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ABSTRACT

Parameterization of mesoscale eddies is an important problem of modern ocean dynamics and modeling.

The most widely used scheme is the so-called Gent–McWilliams parameterization, which describes the eddy-

induced transport of tracers, including temperature, density, and isopycnal thickness (TH). An alternative

scheme, proposed by Green andWelander, deals with parameterizing eddy fluxes of potential vorticity (PV).

Many recent studies propose using it, for it includes the effect of eddy Reynolds stresses that may influence

mean flows. These two schemes are compared in the simplest configuration of two-layer quasigeostrophic

channel flow, which enables analytical solutions for zonal-mean fields. It is shown how the parameterizations

shape the zonally averaged zonal velocity profiles, with special attention paid to the role of the Reynolds

stresses and momentum conservation. The zonally averaged zonal velocity profiles are sensitive to the am-

plitude and profiles of TH and PV diffusivities. For small enough diffusivities the TH parameterization may

lead to solutions resembling those for the PV parameterization if it uses the diffusivity of the latter; that is, it

may mimic the impact of the Reynolds stresses on the mean flow.

1. Introduction

There is a local maximum of kinetic energy on ocean

mesoscales (Kamenkovich et al. 1986), which demands

from numerical models either to resolve mesoscale

features or parameterize them.Although the progress in

computers makes global eddy-resolving simulations rather

common, they still remain expensive for long enough in-

tegrations. In addition to this practical aspect, studies of

eddy parameterization contribute to better understanding

of ocean dynamics, remaining thereby in the focus of the

modern physical oceanography.

Parameterization of eddy fluxes involves both the

momentum fluxes (Reynolds stresses) and tracers fluxes

(temperature, salinity, density, and other tracers). An

important approach in the latter case is the popular

scheme by Gent andMcWilliams (1990) for eddy-induced

thickness (TH) fluxes. This parameterization leads to

substantial improvement in a number of oceanic features

simulated with coarse models, especially in the Southern

Ocean, where it ensures a deep ocean density distribution

that is closer to the observed values, a sharper thermocline,

eddy-induced cancellation of the Deacon cell, and a better

representation of the penetration depth of chemical tracers

originating in the atmosphere (see, e.g., Danabasoglu et al.

1994;Hirst andMcDougall 1996). This scheme allows one

to introduce the so-called bolus velocity and reformulate

the basic equations with its assistance (see, e.g., Griffies

2004). The most popular eddy flux parameterization is

that of downgradient transport (diffusive parameteriza-

tion), when the eddy flux of a scalar variable is taken to

be proportional to the negative of the gradient of the

mean field. However, such a scheme can only be applied

to conserved quantities. Momentum is a nonconserved

quantity because of the presence of the pressure gradient;

parameterizing such quantities presents a challenge. A

satisfactory momentum parameterization is absent at

present. In most cases, eddy fluxes of momentum are

modeled as eddy viscosity (harmonic or biharmonic) that

is not uncontroversial, as momentum fluxes can be coun-

tergradient and ‘‘sharpen’’ jet flows instead of diffusing

them. The popularity of harmonic and biharmonic vis-

cosities lies rather in their contribution to numerical sta-

bility than their realism (Harrison 1978; Killworth 1997).

Zonal jets are a common feature of geophysical flows

(see, e.g., Rhines 1975; Danilov andGurarie 2002). They

are encountered in many places across theWorld Ocean.
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In the midlatitudes the multiple jets have rms zonal ve-

locities estimated as about 6.9 cms21 and a meridional

wavelength of about 300km (Maximenko et al. 2005).

Mesoscale eddies play the major role in creating and

supporting such jets through the convergence of lateral

eddy momentum fluxes (Dritschel and McIntyre 2008;

Eden 2010).

Importantly, the parameterization of potential vor-

ticity (PV) fluxes incorporates the Reynolds stresses,

since they are included in the eddy PV fluxes together

with fluxes of density [or, with high accuracy, TH]. Note

also that there is a better physical base for diffusive

parameterization of PV, which is a conserved variable.

This explains a growing interest in parameterizations

of eddy PV fluxes (Treguier et al. 1997; Wardle and

Marshall 2000; Eden and Greatbatch 2008; Eden 2010;

Marshall and Adcroft 2010; Ringler and Gent 2011).

The main aim of this study is comparing/contrasting

the PV and TH parameterizations in their effect on ve-

locities, energy, and other variables and analyzing their

dependence on respective diffusivities. The difference

between solutions with TH and PV flux parameteriza-

tions comes mainly from the effect of Reynolds stresses

(which are not considered, i.e., virtually neglected in the

TH scheme) and constraints stemming from the mo-

mentum conservation [the parameterized PV fluxes must

be compatible with the momentum balance, as stated by

the Bretherton theorem (Bretherton 1966), and ensure

a positive kinetic energy source in the eddy kinetic energy

balance]. Ideally, such a comparison should be done for

general 3D primitive equation dynamics, which still

presents a challenge. The first step can be made by using

strongly simplified quasigeostrophic dynamics in simple

channel geometry, which can be treated analytically.

For the quasigeostrophic channel model, the integral

constraints have been repeatedly discussed for both mo-

mentum (Bretherton 1966; McWilliams et al. 1978;

Marshall 1981; Ivchenko 1987; Ivchenko et al. 2008, 2013,

2014) and energy (Ivchenko et al. 2013, 2014). Wood and

McIntyre (2010) proved a theorem linking PVmixing and

the negative change in angular momentum.

It is hoped that the analysis of analytical solutions

here can provide some hints toward understandingmore

complex dynamics. A caveat of this study is that it can-

not be directly applied to channels with varying topog-

raphy. It is well known that zonal transport in a flat

bottom channel can be an order of magnitude higher

than in channels with variable topography. The selection

of the coefficients for the parameterized eddy fluxes

must be done carefully to avoid unphysical and artifi-

cially high zonal transport.

However, the use of the simplest possible geometry

of flat bottom channel already allows for analytical

solutions and better understanding of the eddy flow

dynamics.

This paper is organized as follows.We first write down

the basic equations for quasigeostrophic dynamics and

introduce the TH and PV parameterizations (sections 2–

4). In section 5, the difference between solutions is

studied for both constant and meridionally varying dif-

fusivities. Section 6 discusses solutions for velocities and

parameterizations for coefficients based on the time-

and zonal-mean equation for eddy quasigeostrophic

enstrophy. Section 7 analyzes the Reynolds stresses di-

agnosed by comparing solutions for PV and TH pa-

rameterizations, and section 8 offers discussion and

conclusions.

2. Basic quasigeostrophic equation for the zonal
channel

Equations

We use the quasigeostrophic equations for the two-

layer model (Holland 1978; McWilliams et al. 1978;

Wolff et al. 1991):

›=2C1

›t
5 J( f 1=2C1,C1)2

f0
H1

w3/21 1/H1 curlzt1F1 ,

(1)

›=2C2

›t
5 J( f 1=2C2,C2)1

f0
H2

w3/22 � curlzv21F2,

and (2)

›h3/2
›t

5 J(h3/2,C3/2)1w3/2 , (3)

where Ci is the quasigeostrophic streamfunction,

subscripts label the layers of constant mean thick-

nesses Hi, and w3/2 is the vertical velocity of the in-

terface. The term Fi is the lateral friction that is further

omitted in the analytical solution; the Jacobian oper-

ator is

J(A,B)52
›A

›y

›B

›x
1

›A

›x

›B

›y
;

� is the linear bottom drag; and t 5 (tx, ty) is the wind

stress with the components tx 5 t0 sin(py/L) and ty 5 0,

where t0 is the amplitude of wind stress, and L is the

width of the channel. The components of fluid velocity

vi5 (ui, yi) are expressed asui 52›Ci/›y and yi 5 ›Ci/›x,

and f and f0 denote the Coriolis parameter and its ref-

erence value, respectively. The interfacial displace-

ment h3/2 is linked to streamfunction as
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h3/25
f0
g0
(C22C1) , (4)

where g0 5 g(r2 2 r1)/r0 is the reduced gravity, g is the

acceleration due to gravity, ri and r0 are the density of

layer i and the reference density, respectively, andC3/2 is

the streamfunction of the interface:

C3/25
H1C21H2C1

H11H2

. (5)

Combining (1)–(3) results in two equations for quasi-

geostrophic potential vorticity (QPV) q1 and q2:

›q1
›t

1 J(C1, q1)5 1/H1 curlzt1F1, and (6)

›q2
›t

1 J(C2, q2)52� curlzv21F2 . (7)

The layerwise quasigeostrophic potential vorticities qi
are given by

q15=2C11 f 2
f 20

g0H1

(C12C2), and (8)

q25=2C21 f 1
f 20

g0H2

(C12C2) . (9)

3. Parameterization of eddy thickness fluxes
(TH parameterization)

Zonal and time averaging of (1)–(3) leads to the fol-

lowing three equations:

›=2C1

›t
5 05 J( f 1=2C1,C1)2

f0
H1

w3/22 1/H1

›tx
›y

,

(10)

›=2C2

›t
5 05 J( f 1=2C2,C2)1

f0
H2

w3/21 �
›u2
›y

, and

(11)

›h3/2
›t

5 05 J(h3/2,C3/2)1w3/2 . (12)

The overbar here denotes the time and zonal average.

The Jacobian operator in (10)–(11) represents ad-

vection of the absolute vorticity (the sum of planetary

and relative vorticities) by the mean flow and eddies; it

can be rewritten as

J( f 1=2Ci,Ci)52
›f

›y
yi 2 ui

›=2Ci

›x
2 yi

›=2Ci

›y
,

i5 1, 2. (13)

The mean meridional velocity drops to zero because of

zonal averaging:

yi 5
›Ci

›x
5 0. (14)

The advection of the relative vorticity can be pre-

sented as

2ui
›=2Ci

›x
2 yi

›=2Ci

›y
52ui

›=2Ci

›x
2 yi

›=2Ci

›y

2 u0i
›=2C0

i

›x
2 y0i

›=2C0
i

›y
, (15)

where the prime implies the eddy component, that is, the

deviation from the time and zonal mean. However,

›=2Ci

›x
5 0, (16)

and the rhs of (15) becomes

2u0i
›=2C0

i

›x
2 y0i

›=2C0
i

›y
5=2C0

i

�
›u0i
›x

1
›y0i
›y

�
2
›y0i=

2C0
i

›y
.

(17)

The first term on the rhs of (17) is zero, since the hori-

zontal divergence of horizontal velocity is zero in the

quasigeostrophic approach. The last term on the rhs of

(17) can be transformed as

2
›y0i=

2C0
i

›y
52

›

›y

0
@y0i›y0i›x

2 y0i
›u0i
›y

1
A52

›

›y

0
@1
2

›y02i
›x

2 y0i
›u0i
›y

1
A

5
›2y0iu

0
i

›y2
2

›

›y
u0i
›y0i
›y

,

(18)

by virtue of

›y02i
›x

5 0. (19)

The last term in (18) is zero because

2
›

›y
u0i
›y0i
›y

5
›

›y
u0i
›u0i
›x

5
1

2

›

›y

0
@›u02i

›x

1
A5 0. (20)
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As a result, (10)–(11) can be rewritten as

2
›2y01u

0
1

›y2
1

f0
H1

w3/21 1/H1

›tx
›y

5 0, (21)

›2y02u
0
2

›y2
1

f0
H2

w3/2 1 �
›u2

TH

›y
5 0. (22)

Beginning from these equations we use superscripts

TH and PV to label solutions for zonally averaged

zonal velocity ui obtained with respective parameteri-

zations. No superscript is used in expressions that are

independent of the parameterization choice. By applying

diffusive parameterization to the meridional thickness

flux in (12),

J(h3/2,C3/2)52
›y03/2h

0
3/2

›y
5

›

›y

0
@KH

›h3/2
›y

1
A , (23)

we rewrite (12) as

›

›y

0
@KH

›h3/2
›y

1
A52w3/2 , (24)

where KH is the coefficient of eddy thickness diffusivity

(CT).

Using (21), (22), and (24), after standard manipulations,

one can derive the energy balance equations for the mean

and eddy mechanical (i.e., sum of kinetic and available

potential) energies. Both balances will contain the term

KH(›h3/2/›y)
2, but with the opposite signs. This term

represents the parameterized effect of baroclinic in-

stability, that is, themechanism transferring a part ofmean

available energy to eddies. This transfer should be positive

(frommean to eddies) to maintain the eddies, which is the

case under a trivial constraint that KH is positive.

The mean mechanical energy is generated by wind,

dissipated by the bottom friction, and transferred to the

eddy part of the mechanical energy.

Combining (21) and (22) and integrating the result in

the meridional direction, we get the expression for the

zonally averaged zonal velocity in the lower layer:

uTH2 5
1

�H2

tx2
H1

�H2

›y01u
0
1

›y
2

1

�

›y02u
0
2

›y
. (25)

The constant of integration is set to zero because the

mean zonal velocities are zero on boundaries owing to

the sinusoidal wind stress selected here (Marshall 1981;

Ivchenko et al. 1997).

A combination of (24) with (21) followed by in-

tegration in the meridional direction yields

2
›y01u

0
1

›y
1

1

H1

tx5
f0
H1

KH

›h3/2
›y

. (26)

Because

›h3/2
›y

5
f0
g0
(uTH1 2 uTH2 ), (27)

the vertical shear of the mean zonal velocity is

(uTH1 2 uTH2 )5
g0

f 20KH

tx2
H1g

0

f 20KH

›y01u
0
1

›y
. (28)

The last expression together with (25) gives the ex-

pression for the zonally averaged zonal velocity in the

upper layer:

u TH
1 5

 
1

�H2

1
g0

f 20KH

!
tx2

 
H1

�H2

1
H1g

0

f 20KH

!
›y01u

0
1

›y

2
1

�

›y02u
0
2

›y
. (29)

Solutions (25) and (29) depend on the divergence of

Reynolds stresses that can, as follows from eddy-resolving

numerical simulations, substantially reshape the zonally

averaged zonal velocity profiles (McWilliams et al. 1978;

Wolff et al. 1991; Olbers 2005). However, there are no

clear physical principles for parameterizing the Reynolds

stresses on their own. As mentioned above, lateral vis-

cous mixing used in numerical simulation rather smooths

grid-scale features than provides a parameterization. The

contribution of lateral viscosity can as a rule be neglected

as compared to the impact of the bottom drag (Ivchenko

et al. 1996; Stevens and Ivchenko 1997). We will

therefore disregard the Reynolds stresses in the first

part of this study. The diffusivity KH in expression (29)

can take any value. We will use both a constant value of

KH for comparing solutions with those found in the

framework of PV parameterization and prescribed me-

ridional profiles that resemble the behavior seen in eddy-

resolving experiments (see, e.g., Fig. 12 in McWilliams

and Chow 1981):

KH 5AHFTH(y) , (30)

where AH 5 const is the amplitude and FTH is the nor-

malized profile, 1/L
ÐL
0 FTH dy5 1 (see Fig. 1).

4. Parameterization of eddy potential vorticity fluxes

a. General expressions

Taking the zonal–time average of (6)–(9) results in
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›q1
›t

5 052
›

›y
y01q

0
1 2 1/H1

›

›y
tx 1F1 , (31)

›q2
›t

5 052
›

›y
y02q

0
2 1 �

›

›y
u21F2 , (32)

q152
›

›y
u11 f 2

f 20
g0H1

(C12C2), and (33)

q252
›

›y
u21 f 1

f 20
g0H2

(C1 2C2) . (34)

To proceed further analytically, we assume a diffusive

parameterization for eddy fluxes of QPV in each layer

(see Green 1970; Welander 1973):

y0iq
0
i 52Ki

›qi
›y

, i5 1, 2, (35)

where Ki $ 0 is the respective coefficient of QPV diffu-

sivity abbreviated further as CPV. These parameterizations,

when substituted into (31) and (32), lead to a closed

system that can be solved for any Ki. However, the so-

lutions should satisfy certain integral constraints, which

in turn restrict the admissible values for Ki.

In a flat bottom case, the meridional integral of the

depth-integrated meridional QPV flux is zero, which im-

plies momentum conservation and makes the statement

of the Bretherton theorem (Bretherton 1966; McWilliams

et al. 1978; Marshall 1981; Ivchenko et al. 1997):ðL
0
(H1y

0
1q

0
11H2y

0
2q

0
2) dy5 0. (36)

From (31), (32), and (36), it follows that the wind stress

forcing is balanced by the bottom drag:ðL
0
(tx2H2�u2) dy5 0. (37)

Note that the expression (37) does not rely on eddy

parameterizations and is an integral conservation law. It

could be derived from (25) by meridional integration to

eliminate the contribution from the Reynolds stresses.

Substitution of (35) in (36) leads to

ðL
0

 
K1H1

›q1
›y

1K2H2

›q2
›y

!
dy5 0. (38)

This expression relates to the so-called first instability

criterion of Pedlosky: ‘‘the potential vorticity gradient

must somewhere change its sign for instability to occur’’

(Pedlosky 1964, ; Ivchenko et al. 2014).

Expression for the total eddy mechanical energy

based on the parameterization of eddy PV fluxes pro-

vides insight into the exchange between the mean and

eddy parts of mechanical energy.

To derive it, we multiply the basic QPV equations

[(6) and (7)] by H1C
0
1 and H2C

0
2, respectively, and sum

them to obtain

›

›t
(Ked

1 1Ked
2 1Ped)1H1

›

›y

0
@C0

1

›u01
›t

1
A1H2

›

›y

0
@C0

2

›u02
›t

1
A1 (H1u1y

0
1q

0
11H2u2y

0
2q

0
2)

2

0
@H1

›y01C
0
1q1

›y
1H2

›y02C
0
2q2

›y
1H1

›y01C
0
1q

0
1

›y
1H2

›y02C
0
2q

0
2

›y

1
A52H1F

0
1C

0
12H2F

0
2C

0
2

2H2�[(u
0
2)

21 (y02)
2]2H2�

›C0
2u

0
2

›y
, (39)

where Ked
1 , Ked

2 , and Ped are the eddy kinetic energy in

the upper and lower layers and the eddy available po-

tential energy, respectively. If (39) is integrated over the

channel width, all the ‘‘divergent’’ (with the operator

›/›y) terms disappear, giving (Ivchenko et al. 1997,

2014)

FIG. 1. Normalized coefficients for PV and TH parameterization.

The meridional domain length is normalized to 1.
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›

›t

ðL
0
(Ked

1 1Ked
2 1Ped) dy5 052

ðL
0
(H1u1y

0
1q

0
11H2u2y

0
2q

0
2) dy

2

ðL
0
fH1F

0
1C

0
1 1H2F

0
2C

0
21H2�[(u

0
2)

21 (y02)
2]gdy . (40)

The first term on the right-hand side is the generation of

eddy mechanical energy by baroclinic and barotropic

instabilities. The right-hand side contains dissipative

terms due to lateral and bottom friction. For steady-

state solutions, positive eddy mechanical energy could

occur only if the generation term is negative:ðL
0
(H1u1y

0
1q

0
11H2u2y

0
2q

0
2) dy, 0. (41)

Using (35) the inequality expression (41) can be rewritten

in the form

ðL
0

 
K1H1u1

PV›q1
›y

1K2H2u2
PV›q2

›y

!
dy. 0. (42)

The integration of the time- and zonal-mean potential

vorticity equations (31) and (32) in the meridional di-

rection for a steady regime, disregarding horizontal fric-

tion, yields

y01q
0
1 52

1

H1

tx, and (43)

y02q
0
25 �uPV2 , (44)

where the constants of integration in (43)–(44) are set to

zero because the eddy fluxes, wind stress, and zonal-

mean velocity are enforced to zero on the solid bound-

aries in our solutions (Marshall 1981; Ivchenko et al.

2013). Substitution of (35) in (43)–(44) gives

K1

›q1
›y

5
1

H1

tx, and (45)

K2

›q2
›y

52�uPV2 . (46)

To solve (45)–(46), we need to know the coefficients K1

andK2. Their values can be found from some additional

closures based on equations for eddy kinetic energy

(Eden and Greatbatch 2008; Eden 2010) or enstrophy

(Ivchenko 1984, 1987) or can be prescribed. We will

prescribe constant values (to facilitate analytical solu-

tions) or meridional dependencies based on results of

fine-resolution numerical experiments.

Finding an analytical solution for velocities in the case

of meridionally varying CPV is straightforward if

the relative vorticity in the QPV can be disregarded

compared with the planetary vorticity or the ‘‘stretch-

ing’’ term. In that case from (45) and (46), we can write

(uPV1 2 uPV2 )5
g0

K1f
2
0

tx2
bg0H1

f 20
, and (47)

(uPV1 2 uPV2 )5
g0H2

f 20

�
b1

�

K2

uPV2

�
, (48)

which immediately gives for velocities

uPV1 5

 
Q

H2�
1

g0

K1f
2
0

!
tx2

K2bH

H2�
2

bg0H1

f 20
, and (49)

uPV2 5
Q

H2�
tx2

K2bH

H2�
. (50)

Here, Q 5 K2/K1.

These solutions will be further compared to the solu-

tions obtained for the TH parameterization, in which the

Reynolds stresses are neglected. To make the analytical

treatment in this case simpler, we resort to further sim-

plification, assuming the QPV diffusivities to be constant.

b. Constant values of CPV

If the CPV are constant, the solution derived by

Ivchenko et al. (1997, 2013) can be used. The derivation

relies on the asymptotic expansion in the small param-

eter g5LR/L, the ratio of the internal Rossby radiusLR

to the width of the channel. Our equations contain this

parameter in the terms with the highest derivatives

coming from the relative vorticity. To satisfy the

boundary condition of no eddy flux at lateral walls, we

set the coefficients K1 and K2 linearly to zero in thin

layers adjacent to the walls.

The solutions for themean zonal velocities outside the

two thin boundary layers near the walls are

uPV
1 5 uc

��
Red1
p

1
Red1
Dd2p

�
sin
�py
L

�
2 d12

1

Dd2

�
1O(g2),

(51)

uPV2 5 uc

��
Red1
Dd2p

�
sin
�py
L

�
2

1

Dd2

�
1O(g2) , (52)

where uc 5 g0bH/f 20 , di5Hi/H, Re5 usL/K1, us 5 (pt0)/

(H1bL), and D5 (�uc)/(bK2). The solutions for PV
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parameterization here are expressed in terms of dimen-

sionless parameters as in Ivchenko et al. (2013). They

can be easily rewritten in terms of dimensional parameters.

The next important step lies in applying the Bretherton

theorem [(38)]. From this theorem, it is straightforward

to demonstrate that Q5 (K2/K1). 1 (Marshall 1981;

Ivchenko et al. 1997) and that

Q5
2Red1

2Red1 2p2
. (53)

c. Variable CPV

Eddy-resolving numerical experiments demonstrate

that the CPV in a zonal flat bottom channel have

a double-peak distribution: the highest values of co-

efficients occur at the flanks of the flow and reach a local

minimum at the center of the channel where the external

forcing and jet velocity attain maximum (McWilliams

and Chow 1981; Wolff et al. 1991; Olbers 2005), which

indicates that zonal jets can acts as barriers for meridi-

onal turbulent exchange (Dritschel and McIntyre 2008;

Eden 2010). We model such distribution in both layers

(see Fig. 1), taking

Ki 5AiFPV(y), i5 1, 2, (54)

where APV 5 const are the amplitudes and FPV is the

normalized profile, 1/L
ÐL
0 FPV dy5 1. The meridional

coordinate in all figures is made dimensionless, y* 5
L21y.

Given the profile FPV and prescribing A2, the value of

A1 (i.e., K1) can easily be found from the Bretherton

theorem, which can be written as

A15
A2

ðL
0
tx dyðL

0
tx dy1A2bHL

. (55)

5. Comparison of solutions for TH parameterization
without the contribution of the Reynolds stresses
and solutions for PV parameterization

a. Constraints on the coefficients

1) TH PARAMETERIZATION

There is only a trivial constraint KH . 0 that ensures

dissipation (transfer to eddies) of the mean available

potential energy.

2) PV PARAMETERIZATION

The coefficients K1 and K2 must obey the Bretherton

theorem [(38)] and the energy inequality [(42)]. Other

constraints may also exist, as hinted by Marshall et al.

(2012). They are related to the eddy energy, which is not

explicitly modeled here. The Bretherton theorem for

the constant (outside the wall boundary layers) CPV can

be written in the form

D5 d1aBaURe2 0:5p2aBaU , (56)

where

aB5
LRuc
d1usL

, (57)

and

aU 5
�

bLR

. (58)

These parameters express the ratio of the stretching

term to wind stress in the meridional QPV gradient in

the upper layer (aB) and of the time scale of zonal

baroclinic Rossby wave to that of dissipation by bottom

friction (aU). It is easy to show that K2 . K1 [see (53)

and Fig. 2], which is the condition for baroclinic in-

stability (Marshall 1981). The parameters Re andD are

inversely proportional to K1 and K2, respectively, and

therefore (56) provides a link between CPV in upper

and lower layers. IfK1 (K2) is prescribed, then the value

of K2 (K1) must comply with (56).

One more constraint is based on the mechanical en-

ergy transfer term [(42)] (Ivchenko et al. 1997, 2014).

Since in the eddying regime a steady state may exist only

for a positivemechanical energy flux from themean flow

to eddies, the following restriction should be observed

(Ivchenko et al. 2014):

GPV 5 3d1d2ReD21 3d1ReD2 12d1d2D
22 12D

1 24d1aBaURe2 6p2aBaU 2 3d21aBaURe2. 0,

(59)

where GPV is the generation of the eddy mechanical

energy. This energy inequality (EI) does not allow using

the values ofK2 in excess of the critical value depending

on K1. In Fig. 2, K2 lies below the red line; K2 is greater

thanK1 so the points must lie above the black line on the

green line corresponding to the Bretherton theorem. In

physical terms it implies that for baroclinic instability to

develop the vertical shear of the zonally averaged zonal

velocity must be higher than the critical value (Marshall

1981; Ivchenko et al. 1997).
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b. Zonal velocity

1) TH PARAMETERIZATION

The zonally averaged zonal velocity [(25)] in the lower

layer is proportional to the wind stress and independent

of the coefficient KH (Fig. 3). The velocity in the upper-

layer [(29)] is also proportional to the wind stress [(29)],

but retains the dependence on KH (Fig. 3).

2) PV PARAMETERIZATION

In the case of uniform Ki (outside thin wall boundary

layers), the meridional profile of zonally averaged zonal

velocity in the lower layer comprises two terms. The first

one is similar to the expression for the zonally averaged

zonal velocity in the case of TH parameterization [pro-

portional to the wind stress and inversely proportional

to the � H2 (50)]. The major difference between the TH

and PV solutions is the presence ofQ5K2/K1 that must

obey the Bretherton theorem. So, the zonally averaged

zonal velocity profile is modified (as compared to the

TH case) in the meridional direction to agree with the

momentum conservation (see Fig. 3). The second term is

(QbK1)/(�d2), which complies with the momentum

conservation and depends on the planetary vorticity

gradient, bottom viscosity, geometry parameter d2, and

coefficient K1. It is negative and constant for the pre-

scribed constant coefficients K1 and K2. Importantly,ðL
0
uPV2 dy5

2Lt0
pH2�

. (60)

These expressions are equal for both parameteriza-

tions. It is not surprising because there should be the

same balance in the steady state for the same forcing.

The zonally averaged zonal velocity profile in the

upper layer is the sum of the lower-layer velocity and

two additional terms. The first one is proportional to the

wind stress and is equal to the corresponding term for

the thickness parameterization up to exchange of KH

and K1. The second term is d1g
0bH/f 20 .

The zonally averaged zonal velocity profiles in each of

the layers for PV and TH parameterizations are close to

each other for small values of CPV and CT if K1 5 KH

(Fig. 3). We call K1 ‘‘small’’ if

Re � p2/2d1 , (61)

(Re is inversely proportional to K1), which implies ac-

counting for (53):

Q’ 1. (62)

It is straightforward to demonstrate that the second

term in the expression for the upper-layer zonally av-

eraged zonal velocity for the PV parameterization

FIG. 2. The space of the allowable coefficients K1 and K2. The

admissible values of CPV must lie beneath the red line (EI) and

must lie on the green line (Bretherton theorem).

FIG. 3. Zonally averaged zonal velocities; the CPV and CT are

constant.
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[(49)] dominates over the other terms for small K1,

so that

uPV1 ’
g0

f 20K1

tx . (63)

The second term in the expression for the zonally av-

eraged zonal velocity in the upper layer for TH param-

eterization [(29)] dominates over the first term for small

KH, and therefore the zonally averaged zonal velocity

profiles there are close to each other for PV and TH

parameterization for small but equal diffusivities K1 5
KH (see Fig. 3a).

In the lower layer, the zonally averaged zonal velocity

in the PV parameterization case is determined by the

first term in (50) for small CPV because the second term

is proportional to K2. Since Q ’ 1, the velocities for the

lower layers for PV and TH parameterization are close

to each other for small but equal K1 5 KH (see Fig. 3a).

Increasing coefficient K1 (and correspondingly KH)

from 200 (in Fig. 3a) to 400 and 600m2 s21 increases the

difference between the velocity profiles (Figs. 3b,c).

Note that we cannot investigate the asymptotic limit of

large CPV and CT because K1 must be less than the

critical value set by momentum and energy conservation

(Fig. 2).

c. Production of eddy mechanical energy

1) TH PARAMETERIZATION

The transfer of total mean mechanical energy to

eddies is given by P52KH(›h3/2/›y)
2, corresponding

to baroclinic instability. It is negative (i.e., baroclinic

instability is maintained for any vertical shear of the

zonal-mean velocities). It can be computed in the case

considered to give

P52
t20g

0L
2f 20KH

, (64)

for KH 5 const. It is inversely proportional to KH and

strongly increases when KH decreases (Fig. 4).

2) PV PARAMETERIZATION

The production of eddy energy has already been dis-

cussed above.

d. Zonal transport

1) TH PARAMETERIZATION

The zonal transport T can be found by multiplying

velocities (25) and (29) with the corresponding layer

thicknesses Hi, summing them and integrating over the

channel width:

T5
2Ht0L

p�H2

1
2g0H1t0L

f 20KHp
. (65)

It strongly increases if KH is reduced because of the

term inversely proportional toKH (see Fig. 5). For large

KH it approaches the value

lim
K

H
/‘

T5
2Ht0L

p�H2

. (66)

2) PV PARAMETERIZATION

The zonal transport T can be found by multiplying

velocities (51) and (52) with the corresponding layer

thicknesses Hi, summing them and integrating over the

channel width:

T5LHuc

 
2d21Re

p2
1

2d1Re

d2p
2D

2 d212
1

d2D

!
. (67)

The behavior of zonal transports for PV and TH pa-

rameterization appears similar: the transports strongly

increase if Ki and KH are reduced, but show no changes

for large enough diffusivities. An interesting question is

how large should be the differences between the co-

efficients Ki and KH if we want to get the same zonal

transport. If we set K1 5 KH (and calculate K2 from the

Bretherton theorem), the transports in PV and TH pa-

rameterization will be close to each other (see Fig. 5a).

However, if we set K2 5 KH, very different values of

diffusivities will be required to warrant the same trans-

ports (Fig. 5b).

FIG. 4. Generation of meridionally and vertically integrated

mechanical eddy energy for (top) PV and TH parameterization

and for (bottom) PV parameterization with different scaling.
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e. Variable coefficients

The zonal velocities are strongly dependent on the

coefficients K1, K2 and KH. If diffusivities are small, the

velocities in the lower layer show almost identical si-

nusoidal behavior, but in the upper layer, the PV pa-

rameterization results in stronger flows (see Fig. 6a). As

A2 increases, the difference between u2 for the PV and TH

parameterization increases (Figs. 6b,c), since planetary

vorticity plays a defining role. The velocity amplitudes in

the upper layers decrease for both parameterizations with

increase in Ki and KH.

Transport calculated for the PV and TH parameteri-

zations is similar if we set K2 5 KH (Fig. 7), however,

with higher values for the PV parameterization. It is

strongly nonlinear for small values of coefficients.

6. Parameterization of eddy PV fluxes based on the
eddy enstrophy budget

As we have seen, the zonally averaged zonal velocity

profiles strongly depend on the meridional profiles of

the CPV. The CPV need to be parameterized either di-

rectly in terms of mean fields or linked with the dynamics

of other parameterized fields such as eddy kinetic energy

or enstrophy. Many studies prefer the eddy kinetic en-

ergy (Eden andGreatbatch 2008; Eden 2010). However,

in the case of jet flows, the eddy kinetic energy reaches

a maximum at the jet centers, while the CPV has a local

minimum there (McWilliams and Chow 1981). Recon-

ciling these behaviors requires special hypotheses on the

mixing length scale.

An alternative view can be based on the approach that

deals with the balance of the eddy quasigeostrophic

potential enstrophy (EQPE). To derive the equation on

the EQPE in the upper layer, we multiply (6) by the

eddy component of QPV and average the result zonally

and over time:

q01
›q1
›t

1 q01J(C1,q1)5
1

H1

q01curlzt1F 0
1q

0
1 . (68)

The first term on the lhs is the time derivative of the

upper-layer EQPE:

q01
›q1
›t

5
›

›t

�
1

2
q021

�
5 0. (69)

The first term on the rhs of (68) is zero if the wind stress

is steady. The nonlinear advection term can be re-

arranged as

q01J(C1,q1)5 q01y
0
1

 
›q1
›y

1
›q01
›y

!
1 q01(u11 u01)

›q01
›x

5 q01y
0
1

›q1
›y

1
1

2

›y01q
02
1

›y
2

1

2
q021

�
›y01
›y

1
›u01
›x

�
.

(70)

The last term on the rhs of (70) is zero because the hor-

izontal divergence of quasigeostrophic velocity is zero.

On substitution of (69) and (70) into (68), it becomes

›

›t

�
1

2
q021

�
5 052q01y

0
1

›q1
›y

2
1

2

›y01q
02
1

›y
1F 0

1q
0
1 . (71)

The second term on the rhs of (71) is the eddy re-

distribution of the EQPE; it disappears after integration

over the channel width. The last term represents the

dissipation mechanism. The first term on the rhs is the

EQPE generation. On substituting (35), it becomes

2q01y
0
1

›q1
›y

5K1

 
›qi
›y

!2

. (72)

The eddy enstrophy production term is proportional

to the CPV times the mean PV gradient squared, which

FIG. 5. Links between coefficients and zonal transport. (a) Re-

lation between K1 and transport, KH 5 K1. (b) Relation between

K2 and transport, KH 5 K2.
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is compatible with small values of the CPV at the jet

centers (McWilliams and Chow 1981). For that reason

we prefer assessing the CPV from the EQPE equation.

If the dissipation and eddy advection of eddy enstrophy

in the EQPE are known or parameterized, the CPV can

be found (Ivchenko 1984; Ivchenko et al. 1997):

K15

›

›y

�
1

2
y01q

02
1

�
2F 0

1q
0
1 

›q1
›y

!2
. (73)

Numerical experiments demonstrate that in strong

baroclinic regimes the sum of eddy redistribution of

EQPE and dissipation of EQPE in the numerator in (73)

has a strong correlation with the basic parameter of

baroclinic instability—the vertical shear of mean zonal

velocity (u1 2u2) (see Fig. 12 in Ivchenko et al. 1997).

Assuming that the numerator is proportional to the

modulus of u1 2 u2, we can write

K15
juPV1 2 uPV2 j

m1

 
›q1
›y

!2
, (74)

where m1 is some coefficient (m s2). We use the term

‘‘strong baroclinic regime’’ to designate the flows with

high values ofmeanmeridionalQPV gradients.Marshall

(1981) used the CPV proportional to the vertical shear

of the mean zonal velocities, which provides satisfactory

solution for the weak baroclinic regimes, that is, for

small meridional gradients of QPV:

K1; (juPV1 2 uPV2 j) . (75)

Such expressions provide the local maximum for the

CPV in the center of the jet. It would be interesting to

combine expressions for the CPV in both regimes, that

is, strong baroclinic [(74)] and weak baroclinic [(75)], in

the general expression. Adding a constant m2 (m
21) to

the denominator we get

K15
juPV1 2 uPV2 j

m1

 
›q1
›y

!2

1m2

. (76)

According to this expression, in the strongly baroclinic

regime, for instance around the jet center, the CPV is

inversely proportional to the mean meridional QPV

gradient squared, which ensures a local minimum in the

CPV. In the regions where the gradients of mean QPV

FIG. 6. Zonally averaged zonal velocity in upper and lower layers

for PV and TH parameterization: (a) A2 5 AH 5 500m2 s21,

(b) A2 5 AH 5 1000m2 s21, and (c) A2 5 AH 5 2000m2 s21.

FIG. 7. Zonal transport for PV parameterization and TH para-

meterization as function of K2 and KH.
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are small, the CPV is proportional to vertical shear of

zonally averaged zonal velocity. If we substitute expres-

sions for uPV1 and uPV2 [(49), (50)] and for the meridional-

mean QPV gradient into (76), we obtain the quadratic

equation on K1:

K2
1 1

g0bH1

m2f
2
0

K11

 
m1t

2
x

m2H
2
1

2
g0tx
f 20m2

!
5 0, (77)

with the solution

K152
g0bH1

2f 20m2

1 (2f 20H1m2)
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02b2H4

1 2 4f 40 t
2
xm1m21 4f 20 g

0txH
2
1m2

q
. (78)

The expression under the square root of (78) must be

positive. This condition restricts the coefficient m1:

m1 ,
g0b2H4

1

4m2f
4
0 t

2
x

1
g0H2

1

f 20 tx
. (79)

Since K1 is positive, the first term in (78) must be

smaller than the second term, which gives

m1,
g0H2

1

f 20 tx
. (80)

The rhs of (80) equals the second term on the rhs of (79).

Because the first term in (79) is positive, condition (80) is

stronger than (79). The rhs of (80) is inversely pro-

portional to the wind profile sin(py/L) and therefore m1

is most constrained at the channel center y 5 L/2. For

the standard set of parameters, this gives

m1, 23 1016 m s2 . (81)

The coefficient K1 is plotted in Fig. 8 as a function of

the meridional dimensionless coordinate for various

values of parameters m1 and m2. The respective curves

attain either local maxima (red line in Fig. 8) or local

minima (other lines) at the center of the channel. The

maxima correspond to weak baroclinic regimes with

smooth meridional profiles of the zonally mean zonal

velocity, and minima correspond to strong baroclinic

regimes with the intensification of zonally mean zonal

velocity with respect to the sinusoidal profile of wind

stress forcing (see Figs. 9a,b). The profiles of zonally

mean zonal velocity do not show strong sensitivity to the

coefficient m2, which could be called the ‘‘coefficient of

weak baroclinic regime’’ (see Fig. 9a). They are more

sensitive to the parameter m1 (we call it the ‘‘coefficient

of strong baroclinic regime’’) (Fig. 9b), which affects the

maximum values at the jet core. It is interesting and

important that the total transport in all cases remains

almost constant. For the three sets of parameters in the

upper and lower panels of Fig. 9, the transports vary

around 1700 Sverdrups (Sv; 1 Sv [ 106m3 s21) within

1.5%. The parameterized fluxes redistribute zonal

momentum, intensifying the jet, but do not strongly in-

fluence the zonal transport.

The zonal channel flows have equivalent-barotropic

structure, similar to that of the Antarctic Circumpolar

Current (ACC; Killworth 1992; Krupitsky et al. 1996),

which allows us to employ similar CPV profiles in both

layers with different amplitudes.

7. The Reynolds stresses and the TH
parameterization

The solutions for zonal velocities for the TH param-

eterizations contain the Reynolds stresses divergence,

that is, the last two terms in (29) and the last term in (25).

A question naturally arises: would it be possible to ap-

proximate with these solutions the PV solutions [(49)–

(50)] by taking a special distribution of KH? In other

words, is it possible by special choice ofKH to introduce

in the TH solutions the effect of the Reynolds stress

divergence? In section 5, we demonstrate that for con-

stant values of Ki and KH and for small K1 the solutions

for zonal velocities for TH parameterization are close to

PV solutions. Similar situations occur for variable co-

efficients, as well. If choosing KH 5 K1 from the PV

parameterization, (29) and (25) can be rewritten omitting

the Reynolds stresses and introducing K1 instead of KH:

uTH1 5

 
1

�H2

1
g0

f 20K1

!
tx, and (82)

uTH2 5
1

�H2

tx . (83)

If the second term in the denominator of (55) is much

smaller than the first one, that is,

A2 �

ðL
0
tx dy

bHL
, (84)

then it leads to Q ’ 1. For small K1, the second and the

third terms in (49) will be much smaller than
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K2bH

H2�
� g0

K1f
2
0

tx, and (85)

bg0H1

f 20
� g0

K1f
2
0

tx . (86)

Similarly,

K2bH

H2E
� Q

H2E
tx . (87)

This means that for small enough values of coefficients,

the solutions of TH and PV parameterizations will be

close to each other if we use values of coefficient K1

instead ofKH. Relatedly, using the THparameterization

with the diffusivity coefficient obtained from the PV

parameterization allows one to describe the effect of the

Reynolds stresses, which gives much sharper zonal ve-

locity profiles.

8. Summary and discussion

Any parameterization of eddy fluxes must be based on

correct physics. Physical arguments suggest that diffusive

parameterizations can be applied only to conserved

variables. Momentum is not a conserved variable be-

cause of the presence of the pressure gradient, and the

parameterization of the Reynolds stresses still presents

a great challenge. Commonly used harmonic/biharmonic

viscosity operators fail to provide an adequate param-

eterization of eddy fluxes of momentum. For example,

the eddy kinetic energy can in some cases be trans-

ferred to the mean kinetic energy in eddying flows,

which a harmonic operator can only do if the viscosity

was negative.

The interest to parameterizations of eddy fluxes of

potential vorticity stems from the fact that they in-

corporate the redistribution of both momentum and

thickness. Adopting them, one does not need to sepa-

rately parameterize the Reynolds stresses. Their disad-

vantage is that the mean PV is not a variable of the

primitive equation models. In spite of that, recent

studies propose the ways of using parameterized PV

fluxes in such models (Wardle and Marshall 2000; Eden

and Greatbatch 2008; Eden 2010; Marshall and Adcroft

2010; Ringler and Gent 2011; Marshall et al. 2012).

FIG. 8. Coefficient K1 for nonlinear analytical parameterization of

PV: (a) m1 5 1.8 3 1016m s2 and (b) m2 5 1024m21. FIG. 9. Zonally averaged zonal velocity for nonlinear analytical

parameterization of PV: (a) m1 5 1.8 3 1016m s2 and (b) m2 5
1024m21.
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Here, we compared the effects of PV and TH pa-

rameterizations on the mean flow driven by wind in

a zonally reentrant flat bottom channel. Although the

model used by us is a gross oversimplification of realistic

situation, it admits analytical treatment or simple anal-

ysis, allowing us to learn about the differences caused by

the parameterizations. We considered both uniform and

variable meridional profiles of diffusivities, prescribing

in the latter case the profiles resembling those diagnosed

in the eddy-resolving experiments.

For the constant values of the coefficients, the main

difference between solutions for the two parameteriza-

tions in the lower layer is that mean zonal velocity in

the QPV flux parameterization acquires a factor Q5
Red1/(2Red1 2p2), obtained from the momentum

conservation law (the Bretherton theorem). In the flat

bottom case, Q . 1, and the maximum in the center of

the channel is amplified as compared to the case of TH

parameterization. The profiles of zonally mean zonal

velocity for PV and TH parameterization are close to

each other for small values of CPV andCT; however, the

difference between velocities in both layers increases as

the coefficients are increased.

The major difference between the two approaches

relates to the role of constraints. While there are im-

portant integral constraints in the PV parameterization

case (based onmomentum and energy conservation), no

such constraints are associated with the TH parame-

terization. There is only a trivial restriction that KH be

positive. Using the TH parameterization is thus easier,

but the PV parameterization seems to bemore complete

and allows one to exercise strict control on the conser-

vation of momentum and energy.

The obvious difference between these two parame-

terizations can be seen when the CPV and CT vary

meridionally. According to numerical experiments, the

profile of diffusivity in the TH parameterization is al-

most constant in the center of the jet, whereas the CPV

coefficient Ki has pronounced local minima there

(McWilliams and Chow 1981). These minima represent

a kind of PV barrier (Dritschel and McIntyre 2008).

Therefore, using such a more realistic distribution of

coefficients provides a very different distribution of

zonal velocities with strongmomentum concentration in

the jet center for the PV parameterization, but without

momentum intensification for the TH parameterization.

These results demonstrate the importance of introducing

the parameterization scheme with varying diffusivities

not only for the Southern Ocean, but for other domains

with zonal jets as well. Such closures could be based on

eddy enstrophy (Ivchenko 1984; Ivchenko et al. 1997),

since the generation term is proportional to the product

of the CPV with the square of the mean QPV gradient,

that is, Ki(›qi/›y)
2. The profiles of CPV with a local

minimum in the jet center allow one to get the zonal

momentum intensification by Reynolds stresses (the

‘‘negative viscosity’’ effect) by using positive CPV. This

mechanism redistributes the zonal momentum, in-

creasing it in the jets cores and decreasing it on the flanks,

which results in only small change of the zonal transport.
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