions for the formation of corals’ skeletons. Thus D. dianthus may 

cope with increasing CO2 concentrations by developing adaptation and acclimation 

mechanisms, representing optimal requirements to strive against ocean acidification 

and the thereby induced decreasing precipitation of aragonite. 
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1. Introduction 

1.1 Ocean acidification 

Industrial development (combusting of fossil fuels, cement fabrication and land use 

change (Erez et al, 2011)) led to increasing atmospheric carbon dioxide concentrations 

([CO2]atm), which are expected to transcend 500 parts per million (ppm) by the years 

2050 to 2100; thereby facilitating ocean acidification and global warming (Hoegh-

Guldberg, 2007). Investigations of the Vostok ice core from east Antarctica by 

Siegenthaler and colleagues (2005) revealed that during the last 650,000 years todays’ 

[CO2]atm reached highest values. Today water temperatures are higher (+0.7°C) and 

carbon-ion concentrations (~210µmol kg-1) and pH (-0.1 units) are lower (Feely et al, 

2004; Orr et al, 2005) than during the last 420,000 years, pushed by the remarkable 

magnitude of nowadays [CO2]atm (Hoegh-Guldberg, 2007). Future pH values are 

predicted to drop another 0.2 – 0.4 units in water surfaces by the end of the century, 

which was supposedly not documented over the last 20 million years (Feely et al, 2004; 

2008).  

About 25% of anthropogenic [CO2]atm is absorbed by the ocean (Feely et al. 2004; 

Sabine et al. 2004; Canadell, 2007) producing carbonic acid by the reaction with water. 

The chemical reaction of water and CO2 is described via the following equation (Eq. 1) 

(Hoegh-Guldberg, 2007): 

 

  

 

 

 

Carbonic acid (H2CO3) dissociates in bicarbonate (HCO3
-) and protons (H+), whereby 

the protons react with carbonate ions (CO3
2-), producing more bicarbonate ions and 

thus decreasing the availability of carbonate for the formation of calcium carbonate 

(CaCO3). Aragonite (the orthogonal crystal form of CaCO3) is the basic element of 

which coral skeletons are formed. Gattuso (1999) described the aragonite saturation 

state (ΩAr) of seawater as the product of calcium (Ca2+) and CO3
2- at a given 

temperature, salinity and pressure, divided by Ksp (stoichiometric solubility product of 

aragonite) = [CO3
2-]*[H+]/[HCO3

-] (Eq. 2) (Dickson and Millero, 1987):  

CO
2
 + H

2
O ↔ HCO

3

-

 + H
+

 

H
+

 + CO
3

2-

 ↔ HCO
3

-

 

CaCO
3
 ↔ Ca

2

+

 + CO
3

2-

   
(Eq. 1) 
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An aragonite saturation state (ΩAr) lower than 0.1 indicates undersaturation which is 

unfavorable for organisms to build up their skeletons. The latter is called ‘calcification’. 

Values over 1.0 indicate supersaturation which is favorable for calcifying organisms. 

(Kleypas et al. 1999). With increasing ocean acidification the aragonite saturation 

horizon (interface between over- and undersaturation of aragonite) rises in shallower 

waters, as CO2 dissolves easier at colder temperatures and at higher pressure. Hence 

deeper waters become unfavorable habitats e.g. for therein thriving cold-water corals, 

as they barely obtain aragonite for the formation of their skeletons (Kleypas et al. 

1999a; Feely et al. 2004; Orr et al. 2005; Guinotte & Fabry 2008; Miller et al. 2011).  

As ocean chemistry is very complex due to several interacting oceanographic 

processes it becomes difficult to evaluate whether ocean acidification is the major 

driving factor of environmental change and suggested species decline. Ocean 

acidification is accompanied by CO2-induced ocean warming, whereby increasing sea 

water temperatures seem to compensate for lowered calcification from ΩAr (McCulloch, 

2012b). McCulloch and colleagues (2012b) stated that model calculations predict 

minimal effects on ΩAr for the combined scenario of ocean acidification and global 

warming. Warmer waters close to the equator, inhabiting warm-water coral reefs, lead 

to a solubility reduction of dissolved CO2 thereby increasing ΩAr enhancing precipitation 

of CaCO3 for the formation of coral skeletons.  

Ocean acidification not only results in a reduction of dissolved CaCO3 in water (Kleypas 

et al. 1999a; b), but also leads to a reduction of corals skeletal carbonate cements 

(Behairy & El-Sayed, 1984). Several field and laboratory studies proof that acidified sea 

water, entailing a low ΩAr, reduces coral calcification and growth (Gattuso et al, 1998a; 

Langdon et al, 2000; Reymond et al, 2013). Further a positive correlation between 

calcification and ΩAr has been shown by Smith & Roth (1979) and Gattuso and 

colleagues (1999). If the ΩAr drops below 1.0 due to inorganic chemistry control 

(increase of dissolved CO2), a dissolution of CaCO3, imbedded in coral skeletons, will 

be noticeable (see equation (3)) (Erez et al, 2011). Remarkably, dissolution of coral 

skeletons at ΩAr ≥ 1.0 has been reported by Yates and Halley (2003; 2006), and 

Silverman and colleagues (2007a). As future CO2 concentrations are predicted to 

increase, thereby reducing the ΩAr in waters, coral reefs thus are expected to decrease 

(Eq. 2) 

Ω
Ar

 =   [Ca
2+

]*[CO
3

2-

] 

K
sp
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rapidly ((1) due to reduced net calcification rates (N) and (2) due to skeletal dissolution 

(D), see Eq. 3). In contrast Jury and colleagues (2009) stated that HCO3
- highly 

influenced calcification rates, rather than pH and thus aragonite saturation. The primary 

reason for the sensitivity of corals to ocean acidification is still on debate. It can be due 

to a lowered CO3
2- ion concentration accompanied with an increased HCO3

- ion 

concentration or the lowered (ΩAr). 

 

 

 

 

The available evidence indicates that at a global scale reefs will go through major 

changes in response to climate change rather than disappear entirely (Hughes et al. 

2003). Nevertheless the rate of changes in ocean chemistry due to higher [CO2]atm may 

cause instability of coral skeletons and consequently restrict their regeneration ability 

(i.e. after hurricane events). The decreased ability of corals to grow and compete could 

lead to an alternate state, i.e. from a coral dominated to an algae dominated scenario, 

revealing obvious consequences for the ecosystem (Connell, 1997).  

It is challenging for organisms to adapt to new conditions under rapid environmental 

changes (Guinotte and Fabry, 2008). Thresholds and adaptation mechanisms under 

varying environmental circumstances seem to differ with high variation among corals. 

Adaptation mechanisms likely entail energy allocation processes, as corals may 

maintain skeletal growth rates (apical extension) (Tsounis et al. 2012) and thereby 

probably reduce skeletal density; or corals may rather grow massive (and thereby 

probably more dense) than elongated, a common phenomenon observed for the 

scleractinian cold water coral Desmophyllum dianthus (Esper, 1794) (Försterra & 

Häusermann, 2003). However D. dianthus also shows elongated growth depending on 

its settling site within coral aggregations (Försterra & Häusermann, 2003), probably 

indicating an adaptation mechanism to the competitive process of food capturing 

between densely growing corals. Alternatively, corals may maintain growth rates and 

density by expending more energy for calcification processes (Hoegh-Guldberg et al, 

2007). However, the increased energy input for calcification may lead to a reduction of 

energy for other physiologically important processes like reproduction (Szmant, 2002). 

Tsounis and colleagues (2012) also stated that corals might procure more energy in the 

recovery of damaged tissue (caused by anthropogenic disturbances, i.e. SCUBA diving 

Eq. (3) 

Gross calcification (G) = Net calcification (N) – Dissolution (D) 

Hence D = N – G and when N = 0; D = -G 
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and fishing) rather than into reproduction. Fine & Tchernov (2007) reported an entire 

dissolution of coral skeleton of Oculina patagonica (Scleractinia) (due to lowered sea 

water pH= 7.4) thereby leaving behind the intact polyp tissue. Maintaining the coral 

again (after the lowered pH treatment) under ambient sea water pH resulted in skeletal 

regrowth. Further, there is evidence that the scleractinian cold-water coral Lophelia 

pertusa (Linnaeus, 1758) showed acclimation mechanisms to CO2-induced ocean 

acidification (Form and Riebesell, 2012). The cold-water coral D. dianthus occurs within 

waters (in the Chilean fjord system) featuring pH gradients with concomitant variations 

in ΩAr (≤ 1.0), which are predicted for the future (Jantzen et al. 2013a). Nevertheless, 

scleratinian cold-water corals are considered to be majorly influenced by ocean 

acidification as they inhabit mainly deep sea regions (Freiwald et al. 2004), with a lower 

ΩAr and higher CO2 concentrations compared to surface waters (Guinotte & Fabry, 

2008). Whether scleractinian cold-water corals are able to survive within climate 

change scenarios depends on their ability to develop adaptation mechanisms and to 

shift their habitats into shallower regions towards the aragonite saturation horizon. 

 

1.2 Desmophyllum dianthus  

The scleractinian cold-water coral D. dianthus (prior: Desmophyllum cristagalli (Milne 

Edwards & Haime, 1848) is a cosmopolitan deep-sea species inhabiting regions from 

the Western and Eastern Atlantic over the Indian Ocean and the Western, Eastern and 

Central Pacific further to the poles of the Subantarctic and Artic (Cairns 1994). There 

are only two regions where D. dianthus does not exist: Continental Antarctica and 

Northern boreal Pacific (Försterra & Häussermann, 2003). The azooxanthellate coral 

can be found within a depths range of 8 to 2500m (Grange et al. 1981; Häussermann & 

Försterra, 2007) thriving at euphotic and aphotic conditions. Mainly growing on 

seamounts and continental slopes (Miller et al. 2011) D. dianthus occurs also in dense 

aggregations (> 1500 individuals per square meter) under overhangs in Chileans and 

New Zealand Fjord systems within depths of 45 m (Grange et al. 1981; Häussermann 

& Försterra, 2003) and 25m in the Fjord Comau (Chile, Patagonia) (Jantzen, personal 

communication) (Fig. 1). Thus the solitary living coral builds up reef-like banks 

providing a habitat for the associated community, thereby playing an important role 

within the ecosystem. In Chilean fjords D. dianthus is one of the 23 documented 

scleractinian cold-water corals and one of the most important habitat builder, forming a 

major part of the benthic macrofauna (Häussermann & Försterra, 2003, 2007).  
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1.3 Calcification  

Calcification, which is the construction of scleractinian skeletons, is also termed as 

biomineralization (the formation of biologically produced minerals) (Estroff, 2008). 

CaCO3 is formed by the conversion of dissolved inorganic carbon and calcium. 

Although, it is still on debate whether biomineralization is biologically induced (control 

of abiotic kinetics, i.e. ion transport) or controlled (control of extracellular calcifying 

medium). Allemand and colleagues (2011) concluded on the basis of several studies 

that calcification may rather be a biologically controlled process.  

Calcification takes place within an extracellular calcifying medium (ECM), the interface 

between corals’ skeleton and the tissues basal cell layer (calicoblastic cell layer) 

(Allemand et al. 2011). To fully understand the mechanisms of calcification the 

determination of pH and ion concentrations at the site of mineralization is fundamental. 

First knowledge about chemical processes within the ECM was gained by Al-Horani 

and colleagues (2003b), who measured higher pH and Ca2+ concentrations within the 

ECM compared to the calicoblastic cell layer and the tissue surface. Thus gaining sea 

water Ca2+ (essential for the formation of CaCO3) to the site of mineralization (Eq. 4) is 

an energy costing process. Whether transport of ions is an active or passive process is 

Fig. 1 Dense aggregations of D. dianthus specimens under an overhang 

in the fjord Comau, Patagonia (Försterra & Häusermann, 2003). 
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still on debate (Allemand et al. 2011). However, evidence in favor of active calcification 

processes is given (Chalker & Taylor, 1975; Chalker, 1976). An active transcellular ion 

transport through calicoblastic cells into the extracellular calcifying medium is 

conducted by Ca2+-ATPase (an ion pump) transporting Ca2+ in exchange with protons 

(H+). During the formation of CaCO3 the net production of protons is either 1:1 (Eq. 4) 

or 2:1 (Eq. 5) per mole of CaCO3 produced, depending on the source of dissolved 

inorganic carbon (DIC). Whether seawater derived HCO3
- or respired (metabolic) CO2 

are transported from the calicoblastic cells to the calcifying medium is still unknown 

(Allemand et al, 2011). 

 

 

 

 

 

Allemand and colleagues (2011) stated that the calcifying medium usually reveals high 

pH and CaCO3 saturation state compared to seawater. The latter is supported by δ11B 

composition investigations of four cold-water coral species (including D. dianthus), 

revealing boron values which lie above the inorganic sea water borate equilibrium 

curve (McCulloch, 2012). As this curve is pH dependent, this suggests the ability of pH 

up-regulation of the internal calcifying medium. For D. dianthus, McCulloch and 

colleagues (2012) measured internal pH elevations of 0.6 to 0.8 units (generated by the 

Ca2+-ATPase) compared to values of the surrounding seawater. Internal pH elevation is 

thereby accompanied by an ΩAr increase within the calcifying medium. Nevertheless, 

deep-sea cold-water corals are at risk as the aragonite saturation horizon rises with 

increasing CO2 values leading to a suggested dissolution of the exposed aragonite 

skeleton. Furthermore, pH up-regulation is an active process which detracts energy for 

growth, reproduction and other metabolic processes.  

Compared to warm-water corals D. dianthus shows rather mass increase in density 

than apical extension (Jantzen et al, 2013b). However D. dianthus’ growth rates are 

comparable with massive warm- water corals, e.g. Porites lutea (Jantzen et al, 2013b). 

Corals growth rates are determined as mass increase of CaCO3 over time and can be 

normalized by either their biomass (in g) or their calyx surface area (in cm2) (see 2.2.2, 

Fig. 4). Försterra and Häusermann (2003) described minimum growth of D. dianthus of 

2.3mm in length and 1.6mm in diameter per year in the Chilean Comau fjord. Relatively 

(Eq. 4) 

(Eq. 5) 
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high in situ mass increase (0.25 ± 0.18% d-1) of the Chilean D. dianthus was measured 

by Jantzen and colleagues (2013b) by an in situ short-term experiment in which mass 

determination was conducted via buoyant weight technique (Davies, 1989). Under 

controlled laboratory conditions Mediterranean individuals revealed growth rates of 

0.06 ± 0.03% d-1 over an experimental period of 8 months (Orejas et al. 2011). 

Maintaining corals under ambient conditions growth rates were determined with the 

buoyancy weight technique. Maier and colleagues (2011) showed short-term growth 

rates of 0.04% d-1 determined by buoyancy weight and growths rates of 0.01% d-1 via 

the total alkalinity technique (Smith & Key, 1975).  

 

1.4 The Chilean fjord system – Fjord Comau 

A large area of Chile’s austral fjord and channel region and the surrounding oceanic 

waters were unexplored until 1995 in terms of oceanography (Silva, 2008). Until now 

this area is one of the largest and fewest studied waters on earth (Arntz, 1999; 

Försterra et al. 2005; Försterra, 2013). The fragmentary knowledge has been filled up 

step by step but is still in its infancy. With more than 1500km length and numerous 

channels, fjords and archipelagos, the Chilean fjord system area is highly structured 

and reveals variable regions inhabiting marine organisms of major diversity.  

The fjord Comau is one of the most sampled fjords, due to the ‘Huniay Scientific Field 

Station’, currently known for its abundant benthic macrofauna and still revealing new 

species (Försterra, 2013). Despite varying living conditions like distinctive pH gradients 

(accompanied by co-varying oxygen variations (Fillinger & Richter, 2013)) with 

concomitant variations in ΩAr (Jantzen et al. 2013a), dense and diverse aggregations of 

marine benthic organisms are thriving within the fjord (Försterra et al. 2005; Försterra, 

2013). Along the vertical course of the fjord pH differs within a range of 0.5 units 

comprising highest values (pH 8.2) at the surface and lowest values (pH 7.4) near the 

bottom (Jantzen et al. 2013). Thus the fjord Comau represents a fundamental study 

area to investigate climate induced ocean acidification scenarios which are predicted 

for the future.  

Communities inhabiting the Chilean fjord system could be endangered by human 

impact in terms of salmon farming which developed increasingly within the past 

(Försterra, 2013). Thus major habitat forming organisms and their associated 

community are may be endangered before researchers even get the chance to study 

them. Heavy impacts on benthic communities were already documented in several 
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fjords, where complete organism aggregations have been eradicated (Häussermann & 

Försterra, 2003; Försterra, 2013). 

 

1.5 Objectives and working strategy 

The cold-water coral D. dianthus thrives along the entire pH gradient of the fjord 

Comau dealing with pronounced and future predicted values (Jantzen et al. 2013). 

Even conditions below the aragonite saturation horizon do not restrict corals 

distribution.  

I hypothesize that D. dianthus may physiologically and behaviorally acclimate to 

increased CO2 concentrations because it is already used to varying environmental 

conditions in the past. Corals showed remarkable resilience and adaptation 

mechanisms, like internal pH up-regulation (McCulloch et al. 2012a), towards varying 

pH gradients in their natural environments. Nevertheless, D. dianthus might be at high 

risk as pH values in the fjord may decrease considerably due to increasing CO2 

concentrations dissolving in sea water, causing a lower ΩAr resulting in a decreased 

calcification rate.  

To investigate D. dianthus’ acclimation potential to lowered pH conditions an in vitro 

long-term experiment over 6 months was conducted aiming to answer the question 

whether D. dianthus is able to cope with future CO2 concentrations by keeping up its 

natural physiology and behavior within its species-specific tolerance. Due to the lack of 

knowledge about how corals might react, and possibly acclimate (Form and Riebesell, 

2012) to the ongoing process of climate change, long-term investigations are of major 

interest for the prediction of future scenarios. Filling these gaps of knowledge enhances 

the chance to develop future orientated management plans supporting sustainability 

and nature conservation. 

As physiological features like growth and respiration rates are indicative for coral 

fitness, they were quantified as mass increase and oxygen uptake, respectively, via 

laboratory experiments.  As corals extend their polyps to capture nutrients, polyp 

extension is suggested to be indicative for a coral in ‘good condition’: “A well-fed coral 

is a happy coral.” (Richter, personal communication), and was therefore quantified. To 

measure the response to increased CO2 concentrations, D. dianthus specimens which 

were used to ambient pH values (8.2 – 8.0) in the fjord Comau (at 20m depths) were 

maintained under lower pH conditions (~7.8) in the aquarium. A control group of D. 

dianthus individuals from the same spot was kept at ambient pH (~8.0), representing 

corals’ natural habitat conditions in the fjord Comau.  
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2. Material and methods 

2.1 Study area: Fjord Comau, Chile 

The Fjord Comau, which is located in in the northern part of the fjord system along the 

72.3°W longitude, branches off the Gulf of Ancud and measures ~45km in length and 

2 - 8.5km in width (Jantzen et al. 2013) (Fig. 2). Surrounded by basaltic steep walls a 

maximum depth of approximately 500m was measured. The fjord is characterized by 

its high fresh water influx yield by two rivers Rio Bodudahue and Leptepu, seasonal 

precipitation and glacial melting; all contributing sediment and organic matter. The 

surface layer of the water column (0.5 – 10m) is dominated by low-salinity water. 

Recordings of oxygen concentration, salinity and pH values and aragonite saturation 

states (ΩAr) along the course of the fjord revealed a relatively stable stratification of the 

water profile, showing a gradually pH and aragonite decrease from the surface water 

(pH 8.2; ΩAr = 3.5) down to the fjord’s bottom (pH 7.4; ΩAr = 0.5) (Jantzen et al. 2013). 

Silva (2008) reported the same pattern of a gradually decrease of oxygen 

concentration and pH for the fjord systems within the northern zone, showing a well-

oxygenated surface layer (90 – 130% saturation) and a deep layer with 40 – 50% 

oxygen saturation. Lowest values were measured among others within the Fjord 

Comau. Irrespective of these circumstances dense and diverse accumulations of 

benthic marine organisms, mostly found at rocky walls in the upper regions of the water 

column, thrive within the fjord (Försterra et al. 2005; Försterra, 2013). The occurrence 

of benthic life in these regions could additionally be supported by seasonal plankton 

influxes of the high primary productive waters from the Gulf of Ancud (Iriarte et al. 

2007). Generally the surface layers of the northern Chilean fjord zone show lower 

nutrient values compared to deeper water layers. In the fjord Comau high nutrient 

levels (> 2.0µM phosphate, > 20µM nitrate) were documented by Silva (2008).   

 



 

14 
 

 

 

 

 

Fig. 2 Map of the Chilean Fjord system (41.47°S – 56.00°S); in detail the Fjord Comau. 

Numbers 1 to 4 are indicating the sample sites: (1) Liliguapi (2) Swall-Huinay (3) Cross-Huniay 

(4) Punta Gruesa (after Sokol, 2012). 
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2.2 Corals 

2.2.1 Sampling and preparation of Desmophyllum dianthus 

Living D. dianthus specimens were collected in the years 2010, 2011 and 2012 at four 

different sites (Liliguapi, Swall- and Cross Huinay and Punta Gruesa) in the fjord 

Comau in Chile (Fig. 2). Due to protective reasons the number of corals was kept to a 

minimum. Sampling was carried out at 20m depths via SCUBA diving. Corals were 

removed gently (with a hammer and a chisel) at their basal skeletal side form the fjords’ 

walls. At the Huinay scientific field station in Chile corals were prepared for transport to 

the Alfred-Wegener-Institute, Helmholtz Zentrum für Polar- und Meeresforschung in 

Bremerhaven, Germany. The detailed procedure of coral sampling and transport has 

been processed during other projects (Sokol 2012; Maier 2013).In the laboratory the 

fracture zone of corals was cut plainly, sealed with cyano-acrylate gel (UHU Superflex 

Gel; Jury et al. 2009) and glued to a polyethylene screw. To imitate the natural ‘upside 

down’ growth direction, the screw was attached to a coral holder, which was built up in 

the aquarium (Fig. 3).  

 

 

 

 

 

Fig. 3 Desmophyllum dianthus specimens 

were glued to a screw, which was 

attached to a coral holder to put corals in 

their natural 'upside down’ position. 
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2.2.2 Cultivation of corals 

The cultivation of corals in aquaria is a challenging endeavor due to a highly sensitive 

organism and has thus to be conducted with accuracy. To maintain corals naturalness, 

unnatural stress factors have to be kept on a minor level. D. dianthus was associated 

with its native fauna and water parameters. However the in vitro peculiarity remained 

different compared to this in situ.  

Aquarium system set-up 

Corals were maintained for 24 weeks in an aquarium system consisting of two 

independent circuits (circuit 1 = control coral group; circuit 2 = treatment coral group) 

(Fig. 6). Each circuit (~130l) was built up of three connected aquaria levels. At Level 1 

Macroalgae (Fucus vesiculosus) were cultivated for filtration of nutrients. Level 2 

maintained D. dianthus individuals which were excluded of the experiment due to 

unfitness. At the third level 4 aquarium tanks were split up in two for the control coral 

group and two for the treatment coral group. To prevent influence of technical (i.e. tank 

and circuit artifacts) and biological (i.e. bacteria accumulation and other water 

parameters) issues within one circuit on experimental corals, resulting in pseudo 

replicates, circuits were manually reconnected and corals replaced accordingly every 6 

weeks (four times within 24 weeks of experiment). Reconnection of aquarium tanks just 

took place at Level 3 (Fig. 6). Aquarium system was set up in a temperature constant 

room at 10°C, simulating natural conditions in the fjord. Dysphotic light conditions were 

chosen similar to the natural conditions in the fjord at 20m depth and were installed for 

every aquarium Level. 

Aquarium tanks 

32 experimental corals were divided randomly in two groups of 16 individuals for each 

circuit, with 8 corals per aquarium tank. Within each aquarium tank hermit crabs 

(Propagurus gaudichaudi (H. Milne Edwards, 1836)), sea urchins (Arabica dufresnii 

(Blainville, 1852), Pseudechinus magellanicus (Philippi, 1857)), brachiooda (Magellania 

venosa (Solander, 1789)), hydocorals (Errina antarctica (Gray, 1872)), cup corals 

(Caryophyllia huinayensis (Cairns et al. 2005)) and mollusca (sea cradles and snails) 

were cultivated to keep the corals together with their naturally associated fauna as it 

was found in the fjord Comau. Bottom of tanks were covered with special aquarium 

gravel. Aquarium system was provided with artificial sea water (Aqua Medic Reef Salt, 

Germany). Sea water was pumped via rotodynamic pumps (Eheim 1262210 Universal-

Pump 3400l/h) starting from Level 1 up to Level 3. Sea water (90l) was exchanged 
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minimum two times a week depending on nutrient values. Flow regimes in the water 

were regulated via dynamic pumps (Tunze Turbelle® nanostream 6015, 1800l/h).  

Water parameters 

All water parameters except pH were kept equal in both circuits. Circuit 1 was running 

at ambient pH (8.12 ± 0.13) (in the fjord Comau the ambient pH of corals growing at 

20m depths is between 8.0 and 8.2 (Jantzen et al. 2013)) and circuit 2 was running 

0.26 ± 0.01 units lower at pH 7.86 ± 0.14 (means ± SD). Sea water pH was controlled 

by addition of CO2, which was added to the water via a CO2 regulation system 

(Dennerle CO2 Nachtabschaltung COMFORT). Regular recordings of water parameters 

(salinity, oxygen concentration, temperature, pH and nutrient concentration) were 

conducted. Temperature and pH were recorded every 20 minutes, 24 hours a day via a 

control unit (IKS aquastar controller, Version 2011).  

 

 

 

 

 

Fig. 4 Cultivation of corals in 

aquarium system. Circuit 1 

contained the control coral 

group (n = 16) and circuit 2 

the treatment coral group 

(n = 16). Level 1 maintained 

macroalgae and Eheim 

pumps, which pumped the 

water up to Level 2 (excluded 

corals) and 3 (experimental 

corals). Red and green arrows 

indicate water flux between 

tanks. Green arrows mark 

reconnection of aquarium 

tanks. Every six weeks either 

the red arrow system or the 

green arrow system was 

running at Level 3.Yellow 

triangles indicate light 

constructions for each level.  
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2.2.3 Cleaning of corals 

As thread algae were growing accidentally in the aquarium system (origin remained 

unclear) mainly on plastic surfaces and coral skeletons, algae had to be removed form 

coral surface to secure unconfined movement of polyps. Thus corals were cleaned 

every two weeks carefully with a toothbrush and foreceps in a separate aquarium. 

Cleaning was carried out additionally prior every experimental procedure, i.e. 

estimation of growth rates (to avoid weight effects of algae) and respiration rates (to 

exclude respiration effects of algae) (see 2.4 and 2.5 respectively).   

 

2.2.4 Feeding of corals 

Corals were fed with frozen baby krill, stored at -20°C. Krill was defrosted at room 

temperature one hour before feeding time. Feeding was conducted once a day at 3pm 

5 days a week. Prior feeding procedure current pumps were switched off to ensure that 

krill was not removed with the flow. The krill was given carefully to corals polys with 

foreceps. The amount of krill was according to coral size (small coral = 2 pieces krill; 

medium coral = 4 pieces krill; large coral = 6 pieces krill). Corals were given 2 hours to 

feed until pumps were switched on again. 

 

2.2.5 Calyx surface area 

Calyx surface area of all 32 experimental corals was determined by photographing the 

projected planar area (Kanwisher & Wainwright 1967). A caliper was used as scale 

(Fig. 4). Photographs were taken at three different times (at the beginning, in the 

middle (i.e. after 3 months) and at the end of experiment) to estimate growth of calyx 

surface area. Photographs were taken with a digital camera (Canon Powershot G10). 

Calyx surface area calculations were carried out with the image processing program 

cellB, whereby each coral was measured 3 times. For coral volume calculations (see 

2.2.7) the mean value of calyx surface area (Acalyx, in cm2) was taken. As corals did not 

show significant surface growth (P = 0.794) initial measurements were used for coral 

volume, growth-and respiration rate calculations.  



 

19 
 

 

 

 

2.2.6 Coral length 

Coral length was determined by photographing the corals from four different angles 

(Fig. 5). The angle which showed the largest distance from the fracture zone down to 

the end of the coral was taken for length analysis. Photographs were taken at three 

different times (at the beginning, in the middle and at the end of experiment) to 

estimate growth in length. Photographs were taken with a digital camera (Canon 

Powershot G10). Coral length calculations were carried out with the image processing 

program CMEIAS-IT 1.28, measuring each coral three times. For coral volume 

calculations (see 2.2.7) the mean value of coral length (L, in cm) was taken. As corals 

did not show significant growth in length (P = 0.823) initial measurements were used 

for coral volume calculations. As a measurement reference the screw, to which every 

individual coral was attached, was used. The original screw width (0.6cm) was 

measured with a caliper (precision ± 0.1).  

Fig. 5 Example photograph of corals’ calyx surface 

area indicated in red. The area measured 593.28 

mm
2
. 
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2.2.7 Coral volume 

Coral volume was determined in terms of ascertaining accurate incubation medium 

volumes for the following respiration experiment (see 3.5). The coral volume (Vcoral, in 

cm3) was calculated with the following equation (Eq. 6) with (Acalyx) as the calyx surface 

area in cm2 and (L) as coral length in cm: 

  
         

 

 

2.4 Growth rates 

To assess skeletal growth rates (mass increase) of D. dianthus corals were weighed 

with use of the buoyant weight technique (Davies, 1989). This technique measures the 

buoyant weight of a coral in sea water to determine its weight in air. Corals were given 

two weeks acclimation time before starting the experiments. Assessing long-term 

growth rates skeletal growth of corals was measured five times within the first three 

months of experiment and once at the end of experiment. In total 6 measurements 

were conducted after 1, 3, 6, 8, 10 and 24 weeks. Growth rates of D. dianthus can be 

detected after a time period of 2 weeks (Jantzen et al, 2013b). Weighting experiments 

Fig. 6 Coral photographs from 4 different perspectives (A, B, C and D). Photograph A was 

taken for length analysis indicated by the red arrow.  

(Eq. 6)  * L V
coral 

= A
calyx
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were carried out prior feeding procedure to avoid influences of food on coral’s mass. 

Corals were weighted under water in an aquarium with a high-precision balance 

(Sartorius CPA 225 D-OCE, Germany, 220g – 1mg ± 0.1mg) using the under floor 

weighing mechanism. The aquarium was filled with artificial sea water (prepared in a 

separate tank) using a definite volume of (9.3l). Sea water temperature was kept at 

10 ± 1.0°C. Ice packs were used to cool down the water temperature. After a 

temperature increase of 1°C sea water was replaced by fresh and cool water. 

Temperature was measured during every single coral weighing with a temperature 

sensor (WTW ama-digit, -40°C – 120°C). Corals were weighted by tightening the 

polyethylene screw, which is attached to each coral, to a screw-nut, which was fixed to 

a cord hanging down from the under floor weighing system. Measurements were 

conducted till values did not deviate more than 0.005g from each other and repeated 

three times. Values were averaged to determine the buoyant weight (skeletal weight in 

water (wtwater) in g). Wtwater was used to calculate skeletal weight in air (wtair) after Jokiel 

and colleagues (1978) from equation (7) below; ρwater as seawater density (in g cm3) 

and ρaragonite as coral skeleton density (in g cm3). Seawater density was calculated after 

Bialek (1966) by measuring salinity and temperature during weighing process. 

Aragonite density for D. dianthus (2.835g cm-3 (mean of n = 8)) was defined after 

Naumann and colleagues (2011), who derived values from micro-density 

measurements (Davies, 1989). 

 

         

 

 

 

 

wtair was not corrected for tissue biomass (relationship between ash free dry weight 

and bulk dry weight of coral), as tissue analysis of corals did not reveal expedient 

results (see 2.7). Daily growth rates G (CaCo3 cm-2 d-1) expressed in % and µmol (1mol 

CaCo3 = 100.09g = 100.09µg µmol-1) were normalized to calyx surface area (cm2), as 

polyp diameter is not accurate for D. dianthus due to the ‘non-circulate calyx top view’ 

(Purser et al, 2010; Jantzen et al, 2013b). Mass increase was calculated for all 6 

(Eq. 7) 
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growth intervals (with MI and MI+1 as skeletal weight in air at the beginning (Ii) and at 

the end (Ii+1) of each growth interval) with the following equations (8 and 9): 

 

 

 

 

 

 

 

 

2.5 Respiration rates 

Respiration rates of D. dianthus were determined via oxygen fluxes (mg L-1) of the 

water column during closed incubations. Oxygen concentration was measured with an 

oxygen sensor (HACH, HQ 40d multi, 0.001mg/l – 20.0mg/l ± 1%, Germany) five times 

within the first three months of experiment and once at the end of experiment. In total 6 

measurements were conducted after 1, 3, 6, 8, 10 and 24 weeks. Corals were given 

two weeks acclimation time before starting the experiments. Incubation experiments 

were carried out ~24h after feeding procedure to avoid influences of food on corals’ 

metabolic activity (Naumann et al. 2011). The oxygen sensor was calibrated and 

stabilized prior every experimental run. Sea water was taken directly out of the 

aquarium system to conduct the incubation under experimental conditions. Coral 

incubation was carried out at 10°C and kept in a dark room to avoid any oxygen 

consumption via photosynthetic organisms in the water. For each incubational run sea 

water blanks were taken as control to test for microbial background oxygen 

consumption. Hermetic glasses containing a stirring bar were placed on a magnetic 

stirrer (Varimog Poly, Komet) providing a smooth and constant water flux. Coral 

incubation within hermetic glasses containing a known sea water volume was limited to 

2.5h (Tincubation, in h) ensuring a minimal oxygen saturation of 80% in sea water (Dodds 

et al. 2007). At the end of incubation sea water oxygen (mg L-1) was measured directly 

after opening the incubation glasses to avoid any air oxygen flux into the sea water. 

(Eq. 8) 
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Oxygen consumption (∆O2) was calculated by the difference between start (oxygen 

concentration of aquarium sea water) and end values (oxygen concentration of 

incubation samples after 2.5h).  As incubation corals displace a certain amount of 

water, coral volume (Vcoral, in l) was subtracted from incubation volume in the glass 

(Vglass, in l) resulting in the real incubation volume (Vincubation, in l). Daily respiration rates 

R (O2 cm-2 d-1) expressed in µmol (1 mol O2 = 32g = 32µg µmol-1) as (means ± SD) 

were normalized to calyx surface area (Acalyx, in cm2) for each coral and calculated with 

the following equation (10):  

 

 

 

 

 

2.6 Polyp extension 

Fully expanded polyps, signalizing that corals were in a good condition, were mostly 

observed in the early morning (8:00am) until early afternoon (3:00pm), and especially 1 

hour after feeding procedure. Documentations were conducted at 10:00am, when no 

other activities in the aquarium (e.g. measuring of water parameters or incubation 

experiments) were conducted to avoid any additional influence on polyp behavior. A 

certain daytime (i.e. 10:00am) was further chosen to exclude any variations due to 

endogenous circadian rhythms (Moya et al. 2006).  

Polyp extension was documented at 14 randomly chosen days within the first and last 

3 months of the whole experiment. For photographical documentation (digital camera 

(Canon Powershot G10)) corals remained within the aquarium system to minimize 

stress factors. Measurement of polyp extension was carried out with the image 

processing program Photoshop. Thus polyp extension was assigned to three different 

ranks (1 = fully retracted (0% of polyp visible), 2 = half extended (50% of polyp visible), 

3 = fully extended (100% of polyp visible) (Fig. 7) and expressed as (means ± SD).   

(Eq. 10) 
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2.7 Coral tissue analysis 

2.7.1 Tissue preparation 

Experimental corals were used for tissue analysis after termination of the experiment. 

Therefore, corals skeleton was opened carefully with a hammer and a chisel. The 

tissue was removed from the skeleton by air-brushing with filtered sea water. To gain 

total tissue mass air-brushing took place within a plastic ziplock bag. Afterwards coral 

tissue samples were shortly homogenized with an ultra-turrax and volume (ml) was 

noted. Homogenization was stopped immediately when foam was forming as this 

indicates the denaturation of proteins within the tissue sample. One half of tissue 

volume (50% of tissue per coral) was shock frozen with liquid nitrogen and stored at -

20°C for further protein analysis (see chapter 2.7.3), the other half of tissue sample 

(50% of tissue per coral) was transferred into aluminium dishes and dried at 40°C in 

the dry oven. Prior tissue transfer procedure, aluminium dishes were pre-combusted for 

5h at 500°C in the muffle oven.  

 

 

 

 

Fig. 7 Polyp extension of Desmophyllum dianthus assigned to three different ranks 

(1 = fully retracted, 2 = half extended, 3 = fully extended). 
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2.7.2 Ash free dry mass 

To assess tissue dry mass (Mdry, in g) tissue samples were dried in the oven as long as 

weight of coral tissue remained stable, i.e. moisture was eliminated. Thus tissue 

samples were maintained within desiccators prior every weighting. Mdry was calculated 

with the following equation (11); with Malu as weight of aluminium dish, in g: 

 

 

To assess the ash free dry mass of coral tissue (Mash free, in g) dry tissue samples were 

combusted in the muffle oven for 4h at 550°C (Widbom, 1984) and again for 5h at 

500°C (Laudien, personal communication). Ash free dry mass was calculated with the 

following equation (12); with Mash as weight of ash after combusting, in g) = Mash+alu –

Malu: 

 

 

Ash free dry mass values did not show any correlation either with corals calyx surface 

area, or with length, volume or wtair. Additionally single corals revealed tissue contents 

half of wtair (i.e. 47.49 or 52.19%, derived from the relationship between ash free dry 

weight and wtair. Averaged values of each coral group (control coral group and 

treatment coral group, with n = 16 each) showed tissue contents of 14.19 and 12.57% 

respectively, showing tissue biomass contents differing to those measured by 

Naumann and colleagues (2011) (i.e. 5.8 ± 2.3%, averaged for 10 individual corals). 

Possible explanations for these ‘expedient’ results are discussed in the following: The 

error rate was higher as laboratory work was conducted by 3 people instead of one 

person, causing a possible mix up of sample dishes making an assignment of dishes to 

corals unclear. Further the dry oven heated up 20°C higher than manually adjusted 

(40°C) resulting in a possible carbonate loss due to high temperatures (carbonate 

evaporates at temperatures from 40°C on (Jantzen, personal communication)). This 

could have led to an underestimation of tissue weight. Additionally combusting time of 

4h might have been too short so that small, obscured coral skeleton fragments 

remained in the dish resulting in weight increase (Mash + Mskeleton; with Mskeleton as weight 

of skeleton fragments). Thus a second run for 5h at 500°C was conducted resulting in 

comparable ash free dry weights as in the first run. A maximum deviation of 0.958g, 

which was an exception, as all other values of the second run did not deviate more 

(Eq. 11) 
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than 0.080g from values of the first run, was measured. Additionally, it is to mention 

that carbonates oxidize from 550°C on (DIN 38414) (the temperature adjustment of the 

first run), leading to a possible overestimation of carbonate content. The latter might be 

a possible reason for relatively high tissue weights. However highest tissue values, 

which represented half of corals total weight probably cannot be explained by 

carbonate oxidation processes. 

Thus corals calyx surface area, which correlated with coral volume (r2 = 0.737) and wtair 

(r2 = 0.746) (correlation was obtained by linear regression fitting the interception 

through zero) was taken for normalization of growth and respiration rates. 

 

2.7.3 Protein content of coral tissue 

Total protein content of corals could not be determined because samples got defrosted 

by a technical accident in the laboratory. An electricity cut of the freezer caused 

retention of tissue samples at room temperature for over two days. Thus proteins of 

tissue samples were denatured and not expedient for further analysis.  

 

2.8 Total alkalinity 

Total alkalinity (TA) was used to calculate for water parameters as: forms of inorganic 

carbon and calcium solubility using ‘co2sys.xls’, a calculator for the CO2 system in 

seawater for Excel/VBA (Lewis & Wallace 1998) (see Results, Tab. 1A/B). For a 

detailed description of carbonate system calculations see chapter 2.10. To assess TA 

filtered experimental sea water was analyzed with potentiometric titration (Gran, 1952) 

and is determined with the following equation (13): 

 

 

 

The highest ion concentration is represented by [HCO3-], [CO32-], [OH-], [H3O+] and 

[B(OH)4-].  

One time a week six sea water samples (three for each circuit) were taken directly out 

of the aquarium. Sea water was filtered with a syringe using glass microfibre filters 

(Whatman GF/F, Ø 25 mm) which were placed in a syringe filter holder. 50ml aliquots 

(Eq. 13) 

TA ≈ [HCO3-] + 2[CO32-] + [OH-] – [H3O+] + [B(OH)4-]  

+ 2 [PO43-] + [HPO42-] – [H3PO4] 
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of filtered sea water were filled air bubble free into Falcon tubes and stored at 4°C until 

TA was determined. Sea water standards (n = 3), used to account for methodical drifts, 

were taken out of separate tanks and filtered. Calibration of sea water standards was 

conducted with Dickson standard batch 120 (24.12.2012; Scripps Institution of 

Oceanography, San Diego). Standard samples were stored air bubble free within 

brown glasses at 4°C.To avoid changes in sea water TA, maximum time period until TA 

was measured has been two weeks.  

Potentiometric titration was conducted with a titration unit, connected to an automatic 

sample changer (Titroline alpha plus, SI Analytics, Germany, pH 0.0 to 14.0 ± 0.02). 

Both were operated via titration controller software (TitriSoft 2.72). The titration unit 

consisted of three instruments: a pH electrode, a filling pipe and a stirrer. Prior to every 

titration run the pH-electrode was two-point calibrated with NIST/PTB buffer (pH 

4.006 ± 0.02 and pH 6.865 ± 0.02) and used to measure change in electromotive force 

(EMF) of the water sample during titration. 25ml sea water and blank samples were 

placed within the sample changer. The filling pipe, adding titrant (0.05 N HCL) to the 

samples, was free of air bubbles to avoid oxygen mixing up with samples. The stirrer 

effectuated consistent mixing of water and titrant. TA, pH, and duration of experimental 

run were documented by the computer software ‘TitriSoft’. TA was calculated from the 

Gran plot (Gran, 1952) by plotting the total number of protons (assessed from 

respective pH and total sample volume (start volume (V0) plus volume of titrant (HCL) 

added to sample)) against the volume of titrant (HCL) added to samples respectively, 

with the following equation (14): 

 

 

 

 

b = axis intercept of the Gran plot (-1) (mL M -1) 

a = slope of Gran plot (mL M mL -1) 

c (HCL) = concentration of hydrochloric acid (mol L -1) 

V0 = start volume of sea water (standard) sample (mL) 

 

 

 

(Eq. 14) 

TA =  

(b/a) * c (HCL) 

V
0
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2.9 Nutrients 

Daily nutrient measurements were conducted with quick tests (JBL GmbH & Co KG, 

Germany) prior sea water exchange and feeding procedure in the early morning. 5mL 

water samples were taken out of both systems (circuit 1 and 2) and tested for NO2
- 

(nitrite), NO3
- (nitrate), NH4

+ (ammonium) and PO4
- (phosphate). NO2

- values between 

< 0.01 and 0.025 (mg L-1) revealed an acceptable saturation on a total scale of < 0.01 

to 1.0 (mg L-1), whereby values higher than the acceptable limit indicate oversaturation 

in the water (this valids for all nutrients measured).The scale for NO3
- lies between 

< 0.5 and 240 (mg L-1) with a range between < 0.5 and 5.0 (mg L-1) for an acceptable 

saturation. NH4
+ values between < 0.05 and 0.1 (mg L-1) showed an acceptable 

saturation on a total scale of < 0.05 to 5.0 (mg L-1). PO4
- values between < 0.02 and 

0.05 (mg L-1) revealed an acceptable saturation on a total scale of < 0.02 to 1.8 

(mg L-1). 

 

2.10 Carbonate chemistry  

For the calculation of carbonate chemistry parameters (Total carbon (TC) (µmol kg -1), 

pCO2 (µatm), CO2 (µmol kg -1), HCO3
- (µmol kg -1), CO3

2-
 (µmol kg -1), saturation 

statuses of calcium (ΩCa), and (ΩAr)) pH and temperature values (obtained from the 

IKS), TA values, salinity values, and total silicate and phosphate values (TSI, TP 

respectively) were used. As total silicate and phosphate values were not obtained data 

were set to 1 (see ‘co2sys.xls’ sheet for defaults).  

 

2.11 Statistical and graphical analysis 

All values are expressed as means ± SD (P, F and df values are expressed as raw 

data) and graphs were compiled by IBM SPSS Statistics 21. Statistical analysis was 

performed with SigmaStat 3.5 and IBM SPSS Statistics 21. As measurements were 

repeated within a time period of six months, a Repeated Measures ANOVA (RM 

ANOVA) was conducted. Coral length, calyx surface area, growth and respiration rates, 

and polyp extension were tested for significant differences between the two pH 

treatments (circuit 1 = control coral group (ambient pH), circuit 2 = treatment coral 

group (low pH)). Students-Test (T-test) and Mann-Whitney-Test (U-test) (data were not 

always normally distributed) were conducted to calculate for differences between start 
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and end values within each treatment and between both treatments for every time 

measurements were conducted (at the start, middle and end of experiment for coral 

length and calyx surface area; after 1, 6, 8, 10 and 24 weeks for growth and respiration 

rates; within the first and last three months of experiment for polyp extension). To test 

whether water parameters of both circuits were equal T- and U-tests were conducted. 

For all calculations the significance level was set to 0.05.  
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3. Results  

3.1 Water parameters 

3.1.1 pH and temperature 

Sea water pH values between both circuits were significantly different from each other 

(P = < 0.001) (Tab. 1(B)). Circuit 1 revealed a total average value of 8.12 ± 0.09 and circuit 2 

showed a total average value of 7.84 ± 0.08 over experimental period (Tab. 1(A)). From week 

6 to 10 values are lowest with a minimum of 7.71 ± 0.09 in week 9 within circuit 2 (Fig. 8). 

Highest values were measured between week 14 and 16 showing a maximum of 7.96 ± 0.04 

in week 15. Circuit 1 showed lowest values in week 1, 4 and 12 with a minimum of 

8.07 ± 0.07 in week 4. Highest values were measured in week 14 and 15 with maximum 

values of 8.21 ± 0.04 in week 15. The maximum difference between both circuits amounted 

to 0.4 units from week 7 to 10. The minimum difference came to 0.2 units (see Appendix, 

Tab. 8). 

Sea water pH in aquaria revealed values comparable to those in situ, as pH varies between 

7.9 and 8.4 in the fjord Comau in the upper 20m (Jantzen et al. 2013a; Fillinger & Richter 

2013). 

 

 
Fig. 8 PH values over experimental time for circuit 1 

(ambient pH) and 2 (low pH). Values are expressed as 

means for every week. 
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Temperature values between both circuits were not significantly different from each other 

(P = 0.222) and revealed a similar pattern as values are increasing over time (Tab. 1(B), 

Fig. 9). Circuit 1 showed a total average value of 11.24 ± 0.26°C and circuit 2 came to a total 

average value of 11.37 ± 0.23°C during experimental period (Tab. 1(A)). Minimum values 

within circuit 1 amounted to 10.75 ± 0.19°C and maximum values to 11.65 ± 0.31°C (Fig. 9). 

Circuit 2 revealed minimum values of 10.83 ± 0.31°C and maximum values of 

11.78 ± 0.21°C. The maximum difference in temperature amounted to 0.4°C in week 8, 11 

and 19 between both circuits; the minimum difference came to 0.1°C (see Appendix, Tab. 8). 

In the fjord corals are naturally thriving at temperatures between 10.0 and 12.5°C within the 

upper 20m (Jantzen et al. 2013a; Fillinger & Richter 2013), values which are comparable to 

those in aquaria. 

 

 

 

3.1.2 Nutrients 

Nutrients (NO3
-, PO4

-, NO2
- and NH4

+ (in mg L-1)) do not differ significantly from each other 

between both circuits (Tab. 2(B)). Nutrient variations between circuit 1 and 2 follow a similar 

pattern, whereby NH4
+ shows differing variations between week 4 and 7 and week 17 and 19. 

However NH4
+ values reveal the same average for both circuits 0.05 ± 0.00 over time 

Fig. 9 Temperature values over experimental time for 

circuit 1 (ambient pH) and 2 (low pH). Values are 

expressed as means for every week.  
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(Tab. 2(A)).  Averaged all nutrient values lie under the marginal value of oversaturation within 

both circuits, except NO2
-, which came to 0.005mg l-1 (circuit 1) and 0.015mg l-1 (circuit 2) 

above the maximum of 0.025mg l-1. 

                                                                            

              

                  

             

Fig. 10 (A, B, C, D) Nutrient variations over experimental period for NO3
-
 (A), PO4

-
 (B), NO2

-
 (C) and 

NH4
+
 (D) within circuit 1 (ambient pH) and 2 (low pH). 



 

 

 

 

 

 

TA pH TC pCO2 CO2 HCO3
-

CO3
2- Ω Ca ΩAr Oxygen Salinity Temp

(µmol kg 
-1

) IKS scale (µmol kg 
-1

) (µatm) (µmol kg 
-1

) (µmol kg 
-1

) (µmol kg 
-1

) (µmol kg 
-1

) PSU  (°C)

Circuit 1 3637 ± 414 8.12 ± 0.09 3435 ± 406 865 ± 254 37 ± 11 3212 ± 387 186 ± 36 4.50 ± 0.87 2.85 ± 0.55 282.6 ± 4.7 32.33 ± 0.61 11.24 ± 0.26

Circuit 2 3555 ± 371 7.84 ± 0.08 3388 ± 346 982 ± 212 42 ± 9 3184 ± 321 162 ± 39 3.92 ± 0.94 2.49 ± 0.60 281.9 ± 6.6 32.25 ± 0.25 11.37 ± 0.23  

 

TA pH TC pCO2 CO2 HCO3
-

CO3
2- Ω Ca ΩAr Oxygen Salinity Temp

Significance P  = 0.318 P  = < 0.001 * P  = 0.487 P  = 0.090 P  = 0.101 P  = 0.600 P  = 0.026 * P  = 0.026 * P  = 0.026 * P  = 0.805 P  = 0.061 P  = 0.222

N (circuit 1) 24 12096 24 24 24 24 24 24 24 14 125 12096

N (circuit 2) 24 12096 24 24 24 24 24 24 24 11 125 12096  

 

 

 

NO3
-

PO4
-

NO2
-

NH4
+

(mg L -1 ) (mg L -1 ) (mg L -1 ) (mg L -1 )

Circuit 1 0.70 ± 0.07 0.03 ± 0.02 0.03 ± 0.01 0.05 ± 0.00

Circuit 2 0.57 ± 0.08 0.04 ± 0.02 0.04 ± 0.01 0.05 ± 0.00                                     

NO3
-

PO4
-

NO2
-

NH4
+

Significance P  = 0.280 P  = 0.713 P  = 0.656 P  = 0.663

N (circuit 1) 114 64 115 61

N (circuit 2) 101 51 101 45

Tab. 1(A) Overview of water parameters within circuit 1 (ambient pH) and 2 (low pH) during experimental period. Measurements were replicated as follows: 

TA (one time a week); pH and temperature (every 20 minutes, 24 hours a day), oxygen and salinity (daily). Forms of inorganic carbon and calcium solubility 

were calculated with ‘co2sys.xls’, a calculator for the CO2 system in seawater for Excel/VBA (Lewis and Wallace 1998). Values are expressed as (means ± 

SD). (B) Differences (P) between water parameters and numbers (N) of repeated measures within circuit 1 and 2. Significant values are highlighted with (*). 

Tab. 2 (A) Overview of inorganic nutrients within circuit 1 (ambient pH) and 2 (low pH) over experimental period. Measurements were carried out minimum 

2 times a week with quick tests (JBL GmbH & Co KG, Germany). Values are expressed as (means ± SD). (B) Overview of nutrient differences (P) and 

numbers (N) of repeated measures within circuit 1 and 2. Significant values are highlighted with (*). 

 

(A) 

(B) 

(A) (B) 
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3.1.3 Carbon system and calcium solubility 

Measured total alkalinity (TA), which was used to determine inorganic carbons and calcium 

solubility, showed lower values in circuit 2, compared to circuit 1, although not significantly (P = 

0.318) (Tab. 1(A)). Carbonate ions (CO3
2-) and aragonite saturation state (ΩAr) showed 

significant differences between both circuits (P = 0.026) whereby total carbon (TC), atmospheric 

carbon dioxide (pCO2), carbon dioxide (CO2), and bicarbonate ions (HCO3
-) did not reveal 

significant differences (Tab. 1(B)). Total averaged values of carbonate chemistry over time are 

listed in Tab. 1(A). 

 

3.1.4 Salinity and Oxygen 

Salinity (P = 0.061) and oxygen (P = 0.805) values showed no significant differences during 

experimental period (Tab. 1(B)). Salinity revealed total average values of 32.33 ± 0.61‰ within 

circuit 1 and 32.25 ± 0.25‰ within circuit 2. Oxygen measurements came to 

282.6 ± 4.7µmol kg-1 within circuit 1 and 281.9 ± 6.6µmol kg -1 within circuit 2 (Tab. 1(A)). 

Compared to maximum oxygen values (280µmol l-1) measured in the fjord Comau in the upper 

12-20m (Jantzen et al. 2013a; Fillinger & Richter 2013), in vitro values are in the same range. 

 

3.2 Corals 

3.2.1 Calyx surface area and coral length 

Neither length nor calyx surface area of corals showed significant growth over experimental time 

(P = 0.681, P = 0.077 respectively) and between both pH treatments (P = 0.823, P = 0.794) 

(Tab. 4).  A comparison of start and end data of coral length within each treatment revealed no 

significantly different values (P = 0.852 (ambient pH), P = 1.000 (low pH)) as well as a 

comparison of calyx surface area (P = 0.720 (ambient pH), P = 0.955 (low pH)) (Tab. 5). 

 

 

 



 

 

 

 

  

 

   

Coral length Calyx surface area

Experimental period (cm) (cm
2
)

Start P  = 0.821 P  = 0.585

Middle P  = 0.898 P  = 0.611

End P  = 0.485 P  = 0.749

Growth rates Respiration rates

Week (µmol CaCO3 cm
-2

 d
-1

) (µmol O2 cm
-2

 d
-1

)

1 (Start) P  = 0.457 P  = 0.559

3 P  = 0.656 P  = 0.486

6 P  = 0.747 P  = 0.001 *

8 P  = 0.459 P  = 0.357

10 P  = 0.768 P  = 0.193

24 (End) P  = 0.451 P  = 0.073

Polyp Extension

Month (%)

1 to 3 P  = 0.747

3 to 6 P  = 0.035 *                                                                                       

 

 

Tab. 4 Overview of Repeated Measures ANOVA for coral 

length, calyx surface area, growth and respiration rates, and 

polyp extension. Shown are the effect of time and low pH 

(treatment), F (quotient of variances within and between 

groups (control coral group (ambient pH) and treatment coral 

group (low pH)) and df (degrees of freedom). Significant 

values (P) are highlighted with (*). 

Tab. 3 Differences (P) between the control (ambient pH) and 

the treatment coral group (low pH) at the beginning, in the 

middle and at the end of experiment for coral length and calyx 

surface area; after 1, 3, 6, 8, 10 and 24 weeks for growth and 

respiration rates; and within the first and last 3 months of 

experiment for polyp extension. Significant values are 

highlighted with (*). 

 
Measure Effect F df Significance (P )

Coral length Time 0.265 1.355 0.681

Treatment 0.051 1 0.823

Calyx surface area Time 2.776 1.780 0.077

Treatment 0.069 1 0.794

Growth rates Time 17.229 2.500 0.000 *

Treatment 0.001 1 0.979

Respiration rates Time 9.246 2.757 0.000 *

Treatment 0.438 1 0.513

Polyp extension Time 11.377 11.680 0.000 *

Treatment 2.731 1 0.109  
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Coral length Calyx surface area Growth rates Respiration rates Polyp Extension

Treatment (cm) (cm
2
) (µmol CaCO3 cm

-2
 d

-1
) (µmol O2 cm

-2
 d

-1
) (%)

Ambient pH P  = 0.852 P  = 0.720 P  = 0.170 P  = 0.851 P  = 0.062

Low pH P  = 1.000 P  = 0.955 P  = 0.820 P  = 0.006 * P  = 0.001 *  

 

2.2.2 Growth rates 

Under ambient pH conditions corals showed total growth rates of 0.19 ± 0.13% cm-2 d-1, 

which referrers to 18.70 ± 12.91µmol CaCO3 cm-2 d-1 
(see Appendix, Tab.7). Low pH 

conditions had no significant effect on growth (P = 0.979) as corals showed equal 

growth rates 0.19 ± 0.10% cm-2 d-1 (18.62 ± 10.28µmol CaCO3 cm-2 d-1) as under 

ambient conditions (Tab. 4; Fig 11). 

 

 

 

 

Fig. 11 Growth rates D. dianthus under ambient (n = 16) and 

low pH (n = 16) conditions over time. Values are expressed as 

means ± SD. 

Tab. 5 Differences (P) within the control coral group (ambient pH) and the treatment coral 

group (low pH) of start-and end values for coral length, calyx surface area, growth and 

respiration rates after 1 and 24 weeks; for polyp extension after the first and last 3 months of 

experimental period. Significant values are highlighted with (*). 
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The growth response of corals showed a similar pattern over time within both pH 

treatments, whereby time had a significant effect on growth (P = 0.000) (Tab. 4). At 

every time different growth rates were measured within each treatment (P = 

0.001(ambient pH), P = 0.001 (low pH)) and between both treatments (Tab. 4). Growth 

rates increased after three weeks of experiment, decreased until the 8th week and 

increased again until the 10th week. After 24 weeks of experimental time corals 

reached higher, but not significantly different (P = 0.170) growths rates 

(0.21 ± 0.13% cm-2 d-1) compared to the beginning (0.16 ± 0.13% cm-2 d-1) of 

experiment under ambient pH conditions (Tab. 5). Corals’ response under low pH 

conditions also revealed higher, but not significantly different growth values (P = 0.820) 

at the end of experiment (0.18 ± 0.09% cm-2 d-1) compared to the beginning 

(0.17 ± 0.10% cm-2 d-1) (Tab. 5).  

 

3.2.3 Respiration rates 

Oxygen uptake under ambient pH conditions showed values of 

22.07 ± 15.07µmol O2 cm-2 d-1. Low pH conditions had no significant effect on 

respiration rates (P = 0.513) as corals showed similar values 

(23.71 ± 7.56µmol O2 cm-2 d-1) as under ambient conditions (Fig. 12; see Appendix 

Tab. 7). 

Experimental corals showed a similar trend over time comparing ambient and low pH 

conditions, whereby time had a significant effect on respiration (P = 0.000) (Tab. 4). At 

every time different respiration rates were measured within each treatment 

(P = 0.001(ambient pH), P = 0.001 (low pH)). Oxygen uptake at the beginning of 

experiment (ambient pH (29.66 ± 24.18µmol O2 cm-2 d-1), low pH 

(23.01 ± 5.94µmol O2 cm-2 d-1)) and after 3 weeks (ambient pH 

(29.02 ± 16.98µmol O2 cm-2 d-1)), low pH (23.76 ± 5.32µmol O2 cm-2 d-1)) is similar 

within each treatment (see Appendix Tab. 7). Corals response showed a sharp 

decrease under ambient pH conditions after 6 weeks (9.87 ± 3.90µmol O2 cm-2 d-1) 

resulting in significantly different values between both treatments (P = 0.001) (Tab. 3). 

After 8 weeks until the end of experiment oxygen uptake is increasing, revealing a 

similar pattern for both treatments. After 24 weeks corals reached lower, but not 

significantly different (P = 0.851) respiration rates (23.75 ± 12.64µmol O2 cm-2 d-1) 

compared to the beginning (29.66 ± 24.18µmol O2 cm-2 d-1) of experiment under 

ambient pH conditions (Tab. 3). In contrast corals under low pH conditions revealed 

lower and significantly different (P = 0.006) respiration rates at the beginning of 
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experiment (23.01 ± 5.94µmol O2 cm-2 d-1) compared to the end of experiment 

(30.97 ± 9.09µmol O2 cm-2 d-1).  

 

 

 

 

 

3.2.4 Polyp extension 

The behavior of corals expressed as polyp extension demonstrated no significant 

response (P = 0.109) as a reaction to low pH conditions over time (Fig. 3). Corals 

showed polyp extension of 68.3 ± 40.0% under ambient and 75.4 ± 34.6% under low 

pH conditions (see Appendix, Tab. 7). However, time had a significant effect on the 

extension of polyps (P = 0.000). Polyp extension was increasing over time with 46.88% 

and 40.63% at the beginning compared to 90.63% and 87.50% (for ambient and low 

pH conditions respectively) at the end of experiment, whereby polyp extension was 

significantly different (P = 0.001) at low pH (Tab. 5). During the first three months of 

experiment polyp extension was significantly lower (P = 0.001) compared to the last 

Fig. 12 Respiration rates of D. dianthus under ambient (n = 16) 

and low pH (n = 16) conditions over time. Values are 

expressed as means ± SD. 
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three months at low pH conditions; values at ambient pH were not significantly different 

(P = 0.062) (Tab. 5). Within the first three months corals showed 58.93 ± 42.47% polyp 

extension at ambient pH conditions and 66.29 ± 37.47% at low pH conditions 

compared to 77.68 ± 35.01% at ambient pH and 84.60 ± 28.75% at low pH conditions 

within the last three months.  

 

 

 

 

 

3.2.5 Ash free dry weight  

Analysis of ash free dry mass (Mash free) revealed no expedient results which are 

therefore not taken in account. Single corals revealed tissue contents half of coral 

weight in air (wtair) (i.e. 47.49 or 52.19%, derived from the relationship between Mash free 

and wtair. Averaged values of the control (ambient pH) and treatment (low pH) coral 

group (with n = 16 each) showed tissue contents of 14.19 and 12.57% respectively, 

showing tissue biomass contents differing to those measured by Naumann and 

colleagues (2011) (i.e. 5.8 ± 2.3%, averaged for 10 individual corals).  

Fig. 13 Polyp extension of D. dianthus under ambient (n = 16) 

and low pH (n = 16) conditions over time (within the first 3 

months (A) and the last 3 months of experiment (B). Values 

are expressed as means ± SD.  
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4. Discussion 

This in vitro long-term study investigated the physiological and behavioral response of 

the cold-water coral Desmophyllum dianthus to future CO2 concentrations. New 

insights of skeletal mass increase, metabolic oxygen uptake and polyp extension of 

corals under lowered pH are given.  

It was found out that D. dianthus might cope with lower pH conditions, as corals’ growth 

rates revealed no significant difference between ambient and low pH treatment. 

Lowered pH, accompanied by significantly decreased carbonate ions and aragonite 

saturation status, did not influence calcification, over time. Also respiration rates of D. 

dianthus revealed no significant difference between ambient and low pH conditions, 

over experimental period, except in week 6, where oxygen uptake of the treatment 

coral group was significantly higher. Polyp extension of corals was slightly higher, 

although not significantly, in the treatment coral group, compared to the control coral 

group, over time. However, within the last three months of experiment polyps of the 

treatment coral group were significantly extended to a higher degree. In general D. 

dianthus showed a positive response towards increased CO2 concentrations and may 

be prepared for future pH values. 

 

4.1 Water chemistry 

Carbon dioxide, and thereby pH, mainly influences the oceanic carbonate cycle. The 

composition of chemicals is determined by equilibrium constants, which are highly 

affected by temperature, salinity and pressure (Erez et al. 2011). Total alkalinity (TA) is 

independent of pH and changes in temperature, salinity and pressure (Wolf-Gladrow et 

al. 2007, also affecting the carbonate system (Erez et al. 2011). The carbonate ion pool 

in the present study was calculated on the basis of pH and TA, measured at 

corresponding temperature, salinity and pressure (see Results, Tab. 1(A)).  

 

4.1.1 Aragonite saturation status 

Differing pH and TA values caused a significant variation in carbonate ions (CO3
2-), 

calcium ions (Ca2+) and aragonite saturation states (ΩAr) between both circuits. A 

lowered pH, induced by elevated pCO2, resulted in a decreased CO3
2- and Ca2+ 

concentration, as well as a decreased ΩAr in circuit 2. The availability of CO3
2- ions is 

suggested to be the main control of ΩAr and coral calcification (Erez et al, 2011). A 
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decrease of ΩAr, caused by a lowered Ca2+ concentration was already described by 

Gattuso and colleagues (1998). Nevertheless, ΩAr may not have been low enough to 

influence calcification rates of corals negatively. An ΩAr > 1 means that sea water is 

supersaturated (Hoegh-Guldberg et al. 2007), thus conditions for corals to build up 

their skeleton were favorable within both treatments (2.85 ± 0.55 (ΩAr at ambient pH) 

and 2.46 ± 0.60 (ΩAr at lowered pH)). As pH and TA influence the carbonate system 

independently, TA might have become prevalent (as values were relatively high, 

compared to other studies (Form & Riebesell, 2011; Jantzen et al. (2013b)), causing an 

elevation of aragonite saturation status, even at coincident lowered pH conditions.  

 

4.1.2 Dissolved inorganic carbon 

The total carbon concentration (or dissolved inorganic carbon (DIC)) usually increases 

with enhanced CO2-uptake (Gattuso et al.1998). In the present study DIC is lower in 

CO2-rich water, although not significantly, compared to ambient CO2 conditions. The 

same phenomenon was observed by Form and Riebesell (2011), as they measured a 

lower DIC amount at increased pCO2, compared to ambient pCO2 conditions, during 

aquarium experiments. Still a comparison between studies remained difficult, as Form 

and Riebesell (2011) analysed DIC photochemically, compared to a calculation based 

on TA and pH in the present study. 

 

4.1.3 Variations in CO2 measurements 

Measured pCO2 concentrations in the present study were higher (865 ± 254µatm (at 

ambient pH), 982 ± 212µatm (at lowered pH)) compared to Form and Riebesell (2011) 

(604 ± 105µatm and 778 ± 112µatm, respectively), at similar pH conditions 

(8.12 ± 0.09, 7.84 ± 0.08, respectively (present study); 7.944 ± 0.064, 7.829 ± 0.053, 

respectively (Form and Riebesell, 2011)). Hoppe and colleagues (2012) described that 

pCO2 values might vary with measurement methods, based on different input data, 

which could either be TA and pH, or DIC and pH, or TA and DIC. In both studies 

carbonate chemistry was calculated with co2SYS (Lewis & Wallace, 1998) based on TA 

and pH measurements, showing that even equal input data could vary pCO2 values. 

Inaccuracies of measured pCO2 concentrations are suggested to lie between 10% 

(Gattuso et al. 2010; Hydes et al. 2010) and 30% (Hoppe at al. 2012). Thus a direct 

comparison between studies remained difficult; plus the quantitative data significance 
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has to be called into question. Hoppe and colleagues (2012) further stated that an 

underestimation of 30% of calculated pCO2 values would be accompanied by an 

overestimation of organisms’ sensitivity towards ocean acidification. As corals of the 

present study did not respond negatively to waters of lower pH, an overestimation of 

physiological and behavioral sensitivity can be excluded.  

 

4.1.4 Variations in total alkalinity  

To determine TA itself, Form and Riebesell (2011) conducted open-cell titration 

measurements, hence revealing much lower values (1331µmol kg-1 (on average) lower) 

compared to the present study. Jantzen and colleagues (2013b) (who measured TA (of 

in situ data of the fjord Comau) directly) calculated comparable values to those of Form 

and Riebesell (2011). TA is known to change with biogeochemical processes, like the 

formation and remineralization of organic matter by microalgae, and the precipitation 

and dissolution of CaCO3 (Wolf-Gladrow et al. 2007). All further discussed 

biogeochemical processes were prior described by Wolf-Gladrow and colleagues 

(2007).  

 

Precipitation and dissolution of CaCO3 

In a closed cell the precipitation of one mole CaCO3 is accompanied by an increase in 

CO2 (less than one mole), and a decrease of DIC (one mole) and TA (two moles), 

whereby dissolution of CaCO3 reveals the inverse effect. In the present study 

Calcification significantly dominated dissolution processes, but one could suggest that 

CaCO3 precipitation was generally low, resulting in a relatively high TA. However 

constantly water mixing, and thus altering gas exchange (causing enhanced CO2 

release and a decrease of DIC), had to be considered.  

Nitrification, denitrification and remineralization 

Photoautotrophic algae take up nitrogen ions in forms of nitrite (NO2
-), nitrate (NO3

-) 

and ammonium (NH4
+), causing an increase of TA by one mole when nitrite or nitrate is 

used, and a decrease of TA by one mole when ammonium is used. Thus algae thriving 

in the aquarium system might have taken up rather nitrite and nitrate than ammonium 

resulting in an increased TA. Assuming that the amount of microorganisms (e.g. 

cyanobacteria) in sea water was relatively high, inversely a release of one mole 

ammonium, due to remineralization of particulate organic matter, could additionally 

have led to an increase of TA. Nevertheless nitrification under aerobic conditions 

causes a decrease of TA by two moles per nitrate ion released. Furthermore 
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denitrification, the conversion of nitrate to nitrite by autothrophic bacteria, results in 

elevated TA by one mole per mole nitrate converted. Besides nitrogen, the uptake of 

phosphate by algae also contributes to changes in TA by increasing TA of one mole per 

mole phosphate gained.  

As all the above mentioned nutrients (nitrite, nitrate, ammonium and phosphate) were 

detected within the aquarium system, nitrification, denitrification and remineralization 

processes, carried out by algae and cyanobacteria respectively, causing either an 

increase or a decrease of TA, might have been conducted.  

 

4.2 Corals 

4.2.1 Growth rates 

The measurement of growth rates (i.e. calcification) in corals is a common method to 

investigate mass in-and decrease (the latter caused by bioerosion or decalcification) 

and has already been conducted for cold-water corals (Naumann et al. 2011; Orejas et 

al. 2011b). Corals show differing growth rates with varying environmental parameters 

like temperature (Grigg, 1974; Weinbauer & Velimirov, 1995; Matsumoto, 2007; 

Silverman et al. 2007), light (Chalker & Tailor, 1975; Reynaud-Vaganay et al. 2001), 

flow speed (Purser et al. 2010; Sokol, 2012), prey abundance (Silverman et al. 2007; 

Purser et al. 2010; Naumann et al. 2011; Maier, 2013), and aragonite saturation status 

(Gattuso et al. 1998a; Silverman et al. 2007; Jury et al. 2009; Langdon et al. 2000; 

Form & Riebesell, 2011). 

 

4.2.1.1 Growth performance 

In the present study D. dianthus did not show significant length and calyx surface area 

growth over a time period of six months. Significant growth of the calyx surface area 

was measured after one year (Jantzen, personal communication). Thus the 

measurement of linear extension and calyx surface area of D. dianthus cannot be 

taken in account to determine CaCO3 precipitation. To better visualize length growth, 

corals’ skeletons could have been stained (in addition to mass investigations), e.g. with 

Alizarin Red S fluorescent dye (Form & Riebesell, 2011). To determine coral’s growth 

rates, mass increase, which was detectable after two weeks, was measured over time. 
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4.2.1.2 A comparison among studies 

Calcification rates (0.19 ± 0.13% cm-2 d-1) of present corals at ambient pH were in the 

same range, compared to other in vitro studies. As temperatures and food supply 

varied among studies a direct comparison was difficult. Cultivation experiments of 

Mediterranean D. dianthus specimens, maintained at 12°C (1 - 2°C higher as in the 

present study) and fed with zooplankton (Artemia salina) (five times a week (as in the 

present study, whereby krill instead of Artemia salina was fed)) revealed growth rates 

of 0.06 ± 0.03% d-1 (Orejas et al. 2011b) and 0.1 - 0.3% d-1 (fed daily, Naumann et al. 

2011). Thus feeding with krill and daily feeding might enhance growth rates, as corals 

of the present study and those examined by Naumann and colleagues (2011) revealed 

higher growth rates as corals investigated by Orejas and colleagues (2011b). 

Enhanced food supply is known to positively influence calcification rates in cold-water 

corals (Mortensen, 2001; Roberts & Anderson, 2002; Naumann at al. 2011; Maier, 

2013). Jantzen and colleagues (2013b) revealed growth rates of 0.09 ± 0.08% d-1 of 

Chilean corals from the fjord Comau, which were maintained at 12°C and fed biweekly 

with their natural food (i.e. living plankton and an additional continuous supply of 

nanoplankton, microplankton and dissolved organic matter). In situ growth rates 

showed one third higher mass increase (0.25 ± 0.18% d-1) as measured in vitro, 

probably because corals obtained continuous food supply in the fjord. Maier (2013) 

measured in vitro growth rates of Chilean D. dianthus specimens of 0.11 ± 0.06% d-1; 

corals were maintained at 11°C and fed with zooplankton and additional krill. 

Concluding, highest growth rates of Chilean D. dianthus specimens were measured in 

the present study, even at lowered pH, and by Jantzen and colleagues (2013b), 

suggesting that krill and in situ food sources represented optimal conditions for corals. 

 

4.2.1.3 Measuring growth rates 

The use of different growth measurement techniques among studies led to a variability 

of calcification rates recorded for D. dianthus, causing difficulties in comparisons. The 

buoyancy weight technique (Jokiel et al. 1978) was conducted in the present study, by 

Jantzen and colleagues (2013b), Orejas and colleagues (2011b), and Maier (2013). 

Naumann and colleagues (2011) measured growth rates with the alkalinity anomaly 

technique (Smith and Key, 1975). Additionally, the use of different peer groups for 

normalization, i.e. calyx surface area (in cm-2) (Jantzen et al, 2013b; this study); 

skeletal dry mass (in g) (Naumann et al, 2011) and deviating expression units (i.e. mg; 

µmol; % CaCO3) made a direct comparison difficult. Hence a standardization of peer 



 

45 

 

groups and expression units would approve a more precise relation of coral 

calcification rates. 

The alkalinity anomaly technique and the buoyant weight technique allow for repeated 

calcification documentations, suitable for the experimental set up in the present study. 

The buoyant weight technique may be more precise than the alkalinity anomaly 

technique, as it examines the calcifying organism itself. The alkalinity anomaly 

technique investigates alkalinity changes in the incubation water, which are sensitive to 

biochemical processes (i.e. nitrification, denitrification and remineralization, see chapter 

4.1.4). This disadvantage could be avoided by using pre-filtered sea water to eliminate 

microorganisms of the incubation water. Conducting the buoyant weight technique 

might have stressed corals, as they had to be removed from the aquarium into the 

weighting tank. However, daily observations did not reveal uncommon behavior like 

increased mucus secretion and/or regular retraction of coral polyps (Jantzen et al. 

2013b). 

 

4.2.1.4 Acclimation 

At every time measured growth rates of both coral groups were similar, resulting in a 

steadily pattern over time. Nevertheless, growth rates within both treatments differed 

significantly at any time measured. A comparison of start and end growth rates led to 

the suggestion that the treatment coral group showed acclimation towards lowered pH 

over experimental period, as they were higher at the end, although not significantly 

different. Evidence for acclimation towards lowered sea water pH was observed for the 

cold-water coral Lophelia pertusa, revealing a decline in growth rates after one week of 

incubation followed by a slightly increase of growth rates over a time period of six 

month (Form & Riebesell, 2011). L. pertusa showed highest growth rates in waters of 

lowered pH compared to the control coral group maintained in waters with relatively 

higher pH. Maier and colleagues (2009) measured declining calcification rates of L. 

pertusa after 24h incubation in acidified sea water (water was acidified by the addition 

of hydrochloric acid (HCL), which did not influence the carbonate chemistry).  

Compared to the beginning of experiment growth rates of D. dianthus were slightly 

higher at any other time measured, except in week 8, where corals growth rates were 

low. Assuming this growth decrease to be an exception, possibly due to energy 

allocation processes (i.e. production of gametes (Hassenrück, 2012)), additional 

evidence for acclimation potential to lowered pH conditions was shown. Maier (2013) 

stated that reproduction is a highly energetic process, but time-limited. In week 10 of 
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experiment (i.e. two weeks later) growth rates increased again, possibly entailing a 

termination of gamete production, however gametes have not been documented for D. 

dianthus yet (Maier, 2013). 

 

4.2.1.5 Adaptation 

Besides acclimation potential, D. dianthus is featuring adaptation mechanisms, like 

internal pH up-regulation (McCulloch et al, 2012a; b), allowing for calcification 

processes within sea water of lowered pH. McCulloch and colleagues (2012a) 

measured an internal pH of 8.71 for Chilean specimens at a surrounding sea water pH 

of 7.83. As D. dianthus is thus able to elevate its internal pH, about ~0.9 units, a 

lowered sea water pH of 7.86 in the present study, may not have any impact on corals 

calcification. However pH elevation is suggested to be accompanied by energetic 

effort, leading to a reduction of energy for other physiological important processes (i.e. 

respiration, discussed in chapter 4.2.2).  

 

4.2.1.6 Temperature 

Lowest growth rates of the control coral group were measured in week 1 and 8, 

coincident with lowest temperatures (see Appendix, Tab. 9). Temperatures were 0.49°C 

(in week 1) and 0.37°C (in week 8) lower compared to the average temperature over 

experimental time. Water temperature is a parameter influencing marine invertebrates, 

as growth rates of the gorgonian cold-water coral Primnoa pacifica, thriving in cold 

waters (0.6 – 0.7°C), were lower compared to growth rates of species living at warmer 

water temperatures (Matsumoto et al. 2007). McCulloch and colleagues (2012b) 

developed a model (IpHRAC), which measured that enhanced kinetic activities caused 

by increased temperatures, positively influenced calcification processes. When 

temperature (in the present study) was elevated (based on the temperature range 

measured during experimental period), co2SYS calculated increasing CO3
2- 

concentrations, and ΩAr and Calcium saturation (ΩCa) at ambient and lowered pH. ΩAr 

was supersaturated revealing maximum values of 2.9 (at ambient pH) and 2.6 (at low 

pH), favorable for the formation of CaCO3 (Tab. 6) (see chapter 4.1.1). Enhanced 

temperatures at the end of experiment might have positively influenced growth rates of 

D. dianthus as corals growth rates were higher at the end than at the beginning. As 

calcification rates may be limited by corals physiology, kinetic processes alone cannot 
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determine corals thresholds of CaCO3 precipitation (McCulloch et al. 2012b). 

Countering ocean acidification, calcification rates of azooxanthellate cold-water corals 

depend on the ability of pH up-regulation, supported by temperature enhanced abiotic 

kinetics. 

 

  

pH Te CO2 HCO3
-

CO3
2-

Ω Ca ΩAr

(°C) (µmol kg 
-1

) (µmol kg 
-1

) (µmol kg 
-1

)

Ambient 10,5 37,8 3224,1 180,9 4,4 2,8

(8.12±0.09) 11,0 37,2 3216,5 184,3 4,5 2,8

11,5 36,7 3208,8 187,8 4,5 2,9

12,0 36,2 3201,0 191,4 4,6 2,9

Lowered 10,5 44,0 3272,2 159,9 3,9 2,4

(7.84±0.08) 11,0 43,4 3265,4 163,0 3,9 2,5

11,5 42,8 3258,5 166,1 4,0 2,5

12,0 42,2 3251,5 169,3 4,1 2,6  

 

Within actual and future predicted environmental changes warm-water corals may be 

less robust compared to cold-water corals, as they depend on their algal symbionts, the 

zooxanthellae. Via photosynthetic processes zooxanthellae provide essential nutrients 

for the coral host (Holt & Holt, 1967). A temperature increase, exceeding warm-water 

corals’ thresholds, already resulted in a release of symbionts, causing a massive 

bleaching event in the Indian Ocean in the years 1997 - 1998 (Erez et al. 2011). If 

ocean temperatures increase, due to climate change, bleaching events might become 

more frequent, causing mortality of corals in the worst case (Goreau 1964, 1992; Glynn 

1993; Hoegh-Guldberg 1999). In contrast, the energy budget of cold-water corals is 

sustained by active food capturing (see chapter 4.2.1.3). Cold-water corals are thriving 

at high temperature gradients, as it could be shown for D. dianthus (Jantzen et al. 

2013a; Fillinger & Richter, 2013). Hence, a future predicted temperature increase, 

termed as ‘global warming’, may have a minor impact on cold-water corals, as they 

show higher thresholds than warm-water corals.   

 

4.2.1.7 Age 

The rate of calcification depends on corals’ age. Maier and colleagues (2009) 

measured highest growth rates in youngest polyps of the cold-water coral Lophelia 

Tab. 6 Influence of varying temperatures on the carbonate system of sea water, calculated at 

ambient and lowered pH conditions.  
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pertusa. They also showed that faster growing, younger polyps were more sensible to 

acidified sea water than older polyps, with a reduction of calcification rates of 59% and 

40%, respectively. Elahi and Edmunds (2007) showed that younger coral fragments 

calcify faster than older coral fragments, independently of size. As D. dianthus shows 

rather massive (i.e. mass increase) than elongated growth (Försterra & Häusermann, 

2003), averaged total mass (in g), instead of size, was related to growth rates, 

assuming that total mass correlates positively with age. In the present study no 

correlation between total mass and growth rates could be shown, however, corals 

revealing highest mass values, showed relatively low growth rates.  

In summary, corals of the present study, even those maintained at lowered pH, showed 

growth rates within the range of values measured in other studies. Besides sea water 

pH, temperature and abiotic kinetics, corals’ age, corals’ physiology (internal pH up-

regulation) and energy requirement (depending on the availability of nutrients) could 

have limited calcification processes.  

 

4.2.2 Respiration rates 

Respiration may be influenced by changing environmental conditions such as 

temperature (Dodds et al. 2007) and food regime (Naumann et al. 2011; Maier, 2013). 

Hence oxygen uptake was measured aiming to represent the metabolic response of D. 

dianthus under lowered pH conditions. 

In vitro respiration rates of D. dianthus revealed no significant difference between 

ambient and low pH treatment, except in week 6, with slightly higher oxygen uptake 

under lowered pH conditions. Maier (2010) documented higher respiration rates of D. 

dianthus specimens incubated at lowered pH of 7.86, comparable to present cultivation 

conditions. Hence lowered pH might have stressed corals causing enhanced oxygen 

uptake. Corals are known to respond with increased respiration rates towards stress 

situations like elevated turbidity (Telesnicki & Goldberg, 1995).  

Experimental corals showed a similar trend over time comparing ambient and low pH 

conditions. At ambient pH respiration rates were lower at the end compared to the 

beginning of experiments. In contrast respiration rates at lowered pH showed maximum 

values at the end of experiment, revealing significantly higher values compared to the 

beginning, and thus showing possible acclimation potential. 

Within both coral groups (maintained at ambient and low pH) oxygen uptake was 

significantly different at any time measured, thus time had a significant effect on 

respiration of both coral groups. Remarkably, the inner treatment variability was higher 
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at ambient pH compared to lowered pH. Differing respiration rates within coral groups 

might also refer to inner-circuit variations of water parameters. In circuit 1 (ambient pH) 

pH was constantly at ~8.1 during respiration measurements, hence pH could be 

excluded to cause variations. Temperatures varied between 10.75°C (week 1) and 

11.57°C (week 24) during respiration measurements. At ambient pH, maximum 

respiration rates were measured in week 1, parallel to lowest temperature values. In 

contrast, Dodds and colleagues (2007) showed that oxygen consumption of the cold-

water coral Lophelia pertusa increased with higher temperatures, independent of 

oxygen level in sea water. As temperature could not be correlated with respiration 

rates, temperature variations might not have influenced present test corals.  

Significant inner-individual respiration variations could be related to differing outer 

tissue growth. However, corals respiration rates did not correlate with the outer tissue 

amount. 

Previous studies showed the high relevance of food, as respiration rates of D. dianthus 

were enhanced with increasing food availability (Naumann et al. 2011; Sokol, 2012; 

Maier 2013). In the present study, oxygen uptake (0.189 ± 0.056mg O2 cm-2 h-1) of 

corals maintained at ambient pH was higher, but still in the same range compared to 

values (0.028 ± 0.053mg O2 cm-2 h-1) measured by Sokol (2012); corals of both studies 

were fed with krill. Evidence for the enhancing effect of food on oxygen uptake was 

shown by Maier (2013), as she measured highly increased respiration rates of D. 

dianthus specimens within the first ten hours after feeding. Larsson and colleagues 

(2013) documented the same response for the cold-water coral L. pertusa, revealing a 

correlation between respiration rates and increased food densities. In summary, food 

supply in the present study might keep respiration rates on the same level as in other 

studies, where additional food (fed in higher densities or more regular) led to increased 

oxygen uptake.  

To measure respiration rates D. dianthus specimens had to be removed from the 

aquarium into hermetic Schottglasses. Relocation might have stressed corals, resulting 

in a possible overestimation of oxygen uptake. To measure oxygen saturation, lids of 

incubation glasses had to be opened, causing a mixing of air and sea water oxygen. 

Although oxygen saturation was directly measured after opening the lid, an 

underestimation of respiration rates cannot be excluded. 

After 2.5 hours incubation time, oxygen saturation within control incubation glasses 

amounted to 333.9 ± 6.1µmol kg-1 and 329.4 ± 5.0µmol kg-1 for circuit 1 and 2 

respectively (15.4 and 14.4% more, although not significantly, than averaged values 

measured within the aquarium over experimental period). This led to the assumption 

that rather microbial oxygen production than consumption occurred, although 
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incubations were carried out in the dark, avoiding photosynthetic processes. Microbial 

background activities amounted to 0.18µmol kg-1 h-1, thus oxygen uptake in incubation 

glasses could be clearly related to corals.  

 

4.2.3 Polyp extension 

Polyp behavior of corals is known to be influenced by varying water parameters like 

light, current and prey (Sebens et al. 1996; Levy et al. 2001; Levy 2003). In the present 

study polyp extension was documented to obtain the potential behavioral response of 

D. dianthus towards lowered sea water pH.  

During the first three months of experiment lowered pH had no effect on polyp 

extension. In the last three months polyps were significantly extended to a higher 

degree, compared to polyps at ambient pH. An increased extension might be related to 

higher respiration rates of corals at lowered pH in week 10 and 24. Additionally, 

respiration rates and polyp extension in general were slightly higher at lowered pH 

compared to ambient pH conditions, although not significantly. A positive relation 

between polyp extension and respiration was already shown in a previous study by 

Lasker (1979), as an enlarged tissue surface (i.e. fully extended polyps) increased the 

amount of oxygen molecules to pass through.  

High polyp extension was measured at the end of experiment accompanied by highest 

respiration rates at lowered pH, leading to the suggestion that corals might compensate 

the energy loss due to pH up-regulation during calcification processes. Maier (2013) 

documented maximum polyp extension in the late evening (10:00 - 11:00pm), parallel 

to high zooplankton densities in the fjord Comau. As polyps have the function to take 

up oxygen and capture food, the aim of their high extension might be energy 

generation. 

In summary, corals’ response towards lowered pH was generally positive, but might be 

associated with energetic effort. Still, lower pH (e.g. pH 7.7 down to 7.4, values which 

have been measured in the fjord Comau) may negatively influence corals response. 

Further studies are needed to investigate corals thresholds towards the degree of 

ocean acidification that causes a lowered pH and a reduction of CaCO3 in the oceans.  
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4.2.4 Methodical considerations 

4.2.4.1 Corals in aquaria 

Maintaining corals in aquaria might have led to an under-or overestimation of corals’ 

response, as D. dianthus’ growth rates differed between in situ and in vitro conditions 

(Jantzen et al. 2013b).  

It has to be suggested that corals were exposed to an elevated stress level, possibly 

causing an underestimation of growth rates. They experienced several site transfers, 

plus they had to be removed out of the aquarium to conduct experiments and cleaning 

procedures. However, daily observations did not show any unnatural behavior, like 

increased excretion of mucus or decreased polyp extension (Jantzen et al. 2013b). 

Maintaining corals in aquaria reduced inner and outer bioerosion (dissolution of corals’ 

skeleton), caused by endolithic organisms, which might have led to an overestimation 

of growth rates. In vitro corals might have experienced reduced water exchange and 

flow conditions as in the fjord. Both might have caused a reduced oxygen transport into 

the diffusion boundary layer and hence decreased corals’ metabolic activity, which 

eventually might have led to an underestimation of respiration rates (Shashar et al. 

1996).  

 

4.2.4.2 Ash free dry weight 

The analysis of ash free dry mass (Mash free) did not reveal expedient results which 

might be due to the following reasons: During Mash free analyses the error rate was 

higher as laboratory work was conducted by 3 people instead of one person, causing a 

possible mix up of sample dishes making an assignment of dishes to corals unclear. 

Further the dry oven heated up 20°C higher than manually adjusted (40°C) resulting in 

a possible carbon loss due to high temperatures (carbon evaporates at temperatures 

from 40°C on (Jantzen, personal communication)). This could have led to an 

underestimation of tissue mass. Additionally combusting time of four hours might have 

been too short so that small, obscured coral skeleton fragments remained in the dish 

resulting in mass increase. Thus a second run for five hours at 500°C was conducted 

resulting in a comparable Mash free as in the first run. A maximum deviation of 0.958g, 

which was an exception, as all other values of the second run did not deviate more 

than 0.080g from values of the first run, was measured. Additionally, it is to mention 

that carbonates oxidize from 550°C on (DIN 38414) (the temperature adjustment of the 

first run), leading to a possible overestimation of carbonate content. The latter might be 

a possible reason for a relatively high tissue mass. However highest tissue mass 
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values, which represented half of corals total mass probably cannot be explained by 

carbonate oxidation processes. 
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5. Conclusion 

 

As hypothesized Desmophyllum dianthus responded positively towards lowered pH, 

showing equal calcification rates as at ambient pH conditions. Corals response might 

have been promoted by aragonite saturation states, which were supersaturated within 

both treatments. A sufficient food supply might have stimulated growth rates, which 

were comparable to those in the fjord Comau. However corals might have been 

stressed, as they revealed higher, although not significantly, respiration rates at 

lowered pH. Increased respiration rates were probably supported by elevated 

temperatures, high oxygen concentrations and increased polyp extension. 

D. dianthus may cope with future CO2 concentrations by showing acclimation potential, 

as it could be documented in the present study, and developing adaptation 

mechanisms like internal pH up-regulation (McCulloch et al. 2012a). Nevertheless, sea 

water pH is predicted to decrease by another 0.4 units and temperatures to rise at least 

2°C until the end of the century (Hoegh-Guldberg et al. 2007). This scenario will cause 

highly lowered aragonite saturation states, endangering cold- and warm-water corals, 

as they will barely obtain aragonite for the formation of their skeletons. Elevated 

temperatures already caused bleaching (release of algal symbionts) in warm-water 

corals (Goreau 1964, 1992; Glynn 1993; Hoegh-Guldberg 1999). If temperatures and 

CO2 concentrations increase, warm-water corals will decrease rapidly (Hoegh-

Guldberg et al. 2007). Cold-water corals do not rely on algal symbionts and thrive at 

higher temperature gradients, compared to warm-water corals. The latter provides 

more suitable requirements to stand global warming. Thus cold-water corals may be 

more robust towards climate change, than their warm-water counterparts. 

As the impact of temperature on D. dianthus is not quantified until now, further studies 

should focus on the combined effects of ocean acidification and global warming, as 

they are ongoing processes. A better understanding of corals thresholds would 

contribute to management plans, aiming the protection and sustainability of a peculiar 

and uncommon organism. 
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7. Appendix  

 

 

 

 

Ambient pH Low pH

Growth rates Time (weeks)

(µmol CaCO3 cm
-2

 d
-1

) 1 13.71 ± 16.07 17.23 ± 9.57

3 22.00 ± 12.12 23.72 ± 9.27

6 16.88 ± 11.72 18.00 ± 7.26

8 12.57 ± 10.64 9.67 ± 11.19

10 26.06 ± 9.22 25.12 ± 8.74

24 20.97 ± 13.01 17.97 ± 8.78

M_total 18.70 ± 12.13 18.62 ± 9.14

Respiration rates Time (weeks)

(µmol O2 cm
-2

 d
-1

) 1 29.66 ± 24.18 23.01 ± 5.94

3 29.02 ± 16.98 23.76 ± 5.32

6 9.87 ± 3.90 19.49 ± 9.32

8 21.80 ± 6.29 23.72 ± 5.30

10 18.32 ± 7.83 21.32 ± 4.41

24 23.75 ± 12.64 30.97 ± 9.09

M_total 22.07 ± 11.97 23.71 ± 6.56

Polyp extension Time (days)

(%) 1 46.88 ± 42.70 40.63 ± 37.50

2 65.63 ± 39.66 59.38 ± 37.50

3 37.50 ± 34.16 65.63 ± 43.66

4 9.38 ± 20.16 31.25 ± 35.94

5 37.50 ± 42.82 65.63 ± 39.66

6 84.38 ± 35.21 81.25 ± 30.96

7 75.00 ± 40.82 84.38 ± 23.94

8 50.00 ± 44.72 75.00 ± 36.51

9 78.13 ± 36.37 81.25 ± 30.96

10 90.63 ± 20.16 71.88 ± 25.62

11 46.88 ± 34.00 43.75 ± 35.94

12 78.13 ± 40.70 68.75 ± 35.94

13 31.25 ± 35.94 68.75 ± 35.94

14 93.75 ± 17.08 66.29 ± 37.47

15 75.00 ± 36.51 93.75 ± 17.08

16 87.50 ± 28.87 100.00 ± 0.00

17 59.38 ± 41.71 40.63 ± 41.71

18 87.50 ± 28.87 93.75 ± 17.08

19 62.50 ± 38.73 78.13 ± 31.46

20 75.00 ± 40.82 68.75 ± 35.94

21 59.38 ± 49.05 96.88 ± 12.50

22 87.50 ± 28.87 93.75 ± 17.08

23 81.25 ± 30.96 87.50 ± 22.36

24 84.38 ± 30.10 90.63 ± 27.20

25 75.00 ± 31.62 84.38 ± 30.10

26 84.38 ± 30.10 81.25 ± 30.96

27 78.13 ± 31.46 87.50 ± 22.36

28 90.63 ± 27.20 87.50 ± 22.36

M_total 68.3 ± 21.39 74.58 ± 18.30

Tab. 7 Overview of corals physiological response measured 

as growth rates, respiration rates and polyp extension for 

each treatment. Values are given as means ± SD after 1, 3, 

6, 8, 10 and 24 weeks for growth and respiration rates; and 

per day over 28 days for polyp extension. 
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Time (weeks) pH Temperature (°C)

1 0.2 0.1

2 0.2 0.1

3 0.3 0.1

4 0.3 0.2

5 0.3 0.3

6 0.3 0.3

7 0.4 0.2

8 0.4 0.4

9 0.4 0.3

10 0.4 0.1

11 0.3 0.4

12 0.3 0.2

13 0.2 0.3

14 0.2 0.1

15 0.2 0.1

16 0.2 0.1

17 0.2 0.1

18 0.2 0.3

19 0.2 0.4

20 0.2 0.1

21 0.3 0.2

22 0.3 0.3

23 0.3 0.3

24 0.2 0.1

M ± SD 0.3 ± 0.1 0.2 ± 0.1

Tab. 8 PH and-temperature differences 

between circuit 1 and 2. Values are given in 

units respectively for pH and temperature (in 

°C) and represent the difference between 

mean values measured for each week (1-24) 

of experiment.  
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Circuit 1 Circuit 2 Circuit 1 Circuit 2

Time (weeks)

1 8.07 ± 0.10 7.87 ± 0.15 10.75 ± 0.19 10.83 ± 0.31

2 8.10 ± 0.29 7.88 ± 0.31 11.02 ± 0.66 11.17 ± 0.61

3 8.09 ± 0.07 7.80 ± 0.04 11.25 ± 0.13 11.14 ± 0.14

4 8.07 ± 0.07 7.78 ± 0.04 11.21 ± 0.20 11.02 ± 0.16

5 8.10 ± 0.06 7.78 ± 0.04 10.85 ± 0.17 11.12 ± 0.11

6 8.09 ± 0.08 7.75 ± 0.07 11.07 ± 0.43 11.19 ± 0.34

7 8.11 ± 0.09 7.75 ± 0.07 11.30 ± 0.34 11.08 ± 0.50

8 8.11 ± 0.08 7.72 ± 0.08 10.87 ± 0.11 11.26 ± 0.13

9 8.10 ± 0.08 7.71 ± 0.09 10.90 ± 0.11 11.22 ± 0.11

10 8.14 ± 0.53 7.75 ± 0.52 11.29 ± 0.72 11.38 ± 0.74

11 8.13 ± 0.06 7.80 ± 0.06 11.50 ± 0.15 11.11 ± 0.13

12 8.09 ± 0.09 7.80 ± 0.07 11.65 ± 0.31 11.43 ± 0.24

13 8.13 ± 0.04 7.89 ± 0.04 11.37 ± 0.61 11.67 ± 0.15

14 8.17 ± 0.06 7.94 ± 0.04 11.13 ± 0.22 11.24 ± 0.19

15 8.21 ± 0.04 7.96 ± 0.04 11.24 ± 0.16 11.37 ± 0.12

16 8.10 ± 0.06 7.93 ± 0.05 11.60 ± 0.20 11.53 ± 0.17

17 8.11 ± 0.05 7.86 ± 0.03 11.45 ± 0.16 11.52 ± 0.10

18 8.11 ± 0.05 7.87 ± 0.04 11.48 ± 0.12 11.78 ± 0.21

19 8.12 ± 0.05 7.88 ± 0.04 11.23 ± 0.19 11.64 ± 0.21

20 8.12 ± 0.05 7.88 ± 0.04 11.45 ± 0.15 11.31 ± 0.10

21 8.13 ± 0.05 7.88 ± 0.04 11.25 ± 0.18 11.44 ± 0.14

22 8.14 ± 0.05 7.88 ± 0.04 11.24 ± 0.16 11.58 ± 0.13

23 8.14 ± 0.05 7.88 ± 0.04 11.02 ± 0.31 11.27 ± 0.29

24 8.14 ± 0.04 7.89 ± 0.04 11.57 ± 0.21 11.51 ± 0.17

M_total 8.12 ± 0.09 7.84 ± 0.08 11.24 ± 0.26 11.37 ± 0.23

pH Temperature (°C)

Tab. 9 Overview of pH and temperature values within circuit 1 

and 2 over experimental period. Values are expressed as means 

± SD and averaged for week 1-24.  
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NO3 PO4
-

NO2
-

NH4
+

NO3 PO4
-

NO2
-

NH4
+

Time (weeks) (mg L -1 ) (mg L -1 ) (mg L -1 ) (mg L -1 ) (mg L -1 ) (mg L -1 ) (mg L -1 ) (mg L -1 )

1 0.50 ± 0.00 0.02 ± 0.00 0.03 ± 0.02 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.05 ± 0.01 0.05 ± 0.00

2 0.50 ± 0.00 0.02 ± 0.00 0.04 ± 0.02 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.04 ± 0.01 0.05 ± 0.00

3 0.50 ± 0.00 0.02 ± 0.00 0.03 ± 0.02 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.05 ± 0.00

4 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.02 0.05 ± 0.00

5 0.65 ± 0.14 0.02 ± 0.00 0.08 ± 0.08 0.05 ± 0.00 0.63 ± 0.14 0.04 ± 0.02 0.10 ± 0.08 0.05 ± 0.03

6 0.93 ± 0.19 0.06 ± 0.02 0.19 ± 0.09 0.12 ± 0.09 1.00 ± 0.00 0.18 ± 0.28 0.18 ± 0.04 0.06 ± 0.02

7 1.00 ± 0.00 0.05 ± 0.00 0.1 ± 0.00 0.05 ± 0.00 0.75 ± 0.35 0.04 ± 0.02 0.06 ± 0.06 0.05 ± 0.00

8 0.50 ± 0.00 0.03 ± 0.01 0.02 ± 0.01 0.05 ± 0.00 0.50 ± 0.23 0.02 ± 0.00 0.08 ± 0.03 0.05 ± 0.00

9 0.50 ± 0.00 0.02 ± 0.00 0.03 ± 0.02 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.04 ± 0.02 0.05 ± 0.00

10 0.50 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.05 ± 0.00

11 0.50 ± 0.06 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00

12 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.01 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.01 0.05 ± 0.00

13 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.02 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00

14 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00

15 0.50 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.05 ± 0.00

16 0.61 ± 0.13 0.23 ± 0.37 0.03 ± 0.01 0.05 ± 0.00 0.54 ± 0.10 0.02 ± 0.00 0.02 ± 0.01 0.05 ± 0.00

17 0.81 ± 0.17 0.02 ± 0.00 0.02 ± 0.01 0.07 ± 0.01 0.63 ± 0.14 n.a. 0.04 ± 0.01 0.05 ± 0.00

18 0.88 ± 0.14 n.a. 0.03 ± 0.00  n.a. 1.00 ± 0.00 0.10 ± 0.00 0.03 ± 0.00 n.a.

19 1.33 ± 0.29 0.02 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.67 ± 0.57 0.10 ± 0.00 0.02 ± 0.01 n.a.

20 2.33 ± 0.29 0.02 ± 0.00 0.02 ± 0.01 n.a. 0.50 ± 0.35 0.04 ± 0.02 0.01 ± 0.00 n.a.

21 0.88 ± 0.18 0.04 ± 0.02 0.01 ± 0.00 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00

22 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00

23 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00

24 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.50 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00

M ± SD 0.70 ± 0.07 0.03 ± 0.02 0.03 ± 0.01 0.05 ± 0.00 0.57 ± 0.08 0.04 ± 0.02 0.04 ± 0.01 0.05 ± 0.00

Circuit 1 Circuit 2

Tab. 10 Overview of nutrient values within circuit 1 and 2 over experimental period. Values are expressed as 

means ± SD and averaged for week 1-24. (n.a.) indicates that no measurements were conducted.  
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