Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities


Contact
Thomas.Brey [ at ] awi.de

Abstract

We compared primary production and respiration of temperate (Helgoland, North Sea) and subtidal Arctic (Kongsfjorden, Svalbard) microphytobenthic communities during summer. The diatom communities were generally characterized as cosmopolitan, displayed no site specificity, and had similar chl a and fucoxanthin concentrations. Their net and gross photosynthesis rates and light adaptation intensities, derived from laboratory microsensor measurements, were also similar, despite differences in water temperature. Daily oxygen fluxes across the sediment− water interface were estimated by combining laboratory microprofile and planar optode measurements with in situ data on oxygen penetration and light dynamics. During the study period, the Svalbard sediments were on average net heterotrophic,while the Helgoland sediments were net autotrophic (−22.4 vs. 9.2 mmol O2 m−2 d−1). This was due to high infaunal abundance in the Svalbard sediments that caused high oxygen uptake rates in the sediments and consumption below the sediment euphotic zone. Additionally, bioirrigation of the sediment due to infaunal burrow ventilation was reduced by light; thus, the sedimentary oxygen inventory was reduced with increasing light. Conversely, light-enhanced the oxygen inventory in the Helgoland sediments. Oxygen dynamics in the Svalbard sediments were therefore dominated by bioirrigation, whereas in the Helgoland sediments they were dominated by photosynthetic oxygen production.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
35887
DOI 10.3354/meps10672

Cite as
Sevilgen, D. S. , de Beer, D. , Al-Handal, A. , Brey, T. and Polerecky, L. (2014): Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities , Marine Ecology Progress Series, 504 , pp. 27-42 . doi: 10.3354/meps10672


Download
[img]
Preview
PDF
Sevilgen14_MEPS504.pdf

Download (1MB) | Preview
Cite this document as:

Share


Citation

Research Platforms

Campaigns


Actions
Edit Item Edit Item