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Abstract

Lattice Boltzmann (LB) methods have recently emerged as a new class of viable
simulation techniques for fluid flow problems. In the present work, we investigated
the potential of this method for ocean dynamics simulation. First, we constructed
a Lattice Boltzmann simulator using standard techniques and tested its behaviour
on a well-known fluid mechanics problem (3D Poiseuille flow). This was essen-
tially a Direct Numerical Simulation (DNS) solver, as no turbulence model was
included. The program was then extended using a Smagorinsky-type turbulence
model (also documented in the literature), allowing the simulation of more realistic
ocean dynamics. This refinement allowed us to study more complex cases, such as
the lid-driven cavity. Nonetheless, oceanic flows require more involved turbulence
parameterizations than the one introduced by Smagorinsky, due to the complica-
tions caused by the stronger stratification. Thus, the aim of the last part of the
project was to introduce a new methodology for including these higher-order oceanic
turbulence models into the standard LB algorithm. This part and the results therein
also constitute the main contribution of this thesis. The new methodology allows

LB to easily incorporate various turbulence models in common use in oceanography.



1 Introduction

The Earth climate is manifested through the dynamics and interactions of many subsys-
temsH. Due to its high latent heat, water regulates most of the energy transfers between
these components. As most of the water on the Earth is accumulated in the global ocean,
this is also the largest heat reservoir on the Earth, bearing an important influence on
climate variability. The characteristic timescale for changes in the oceanic circulation is
in the range (10~ yr,10% yr), much larger than for the atmospheric circulation (10~°
yr, 10~ yr). In principle, this can be also an advantage for numerical simulations, as the
Reynolds number is smaller compared to the atmospheric; however, longer integration
times are also implied for oceanic dynamics simulations, which makes the two systems
comparable in terms of computational demands.

As in the case of most fluids, the dynamics of the oceanic water is governed by the
Navier-Stokes equations, whose nonlinear terms renders them very difficult to solve ana-
lytically in any non-trivial situation. Adding to this the high costs necessary for setting-
up and quantifying relevant experimental systemJg, we conclude that the most accessible
method of enhancing the knowledge in this field is through numerical simulations. Al-
though the power of the computer systems is steadily increasing, the complexity of the
ocean imposes high demand for efficient numerical methods.

Lattice Boltzmann Methods (henceforth LBM) represent relatively new techniques
for fluid dynamics simulations, which have been extensively used for smaller-scale sim-
ulations. They emerged out of statistical mechanics rather than out of the macroscopic
conservation lawﬁ The basic idea is to discretize both time and phase space, and also to
separate the dynamics of the fluid particles into multiple scales, expressed through a col-
lision and a streaming step. The streaming step involves only nearest neighbours, while

the collision step is local and consists of a relaxation towards the local Boltzmann dis-

IThese are usually classified as: atmosphere, hydrosphere, cryosphere, lithosphere and biosphere
2Controlled experiments are, indeed, out of the reach of geophysical fluid dynamicists in general and

of oceanographers in particular. They are constrained to work with data that may be influenced by
processes not completely understood. However, this is also one of the factors that make this field so

fascinating.
3Which is the case for the Navier-Stokes equations [Landau and Lifshitz, 1987].




tribution, as required by Boltzmann’s H-theorem [Ferziger and Kaper, 1972|. This leads

to a conceptually simple but very powerful paradigm, which can be proved to effectivel
approximate the Navier-Stokes equations under the assumption of a low Mach numbeﬂt
From a computational point of view, the locality of the algorithm leads to greater ben-
efits from parallel computing compared to traditional Computational Fluid Dynamics
(henceforth CFD), where an expensive global pressure correction step is usually required.
Another benefit of the method relevant for the present project is the relative simplicity of
implementing proper boundary conditions, which is of crucial importance in real-world
oceanographic simulations, where the effects due to the coastline have to be resolved.
The aim of the present work was to extend the range of applicability of LBM to include

problems in numerical oceanography. The first applications of the method to oceano-

graphic problems were proposed by [Salmon, 1999a], [Salmon, T999b] and [Wolf-Gladrow, 2000).

While the results reported by these authors are very promising, they are restricted either
to the two-dimensional case or prototype 3D models with limiting assumptions and/or
insufficient symmetry. To our knowledge, there has to date not been a concentrated effort
on constructing a three-dimensional implementation targeting geophysical fluid dynam-
ics. Adding this third dimension is a challenging yet highly necessary topic of research. Of
course, the traditional oceanographic models have evolved simultaneously with computer
hardware, and three-dimensional simulations are nowadays part of the standard require-
ments, as they provide additional information on the mechanisms driving the large-scale
ocean circulation. Also, 3D simulations enable realistic modelling of the various fluxes
between the ocean and the other components of climate. A successful LB-based model
can also enable higher-resolution studies, due to the potentially greater per-gridpoint
efficiency of the method.

The difficulty of the task consists of the fact that LBM assumes isotropy of both fluid
viscosity and spatial resolution. Both of these assumptions are challenged by our current
understanding of the oceanic system and our experience gained through modelling it with
other numerical schemes; hence the need for fundamental changes to the LBM paradigm.

The present thesis is organized as follows: in Section B we present a review of

the theoretical concepts related to LBM, the most important aspects of the algorithm

4This assumption holds for the applications in geophysical fluid dynamics.



and some validation studies performed with our code; in Section Bl we develop a new
methodology for including turbulence closures in LBM, along with the proof that the
new model does indeed solve the Reynolds-averaged Navier-Stokes equations; Section H
concludes the thesis and presents some outlook on the most probable pathways for future

work.



2 Classical Lattice Boltzmann Methods

2.1 The Boltzmann Equation

One of the most significant theoretical breakthroughs in statistical physics was due to

Ludwig Boltzmann (1864) (see [Boltzmann, 1995] for a recent reprint of his famous lec-

tures on kinetic theory), who pioneered non-equilibrium statistical mechanics. Although
Boltzmann’s theory was conceived for diluted gases, the reader should be informed that
during the last 50 years this treatment was extended to other classes of fluids as well. In-
deed, the Lattice Boltzmann method, which is the focus of the current work, works in the
assumption of a low Knudsen numberH, that is it fails exactly for diluted gases. However,
for the sake of conciseness, only the original reasoning is presented in this subsection.

Boltzmann postulated that a gas was composed of a set of interacting particles, whose
dynamics could be (at least in principle) modelled by classical dynamics. Due to the
very large number of particles in such a system, a statistical approach was adopted,
based on simplified physics composed of particle streaming in space and billiard-like
inter-particle collisions (which are assumed elastic). Instrumental to the theory is the
single-particle distribution function (hereafter SPDF), f (&, p,t) which represents the
probability density of having a particle at the point (&, p) in the phase space. Hence,
the quantity

f (&, p, t)dzdp (1)
represents the probability of finding a particle inside an infinitesimal space cubelet cen-

tered around &, and inside an infinitesimal momentum-space cubelet around p at any

given time ¢. In the presence of a body-force ﬁ, the SPDF will evolve according to

f(il_f + dZ,p + dp,t + dt)dfdﬁ: f(£7 P, t)dfdﬁ (2)
where
az = Lat
m

’The Knudsen number (Kn) is a dimensionless quantity defined as the ratio of the mean free path

length A and a characteristic macroscopic lengthscale L of the process of interest.



and
dp = Fdt.

If we also include the effect of the collisions, and denote by I' . dZdpdt the probability
for a particle to start from outside the dZ X dp domain and to enter this phase-space
region during the infinitesimal time dt and by I' _dZdpdt the probability for a particle to
start from the d& X dp domain and leave this phase-space region during the infinitesimal

time dt, the evolution of the SPDF becomes
(@ + dF, 5+ dp, t + dt)dZdp = (&, p, t)d@dp + (T, — [_) d@dpdt  (3)

Expanding the LHS into a Taylor series around the phase-space point (&, p, t), we obtain:

o o s L g (OF . .
J(Z+dE, p+dp, t+dt)dEdp = f(&,p,t)dxdp+ | . | dt+(Vzf)-dZ+(Vsf)-dp+. ..

ot
(4)
Inserting Eq. (@) into Eq. (B) and cancelling terms, we easily obtain Boltzmann’s Equa-

tion:

of _
— T aVaf + FVpf =T, —T_ (5)

where Vz is the gradient operator in physical space and V5 the same in momentum

space.

For the sake of clarity, we have not written the collision operator explicitly yet. The
important point is that the separation of the dynamics into collisions and streaming is
already apparent from Eq. (H). The collision operator, which is in itself a complex

integro-differential expression, reads

ry-ro= [ [deo(@) |a- @l [f@) @) - f@f@)] 6

where o is the differential cross-section in the case of the 2-particle collisions (which is
a function of the solid angle €2), unprimed velocities are incoming (before collision) and

primed velocities are outgoing (after collision).

A fundamental property of the collision operator [Cercignani, 1987] is that it conserves

mass, momentum and kinetic energy (hence also a linear combination thereof). Also, it

can be shown that the local Maxwell-Boltzmann distribution pertains to a certain class

10



of positive SPDFs for which the collision integral vanishes. This implies that, if this
distribution is attained, we also have a state where incoming SPDFs exactly balance the
outgoing ones, maintaining a local dynamic equilibrium. This observation is of paramount
importance for our method, which uses the (discretized) Maxwell-Boltzmann distribution
as the equilibrium distribution functions (hereafter EDFs).

Due to the complex expression for the collision operator, it became clear that approx-

imations were desirable. Tt was also proven (see |[Cercignani, 1990]) that such approxima-

tions were also reasonable, since the details of the two-body interaction are not likely to
influence significantly experimentally-measured quantities. Hence, approximate collision
operators were proposed, all of which had to conserve local mass, momentum and
energy and |2 | develop a collisional contribution in Boltzmann’s equation (&) which tends

to a local Maxwellian distribution (which is required by Boltzmann’s H-theorem - see

[Wolt-=Gladrow, 2000] for a full discussion). It was soon realized that a model developed

at the middle of last century [Bhatnagar et al., 1954] (also known as Bhatnagar-Gross-

Krook; hereafter BGK) satisfied both of these conditions. The basic idea was that each
collision changes the SPDF by an amount which is proportional to the departure from

the local Maxwellian distribution.

11



2.2 Theory of LBM

LBM evolved out of Lattice-Gas Cellular Automata (hereafter LGCA), statistical toy-
models inspired by the Boltzmann theory which simulated a gas through particles at dis-
crete points in space represented through Boolean variables. Following some physically-
justified collision rules, these systems exhibited fluid-like behaviour. The prospect of
useful fluid simulations became apparent after averaging over many simulation results
using the same boundary conditions and forcing but different initializations of the gas.

LBM replaces the Boolean variables of LGCA [Wolf-Gladrow, 2000] with real-valued

distribution functions f;(7), representing the probability density of finding a particle in

a certain region of the discretized phase-space. Another difference with respect to LGCA

is the simplified collision operator [Bhatnagar et al., 1954].

Also, in contrast to LGCA, there are more choices of the underlying lattice. These
are usually classified in the literature using the Da@Q@-notation, where « is an inte-
ger number denoting the space dimensionality and 3 is another integer indicating the
number of discrete velocities (including the particle at rest) within the momentum dis-
cretization. Some restrictions still have to be fulfilled (especially Galilean and rotational
invariance)fl to ensure that a particular discretization can simulate the Navier-Stokes

equations. Among the lattices in common useH there are the D2Q9, D3Q15, D3Q19

and D3Q27-models (see for example discussion in [He and Luo, 1997]). Since our pri-

mary interest was the 3D case, we have chosen the D3Q19 momentum discretization,
which has better stabilityH than D3Q15, while remaining less CPU-demanding than
D3Q27 at the price of negligible losses in accuracy. The discrete velocity directions for
the D2Q9 and D3Q19 lattices are shown in Figs (ll) and ).

The macroscopic variables are defined as functions of the particle distribution func-

6A lattice with reduced symmetry can be (and has been) used, see [d"Humieres et al., 2001], where a

D3Q13-lattice is used. However, this approach also departs from the classical BGK-LBM dynamics.
"These are the lattices which satisfy these symmetry requirements; as an interesting side-note, the

earlier LGCAs failed to recover the Navier-Stokes equations because an improper lattice was used (see
[Succi, 2001]], pp. 20-21). These models produced square vortices, which were clearly unphysical — one

of the reasons why they were regarded as toy-models.
8The stability is determined using the von Neumann linear stability analysis (see for example

[Wolt=Gladrow, 2000] for details of this procedure).

12
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tions (hereafter DFs) according to:

B—1
p= Z fi (macroscopic fluid density) (7)
1=0
and
1
U= — fi€; (macroscopic velocity). (8)
P i=o

The DFs at each lattice point are updated using the equation:

(T, 1) — FPA(&,t
Ji(@ + EALt+ At) = fi(F,t) — (&) sz (& )], (9)
Streaming COIHSiOH

where a € [0, 3 — 1] is an index spanning the (discretized) momentum space and 7 is a
relaxation parameter, which is related to the fluid viscosity (more details about this will
follow in this subsection).

This equation holds for lattice points within the fluid domain, but not for the domain
boundaries, where boundary conditions compensate for the insufficient number of DFs (it
does not make sense to stream DFs from walls towards the fluid). For this reason, the two
steps (streaming & collision) are treated separately in actual numerical implementations.

The streaming step, where the DFs are translated to the neighbouring sites according
to the respective discrete velocity direction, is illustrated in Fig. (@), in the D2Q9 model
for simplicity. The collision step (illustrated in Fig. [H]) consists of a re-distribution of
the DFs towards the local discretized Maxwellian equilibrium DFs, but in such a way
that local mass, momentum and energy are invariant, for reasons which were already
explained in the previous subsection.

The EDFs can be obtained from the local Maxwell-Boltzmann SPDF (see for example
[He and Luo, 1997]); they are

o . &-i  9(e-@)? 3
f{4(Z) = wip(T) 1+37+5T_§§ ; (10)

where for the D2Q9 model the weights are

Wi=0 = 3
Wi={1..4} = % (11)
Wi={5.8} = %

14
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a D2Q9 lattice. Note that the local

density p and velocity ¥ are conserved, but the DFs change according to the relaxation-

to-local-Maxwellian rule.

and c is the propagation speed on the lattice (1lattice spacing/time step), taken asec = 1

in most cases. For the D3Q19 model, the weights are changed as follows:

Wi=0 =
Wi={1..6} =
Wi={7..18}y =

15
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Under the afore-mentioned assumption of a low Mach number, and further taking

KT:H, 6, 6 — 0, this model recovers the incompressible Navier-Stokes equations:

V-u=0, (13)
pOiii + piV - i = —VP + pvV3i (14)

with an isothermal equation of state:
P=cp, (15)

where P is the pressure.

The viscosity of the fluid is related to the relaxation parameter 7 by the equation

= (r—1/2 _r 1 — 3y 4~ 16
v=G TS TG F ) S T =80t (16

The proof of these results follows from the Chapman-Enskog analysis, and is included

in The speed of sound c; is a lattice-dependent quantity, which takes the value

1
Cs = —

\/§
for the popular D2Q9 and D3Q19 lattices.

Eq. (M) provides a straightforward method for adjusting the fluid viscosity in the
model. It is obvious that 7 > 0.5 is required in order to ensure a positive viscosity. The
limit 7 — 0.5 corresponds to the inviscid flow, while the 7 — oo limit represents the
Stokes (creeping) flow. While the later case poses no difficulty to the mode the former
limit is problematic because stability issues appear if an insufficient lattice resolution is
chosen. This is due to the fact that velocity gradients can become very large (especially
in complex geometries, with high topography variations) and the model cannot dissipate

Unfortunately, many of the flows of practical

the energy due to the very low viscosit,

interest are turbulent, often with a low viscosity.

9The assumption of Kn = 2 — 0 is a requirement for continuum models to apply, hence it is not

L
specific to LBM.
0Physical time unit, not the computational time unit At, which is usually taken as 1.
1 Physical space unit % Ax, which is usually taken as 1.
12G¢trictly speaking, the Stokes limit presents its own issues, namely the slow convergence rate; however,

in the present context, we concentrate on stability.
13The “brute-force” remedy of increasing the grid size improves the situation by effectively rescaling

the velocity field, which automatically diminishes velocity gradients. However, this approach quickly

becomes unfeasible.

16



To overcome this limitation, a turbulence model is necessary. The role of this pro-
cedure is to parameterize the turbulent energy dissipation in turbulent flows, where the
larger eddies extract energy from the mean flow and ultimately transfer some of it to the
smaller eddies which, in turn, pass the energy to even smaller eddies, and so on up to the
smallest scales, where the eddies convert the kinetic energy into internal energy of the
fluid. At this scales (also known as Kolmogorov scale), the viscous friction dominates the
flow [Friseh, 199,

In classical LB applications, a convenient method of modelling turbulent dissipation

is through a locally-enhanced collision, which effectively stabilizes the simulation. A com-

mon (see [Thuerey, ) procedure is the Smagorinsky sub-grid model [Smagorinsky, 1963,

which, when adapted to LBM, consists of:

1. evaluation of the local stress tensor:
B—1

Mop = Y Ealip(fi— f{7), (17)
=0
where (a> 6) € {:13, Y, z} X {:13, Y, z}§
2. computation of the enhanced relaxation time:

1
s = 3(v + C2S) + 257 (18)

602 ( v? + 1802\/1_[0‘”31_[0‘”3 — I/) . (19)

Proper values for the Smagorinsky constant C' that are suitable for LBM have been

where: S =

published in the literature [Yu et al., 2005| and found to be close to 0.03. It can

be observed that, as S > 0, Vf;, the effect of the model will always be a higher

local effective viscosity, which increases as the local stresses increase.

To conclude this discussion, it is worth mentioning that this procedure does indeed
complicate the collision operator, losing some of the elegance of the LBM algorithm.

However, the efficiency is increased because it allows one to work on much coarser grids

compared to the original LBM, at the same value for viscosity [Thuerey, 2007].

Multi-Relaxation-Times (MRT) LBM. It is also worth mentioning that there exists

another formulation of LBM, which uses instead of the simple BGK relaxation a set of re-

laxation times for the different hydrodynamic moments of the DFs [d"Humieres et al., 2002].

17



There is some freedom in choosing these multiple relaxation times, which can be used to
stabilize the simulation. While this is a promising approach, this is out of the scope of
the present thesis paper. This topic would be the one of the natural paths to investigate

further.

2.3 Boundary conditions

Boundary Conditions (BC) form an important part of any numerical solution, as they
can often affect the accuracy of the algorithm significantly. Thus, an introduction to
LBM would not be complete without an exposition of the currently known methods and

best practices for imposing the appropriate constraints on the fluid domain.

Periodic Boundary Conditions (hereafter BCs). The simplest type of boundary
condition is the periodic one. In this case, the domain becomes folded along the direction
of the periodic BC pair. From the perspective of ocean modelling, this kind of BC is, of
course, only useful in preliminary tests, as it implies a high symmetry of the flow domain.
Due to the way our streaming operator is implemented (that is, through circular shifts
of the DF-arrays), this kind of BC does not require any special treatment (because from
the point of view of the model there is no domain discontinuity) and is therefore also

computationally the cheapest.

No-slip BCs. The most often used type of BC in LBM flows is the no-slip BC, espe-
cially the simple bounce-back rule, which is quite elegant and surprisingly accurate in
most, common applications. The basic idea is that the incoming DFs at a wall node are
reflected back to the original fluid nodes, but with the direction rotated by 7 radians.
The bounce-back BC is one of the most advertised benefits of the Lattice Boltzmann
method, as it is trivial to implement and it allows one to effortlessly introduce obsta-
cles into the fluid domain (for example, by using a global Boolean field; bounce-back
is performed for all of the wall lattice points, whose flag was “fipped” to solid during

the initialization stage). However, the BC has been proven to be only first-order accu-

rate in time and space [Pan et al., 2006]. A straightforward improvement is to consider

the wall-fluid interface to be situated halfway between the wall and fluid lattice nodes

18



Zieg 093]. This simple translation (which is actually nothing more than a slightly
different post-processing procedure), commonly referred to as half-way bounce-back in
the literature, is illustrated in Fig. (H). However, even for this scheme the accuracy

becomes first-order when the fluid boundaries are tilted with respect to the lattice direc-

tions [Cornubert et al., 1991| and more advanced interpolation schemes are necessary. It

is important to note that, in actual numerical implementation, the streaming step is also
performed at the solid nodes marked as no-slip, but at these points the collision step is
replaced by the bounce-back procedure. Nonetheless, it does not make sense to evaluate
the macroscopic fields at these points, as they are in reality situated outside the fluid

domain.

Slip BCs. The slip BC is similar to the no-slip one, except that the DFs are reflected

in a mirror-like fashion instead of bounce-back. A clear treatment of this can be found

in [Succt, 2001].

Velocity and Pressure BC. Sometimes, we need to be able to model flows with pre-
scribed velocity or pressure profiles; since LBM operates from the point of view of the
particle distribution function, these are often referred to as von Neumann and Dirich-
let BCs respectively. Such constraints are necessary, for example, when the simulation
domain communicates with other, not simulated but parameterized flow domains. The
prescribed velocity or pressure add 2 (in D2Q9 — 3 in D3Q19) and, respectively 1
equation for determining the unknown DFs (which would hypothetically have to come
from “outside” the fluid domain). In the case of the velocity BC, the additional equa-
tions are actually enough to solve for the unknown DFs (in D2Q9 only, but not in
D3Q19); for the pressure BC, the system of equations is not closed for all lattices, and
additional constitutive equations are necessary. A central idea in this direction is that

of the bounce-back of the non-equilibrium part of the DFs in the normal direction (also

known as the Zou-He assumption after its proponents [Zou and He, 1997]). Hence, for a

northern boundary (on a D2Q9-lattice), one would write:

fa = f50 = fa— f1° (20)

19



Fluid
. v N\
— .
[ ] [ ]
Fluid
Solid
. .
S &
[ ] [ ]
Fluid N
Sofid
+
[ ]
Fluid
Solid.

before stream (t)

after stream

after bounce-back

/

before stream (t + At)

/

Figure 5: Illustration of the half-way bounce-back algorithm for the D2Q9 model

(adapted after [Sukop and Thorne, 2000]). Note that the collision step is replaced by

the bounce-back step at the solid nodes in the immediate vicinity of the fluid domain.

Information from these nodes is also discarded during post-processing, as the wall position

is taken as half-way between them and the adjacent fluid nodes.
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While these considerations are sufficient in 2D, problems arise in 3D, where there are 5

unknown DFs and the system of equations is again not closed, even including the Zou-He

assumption. Additional constraints have been proposed [Chen and Martinez, 1996], but

these are rather “symptomatic* fixes. A very accurate, recent approach to this problem is

due to [Latt and Chopard, 2008 (also known as regularized BC). The authors first apply

the bounce-back of off-equilibrium parts for all of the unknown DFSs, then evaluate the
local stress tensor (see Eq. ([[7)), and ultimately use this to compute new values for all
of the DFs, according to the rule:

w; .
FI0 = F29P ) + 5 Qi T, i€ (0,6 - 1], 21

S
where " stands for the contraction of two tensor and the tensor Q; is defined as:

Qi = é;é; — CiI (22)

The expression for the corrections are derived by the authors through a rigorous multiscale

expansion and also found to be quite accurate in actual numerical simulations.

4Which produces a scalar from any two tensors of same dimensions (say T' and U), according to the

3 3
rule T : U = Z Z TijUji.

i=1j=1
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2.4 Numeric implementation
2.4.1 Outline of the algorithm

The basic algorithm is listed below:

Initialize Macroscopic Quantities (p, i)

Compute Equilibrium DFs ( f{?) based on initial Macroscopic Fields

Initialize DFs with Equilibrium DFs
for tStep = 1 to tMax do
Boundaries
Compute Macroscopic Quantities (p, i)
Compute Equilibrium DFs (f;?)
Local Collision Step
Streaming Step

end for

2.4.2 General principles of the implementation

When it comes to the actual implementation, there are many ways of translating the
theoretical algorithm into computer instructions. We present here some of the general
ideas particular to our own implementation.

First of all, the computational domain consists of a regular, 3D Cartesian grid. This
implies that any system to be simulated should be inscribed within such a domain. De-
pending on the number of divisions along each side of the 3D rectangle, the spatial
resolution can be adjusted. At the current stage of the implementation, isotropic space

spacing is used, that means

Ax = Ay = Az. (23)

In principle, at each point of the rectangular computational domain, we hold an integer
value representing the type of the cell (which can be fluid, fluid boundary —hereafter
fluidB — or solid/air) and several (19 in the D3Q19-model) floating-point values for the

22



discrete DFs. However, since the DFs are only useful for the fluid and the fluidB node,
it would be a waste of computer memory to store them all at each lattice point. We
circumvent this problem by implementing a dynamic memory allocation scheme for the
DFs at each lattice node, which allows us to not allocate memory where it is unnecessary
(specifically for solid /air cells which play no role in the simulation). The fluidB cells play
a similar role to the “ghost layer” described in other implementations [Succi, 2001].

Figure 6: Sample irregular domain (2D for clarity). Fluid is hashed, boundary layer is
black and solid regions (for which no memory is allocated to store the discretized DFs)

are gray.

Once this datastructure has been set for the particular geometry to be simulated (in

the init subroutine), the actual LBM algorithm is applied to the lattice.

2.5 Refinements of the model

As described up to now, the model can already simulate some simple flows. However,
for more complex simulations, additional improvements are required. Those which have
been already implemented are described below. Others, which await to be added, are

discussed in the concluding chapter of the present thesis.

2.5.1 Increasing the accuracy of our numerical implementation

Experimentation with the model showed slight non-conservation of the total mass of the

system over large integration times. Further investigations revealed that the problem

5The air is not directly simulated, but its effect of forcing the ocean surface are included through a

tangential velocity-type boundary condition.
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consisted of an incorrect calculation of the equilibrium DFs. While this is more of a
numerical effect than a theoretical observation, we will develop this further as we consider
it to be important nonetheless, due to the major improvement observed in the subsequent
model runs.

Essentially, the problem was a roundoff error encountered due to the addition of 2
numbers of very different orders of magnitude. In Eq. (), the second and third terms
inside the brackets are much smaller than 1 (by definition, the model requires them to
be ~ Ma < 1). This implies that they have a very different mantissa in the floating-
point representation. Hence, upon addition, the computer truncates the result, effectively

diminishing the influence of the smaller term.

The remedy [Skordos, 1993| consists of reformulating the model such that only the

fluctuations are manipulated. Therefore, one can define:
hi = fi — wipo , (24)

where pg is a reference density; the equivalent LBM equation reads

hi(E, 1) — he(, t
hi(® + EAL) = hi(@ + Gty — @D = hIE D] (25)
T

where the macroscopic variables are recovered from the modified DFs through

> h;é;

p=po+ ) hi; u= 26
° Z po+ > h; (26)
and with the modified equilibrium DFs
e;-u  9(e-u)? 3u?
h?q = w; — w; 3 - — ——| - 27
i (P — po) + po{ 2 Ty 5o (27)

Since this is mainly an algorithmic modification, we did not formulate the theory in terms
of the new variables. However, the interested reader should be aware of the fact that this
small artifice can have far-reaching implications in the actual numerical implementation,
where many of the steps (specifically: macroscopic variable computation, collision and
also the boundary conditions) have to be devised by taking this issue into consideration.

Switching from a 32-bit to a 64-bit computer system did not eliminate the problem. For

more details on this topic, see for example [Dahlquist and Bjorck, 2008].
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2.5.2 Proper treatment of the forces

An important aspect when long-term integrations are desired is a proper introduction of

body forces into the model. The simplest approach [Sukop and Thorne, 2006| is to add

another term in the expression of the macroscopic velocity @ which is then used during

the evaluation of the equilibrium DFs, as follows

T =a+ — (28)

\‘
b"’ﬂl

where F is the applied body force.
While simple, this approach is known to be unstable from the work of Wolf-Gladrow

[Wolt-Gladrow, 2000]. Moreover, Guo et. al. [Guo and Zhao, 2002| proved this approach

to be correct only in the limiting case, when the force has very low spatial and temporal
variations (practically - when the body-force is constant): if this is not true, the Navier-
Stokes equation with a body force is not recovered, but another (unphysical) equation is

solved instead.

According to [Guo and Zhao, 2002], the correct force treatment involves:

1. Modifying the LBM evolution equation (@) into:

CH@ D) — @ )]

fi(€ + e;At, t + At) = fi;(Z, 1) + At .| (29)
N -— J/ N T | v

Streaming Collision Forcing

where &; are direction-specific forcing terms, computed from the actual force ﬁ,

defined as

c? ct

£i=<1—i)wi{€i_ﬁ+(€i.ﬁ)'€i}'ﬁ- (30)

B—1
1 At
U= — i€+ —F 31
(s 5 @)
and leaving the density evaluation formula unchanged.

A delicate topic in this context is related to the proper introduction of the Coriolis

force: due to the fact that this force is velocity dependent, the values of the velocity at

16This force should be scaled accordingly to the lattice dimensions.
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the next timestep are needed to evaluate the forces at the current timestep, essentially

rendering the method implicit in theory. [Woltf-Gladrow, 2000] proposed a method to

bypass this limitation using a predictor-corrector step, obtaining promising results.

2.6 Validation cases and preliminary results

Novel CFD methods are only taken seriously if they are able to reproduce some standard
benchmark flow problems. These are cases when the solutions have been extensively
investigated, either analytically or numerically, using more traditional methods. These
test problems are, of course, not fixed, as they are chosen to stress the kind of simulations
that the new model is supposed to address. We have chosen a problem from classical CFD
(Poiseuille flow) to quantify the accuracy of the plain LB algorithm and we also illustrate
some turbulent flow simulations which can only be performed once the Smagorinsky

turbulence model is enabled.

2.6.1 3D Poiseuille low

Figure 7: Geometry for 3D Poiseuille problem. For the rectangular computational do-
main, the periodic BCs are highlighted in red; no-slip BCs were imposed for the rest of

the faces.
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Description of the case. The geometry of the problem is shown schematically in
Fig. ([@. Along the X-direction, periodic boundary conditions were applied, while for
all the remaining faces of the computational domain no-slip boundary conditions were
used. This geometry is commonly referred to as the 3D Poiseuille flow, in analogy to the
classical 2D, steady-state flow between two infinite planes. The number of grid points
along the X direction was fixed to xMax=10. Due to the periodic boundaries, this
number should not influence the flow.

Initially, the entire fluid volume is at rest. A constant and homogeneous body force
along the X-direction is then applied, and the Lattice Boltzmann algorithm is applied
repeatedly until a steady-state is reached. The non-dimensional kinematic viscosity of the
flow was fixed at v = 0.14, the non-dimensional magnitude of the body force was F, =
|ﬁ| = 0.1, and the non-dimensional cross-section was 1 X 1. Based on these numbers,
the analytical solution for the velocity at the center of the channel was evaluated.

For each numerical experiment, we have taken d; = 62 for reasons of numerical
accuracy (this choice guarantees both the stability of the simulation and the recovery of
the incompressible Navier-Stokes equations — see [Latt, 2008]). Based on a given grid
resolution in the Y and Z directions (these were the same), we computed the scaled force

term using
F,

yMax3

As the timestep scales with 2, for any two experiments we also adjusted the number of

.fLBM = (32)

iterations to simulate the same non-dimensional time using

yMa:L'2)2

33
yMax, (33)

Nit2 = Ny (

From the steady-state solution, the maximum value on the line with y=yMax/2,

z—zMax /2 is taken and re-scaled to non-dimensional units using

u | =yMazx X u (34)

numeric, non-dimensiona numeric,lattice units *

The result was compared with the analytic solution.
Then, the number of grid points along the Y and Z-direction were changed (keeping

yMax = zMax), and the procedure was repeated.
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Analytic solutions. [Krueger et al., 2009] presented the following series solution for

the problem:

Ty 8H?2 2% 1 cosh(nw(y — W/2)/H) . [nrnz
ua(y; 2) = p5) #(H = =) = w3 nd cosh(nmW/2H) ( H )
(35)

where H=zMax-2, W=yMax-2, 4, = Eg—jj is the velocity at the center of the channel
with F = (Fy,0,0)=body force acting on the fluid. The expression for this term
stems from the fact that, at steady-state, the pressure gradient is canceled by the viscous

shearing at the center of the channel:

9 A
op =F, = —21/2 .
ox by

5 H? 8H2?2? 1  sin(nn/2)
4 w3 <~ n?cosh(nmW/2H)

is a geometry-dependent normalization factor.
In practice, the series has to be truncated. We have chosen to stop the summation

when terms of the sum become smaller than 1078,

Comparison of semi-analytic and numeric results

xMax | yMax | zMax | @ipeoretical [X1072] | @pumeric [X1072] | relative error in @ [%)]
10 20 20 5.2622 5.2493 0.245
10 30 30 5.2622 5.2562 0.114
10 40 40 5.2622 5.2586 0.068
10 50 50 5.2622 5.2598 0.046
10 60 60 5.2622 5.2603 0.036

The relative error € scales approximately ~ 82, as it can be observed in Fig. [].

We also present the simulated steady-state mid-x-section velocity profile in Fig. [T
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Log-log plot of relative error vs. resolution
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Figure 8: Plot of the relative error for midpoint velocity € vs. square of resolution §2.

The linear trend was determined using standard least-squares regression.

Simulated u_ profile for 3D Poiseuille channel flow
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Figure 9: Surface plot of the U, profile for the 3D Poiseuille flow problem at steady-state.

The color map is also presenting the magnitude of the U, velocity, for better observation.
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2.6.2 Turbulent 3D lid-driven cavity flow

In the second example, the turbulent flow in a closed cavity was simulated. This was
not possible without the introduction of the Smagorinsky turbulence model that was
previously described. The geometry of the case is described in Fig. [I0; all of the walls
of the cubic fluid domain were set to no-slip (half-way bounce-back), except the top wall,
on which a constant tangential velocity along the X-direction was given (sliding lid),
according to the BC described in [Latt and Chopard, 2008]. For visualisation purposes,
a number of tracers were passively advected by the flow, using a simple, 1%*-order Eulerian
scheme. Since the advection scheme for the tracers needs information on the fluid velocity
at off-lattice sites also, we used the trilinear interpolation algorithm to obtain a piece-wise

continuous approximation for each velocity component from the LB solver.
Utop

‘ T

.

Figure 10: Geometry for 3D lid-driven cavity. No-slip BCs used for all walls, except the
top one, which is a velocity BC. In blue, the section along which the passive tracers were

advected is shown.

In Fig. [, we present 4 snapshot of the passive tracer field for the problem. The

ordered from left to right and from up to down, based on the time

30



.lopc'.wnw \o »
AP
t AW

4
g ;umwwf?.a. RS .:a......‘ Wi,

LRC HIA A BTN R £ S PN

Tyt .0.. ..0 w.s

& Fov o s .m Q -, % r&.

o e

..lo.tl 7
PR N K

ST TR PR 6o
s s&»:nm.-;vomf Tes s ~ s ?.:.I.

R P e APEY o
3 » % . *gy 0st e 2,9 u.oo‘«ﬁ

g ided I FRL IR SAEL SRR IRTIRE B TV
5o u S SRS B AN L Vgl
b R e RN S I D AR FES AL N AT R A
&c&&n..ﬁ. B3 S R R R A e P ALY K
Lty gt Teete, 244 Rt i S Y AR AP
ho? ‘&s» % ’sdt.\w N et -, A A . .t%ymmv?.
Pt ..M».Vclﬁw IR 2t s.v\\.% g
AR S G T AR PR A P L

M * b SN S o3 R A 2
- ¥ LEN &t 8 O R PO
2O SEPO L KR R AR
AR ...gl & That M “iaol ot 2
Tlen SRS W, o 38 Tl kol L
RAN BRI NI IR Y R I Y
A ad 2252y b N Son '3 §34 oo
ER 3‘.?...':..:3. "o w: 3o, % o B
a3 STt s ..~..v. PR Y s..m.&..fo.ro o S8
34 PR ARY g S 7 o T Vi 20
e S8 L XN AR RN o e
' £ . . >, .o ? .
R I A
e 04" o - Q‘
KA E L 1o e, S RN R i £ IR DXL
(-R-R-0-B-N-0-N-N-B-N-B-0-B-R-R-B-B-R-N-R-B-N-R-B-N-B-R-R-B-R-B-N-B-N-B-J-]

W&.&(&..ma.wpr..?... S

.
PR P PSS
= i
*
¢
"
-
..
v
.
-
0
.

- &:.‘-a,c

. *

it

@ a b 0T
ARl

&
e

&
o

<

e
¢

Figure 11: Snapshots at ¢ = 0 (upper-left), t = 750 (upper-right), ¢ = 1500 (lower-left)
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3 Reynolds-averaged Lattice Boltzmann Method

3.1 Turbulence modelling for the Navier-Stokes equations

The dynamics of most fluids encountered in nature is described by the Navier-Stokes
equations. As already discussed, due to the nonlinear nature of these equations, the
only viable method of obtaining their solution for non-trivial geometries is to recurse to
numerical methods. The continuous PDEs are then solved on a discretized spatial mesh
(for example finite differences, finite volumes or finite elements) and at discrete time

points. Even this approach is not devoid of difficulties, as very often the dynamics is

highly turbulent. It has been shown |Canuto, 1994] that the computational effort scales

as a polynomial in the Reynolds number, because the turbulent scales become smaller
as the degree of turbulence increases. This result comes from Kolmogorov’s theory of
turbulence (see for example [Frisch, 1995]). It is important in the present context to
remind the reader the main picture emerging from this theory. Kolmogorov taught us
that the energy is first introduced through a series of large eddies. These, in turn, transfer
energy with almost negligible dissipation to smaller eddies. The process is repeated for
smaller-and-smaller eddies, but as the characteristic length-scale decreases the Reynolds
number Re = UL /v increases and the viscous effects gain importance and eventually
dominate the flow at very small scale.

One can classify the wide variety of numerical methods for solving the NSE by the
approach they use to deal with the description of turbulence. These classes of methods

are (roughly) listed in Table [1], and briefly described below:

e Direct Numerical Simulation (DNS): is conceptually the simplest approach in that
it tries to resolve all of the turbulent motions in the fluid. While this method
is a useful tool in the exploration of turbulence and can also be used to study
small-scale flows, it is unfortunately very costly, and even on today’s most powerful

supercomputers it can only reach a very low Reynolds number.

e Large Eddy Simulation (LES): only attempts to resolve the large (energy-containing)

eddies, and includes the effects of smaller eddies only indirectly, through a set of

8These are also called Kolmogorov or dissipative length-scales

32



parameterizations which describe the rate of energy dissipation in the fluid. The

methodology is derived by applying a spatial filter on the governing fluid equations

[Hou et al., 1994]. This is a useful approach when some of the effects of the eddies

are of interest, but when the entire energy cascade is not the focus of the study or
is too costly. Hence, LES can be viewed as an intermediate approach - a trade-off
between flow details and computational resources. However, this approach is still
not popular in environmental fluid dynamics because LES lose their computational
efficiency in the case of stably stratified fluids, as is often the case in the ocean:
due to the stability of the fluid, the largest, energy-containing eddies are still rather
small. LES nonetheless will resolve them, leading to a spatial resolution that, even

on today’s fastest supercomputers, is not viable for global circulation models.

Reynolds-averaged Navier-Stokes (RANS): represents in a sense the opposite of
DNS, in that turbulent motion is not resolved at all, but only the evolution of the
averaged fields is studied. One has to be very careful in choosing the definition of the
averaging procedure. The exact formulation is in terms of ensemble averages, where
the macroscopic fields (velocity, density or pressure) obtained through a RANS
simulation represent the average at a certain time of many realizations of the flow
configuration, all subject to the same initial and boundary conditions, and subject
to the same body forces. The link with real fluid flows is provided by the ergodic
theorem, which states that the ensemble averages can be interpreted as time averages
if the timescales to be resolved are much larger than the timescales over which one
performs the averaging [Huang, 1987]. The entire turbulent behavior is not resolved
with this approach, as turbulence appears only through parameterizations. Thus,
RANS cannot teach us anything about the turbulence itself, as inevitably relies on
experiments, analytic studies or finer (and, consequently, smaller scale) numerical

studies which prescribe the actual parameterization that are used.
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Traditional CFD | Lattice Boltzmann Methods

DNS Yes Yes
LES Yes Yes
RANS Yes Not previously attempted

(our main contribution)

Table 1: Rough classification of the majority of computational fluid dynamics numerical

methods

We concentrated in the present study on applying the RANS method to oceano-
graphic flows. Despite it’s limitations, this approach is a reasonable one in our present
case because we are often interested in the evolution of the flows on timescales of weeks
to decades. Furthermore, there have been many studies quantifying aspects of the turbu-

lence, and several parameterizations are especially popular and used in forecast models

with reasonable prediction power [Palmer and Hagedorn, 2006|. The method was, to our

knowledge, not been previously coupled with the LBM method, which is usually inves-
tigated in the context of smaller Reynolds-numbers occurring in engineering problems.
The rest of the chapter is structured as follows: in B.2] we describe the basic concepts
of RANS. In B3] we apply this method to the LB equations, which will lead to a formu-
lation which can be coupled to the current turbulence models. In Bl we describe the

Chapman-Enskog expansion, which is commonly used in determining the macroscopic

equations reproduced by LB methods [Chen and Doolen, 1998]. Ideas from this proce-

dure will then be used in to prove that the Reynolds-averaged LB actually recovers

the corresponding Reynolds-averaged Navier-Stokes equations.

3.2 Reynolds-averaging procedur

The Reynolds-averaging procedure was developed at the beginning of the 20*"-century.
The main idea is to consider statistical properties of the flow at each point in the physical
space, including correlations and autocorrelations of various physical properties. In fact,
we only discuss a certain class of these models, usually denoted as one-point closures,
where correlations between the flow characteristics between different points are neglected.

9This subsection is inspired mostly by [Burchard, 2002].
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Two-point closures have also been proposed [Orszag, 1977, but they are not so widespread

due to the increased computational demands.

As previously mentioned, the RA procedure decomposes any prognostic variable

(&, t) into a mean-field ¥ = (1) and a fluctuating field v’, that is:
P =W+ (36)

Usually, such a decomposition is only well-defined if there exists a spectral gap between
the slow- and fast-timescales, which is often not the case for turbulent flows. The problem
can be solved, however, if a suitable averaging technique is chosen, such as the ensemble
averaging approach. In that case, assuming a large number n of realizations of the same
flow configuration with identical constraints, we can define the ensemble average at a
certain space-time coordinates (tg, o, Yo, Z0) as:

1.
(Lo, To, Yo, 20) = (¥ (Lo, To, Yo, 20)) = lim — Z ¥i(to, Tos Yos Z0) (37)

n—oo
n =1

This definition has been shown |[Mohammadi and Pironneau, 1994] to have the fol-

lowing 4 important properties:

1. Linearity:
(Y +Ag) = (¥) + A (9) (38)

2. Averages and derivatives commute:

3. Double averages:

() = (¥) (40)

4. Product averages:

(¥ () = (¥) (¢) (41)

By definition, we also have the properties:

(P) =¥ (42)
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and:
() =0 (43)
While this averaging procedure is strictly valid, it is not directly useful in real cli-
matology due to the obvious lack of parallel realizations of the flow dynamics. However,
if within the temporal and spatial intervals considered the turbulence of the flow can
be taken as approximately stationary and homogeneous, the ensemble averages can be
linked to time averages by virtue of the ergodic hypothesis, which predicts that over long

enough timescales a stationary chaotic process will visit all of its micro-states.

3.3 Reynolds-averaged Lattice Boltzmann Model (RALB)

The Reynolds-averaging procedure is now applied to the Lattice Boltzmann model. Ef-
fectively, we separate the dynamics of the distribution functions into a long-timescale
component and a short-timescale, highly-fluctuating component. The result of this anal-
ysis will be a new set of equations for the evolution of the long-timescale component,
which can be immediately related to the evolution of the mean fields we are interested
in. The Lattice Boltzmann Equation (LBE) reads (on a D-dimensional lattice with N

discretized velocity vectors):
Fi(@ + €&t + 1) = fi(Z, 1) + Qi(fo.n-1(Z, 1)) (44)
where the macroscopic variables are defined as:

pP = Zz fz
and €2; is the collision operator.

We introduce a decomposition of each f; into a mean field F; and a fluctuating part

hi with:

fi=F;+ h; (46)
(fi) = F; (47)
(hi) =0 (48)
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and all the additional properties of the ensemble averages [Eq. B)-(EI)|. As justified
above, in the subsequent discussion () represent time averages.

Additionally, we define mean macroscopic variables:

R= (o) = <z_ f¢> - - (49

7

RU = (pii) = <Z é;:fi> = Zé% (fi) = Zé:iFi (50)

Inserting the decomposition into the LBE:

Fi(£+é,t+1)+hi(¥+é,t+1) = Fi(Z,t)+hi(E, t) + Q2 (Fo.18(Z, t) +ho.18(Z, t))

(51)
Plugging-in the simplified BGK collision operator:
1 eq —
Q; = X [fi — £ 7(fo.18(Z, 1))] (52)
we obtain:
Fi(Z+ €t + 1) + hi(Z + €,t + 1) = Fy(Z, ) + hi(&,t) —
1
_X {Fz(iv t) + hi(fv t) - f:q(fo..ls(fa t))} (53)

Seeking an equation for the long-timescale evolution of the mean—ﬁeld@, we will take

the ensemble average of Eq. [E3):

— — 1 = €
Fy(Z,t) + (hu@5t)) — 3 {Fi + (hat&5 1)) — (£}
1
= Fi(@ + &t +1) = Fi(@1) -, {Fi— (f)} (54)
Notice that the corresponding RALB-equation for the mean fields is very similar to the

original LBE. The only missing link in the new formulation is (), which we calculate

in the next subsubsection.

20As a clarification, the mean fields can be thought of as running mens of the macroscopic variables

with averaging intervals over short timescales, but measured at discrete, long-timescale intervals.
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3.3.1

Calculation of (f?)

The usual expression of the equilibrium distribution function used in most LB models is

the 2™-order truncated Maxwellian distribution:

9 3
ff":pti{1+3(€i-ﬁ)+5(€i-ﬁ)2—562} (55)

where t; are some properly-chosen weights, which are in fact the stationary fluid equilib-

rium distribution functiond.

Taking the ensemble average of Eq. [Bo]:

) 9, 3
(f59) = (pt;) + 3 (pti(é; - @) + = (pti(€; - @)*) — = (pt;u*) (56)
NG LA R ) 2 )
El E2 —~~ ~
Es Ey

Let us now evaluate the sub-expressions:

E2 =

E, = (pt;) = t; (p) = Ri; (57)

3 (pti(€; - u)) = 3t; (p(eixu + €iyv + e w))

3ti(eix (Pu) + eiy (pv) + €iz (pw))

3t; [eiw (R+ ) (U + ) + ey (R+ p')(V + ') + e (R+ p) (W + w))]
3t;lei((RU) + (Ru') + (p'U) + (p'u’)) +

eiy((RV) + (Rv') + (p'V)) + (p'v')) +

eiz((RW) + (Rw') + (p'W) + (p'w’))]

3ti[eix(RU + R’y + Ulp"y + (p'u’) +

eiy(RV + R + V(p) + (pv') +

eiz(RW + R(w’) + W (p"} + (p'w’)]

3t:R(€; - U) + 3ti(ein (p'0') + €iy (pV') + iz (p'w))

Since the method is only applicable in the incompressible limit, we neglect the < p u;>—

terms, finally obtaining:

E, = 3t;R(¢; - U) (58)

2'From this point of view, the remaining terms in Eq. B3 can be viewed as perturbations around

the stationary limit. The low order of the truncation also justifies why the simple LB method is only

applicable to low Mach number-flows.
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9 9t; L. 9t;
E; = > <pti(e_;- . 'EL’)2> = ?Z <p(ei - U 2> ~ §R<(eimu + eiyv + eiz'w)2>
9 2 2 2 2 2 2
= ERti [<eiwu + €5,V + e;,w” + 2e;ze;,uv + 2€e;uw + Zeiye,-z'v'wﬂ
9
= §Rti [efm <u2> + efy <'v2> + efz <'w2> + 2€e;p€iy (UV) + 2€iz€;. (Uw) + 2e;,€;, (v'w)}
Plugging-in the decompositions for the velocity components, we further obtain:

Es = gRti [efm (U? + 20 + u”) + €2, (V2 + 2V’ + %) +
e;, (W? + 2Wuw' 4+ w”) +
2e;zei, (UV + UV + Vu' 4+ u'v') +
2e;zei, (UW + Uw’' + Wu' + v'w’) +
2e;y€i (VW + V' + W' + v'w')

S~—~— N
\%

9 ) /
= TR (el | (UF) v2U + () |+ e, | (V) ravie + (07 |+

U

2. | (W) r2w fwry + (w?) | +
——

w2

2€;5€4y ((UV> +U ) + V(') + (u"u')) +
——

uv

2eizeis (<UW> +U (] + W ('Y + <u’w'>) +

uw

2€;y€;, ((VW) +V (W' + W + (v"w’))]

vw

thus:
E. — gRt - [‘]’ 2 2 ] 2 ”2 2 ”2
3 = ik (ei . ) + | € <u > + ey <'U > + e, <'w > +

2€;z€iy (U'V') + 2€;€,, (UW'w') + 2e;€;, (V'W') } } (59)
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= —SHR{(U ) + (V +0)%) + (W +w)?)}

3
= ——;R(U?) +2U e’y + (u?) + (V?) 2V ) + (v'?) +
2 —— ——

U2 V2

——
\%%

(W?) +2W 'y + ()

By = — R {07 + (u?) + (07) + (w?)} (60)

Summing Eq. [24,[E8)],E9| and [B0], we obtain the final expression for the Reynolds-

averaged equilibrium distribution function:

.9 . .., 3.
(£i7) = Rt {1 +3(-U) + (& -U)" - EUz} + T (61)

where:
3 / / !
no= Cwi [(36533 — 1) (u?) + (3e2, — 1) (v + (3¢2 — 1) (w) +
6e;zeiy (u'V') + 6e;ze;, (W'w') 4 6e;ye;, (v'w’) } (62)

is an additional term containing the 2™?-order correlations due to turbulence. We notice
that, in analogy to the Reynolds-averaging of the Navier-Stokes equation, the resulting
equation for the time evolution of the mean field is very similar to the original equations,
except that a few additional terms which are products of velocity cross-correlations are
emerging. In order to obtain a solvable system of equations, additional closure relations
are needed for the <u’au,’6>—terms. Although these closures remain an active field of
research, several formulations are in widespread use in the field of numerical oceanography
and yield reasonable results (to be discussed in 77).

Another interesting observation is that the effect of turbulence on the mean fields

behaves like a special type of forcing. Since the second-moments are proportional to
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the stresses within the fluid, which is dependent on the local velocity gradients at each
lattice point, these force-like terms are also time-dependent. This force-like behavior of
the Reynolds stresses also suggests a reasonable interpretation of our result: as will be
discussed later, most of the turbulence closures consider the components of the Reynolds
stress tensor to be proportional to velocity gradients; it is only natural to consider the
effects of the unresolved dissipative scales as quasi-forces which tend to smoothen these

gradients.

3.4 Chapman-Enskog procedure

In the next subsection, we will derive the macroscopic equations corresponding to our
Reynolds-averaged Lattice Boltzmann equation. On that course, it is useful to outline first
the basic steps of the Chapman-Enskog (CE) expansion, which provides the fundamental
link between kinetic theory and hydrodynamics. We will illustrate the procedure for the
classical, single relaxation time LLB scheme with BGK collision operator.

The main idea of the CE expansion is to separate the fluid motion into several
timescales, to mimick the real fluids, where some processes (for example convection)
are much faster than others (such as diffusion). Thus, a formal series is introduced for
time:

o

o + €2 o + h.o.t (63)
—_— = €—— _— .0.T.
ot~ ‘ot, ' ¢ oty

Note: we will neglect in our subsequent analysis higher order terms (h.o.t.), with
e, n > 2.

For the spatial gradients, a single scale is used because all processes occur on roughly
the same spatial extent:

V = €V, + h.o.t. (64)

Also, the probability distribution function is written as a formal series:
fi = fi(o) + efi(l) + e2fi(2) + h.o.t. (65)

The equations should be thought of as formal expansions, in the sense that the power

of € are just labels representing the magnitude of the terms they are multiplied with
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(higher power of € denotes smaller terms). This allows us to discard the formal expansion
parameter at a future step by simply setting it to 1 in one of the equations.

Plugging Eq. [E3]-[63 into the LB equation 4] with the BGK collision term (Eq.
E2]), we obtain:

1
fi(@+Eut+1) = fi(@t) — — ((—:fi(l) + 2P 4 h.o.t.) (66)
T

We also apply a Taylor expansion in space and time to the LHS:

o

2
o T V) £i(&,t)+h.o.t.

(67)

o
fi(@+e;, t+1) = fi(&, t)‘*‘afi(f’ t)+e€i-V fi(Z, t)+% (

Plugging Eq. [B7| into Eq. [66|, we obtain:

o | . 10 | L oovle_ 1.0, 2.0
\E +€i -V + E(a +€i . V) :|sz = —; (Efz + € f'l, + h.O.t.) (68)

=L

The operator £ can be expanded as:

13) 17]6°? 13)
L= gra V[ v+ @ Ve V)

ot 2 | 912 ot
=L = a—l—"V—l—l""-VV—l—"V—l—l i (69)
o © g G € 2 Ot2

where EB" = A,Bg represents the dyadic product and T:8S = ZagAaBBaB
afB ’
represents the tensor contraction operator.

Plugging the expanded operator and also the series for f;:

9 9
<e— + 62—) (FO+erP+ef®) +ea- Vi (£ +ef +E5P) +

ot ot, g ’
~ B
1 ) o
39 VY (17 + eV 4+ E47) + ey (e + 0 ) (7 + e+ 17) +
Pl D
1/ 0 2 9\’ /0 1) | 202 L/ ), 2.2
3 (oo, ) (104t ) == (e )

~
E
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Expanding the sub-expressions and neglecting the terms beyond 2™¢-order:

af® afr afr®
A — (3 2 (2 2 1
“ot. T o, 7€ o4,

B = eé -V +éeé - vV

1
Cc = §e2e:e:- : vl

(0)
D - Vl f
ot
E L2 + € 0 +2 o (f(0)+ f(1)+ 2f(2)) 1 82f(0)
= = € € —€?
2 8t2 8t2 8t18t2 2 8t%
0
=~0 ~
Re-inserting the sub-expressions, we obtain:
ar” 08" 88" © )
e—— e — e€e—— +e€€;-Vif, e2e, - Vi
ot, + ot, + ot +eéi-Vif, ' + 1o+
1 3f,(0) 1 82f(0) 1 1
—e266;: VYO 4 26 Vi p et = _Zef) — Z&p?
2 fim Yoty 3¢ at? LT

To a consistent order, we can transform this relation into two equalities, one for each

order of €. The 15%-order terms (underlined in the equation above) yield:

af”
at,

1
+ & Vifi” = ——fY (70)

and the corresponding 2™%-order equation:

or o |

i o loe (0)
€;€;: VVf;
ot, | ot Vifit g Tt
afKO) 192f” 1
5 Vi o = T ] 71
GV T2 at? i ()

Also, from Eq. [0

1 ar® 1829
<5e:e::VVf§°’+e7-V1 L L

at, 2 ot
1/ 0 2
© _
(3'51 e ) J:
1 /0
(= te.v,) W 72
2T <8t1 + € 1) f’b ( )



Inserting Eq. [2] into Eq. [, we obtain:

o+ (17 37) (g v 4 = )

Finally, the equations governing the evolution of macroscopic fields can be derived by
taking the 1%% and second moments of the distribution functions w.r.t. the discretized

velocity space.

3.4.1 Derivation of the continuity equation

For the continuity equation, we first take the first moment of Eq. [Z0:

> @) = Z%fﬁo) +3 6 v f® = —%fo”
. i 1 . -
i i 2 1’:0

= 8‘2 Zf“”Jrze vifi? =0

H/—/
=p

Since the discretized velocity vectors €; are not depending on the spatial coordinates,

the second term in the LHS is equivalent to:

v, (ze:-f;“)) - Y (ar)
2
—_———
=pu
eimfi(O)
ez’yfi(O)
ez’zfi(O)

of” 85"  af”
(eima—wl + ez’ya—yl + eiza—zl
€;

g 0 8)

With the last result, we obtain:

op
—— 4+ V ) =0 74
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Taking the 15 moment of Eq. [3:

Y@ = Zafi(o)+<1_i)z<i+g,.v) M _ Zf(z)
- at, 2r )~ \ot, =

7

=0
Op 1\ o (1) < ) )
= 2 (1 =)= ( 1— — = .V =0
8t2+( 27) Btlgf’ + 2 D& Vaf;
— ~—
= =V ) é&f
which leads to:
o
P _9 (75)
Ot,

Adding Eq. [ and [[3 and setting the formal expansion parameter € = 1, we

obtain:

9p
— 4+ V. (pi) =0 76
2t T (i) (76)

which is nothing else than the continuity equation.

3.4.2 Derivation of the momentum equation

For the momentum equation, we now take the second moments of Eq. [Z0]:

ar
S am = ;éaf—;JrZi:é(é-Vlffo)):—%Z@ffl)

=0
= £(0) T(0) __
= — e;J: V,-11 =0
—
=pu
dpu .
= 22U v, . 11O = 0, (77)
oty
with
15 =Y eineipf,” (78)
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Also, taking the second moment of Eq. [Z3:

ar 1 ar
@ = Y et +(1- )Y e
—_— —_———
=51 =0
1
1 e—;(e—;v (1)>: - 6_;(2)
(-3 pa(a v -t par
NS ~ >
=V, -I1(1) =0
dpu 1 -
= 1—— | V,-II® =0 79
ot, +< 27-) ! ’ (79)
where
H(oil,(-?j = Z eiaeigfi(l) . (80)

As for the continuity equation, adding Eq. [ and [[[3] and setting the expansion

parameter to € = 1, we obtain:

dpi - 1) -
% +V- [H(O) + (1 — ;) H(l)] =0 (81)

It is interesting to observe that up to this point it was not necessary to know the
specific functional form of the equilibrium distribution. Based only on the fact that its
first two moments equal the ones of the instantaneous distribution functions set (which
is the same as saying that LB collisions conserve mass and momentum), we obtained
the correct form of the continuity equation. The situation is a little more complicated
for the momentum equation. As it can be observed, Eq. [BI] is still not identical to
the Navier-Stokes formulation. In order to establish this missing agreement, we will
need indeed to use the specific expression of fi? to calculate the equilibrium (T1(®)
and 1°t-order perturbation (IT™) of the momentum flux tensor. These calculations are
rather lengthy and are thus relegated to the Appendix. However, it will be useful in
the later parts of our discussion to note that a key part in the calculations is played by

several important symmetries of the usual@ LB lattice vectors €; and weights t; in the

22The D3Q19-lattice, which is the one we used throughout the present study, also possesses these

properties.
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equilibrium distribution functions [Latt, 2007]:

o= 1 (52
Ztieia =0 (83)

Z tiein€ip = c§5a,3 (84)

Z tt:eiaei’@eiﬁy = 0 (85)

D tieineigeineis = ci(8apdys + Sayas + Oasdy) (86)
Z t:eiaeigeheigeie =0 (87)

i
Using these properties and the expression for fi(eq), it is a matter of algebra to evaluate

the stress tensor (see Appendix for a complete derivation) as:

ny) = §5aﬁ+0u«xuﬁ (88)
o Odu,

g = -5 (o2 4 o) (59)
3 aazal aibm

Inserting Eq. (B9) and (89) into Eq. &I), we obtai for the a-component of fluid

velocity:
I(pug o
(P ) Z_( o —I—p’ua’u,a)
5 o
T 1 15 ou ou
(1= = il )l =0 90
3 < 27') Z oz, {p (Bwa * 8:1/;7)] (90)
v
In the incompressible limit, the equation becomes:
U, 10 3 1 1
L—I—(’JV)’U,OL: ——M—I—— <1——) Vzua,
ot pPo Oz, 3 2T

Z3The divergence operator reduces by one the dimensionality of the quantity it is applied to, hence in

our case it will transform the tensors to vectors
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which is precisely the Navier—Stoke equation for incompressible flows

Oug, 1 9p
— - V)ug = ——— Viug |, 91

where we identified: |p

Il
wIiD
S
Il

[ =
7 N\
—

[
|~
N————
©
N

3.5 Linking RALB and RANS

In this subsection, we will use the Chapman-Enskog (CE) analysis to derive the macro-
scopic equations for our RALB model. In fact, a full repetition of the CE analysis is not
necessary, as it will become clear shortly.

First of all, let us remark that the properties [82] to [ are also valid for our new
model, since the structure of the lattice and the weights remain the same as in traditional
LB theory.

We need to check whether the additional terms T'; (introduced by the Reynolds-
averaging procedure) have any contribution to the mass and momentum of the fluid. For

this, we will calculate the 1%* and 2™ moments of T';:
r—3R t;(3e2 — 1) (u”? t;(3e2 — 1) (v t;(3e2 — 1) (w"
DoTi = oD tiBel, — 1) (u?) + 3 ti(3e], — 1) (v7) + 3 ti(3el, — 1) (w) +
6 Z tieizeiy (u'v')y + 6 Z tieize;, (u'w') + 6 Z tiei e, (v'w’) }

- ? {3 () Z tiemein — (u’) Z t; +3 (v"%) Z tieiyeiy — (V'7) Z t; +
;,_/ : t 7

=c2 =1 =c2 =1
3 <'w'2> Z tieizeiz — <'w'2> Z tz —|—

— 2
=c3g

6 <u'v'>w+ 6 <u'w'>w+ 6 <v'w'>w}

= 2 ) (362 — 1) + () (362 — 1) + () (362 — 1)}

24The equation of state p = p(p) and the expression for the kinematic viscosity v are given above in

the specific case of the D3Q19-lattice. However, the expressions can be generalized to other lattices,

leading to Eqs (@) and (IH).
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But, for the D3Q19-lattice, ¢ = 1/3 = 3¢?> — 1 = 0, hence:
Sr—o
i

The x-component of the second moment reads:

<Z e_;'Fz'> = Z ei.l';

(93)

3R
= 7{ Z tiem(3efgc —1) <'u,’2> + Z tieiw(?;efy —1) <v’2> +

Z tiei(3el, — 1) <w'2> +6 Z tieizeizeiy (u'v') +
i i

6 Z ti€iz€izei, (U'w') + 6 Z tieizeiye;. (v'w’) }

= ? 3 (u'?) Z tiizeizeiz — (u'?) Z tieiz +
T 3
R — %
3 <’U’2> Z tieiweiyeiy — <’Ul2> Z tieiw —+
- _ N

=0 —0
3 <w'2> Z tieimeizeiz — <w'2> Z tieim —|—

~~ N——
=0 =0

6 (u'v’) Z tieiz€izeiy + + 6 (u'w’) Z ti€iz€izeiz +

(. J (.

~\~ ~\~

6 (v'w’) Z tieig€iyeiz p =0
i

(. 4
~~

=0

Due to symmetry conditions, similar relations hold for the other components of the

second moment of I';, hence:

(94)

To conclude, we have shown that the additional terms due to the turbulent stresses in

the RALB-model have no contribution to the mass and momentum during the collision.

It will be shown that they do influence the evolution equations, in the sense that they

introduce an additional mechanism for momentum dissipation.
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Since the emergence of the continuity equation from the Chapman-Enskog analysis
is independent on the actual functional form of the equilibrium distribution function, it
is obvious that the RALB will exhibit the same macroscopic continuity equation. The
only change where deviations from the standard model occur are in the momentum flux

tensor or, in other words, in its sub-components 1 op and HSB)

3.5.1 Correction for HS:B)

The correction for the equilibrium momentum flux tensor is:
ot SR
AT = Z eineigli = B (95)
where:
E = Z tieiaei5(3efw — 1) <u'2> + Z tieiaew(3efy — 1) <’U’2> +
i i
Z tieiaeig(3efz b 1) <'w'2> —|— 6 Z tieiaeigeimeiy <’LLI’UI> —|—
6 Z tieineigeizeir (u'w’) + 6 Z tiein€igeiyei, (v'w’)

= 3 <U'2> Z 1i€;0€iB€izCix — <U'2> Z tiein€ig +

A ’L >
v
H—/
E:c:v :Cgéaﬁ
2 2 : 2 § :
3 <’U > tieiaeigeiyeiy — <’U > tieiaeiﬁ —|—
TV
N————
Eyy =c2dap
72 72
3 (w'?) E tiein€ig€izeiz — (w'?) E tiein€ig +
i . i
TV
N————
Ezz :c§6a3
1,1 z : ’,.7 z : r,.7 § :
6 <’U, v > tieiaei,@eiweiy -|—6 <’U, w > tieiaeweimeiz -|—6 <’U w > tieiaeweiyeiz
- ' > - ‘ g A ‘ >
Vv Vv Vv
Emy E:vz Eyz

We can then proceed in evaluating the sub-expressions (making heavy use of Eq. [Bf]):

Ea:m = Z tieiaeiﬁeimeim — C: 6aﬁ 5:1::1: +25a:1:6,3m

[3 =1
hence:

Eww - Ci(éaﬁ + 25aw6,6:v)
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and similarly:

Ey, = c:(‘saﬁ + 200y95y)

Ezz - Ci(éaﬁ + 25az5,8z)
For the off-diagonal terms:

Emy = Z tieiaeiﬁeimeiy — Ci (6a,8 6my +5aw6,6y + 5ay6,6:v)

=0
thus:

Eqyy = ¢,(3020py + daydpz)
and similarily:

E:z:z — C:(éaméﬁz + 6o¢z6Bm)

Ey. = ¢,(0aydp: + 0azdpy)

Plugging-in all of the sub-expressions, we obtain:

. 3R |
A = 2L ) | 56 (up + 200sb0) — 00| +

1/3

(V%) | 3¢2 (0ap + 20aybpy) — C20ap| +
/3
1

<'w’2> i(j;/((sa,@ -|— 26az65z) — Ci(sa,@ -|-

1/3

6 (u'v’) c‘; (00z08y + 0aydsz) +
—~—

1/9

6 (u'w') C: (5am5ﬁz + 60@63113) +
~~

1/9

6 (v'w’) ¢ (Jaydp: + azdpy)
—~—

1/9
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R
= Ant()?ﬁ) = 2{7 : ; {<u/2> 6(1:1:5B:1: + <vl2> 6o¢y5By + <wl2> 6o¢z6,3z} +
3R §

7 . g{ (u'V") (00208Y + 0aydpe) +

<ulw/> (50“1,5,62 + 6o¢z6,8:13) +
(vV'w') (8aydBz + 6az6’@y)}

Therefore:
ALY = R{ (u?) awpe + (V) Sayday + (W) 80205, +
(u'v’) (babpy + Saydpa) + (u'W') (8awdpx + 0azdpa) +
(v'w’) (dawdp: + 5az5ﬁy)}
The components of this tensor can be easily evaluated, leading to:
(ul2> <ul,vl> <ulwl>
AH(O) = (Z eiaeigI‘i> =R <’u,"vl> <’v'2> <’Ul’w,> (96)
1 (u/wl> <,U/w/> <wl2>
3.5.2 Correction for HSB)

The correction in the 1%t-order momentum flux tensor reads:

= ia€j F-(l) — ia€j F-(l)
LB zi:e €ip L Zi:e eig I';

It is not straightforward how to compute this term exactly. This is due to the fact

W) _ @ (1)
Allgy =g — TG

(97)

RALB LB

that, while it is easy to separate the non-equilibrium contribution from the equilibrium
one, it is not easy to distinguish between the corrections forming the non-equilibrium

part. As in the case of the standard CE analysis (see [l), we use the approximationt:
FV ~ Fret = F, — 9 (98)

Since the only change in II® with our model is the additional term in the equilibrium

distribution function, we have:

1 0
ALL) ~ = eiqeipl; = —AIILL) (99)

25This approximation is often encountered in the literature, see for example [Krueger et al., 2009]
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Plugging Eq. [@0] and @ into [BI], we notice that the momentum equation at the

macroscale gains an additional term:

_ 1\ - _ 1 _ 1 -
A {V . {H(O) + (1 — —) H(U” =V. [AH@ + (1 — —) AH(I)] = 2—V-AH(°)
T

2T 2T
(100)
Hence, the new macroscopic momentum equation for our RALB model is:
ORU,, ORU,, ovU, oU,
A [ (3)
Oxg aaza Oxg Ox, Ozg
(W?) () (')
V| W) (@) () (101)

<ulwl> <vlw/> <wl2>

which is the same expression as the RANS formulation if we absorb the denominator

27 in the last term into redefined turbulent second-order moments.
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4 Conclusions and Outlook

The current work can be divided roughly into two sections. In the first part, a three-
dimensional implementation of the Lattice Boltzmann algorithm was developed, including
many of the improvements proposed in the literature in the recent years with respect to
boundary conditions, inclusion of forcing terms, subgrid-scale modelling and algorithm
optimizations. The algorithm was tested and found to be in good quantitative agreement
with analytic solutions for the three-dimensional variant of the Poiseuille flow problem.
Also, the ability of the Smagorinsky turbulence model to stabilize the flow was illustrated
qualitatively through turbulent simulations of the classical lid-driven 3D cavity problem.

However, the implementation is still not easily applicable to oceanic flows, mostly
due to the fact that LBM was studied mostly for the case of fluids with no preferential
stratification, which is hardly the case in oceanography. This revealed the need for a
systematic method for incorporating common oceanography-specific turbulence closure
models into the framework of LBM. This problem was therefore the second major topic
of the work. A successful procedure was developed, based on the Reynolds-averaging
of the discretized Boltzmann equation. In this new model, the second-order turbulent
moments appear through an additional term in the expression of the equilibrium distribu-
tion functions. Also included was the proof (using the Chapman-Enskog procedure) that
the new model (RALBM) recovers the Navier-Stokes equations with arbitrary turbulence
parametrizations in the appropriate limits. The derivation of the macroscopic equations
for RALBM also illustrated the need to scale the second-order turbulent fluxes before
incorporating them in LBM.

A natural extension of our work would be to use the new RALBM model in conjunc-
tion with various turbulence parametrizations. From the many options available in the

literature, one can choose the simple downgradient parametrizations or the ones due to

[Mellor and Yamada, 1982]. These would allow the simulation of the three-dimensional

western boundary current intensification, which was only possible in the two-dimensional
case using standard LBM due to the lack of the anisotropic eddy diffusivities.
Another aspect that remains to be investigated would be the enhancement of the

model to include scalar fields in the Boussinesq approximation. LBM models for the
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advection-diffusion equation exist [Wolf-Gladrow, 2000], and the same Reynolds-averaging

procedure should be in principle applicable to incorporate parametrizations for the heat
and salinity fluxes also.

As it was already mentioned, the classical bounce-back scheme has limited accuracy,
especially when applied to curved boundaries. One of the causes for this is the fact that
the physical (in general - curved) bounding domain is essentially approximated by a set
of cubes during the initial phase of geometry definition. This unphysical “ruggedness”
of the boundary increases the drag at the boundary and, according to Newton’s law of
reciprocal action, also affects the flow of the fluid. Therefore, a proper treatment of the
actual domain geometry is recommended. The problem with this is that most often the

location of the solid boundary does not coincide with a lattice grid point. This difficulty

is usually addressed with interpolation schemes (see for example [Guo and Zheng, 2002)).

In its original form, the LBM works on uniform cartesian grids, with equal spacing
in each of the spatial directions. However, an efficient solver should include the ability
to choose a different spatial resolution in some directions, and also to specify whole
regions with refined grids. The first requirement is quite relevant in ocean simulations,
where the fluid domain has a vertical scale much smaller than the horizontal scale: if the
vertical transport is to be modeled with any degree of accuracy, the grid resolution is to
be chosen in the order of ~ 100m, which requires a prohibitive computational cost if

isotropic cartesian grids are used. A promising approach to address this kind of problem

was published in [Shu et al., 2001]], who used Taylor expansions to construct interpolation

schemes for non-uniform grids. The authors only discussed 2D cases, therefore our task
would be to extend the treatment to three dimensions. Although the interpolations
themselves increase the computational cost per lattice point, the efficiency of the solver
would be significantly increased due to the possibility of employing larger spatial scales

in the vertical directions.
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6 Appendix: Evaluation of stress tensor in CE expan-
sion

In the present section, we offer a detailed derivation of the equilibrium and 1%%-order
perturbation of the momentum flux tensor. Certainly, these calculations can bear no claim
for originality. However, we believe that such an exposition is useful (especially for the
newcomers to the field), as it is often only cursorily discussed in the literature. In addition,
the derivation is also relevant to our Reynolds-averaged LB model, as it indicates how
the changes to the LB evolution equation influence the resulting macroscopic equations.

6.1 Calculation of equilibrium stress tensor Haog

0) __ 0
H(a,(‘?} = Z eiaeiﬁfi( ) =

P{ > €iaeipti |+
| ——
= Aa,@

3 [’u, Z €ia€igCizl; + v Z €in€igeiyt; + w Z eiaeiﬁeizti] +

B.s

9

2 2 2
> [’u, E €i0€i3€CixCigl; + v E €in€ig€iyeiyt; + w E €ia€i3€izCiti+

2uv Z €in€igCiztiyt; + 2uw Z €in€ig€izCist; + 2vw Z eiaei,ﬂeiyeizti] +

~ >

Cus

o7



Next, evaluate the sub-expressions:

dap
A,g = e;ntigt; = ¢ 5a
3 Z 3 8=
B.,s = 0 (3”d—0rder moments cancel by definition on the lattice)

Caﬁ - = u2(6aﬁ + 26am5ﬁm) + v2(6aﬁ + 25ay5ﬁy) + wz(éaﬁ + 25az5ﬁz)} +

5 |
uv((saa:(sﬁy + 6o¢y6,3m) + uw((sam(sﬁz + 5az5ﬁm) + /Uw((say(sﬁz + 5az5ﬁy)

1
D.g = —E(u2 + v? + w?)dup

Plugging these into Eq. (), we obtain:

ng = —5a,3 + pusug (103)

6.2 Calculation of 1%*-order perturbation of the stress tensor H( )
For evaluating this term, we need an estimate for fi(l). Using Eq. () into Eq. (B):

8 (0)

(0)
Hl(llﬁ) = -7 {Z €iatip Bt + Z €ia€ig Z e'ry f }

aT1(®
(0)
= — g €ia€ip€izJ;
T{ 8t1 +8:1;1 P P f +

J

:vFl

Z elaezﬁezyf(()) + Z elaezﬁezzf(O) } (104)

J/ J/

III<

2 =F3

The 3"%-order moments of can be easily computed using the expression for fi(o). We
only show in detail the calculation of Fj, and only state the end results for the other two

moments.
_ 0
F, = Z eiaeiﬂeimfi( )
%

9 3
= Z €ia€ifCix {1 + 3(é; - 4) + 5(6_;' - )% — 5’172} pt;
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Further expansions yield:

F, = p Z €;a€igCixl; +3P{U

(2
.

J

~~
=0

(3

E €ia€i3€izCizl; +

J

1/9(8us + 2002050)

v E €ia€igCiziyt; +w E €in€ig€izeizt; +

K2

1/9(5am66y + 5ay5ﬁm)

Finally, we obtain

and after more (similar) algebra

(3

1/9 (6am6ﬁ:+ 5az5ﬁm)

.
J/

p
3

p
3

p
3

3u w
v 0
w u
v u 0
u 3v w
0 w v

w 0 wu

0 w v

u v 3w

-~

374 and 5** moments, which cancel due to symmetries

Plugging these expressions back into Eq. ([04)), we obtain:

5 1 00 u? uv
ow— ) 2 |P 1
T{ ot [3 0 O |+tp]| uv v
0 01 uw vw
=0 (8t1p = 0)
where by M we have denoted
3 ou + ov " ov + ou
8:131 ayl axl ayl
M — ov + ou ou 43 N
- 8501 ayl 3:131 8y1 8z1
ow ou ow ov
8501 8z1 ayl 821
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}

uw
p ~
vw ] + gM} ,
w?
ow ou
8:131 azl
ow " ov
0y, 0z,
ou n ov +38w
3:131 8y1 8z1

(105)

(106)

(107)

(108)

(109)

(110)



In the incompressible limit, V1 - 4 = 0, hence

8u5 aua
Mg =~ + (111)
8aza1 aazﬁl
We then have
0ap Op op du,ug p [ Oug Ou,
H(l) —_ _ & o o = (
6= 3 B, "o, TP o, 3\ 920t | O
~—~ ~— ———
~0 ~0 ~0 (low Ma)
hence
o Ou,
) ~ _E< s , oY ) (112)
3 8wa1 8:1351
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