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Abstract 

   A practical guide for the R package 

„Luminescence‟ is provided. An introduction on data 

types in R is given first, followed by a guideline on 

how to import, analyse and visualise typical SAR-

OSL measurement data.  

 

Keywords: R, luminescence dating, data analysis, 
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Introduction 
   Since the R package „Luminescence‟ has been 

introduced by Kreutzer et al. (2012) the developer 

team is continuously asked for advice from the 

luminescence dating community. Such requests 

considerably help us to further improve the package 

and make the tools more efficient and user friendly. 

However, most of these queries are not directed to 

specific problems of the provided functions but rather 

on the usage of R and the package in general. 

Motivated by an e-mail conversation with Geoff 

Duller this contribution aims to provide an example-

based, short practical guide to R and the package 

„Luminescence‟. First, we focus on properties and 

ways to index different sorts of data structures, which 

are essential for an efficient use of the R package 

„Luminescence‟. A second section describes 

processing steps for luminescence data, from 

importing a BIN-file to plotting a De distribution. A 

third section comprises the examples in a 

comprehensive code section. 

   Throughout the manuscript R calls or R related 

code snippets are typed in monospaced 

letters. In some cases, numerical and graphical 

output was truncated for illustrative reasons. 

 

 

Working with R and RStudio 

   R (R Development Core Team, 2013) is a freely 

available language and environment for statistical 

computing and graphics. RStudio (RStudio, 2013) is 

a free and open source integrated development 

environment (IDE) for R. It allows for a comfortable 

use of R.  

   Working with R usually means writing of scripts 

that can be executed to generate results. The 

fundamental advantage of working with scripts rather 

than clicking through graphical user interfaces or 

tabular calculation software is that all processed steps 

are formulated explicitly, i.e. every command or 

function call is and has to be written down. This 

guaranties transparent and reproducible results, easy 

sharing of analysis routines and flexible modification 

of existing approaches. 

   A script is a text document composed of several 

lines of commands, and of course explanatory 

comments, that can be executed by software, such as 

R. Script-based execution of command line series is 

much more efficient than typing of function calls into 

the terminal window (although this is possible). 

   RStudio is a comfortable "second skin" to work 

with R even more conveniently. It comprises several 

windows; for scripts, the command line, the 

workspace, plot outputs, help or a file manager. 

RStudio allows storing entire sessions, including the 

actual script and generated objects (e.g. data sets and 

plots), to continue working at any time. 

   There are a series of excellent tutorials and books 

about R (e.g. Adler, 2012; Crawley, 2012) and 

RStudio (e.g. Verzani, 2011) that cannot be discussed 

here. However, on the official website of the R 

package „Luminescence‟ (http://www.r-

luminescence.de) there are plenty of suggestions and  
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Figure 1. Data structures in R, commonly used in the package 'Luminescence'. The colour and the shape of 

individual objects indicate similar data types (e.g. logical, integer, character) whereas their alignment represents 

the structure. Code under each structure definition corresponds to the creation of the structures in R. From left to 

right structures increase in complexity: scalar, vector, matrix, data frame, list. For further data structures and 

information cf. Crawley (2012). 

 

 

some tutorials dedicated to the use of R for 

luminescence data analysis. 

 

Data types and structures in R 

   Data can be of various type. Common data types 

are logical (i.e. TRUE, FALSE), integer (e.g. 1, 

2), double (e.g. 1.2, 2.3), complex (e.g. 2+3i, 

1.3+3.2i) and character (e.g. "a", "b"). There 

are more data types in R but these are of minor 

relevance here. The type of data determines which 

operations are possible (or meaningful) with this 

data. To infer the data type of a variable use the 

function typeof(). 

   Regardless of their type, data always shows a 

certain structure, which defines how values are 

organised and may be addressed. For convenient 

usage data may be stored in variables (or more 

generally in objects). It is of crucial importance to 

note that one variable must not necessarily comprise 

only one but can contain millions of individual 

values. R allows for checking the data structure of a 

variable with the function str(). To actually work 

with the data, it is necessary to "recall" the content of 

a variable, or parts of it. This is referred to as 

indexing. The following structures are commonly 

encountered when working with R and should 

therefore be introduced here. Fig. 1 shows illustrative 

sketches of the data structures. 

 

Scalars: Scalars are the most simple data structure. 

One variable represents precisely one value (1,1 

structure). Scalars can therefore be described as zero-

dimensional data structures. In R, scalars are in fact 

vectors of length one. The command x <- 1 

assigns the value 1 to the variable x. A scalar is 

indexed simply by calling the variable name. 

 

Vectors: Vectors are different from scalars in that 

they comprise more than one value. They contain m 

rows of values, organised in one column (m,1 

structure). Hence, vectors can be described as one-

dimensional data structures. Vectors may contain any 

data type but this must be consistent throughout. To 

infer the number of elements, the length of a vector, 

use the function length(). To index an element of 

a vector, its position in the vector must be specified 

in angular brackets after the variable name: x[m]. 

To index more than one element use either a 

sequence (x[1:5]) or a concatenation of values 

(x[c(1, 2, 3, 4, 5)]). 

 

Matrices: Adding a further dimension yields a matrix 

structure. Matrices contain m rows and n columns of 

data (m,n structure). Hence, matrices can be 

described as two-dimensional data structures. 

Matrices can be of any, consistent data type.  

Indexing matrix elements requires row- and column-

numbers of the target elements in angular brackets: 

X[m,n]. To index an entire row or column, just skip 

the respective index value: X[1,] or X[,1]. 

 

Data frames: Data frames consist of components with 

the same geometry (same length of vectors or matrix 

rows and columns) but may contain different data 

types. Data frames are the most common data 

structure in R, as many functions require data frames 

as input arguments. Indexing elements of a data 

frame is a two-step task. First, the component and 

then the element of the respective component must be 
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indexed. The component is expressed by two nested 

angular brackets ([[ ]]). So indexing one element 

of a vector in a data frame may be similar to 

dataframe[[1]][8]. 

 

   Alternatively, the components of a data frame can 

be named. If names are present, the operator $ can be 

used for indexing as well. For example, if there is a 

data frame (dataframe) comprising two vectors 

(data and metadata), one may index the first 

element of metadata by typing: 

 
dataframe$metadata[1] 

 

or  

 

dataframe[[2]][1]. 

 

Lists: Similar to data frames, but also deregulating 

the constraint of consistent geometry and data types, 

lists allow handling different types and structures of 

data. Lists are therefore the most flexible - but not 

necessarily the most appropriate - data structure. 

Indexing follows the same rules as for data frames. 

 

S4-objects: S4 objects are of fundamentally different 

data structure. They are related to object-oriented 

programming but may be tentatively compared to 

lists. They can contain several components, stored in 

so called slots. Details on S4-objects may be not 

relevant in this context. Components of S4-objects 

are indexed by the operator @. Apart from this 

difference, indexing is quite similar to that of data 

frames. Note: Although the R package 

„Luminescence‟ already utilises S4-objects (e.g. 

Risoe.BINfileData-class) and the upcoming 

package version later this year will considerably 

benefit from the usage of S4-objects, details on S4-

objects are not relevant for this tutorial. 

 

From BIN-files to De-distributions 
 

Prerequisites for analysing luminescence data 

   To work with the R package „Luminescence‟ it is 

first of all necessary to install the package from 

CRAN; either via command line 

(install.packages("Luminescence", 

dependencies = TRUE)) or in RStudio via 

menu Tools > Install Packages. Note that the 

checkbox “Install dependencies” should be selected. 

To actually use the functionalities of the package, it 

must be loaded at the beginning of each R session. 

Furthermore the working directory should be set. It is 

good practice to load the library (i.e. the functions 

part of a package) and define the working directory at 

the beginning of a script. 

> ## load the library 

> library("Luminescence") 

 

> ## set the working directory 

> setwd("/analysis/project_0815") 

 

Import and inspect BIN-files 

   In general, analysis of luminescence data will start 

with importing a BIN-file to the R workspace. The 

package provides the function readBIN2R() to 

import BIN-files from typical luminescence 

measurements. It creates an S4-object with two slots: 

METADATA (a data frame) and DATA (a list). 

METADATA contains meta-information for all 

measurements and is primarily used to select 

measurements (stored in DATA) based on e.g. sample 

position. Once imported, calling the variable displays 

a short summary of the object.  

 
> ## import the BIN-file 

> SAR.data <-  

+ readBIN2R("example.BIN") 

 

> ## show a short summary  

> SAR.data 

 

> Risoe.BINfileData Object 

>  Version:         03 

>  Object Date:     060120 

>  User:            krb 

>  System ID:       30 

>  Overall Records: 600 

>  Records Type:    IRSL  (n = 20) 

                    OSL   (n = 340) 

                    TL    (n = 220) 

>  Position Range:  1 : 20 

>  Run Range:       1 : 44 

>  Set Range:       1 : 2 

 

   The example data set (example.BIN) resulted from 

a standard SAR protocol, applied to a sample of 

fluvial quartz (coarse grains, 90-160 µm) from the 

Pamir Plateau, analysed at TU Bergakademie 

Freiberg in 2013, and can be downloaded from the 

Ancient TL website. To create a more elaborated 

overview, the data frame METADATA must be 

indexed by specifying the desired columns. To show, 

as an example, the parameters ID (1), SEL (2), 

LTYPE (7), POSITION (17), RUN (18), DTYPE 

(23) and IRR_TIME (24) for the first five 

measurements, the respective column-numbers must 

be known (see below). In practice this includes 

indexing the slot METADATA of the S4-object 

SAR.data and then indexing the first five rows and 

respective columns therein: 

 



14                                                                                                                                                                        Ancient TL Vol. 31 No.1  2013 

> SAR.data@METADATA[1:5, c(1, 2, 7, 

+ 17, 18, 23, 24)] 

>   ID  SEL LTYPE POSITION RUN       

+ DTYPE IRR_TIME 

> 1 1 TRUE  TL  1 1 Natural     0 

> 2 2 TRUE OSL  1 2 Natural     0 

> 3 3 TRUE  TL  1 4 Natural     0 

> 4 4 TRUE OSL  1 5 Bleach+dose 80 

> 5 5 TRUE  TL  1 7 Bleach+dose 0 

 

   If this summary content is used frequently, it may 

be useful to store the column-numbers in a separate 

variable (summary.01 <- c(1, 2, 7, 17, 

18, 23, 24)) for convenient use later on 

(SAR.data@METADATA[,summary.01]). This 

way, different summary templates can be created. A 

complete list of column-numbers can be displayed by 
cbind(1:length(SAR.data@METADATA), 

colnames(SAR.data@METADATA)). 

 

Analyse SAR-data 

   Currently, the package is focused on the analysis of 

measurements following the SAR protocol (Murray 

& Wintle, 2000). The function Analyse_SAR. 

OSLdata()returns a set of parameters from 

individual measurement cycles in order to determine 

background- and sensitivity-corrected signals that 

may be used for growth curve estimation (see below). 

The function requires information about the sample 

(i.e. position) to be analysed, the signal integral and 

the background integral, along with a sample ID. By 

default the function Analyse_SAR.OSLdata() 

creates a graphical output for visual inspection of 

measurement curves (one composite plot for each 

position). However, for further analysis the numeric 

output is more important. The following example 

shows how to set the necessary parameters, perform 

an SAR analysis and what the numerical output looks 

like.  

 
> ## define analysis parameters 

> signal <- 1:5 

> backgrd <- 200:250 

> position <- 1:2 

> info <- "Arbitrary sample 1" 

 

> ## analyse position 1 to 2 

> SAR.results <- 

+ Analyse_SAR.OSLdata( 

+   input.data = SAR.data, 

+   signal.integral = signal, 

+   background.integral = backgrd, 

+   position = position, 

+   info.measurement = info) 

 

> ## display the output 

> str(SAR.results) 

   The created object (SAR.results) is a list with 

three components: LnLxTnTx, Rejection 

Criteria and SARParameters, each of them 

composed of further objects. To access them, just 

move through the data structure step by step. For 

example if you are interested in the second cut heat 

temperature type SAR.results$SARParamet-

ers$cutheat[2]. Most important (and most 

complex) is the LnLxTnTx-list. Since two positions 

were analysed (position <- 1:2) the list 

contains two data frames. Each data frame consists of 

the number of measurements according to the applied 

SAR protocol. Each measurement yielded 15 

parameters (such as Name, Dose, Repeated, 

LnLx and so on). To access the LnLx data from 

measurement 1 (natural dose) of position 1 type 

SAR.results$LnLxTnTx[[1]]$LxTx[1]. 

 

Create growth curves and estimate De-values 

   From the large output amount of Analyse_SAR 

.OSLdata() the most important data sets for 

subsequent analyses are Dose, LxTx, 

LxTx.Error and TnTx. To create growth curves 

and estimate equivalent doses, these are needed in a 

data frame structure. The following code shows how 

to manage these steps. 

 
> ## create data frame 
> data.LxTx <- as.data.frame(cbind( 

+   SAR.results$LnLxTnTx[[1]][2],   

+   SAR.results$LnLxTnTx[[1]][12],  

+   SAR.results$LnLxTnTx[[1]][13],  

+   SAR.results$LnLxTnTx[[1]][6]))  

 

> ## show the results 

> data.LxTx 

 
>   Dose       LxTx LxTx.Error TnTx 

> 1    0  5.8947468 0.28838345 1862 

> 2 1000  5.3317223 0.32684141 2006 

> 3 1800  7.8098997 0.36604484 2239 

> 4 2200  9.5146256 0.47587953 2393 

> 5 3000 10.4157443 0.60718256 2891 

> 6    0  0.5314526 0.07193097 2045 

> 7 1800  7.1563381 0.46570722 2829 

 

   The function plot_GrowthCurve() creates a 

dose response curve from the measurement data. The 

uncertainty related to equivalent dose estimation is 

based on Monte Carlo simulations. The function 

returns the actual De-value, its associated error and 

the fit object. 
> ## create dose response curve  

> growth.curve <- plot_GrowthCurve( 

+   data.LxTx) 
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> ## show fit parameters 

> growth.curve$Fit 

 

> ## assign De and De.error 

> De.data <- cbind( 

+   growth.curve$De[1:2]) 

 

   For routine analysis it may be convenient to run 

this De modelling process in a loop for all samples of 

a data set. 

 
> ## define analysis parameters 

> signal <- 1:5 

> backgrd <- 200:250 

> position <- 1:20 

 

> ## analyse positions 1 to 20 

> SAR.results <- 

+ Analyse_SAR.OSLdata( 

+   input.data = SAR.data, 

+   signal.integral = signal, 

+   background.integral = backgrd, 

+   position = position) 

 

> ## Define output variable 

> De.data <- data.frame( 

+   De = NA, 

+   De.Error = NA) 

 

> ## Compute De values in a loop 

> for(i in 1:max(position)) { 

+   data.LxTx <- as.data.frame( 

+     cbind(SAR.results[[1]][[i]] 

+     [c(2, 12, 13, 6)])) 

+   curve <- plot_GrowthCurve( 

+     data.LxTx) 

 

> ## assign De value and De error 

>   De.data[i,] <- as.numeric( 

+     curve$De[1:2]) 

+ } 

 

Convert seconds to Gray 

   To convert the absorbed dose from seconds to the 

SI unit Gray the function Second2Gray() can be 

used. It includes error propagation, by default with 

the Gaussian approach. 
 

> De.data <- Second2Gray( 

+   values = De.data, 

+   dose_rate = c(0.0881, 0.0006), 

+   method = "gaussian") 

 

Display De-values 

   There are several methods to visualise De 

distributions. Perhaps the most common ones are 

histograms, probability density functions based on 

kernel density estimates (KDE) and the radial plot 

(Galbraith, 1988). The chapter above illustrated how 

to obtain numeric data for plot outputs. One 

mandatory preparation step is to remove missing 

values (NA) from the De and De.Error data. This 

is easily done with De.data <- 

De.data[complete.cases(De.data),]. 

   A histogram with standard error overlay, rugs and 

statistical summary (Fig. 2A) can be created with the 

function plot_Histogram(). 

 
> plot_Histogram( 

+   values = De.data, 

+   summary = c("n", "mean", 

+     "median", "kdemax", "sdrel", 

+     "sdabs", "serel", "seabs")) 

 

   Plotting a probability density plot (Fig. 2B) can be 

done with the function plot_KDE(). Further 

statistical summary data can be added. The following 

example shows most of these statistical parameters. It 

is left to the user to decide which parameters allow 

for a meaningful interpretation. 

 
> plot_KDE( 

+   values = De.data, 

+   distribution.parameters = 

+    c("mean", "median", "kdemax"), 

+   summary = c("n", "mean",  

+     "median", "kdemax", "sdrel", 

+     "sdabs", "serel", "seabs"), 

+   xlim = c(0, 450)) 

 

   A radial plot (Fig. 2C) is created with the function 

plot_RadialPlot(). This function also supports 

grouped data plots, if a list with group indices is 

provided. For example, to plot values < 130 Gy as 

one group and values >= 130 Gy as a second group, 

the following code is needed: 

 
> group.indices <- list( 

+   which(De.data[,1] < 130),  

+   which(De.data[,1] >= 130)) 

> plot_RadialPlot( 

+   sample = De.data, 

+   zscale.log = TRUE,  

+   sample.groups = group.indices) 
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Figure 2: Examples of plot outputs. A: histogram 

with rugs, standard errors and statistical measures, 

B: KDE-based probability density function with 

statistical measures, C: radial plot of grouped values. 

Save the data 

   R saves data in a binary format (*.Rdata) with 

the function save(). To save tabular data as ASCII-

files use the function write.table(). Re-reading 

data is performed by read() or read.table(). 

 
> ## save R-internal data 

> save(SAR.data, SAR.results, 

+   De.data, file =  "SAR.RData") 

 

> ## save De data as ASCII-file 

> write.table(x = De.data, file = 

+ "De_data.txt", row.names = FALSE) 

 

> ## re-read the ASCII-FILE 

> De.data <- read.table( 

+   "De_data.txt", header = TRUE) 

 

Export graphical output 

   Saving graphical output when working with 

RStudio is quite easy. There is an export-button in 

the plots-window that allows for choosing from 

different formats and resolutions. However, it is also 

possible to export a plot directly using R commands. 

R can plot graphics to at least the following devices: 

bmp(), jpeg(), png(), tiff(), pdf(), 

postscript(), win.metafile(). Depending 

on the device, there are additional arguments such as 

filename, width, height, pointsize, res. 

Unless one wants to create further file output, it is 

important to close the respective device after a plot 

has been created. This is done by the function 

dev.off(). The function graphics.off() 

closes all open devices. To save for example a radial 

plot as jpg-file of 2000 by 2000 pixels with a 

resolution of 300 dpi the following code is needed: 

 
> ## open the graphics device jpeg 

> jpeg( 

+   filename = "radial_plot.jpg",  

+   width = 2000,  

+   height = 2000,  

+   res = 300) 

 

> ## generate the plot output 

> plot_RadialPlot(De.data, 

+   zscale.log = TRUE,  

+   zlab = expression(paste(D[e], 

+     " [s]")), 

+   sample.groups = group.indices, 

+   sample.col = c("royalblue", 

+     "orange3"), 

+   sample.pch = c(3, 4), 

+   cex.global = 0.9) 

 

## close the graphics device 

> dev.off() 
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## load the library 

library("Luminescence") 

 

## set the working directory 

setwd("/analysis/project_0815") 

 

## definition of analysis parameters 

signal.integral <- 1:5 

background.integral <- 200:250 

position <- 1:20 

 

## import the BIN-file 

SAR.data <- readBIN2R("example.BIN") 

 

## analyse the dataset 

SAR.results <- Analyse_SAR.OSLdata( 

  input.data = SAR.data, 

  signal.integral = signal.integral, 

  background.integral = background.integral, 

  position = position) 

 

## extract LxTx data and create De-values 

De.data <- data.frame(De = NA, De.Error = NA) 

for(i in 1:max(position)) { 

  data.LxTx <- as.data.frame( 

  cbind(SAR.results[[1]][[i]][c(2, 12, 13, 6)])) 

  growth.curve <- plot_GrowthCurve(data.LxTx) 

 

  ## extract and show De-value and delta De 

  De.data[i,] <- as.numeric(growth.curve$De[1:2]) 

} 

 

## convert seconds to Gray 

De.data <- Second2Gray( 

  values = De.data, 

  dose_rate = c(0.08812, 0.00059), 

  method = "gaussian") 

 

## show the resulting matrix 

De.data 

 

 

Table 1: Comprehensive script for routine SAR-OSL analysis 

 

 

A comprehensive script for routine SAR-OSL 

analysis 
   The code in Table 1 is a condensed, modified 

version of the explanations from above. It may serve 

as a skeleton for readers own scripts. The user is 

strongly advised to thoroughly inspect all graphical 

and numerical output to check data consistency and 

measurement appropriateness. An electronic version 

of the entire R script, and the example data set used 

in the analyses shown here, are provided as 

supplements to this paper and can be found at 

http://www.aber.ac.uk/ancient-tl.  

Summary 
   A practical guide for the R package 

„Luminescence‟ has been provided showing the steps 

from importing a BIN-file to plotting a De 

distribution. Further reading, including extensive 

examples and detailed definitions can be found on 

http://www.r-luminescence.de. For further 

suggestions and questions the package developer 

team can be contacted via team@r-luminescence.de. 
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Reviewers’ Comment 

I am very grateful to the authors for putting this 

together. The Luminescence package that they have 

developed for R has enormous potential, and 

hopefully this article will encourage those who are 

less familiar with R to start to use it. 
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