

Master Track RV Heincke HE433

Data Processing Report

Contents

1	Introduction	1
2	Workflow	1
3	Sensor Layout	2
4	Processing Report	3

Contact:

Dr. Rainer Knust

Alfred Wegener Institute

Columbusstrasse, D-27568 Bremerhaven, GERMANY

Phone: +49(471)4831-1709 Fax: +49(471)4831-1918

Mail: Heincke-Coordination@awi.de

Processing Agency:

FIELAX

Gesellschaft für wissenschaftliche Datenverarbeitung mbH Schleusenstr. 14, D-27568 Bremerhaven, GERMANY

Phone: +49 (0) 471 30015 0 Fax: +49 (0) 471 30015 22 Mail: info@fielax.de

1 Introduction

This report describes the processing of raw data acquired by position sensors on board RV Heincke during expedition HE433 to receive a validated master track which is used as reference of further expedition data.

2 Workflow

The different steps of processing and validation are visualized in fig. 1. Unvalidated data of up to three sensors and ship-motion data are extracted from the DAVIS SHIP data base (dship.awi.de) in 1-second interval. They are converted to ESRI point shapefiles and imported to a GIS. A visual screening is performed to evaluate data quality and remove outliers manually. The position data from each position sensor are centered to the destined master track origin by applying ship-motion data (angles roll, pitch, heading) and lever arms. For all three resulting position tracks, a quality check is performed using a ship's speed filter and an acceleration filter. Filtered positions are flagged. Those position tracks are combined to a single master track depending on a sensor priority list (by accuracy, reliability) and availability / filter flag of data. Missing data up to a time span of 60 seconds are linearly interpolated. To reduce the amount of points for overview maps the master track is generalized by using the Ramer-Douglas-Peucker algorithm. This algorithm returns only the most significant points from the track. Full master track and generalized master track are written to TXT files and imported to PANGAEA (www.pangaea.de) for publication.

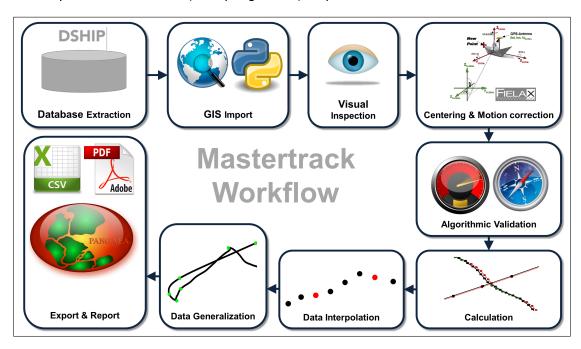


Figure 1: Workflow of master track data processing

3 Sensor Layout

This chapter describes the position sensors mounted during this cruise.

Cruise details

Vessel name: RV Heincke Cruise name: HE433

Cruise start: 01.10.2014 in Bremerhaven
Cruise end: 12.10.2014 in Bremerhaven

Cruise duration: 12 days

Master track reference point: Resulting master track is referenced to PHINS installation point.

Position sensors

Sensor name:	IXSEA PHINS III, short: PHINS			
Description:	Inertial navigation system with reference positions from Trimble DGPS			
Accuracy:	\pm 0.5-3.0 m			
Installation point:	Electrician's workshop, close to COG			
Installation offset:	Offset from master track reference point to sensor installation point X Positive to bow 0.000 m Y Positive to starboard 0.000 m Z Positive upwards 0.000 m			

Sensor name:	Trimble Marine SPS461, short: Trimble		
Description:	DGPS-Receiver, correction type DGPS RTCM 2.x, correction source		
	DGPS Base via radio		
Accuracy:	Horizontal: ± 0.25 m + 1 ppm		
	Vertical: \pm 0.50 m + 1 ppm		
Installation point:	Starboard railing above bridge deck		
Installation offset:	Offset from master track reference point to sensor installation point X Positive to bow 5.044 m Y Positive to starboard 6.788 m Z Positive upwards 11.489 m		

Sensor name: SAAB R5 SUPREME NAV, short: SAAB			
Description:	DGPS-Receiver, SBAS-correction with RTCM-104 input		
Accuracy:	GPS: \pm 3.0 m; DGPS (2D RMS): \pm 1.0 m		
Installation point:	Observational Deck, fore rail		
Installation offset:	Offset from master track reference point to sensor installation point X Positive to bow 12.986 m Y Positive to starboard 2.958 m Z Positive upwards 11.328 m		

Motion sensor

Sensor name:	IXSEA PHINS III, short: PHINS	
Description:	Inertial navigation system with reference positions from Trimble DGPS	
Accuracy:	\pm 0.01 roll, \pm 0.01 pitch, \pm 0.05 heading (deg)	
Installation point:	Electrician's workshop, close to COG	

4 Processing Report

This section describes each processing step with its parameters and results.

Database Extraction

Data source:	DSHIP database (dship.awi.de)	
Number of exported values:	1036800	
First dataset:	01.10.2014, 00:00:00 UTC	
Last dataset:	12.10.2014, 23:59:59 UTC	

Centering & Motion Compensation

Each position track has been centered to the *PHINS installation point* by applying the correspondent motion angles for heading, roll and pitch as well as the installation offsets from chapter 2. The motion data were acquired by IXSEA PHINS III.

Algorithmic Validation

Input parameters:

Maximum speed for data filter:	20 kn
Maximum acceleration offset for data filter:	1 m/s

Results:

_ <u></u>	เธอนแอ.		
	PHINS	0	Speed > 20 kn
	FHINS	168126	Acceleration difference between points > 1 m/s
	Trimble	7	Speed > 20 kn
	minble	54	Acceleration difference between points > 1 m/s
	SAAB	0	Speed > 20 kn
	SAAD	1	Acceleration difference between points > 1 m/s

Master Track Generation

The master track is derived from the position sensors' data selected by priority.

Sensor priority used:

- 1. Trimble
- 2. PHINS
- 3. SAAB

Distribution of position sensor data in master track:

_ ion ion or promore or out and in industry			
Sensor	Data points	Percentage	
Trimble	1036799	100.0 %	
PHINS	1	0.0 %	
SAAB	0	0.0%	
Interpolated	0	0.0 %	
Gaps	0	0.0%	

Bounding coordinates of the master track:

	Lat	Lon
NW	55.2527305	5.8268747
NE	55.2527305	8.5804244
SE	53.5230948	8.5804244
SW	53.5230948	5.8268747

Remarks

None

Generalization

The master track is additionally generalized to receive a reduced set of the most significant positions of the track.

Input parameters:

Algorithm:	Ramer-Douglas-Peucker
Maximum tolerated distance between	4 arcseconds
points and generalized line:	

Results:

Number of generalized points:	623 points
Data reduction:	99.9399%

Result files

Master track TXT file:

The format is a plain text file with one data row in 1 second interval.

Column separator:	Tab "\t"	
Column 1:	Date/Time (UTC) in ISO 8601 format	
	YYYY-MM-	DDThh:mm:ss
Column 2:	Latitude in decimal format, unit degree	
Column 3:	Longitude in decimal format, unit degree	
Column 4:	Flag for data source	
	1	PHINS
	2	Trimble
	3	SAAB
	INTERP	Interpolated point
	GAP	Missing data

TXT file of the generalized master track:

The format is a plain text file.

Column separator:	Tab "\t"
Column 1:	Date/Time (UTC) in ISO 8601 format
	YYYY-MM-DDThh:mm:ss
Column 2:	Latitude in decimal format, unit degree
Column 3:	Longitude in decimal format, unit degree

Master track data in XML format:

The XML contains all information of the master track generation in a machine-readable format. In addition a XSD schema file is provided.

Cruise map

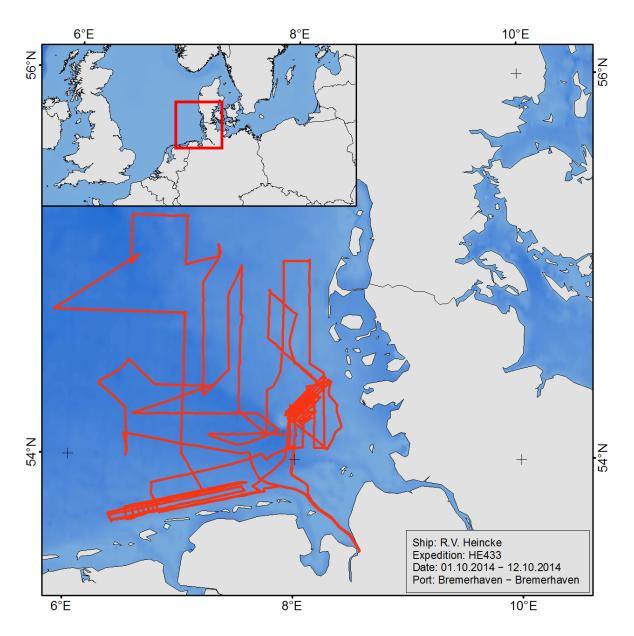


Figure 2: Map of the master track