
Ancient TL Vol. 31 No.1 2013 11

A practical guide to the R package Luminescence

Michael Dietze
1,*

, Sebastian Kreutzer
2
, Margret C. Fuchs

3
, Christoph Burow

4
, Manfred

Fischer
5
, Christoph Schmidt

5

1
Institute of Geography, TU Dresden, 01069 Dresden, Germany

2
Department of Geography, Justus-Liebig-University Giessen, 35390 Giessen, Germany

3
Department of Geology, TU Bergakademie Freiberg, 09599 Freiberg, Germany

4
Institute for Geography, University of Cologne, 50923 Cologne, Germany

5
Geographical Institute, Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany

* corresponding author: micha.dietze@mailbox.tu-dresden.de

 (Received 13 May 2013; in final form 14 June 2013)

Abstract

 A practical guide for the R package

„Luminescence‟ is provided. An introduction on data

types in R is given first, followed by a guideline on

how to import, analyse and visualise typical SAR-

OSL measurement data.

Keywords: R, luminescence dating, data analysis,

plotting

Introduction
 Since the R package „Luminescence‟ has been

introduced by Kreutzer et al. (2012) the developer

team is continuously asked for advice from the

luminescence dating community. Such requests

considerably help us to further improve the package

and make the tools more efficient and user friendly.

However, most of these queries are not directed to

specific problems of the provided functions but rather

on the usage of R and the package in general.

Motivated by an e-mail conversation with Geoff

Duller this contribution aims to provide an example-

based, short practical guide to R and the package

„Luminescence‟. First, we focus on properties and

ways to index different sorts of data structures, which

are essential for an efficient use of the R package

„Luminescence‟. A second section describes

processing steps for luminescence data, from

importing a BIN-file to plotting a De distribution. A

third section comprises the examples in a

comprehensive code section.

 Throughout the manuscript R calls or R related

code snippets are typed in monospaced

letters. In some cases, numerical and graphical

output was truncated for illustrative reasons.

Working with R and RStudio

 R (R Development Core Team, 2013) is a freely

available language and environment for statistical

computing and graphics. RStudio (RStudio, 2013) is

a free and open source integrated development

environment (IDE) for R. It allows for a comfortable

use of R.

 Working with R usually means writing of scripts

that can be executed to generate results. The

fundamental advantage of working with scripts rather

than clicking through graphical user interfaces or

tabular calculation software is that all processed steps

are formulated explicitly, i.e. every command or

function call is and has to be written down. This

guaranties transparent and reproducible results, easy

sharing of analysis routines and flexible modification

of existing approaches.

 A script is a text document composed of several

lines of commands, and of course explanatory

comments, that can be executed by software, such as

R. Script-based execution of command line series is

much more efficient than typing of function calls into

the terminal window (although this is possible).

 RStudio is a comfortable "second skin" to work

with R even more conveniently. It comprises several

windows; for scripts, the command line, the

workspace, plot outputs, help or a file manager.

RStudio allows storing entire sessions, including the

actual script and generated objects (e.g. data sets and

plots), to continue working at any time.

 There are a series of excellent tutorials and books

about R (e.g. Adler, 2012; Crawley, 2012) and

RStudio (e.g. Verzani, 2011) that cannot be discussed

here. However, on the official website of the R

package „Luminescence‟ (http://www.r-

luminescence.de) there are plenty of suggestions and

mailto:micha.dietze@mailbox.tu-dresden.de
http://www.r-luminescence.de/
http://www.r-luminescence.de/

12 Ancient TL Vol. 31 No.1 2013

Figure 1. Data structures in R, commonly used in the package 'Luminescence'. The colour and the shape of

individual objects indicate similar data types (e.g. logical, integer, character) whereas their alignment represents

the structure. Code under each structure definition corresponds to the creation of the structures in R. From left to

right structures increase in complexity: scalar, vector, matrix, data frame, list. For further data structures and

information cf. Crawley (2012).

some tutorials dedicated to the use of R for

luminescence data analysis.

Data types and structures in R

 Data can be of various type. Common data types

are logical (i.e. TRUE, FALSE), integer (e.g. 1,

2), double (e.g. 1.2, 2.3), complex (e.g. 2+3i,

1.3+3.2i) and character (e.g. "a", "b"). There

are more data types in R but these are of minor

relevance here. The type of data determines which

operations are possible (or meaningful) with this

data. To infer the data type of a variable use the

function typeof().

 Regardless of their type, data always shows a

certain structure, which defines how values are

organised and may be addressed. For convenient

usage data may be stored in variables (or more

generally in objects). It is of crucial importance to

note that one variable must not necessarily comprise

only one but can contain millions of individual

values. R allows for checking the data structure of a

variable with the function str(). To actually work

with the data, it is necessary to "recall" the content of

a variable, or parts of it. This is referred to as

indexing. The following structures are commonly

encountered when working with R and should

therefore be introduced here. Fig. 1 shows illustrative

sketches of the data structures.

Scalars: Scalars are the most simple data structure.

One variable represents precisely one value (1,1

structure). Scalars can therefore be described as zero-

dimensional data structures. In R, scalars are in fact

vectors of length one. The command x <- 1

assigns the value 1 to the variable x. A scalar is

indexed simply by calling the variable name.

Vectors: Vectors are different from scalars in that

they comprise more than one value. They contain m

rows of values, organised in one column (m,1

structure). Hence, vectors can be described as one-

dimensional data structures. Vectors may contain any

data type but this must be consistent throughout. To

infer the number of elements, the length of a vector,

use the function length(). To index an element of

a vector, its position in the vector must be specified

in angular brackets after the variable name: x[m].

To index more than one element use either a

sequence (x[1:5]) or a concatenation of values

(x[c(1, 2, 3, 4, 5)]).

Matrices: Adding a further dimension yields a matrix

structure. Matrices contain m rows and n columns of

data (m,n structure). Hence, matrices can be

described as two-dimensional data structures.

Matrices can be of any, consistent data type.

Indexing matrix elements requires row- and column-

numbers of the target elements in angular brackets:

X[m,n]. To index an entire row or column, just skip

the respective index value: X[1,] or X[,1].

Data frames: Data frames consist of components with

the same geometry (same length of vectors or matrix

rows and columns) but may contain different data

types. Data frames are the most common data

structure in R, as many functions require data frames

as input arguments. Indexing elements of a data

frame is a two-step task. First, the component and

then the element of the respective component must be

Ancient TL Vol. 31 No.1 2013 13

indexed. The component is expressed by two nested

angular brackets ([[]]). So indexing one element

of a vector in a data frame may be similar to

dataframe[[1]][8].

 Alternatively, the components of a data frame can

be named. If names are present, the operator $ can be

used for indexing as well. For example, if there is a

data frame (dataframe) comprising two vectors

(data and metadata), one may index the first

element of metadata by typing:

dataframe$metadata[1]

or

dataframe[[2]][1].

Lists: Similar to data frames, but also deregulating

the constraint of consistent geometry and data types,

lists allow handling different types and structures of

data. Lists are therefore the most flexible - but not

necessarily the most appropriate - data structure.

Indexing follows the same rules as for data frames.

S4-objects: S4 objects are of fundamentally different

data structure. They are related to object-oriented

programming but may be tentatively compared to

lists. They can contain several components, stored in

so called slots. Details on S4-objects may be not

relevant in this context. Components of S4-objects

are indexed by the operator @. Apart from this

difference, indexing is quite similar to that of data

frames. Note: Although the R package

„Luminescence‟ already utilises S4-objects (e.g.

Risoe.BINfileData-class) and the upcoming

package version later this year will considerably

benefit from the usage of S4-objects, details on S4-

objects are not relevant for this tutorial.

From BIN-files to De-distributions

Prerequisites for analysing luminescence data

 To work with the R package „Luminescence‟ it is

first of all necessary to install the package from

CRAN; either via command line

(install.packages("Luminescence",

dependencies = TRUE)) or in RStudio via

menu Tools > Install Packages. Note that the

checkbox “Install dependencies” should be selected.

To actually use the functionalities of the package, it

must be loaded at the beginning of each R session.

Furthermore the working directory should be set. It is

good practice to load the library (i.e. the functions

part of a package) and define the working directory at

the beginning of a script.

> ## load the library

> library("Luminescence")

> ## set the working directory

> setwd("/analysis/project_0815")

Import and inspect BIN-files

 In general, analysis of luminescence data will start

with importing a BIN-file to the R workspace. The

package provides the function readBIN2R() to

import BIN-files from typical luminescence

measurements. It creates an S4-object with two slots:

METADATA (a data frame) and DATA (a list).

METADATA contains meta-information for all

measurements and is primarily used to select

measurements (stored in DATA) based on e.g. sample

position. Once imported, calling the variable displays

a short summary of the object.

> ## import the BIN-file

> SAR.data <-

+ readBIN2R("example.BIN")

> ## show a short summary

> SAR.data

> Risoe.BINfileData Object

> Version: 03

> Object Date: 060120

> User: krb

> System ID: 30

> Overall Records: 600

> Records Type: IRSL (n = 20)

 OSL (n = 340)

 TL (n = 220)

> Position Range: 1 : 20

> Run Range: 1 : 44

> Set Range: 1 : 2

 The example data set (example.BIN) resulted from

a standard SAR protocol, applied to a sample of

fluvial quartz (coarse grains, 90-160 µm) from the

Pamir Plateau, analysed at TU Bergakademie

Freiberg in 2013, and can be downloaded from the

Ancient TL website. To create a more elaborated

overview, the data frame METADATA must be

indexed by specifying the desired columns. To show,

as an example, the parameters ID (1), SEL (2),

LTYPE (7), POSITION (17), RUN (18), DTYPE

(23) and IRR_TIME (24) for the first five

measurements, the respective column-numbers must

be known (see below). In practice this includes

indexing the slot METADATA of the S4-object

SAR.data and then indexing the first five rows and

respective columns therein:

14 Ancient TL Vol. 31 No.1 2013

> SAR.data@METADATA[1:5, c(1, 2, 7,

+ 17, 18, 23, 24)]

> ID SEL LTYPE POSITION RUN

+ DTYPE IRR_TIME

> 1 1 TRUE TL 1 1 Natural 0

> 2 2 TRUE OSL 1 2 Natural 0

> 3 3 TRUE TL 1 4 Natural 0

> 4 4 TRUE OSL 1 5 Bleach+dose 80

> 5 5 TRUE TL 1 7 Bleach+dose 0

 If this summary content is used frequently, it may

be useful to store the column-numbers in a separate

variable (summary.01 <- c(1, 2, 7, 17,

18, 23, 24)) for convenient use later on

(SAR.data@METADATA[,summary.01]). This

way, different summary templates can be created. A

complete list of column-numbers can be displayed by
cbind(1:length(SAR.data@METADATA),

colnames(SAR.data@METADATA)).

Analyse SAR-data

 Currently, the package is focused on the analysis of

measurements following the SAR protocol (Murray

& Wintle, 2000). The function Analyse_SAR.

OSLdata()returns a set of parameters from

individual measurement cycles in order to determine

background- and sensitivity-corrected signals that

may be used for growth curve estimation (see below).

The function requires information about the sample

(i.e. position) to be analysed, the signal integral and

the background integral, along with a sample ID. By

default the function Analyse_SAR.OSLdata()

creates a graphical output for visual inspection of

measurement curves (one composite plot for each

position). However, for further analysis the numeric

output is more important. The following example

shows how to set the necessary parameters, perform

an SAR analysis and what the numerical output looks

like.

> ## define analysis parameters

> signal <- 1:5

> backgrd <- 200:250

> position <- 1:2

> info <- "Arbitrary sample 1"

> ## analyse position 1 to 2

> SAR.results <-

+ Analyse_SAR.OSLdata(

+ input.data = SAR.data,

+ signal.integral = signal,

+ background.integral = backgrd,

+ position = position,

+ info.measurement = info)

> ## display the output

> str(SAR.results)

 The created object (SAR.results) is a list with

three components: LnLxTnTx, Rejection

Criteria and SARParameters, each of them

composed of further objects. To access them, just

move through the data structure step by step. For

example if you are interested in the second cut heat

temperature type SAR.results$SARParamet-

ers$cutheat[2]. Most important (and most

complex) is the LnLxTnTx-list. Since two positions

were analysed (position <- 1:2) the list

contains two data frames. Each data frame consists of

the number of measurements according to the applied

SAR protocol. Each measurement yielded 15

parameters (such as Name, Dose, Repeated,

LnLx and so on). To access the LnLx data from

measurement 1 (natural dose) of position 1 type

SAR.results$LnLxTnTx[[1]]$LxTx[1].

Create growth curves and estimate De-values

 From the large output amount of Analyse_SAR

.OSLdata() the most important data sets for

subsequent analyses are Dose, LxTx,

LxTx.Error and TnTx. To create growth curves

and estimate equivalent doses, these are needed in a

data frame structure. The following code shows how

to manage these steps.

> ## create data frame
> data.LxTx <- as.data.frame(cbind(

+ SAR.results$LnLxTnTx[[1]][2],

+ SAR.results$LnLxTnTx[[1]][12],

+ SAR.results$LnLxTnTx[[1]][13],

+ SAR.results$LnLxTnTx[[1]][6]))

> ## show the results

> data.LxTx

> Dose LxTx LxTx.Error TnTx

> 1 0 5.8947468 0.28838345 1862

> 2 1000 5.3317223 0.32684141 2006

> 3 1800 7.8098997 0.36604484 2239

> 4 2200 9.5146256 0.47587953 2393

> 5 3000 10.4157443 0.60718256 2891

> 6 0 0.5314526 0.07193097 2045

> 7 1800 7.1563381 0.46570722 2829

 The function plot_GrowthCurve() creates a

dose response curve from the measurement data. The

uncertainty related to equivalent dose estimation is

based on Monte Carlo simulations. The function

returns the actual De-value, its associated error and

the fit object.
> ## create dose response curve

> growth.curve <- plot_GrowthCurve(

+ data.LxTx)

Ancient TL Vol. 31 No.1 2013 15

> ## show fit parameters

> growth.curve$Fit

> ## assign De and De.error

> De.data <- cbind(

+ growth.curve$De[1:2])

 For routine analysis it may be convenient to run

this De modelling process in a loop for all samples of

a data set.

> ## define analysis parameters

> signal <- 1:5

> backgrd <- 200:250

> position <- 1:20

> ## analyse positions 1 to 20

> SAR.results <-

+ Analyse_SAR.OSLdata(

+ input.data = SAR.data,

+ signal.integral = signal,

+ background.integral = backgrd,

+ position = position)

> ## Define output variable

> De.data <- data.frame(

+ De = NA,

+ De.Error = NA)

> ## Compute De values in a loop

> for(i in 1:max(position)) {

+ data.LxTx <- as.data.frame(

+ cbind(SAR.results[[1]][[i]]

+ [c(2, 12, 13, 6)]))

+ curve <- plot_GrowthCurve(

+ data.LxTx)

> ## assign De value and De error

> De.data[i,] <- as.numeric(

+ curve$De[1:2])

+ }

Convert seconds to Gray

 To convert the absorbed dose from seconds to the

SI unit Gray the function Second2Gray() can be

used. It includes error propagation, by default with

the Gaussian approach.

> De.data <- Second2Gray(

+ values = De.data,

+ dose_rate = c(0.0881, 0.0006),

+ method = "gaussian")

Display De-values

 There are several methods to visualise De

distributions. Perhaps the most common ones are

histograms, probability density functions based on

kernel density estimates (KDE) and the radial plot

(Galbraith, 1988). The chapter above illustrated how

to obtain numeric data for plot outputs. One

mandatory preparation step is to remove missing

values (NA) from the De and De.Error data. This

is easily done with De.data <-

De.data[complete.cases(De.data),].

 A histogram with standard error overlay, rugs and

statistical summary (Fig. 2A) can be created with the

function plot_Histogram().

> plot_Histogram(

+ values = De.data,

+ summary = c("n", "mean",

+ "median", "kdemax", "sdrel",

+ "sdabs", "serel", "seabs"))

 Plotting a probability density plot (Fig. 2B) can be

done with the function plot_KDE(). Further

statistical summary data can be added. The following

example shows most of these statistical parameters. It

is left to the user to decide which parameters allow

for a meaningful interpretation.

> plot_KDE(

+ values = De.data,

+ distribution.parameters =

+ c("mean", "median", "kdemax"),

+ summary = c("n", "mean",

+ "median", "kdemax", "sdrel",

+ "sdabs", "serel", "seabs"),

+ xlim = c(0, 450))

 A radial plot (Fig. 2C) is created with the function

plot_RadialPlot(). This function also supports

grouped data plots, if a list with group indices is

provided. For example, to plot values < 130 Gy as

one group and values >= 130 Gy as a second group,

the following code is needed:

> group.indices <- list(

+ which(De.data[,1] < 130),

+ which(De.data[,1] >= 130))

> plot_RadialPlot(

+ sample = De.data,

+ zscale.log = TRUE,

+ sample.groups = group.indices)

16 Ancient TL Vol. 31 No.1 2013

Figure 2: Examples of plot outputs. A: histogram

with rugs, standard errors and statistical measures,

B: KDE-based probability density function with

statistical measures, C: radial plot of grouped values.

Save the data

 R saves data in a binary format (*.Rdata) with

the function save(). To save tabular data as ASCII-

files use the function write.table(). Re-reading

data is performed by read() or read.table().

> ## save R-internal data

> save(SAR.data, SAR.results,

+ De.data, file = "SAR.RData")

> ## save De data as ASCII-file

> write.table(x = De.data, file =

+ "De_data.txt", row.names = FALSE)

> ## re-read the ASCII-FILE

> De.data <- read.table(

+ "De_data.txt", header = TRUE)

Export graphical output

 Saving graphical output when working with

RStudio is quite easy. There is an export-button in

the plots-window that allows for choosing from

different formats and resolutions. However, it is also

possible to export a plot directly using R commands.

R can plot graphics to at least the following devices:

bmp(), jpeg(), png(), tiff(), pdf(),

postscript(), win.metafile(). Depending

on the device, there are additional arguments such as

filename, width, height, pointsize, res.

Unless one wants to create further file output, it is

important to close the respective device after a plot

has been created. This is done by the function

dev.off(). The function graphics.off()

closes all open devices. To save for example a radial

plot as jpg-file of 2000 by 2000 pixels with a

resolution of 300 dpi the following code is needed:

> ## open the graphics device jpeg

> jpeg(

+ filename = "radial_plot.jpg",

+ width = 2000,

+ height = 2000,

+ res = 300)

> ## generate the plot output

> plot_RadialPlot(De.data,

+ zscale.log = TRUE,

+ zlab = expression(paste(D[e],

+ " [s]")),

+ sample.groups = group.indices,

+ sample.col = c("royalblue",

+ "orange3"),

+ sample.pch = c(3, 4),

+ cex.global = 0.9)

close the graphics device

> dev.off()

Ancient TL Vol. 31 No.1 2013 17

load the library

library("Luminescence")

set the working directory

setwd("/analysis/project_0815")

definition of analysis parameters

signal.integral <- 1:5

background.integral <- 200:250

position <- 1:20

import the BIN-file

SAR.data <- readBIN2R("example.BIN")

analyse the dataset

SAR.results <- Analyse_SAR.OSLdata(

 input.data = SAR.data,

 signal.integral = signal.integral,

 background.integral = background.integral,

 position = position)

extract LxTx data and create De-values

De.data <- data.frame(De = NA, De.Error = NA)

for(i in 1:max(position)) {

 data.LxTx <- as.data.frame(

 cbind(SAR.results[[1]][[i]][c(2, 12, 13, 6)]))

 growth.curve <- plot_GrowthCurve(data.LxTx)

 ## extract and show De-value and delta De

 De.data[i,] <- as.numeric(growth.curve$De[1:2])

}

convert seconds to Gray

De.data <- Second2Gray(

 values = De.data,

 dose_rate = c(0.08812, 0.00059),

 method = "gaussian")

show the resulting matrix

De.data

Table 1: Comprehensive script for routine SAR-OSL analysis

A comprehensive script for routine SAR-OSL

analysis
 The code in Table 1 is a condensed, modified

version of the explanations from above. It may serve

as a skeleton for readers own scripts. The user is

strongly advised to thoroughly inspect all graphical

and numerical output to check data consistency and

measurement appropriateness. An electronic version

of the entire R script, and the example data set used

in the analyses shown here, are provided as

supplements to this paper and can be found at

http://www.aber.ac.uk/ancient-tl.

Summary
 A practical guide for the R package

„Luminescence‟ has been provided showing the steps

from importing a BIN-file to plotting a De

distribution. Further reading, including extensive

examples and detailed definitions can be found on

http://www.r-luminescence.de. For further

suggestions and questions the package developer

team can be contacted via team@r-luminescence.de.

http://www.aber.ac.uk/ancient-tl
http://www.r-luminescence.de/
mailto:team@r-luminescence.de

18 Ancient TL Vol. 31 No.1 2013

References

Crawley, M.J. (2012). The R Book. pp. 1080, Wiley.

Galbraith, R.F. (1988). Graphical Display of

Estimates Having Differing Standard Errors.

Technometrics 30: 271–281.

Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M.,

Fischer, M., Fuchs, M. (2012). Introducing an R

package for luminescence dating analysis.

Ancient TL 30: 1–8.

Murray, A.S., Wintle, A.G. (2000). Luminescence

dating of quartz using an improved single-aliquot

regenerative-dose protocol. Radiation

Measurements 32: 57–73.

R Development Core Team (2013). R: A Language

and Environment for Statistical Computing.

http://ww.r-project.org

RStudio (2013). RStudio: Integrated development

environment for R (Version 0.97.449) [Computer

software]. Boston, MA. Retrieved May 09,

2013.Available from http://www.rstudio.org/

Verzani, J. (2011). Getting Started with RStudio: An

Integrated Development Environment for R. pp.

92. Sebastopol, CA USA.

Reviewer

G.A.T. Duller

Reviewers’ Comment

I am very grateful to the authors for putting this

together. The Luminescence package that they have

developed for R has enormous potential, and

hopefully this article will encourage those who are

less familiar with R to start to use it.

http://support.rstudio.org/help/discussions/questions/613/r?go=aHR0cDovL3d3dy5yc3R1ZGlvLm9yZy8=

