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ABSTRACT

The Antarctic Ice Sheet influences the global temperature and sea level by com-
plex interactions with the atmosphere and the ocean and is thus an important
factor in the Earth’s climate system. Recent climate assessments reveal a steady
increase of global temperatures and an on-going shrinking of glaciers and ice
sheets. Because the total Antarctic ice volume has the potential to raise the
global sea level by about 58 meters, it is of particular interest to understand
the ice dynamics regarding the mass export and thus the contribution to sea
level rise. Observations of the last decades reveal a widespread hydrological
system of subglacial lakes and drainage networks beneath the Antarctic Ice
Sheet which is recognized to have a large impact on the ice dynamics. The aim
of this thesis is to investigate this subglacial hydrological environment and its
interactions with the ice flow dynamics of the overlying ice sheet.

For reaching this aim, the ice flow model RimBAY is enhanced by a subglacial
hydrology module which provides the simulation of basal water flow and the
identification of positions and extents of subglacial lakes. This model is then
applied to the Antarctic Ice Sheet. A subsequent validation by the analysis of
ice-penetrating radar profiles in Dronning Maud Land leads to the identifica-
tion of 31 new potential subglacial lake locations. Based on these findings, the
total number of Antarctic subglacial lakes is estimated to be 1 300+300, a fac-
tor of three more than what has been discovered so far. Their overall extent is
assessed to cover about 0.6% of the Antarctic ice-bed interface. Furthermore,
strong correlations are found between modeled pathways of basal water flow
and observed locations of ice streams.

In a detailed investigation of the Ross Ice Streams at the Antarctic Siple
Coast the local basal driver of fast ice flow is identified as water saturated and
unconsolidated sediment. The assessment of the basal flow regime enables the
simulation of basal drainage patterns which are clearly associated with cur-
rent patterns of fast ice flow. The application of satellite-observed ice surface
elevation changes to the present-day ice sheet geometry additionally allows
prognostic water flow simulations. They reveal a high dynamic of basal water
pathways. In particular, a major hydraulic tributary of the Kamb and Whillans
Ice Stream is redirected towards the Bindschadler Ice Stream within the next
200 years, possibly resulting in future increase of ice velocities within the Bind-
schadler Ice Stream.

In order to gain further insights into the complex feedback mechanisms be-
tween an ice sheet and its subglacial environment, ice dynamics and subglacial
hydrology are modeled in a coupled approach for a synthetic domain. A new
hydrological concept is developed and implemented in RimBAy, providing the
dynamic generation of subglacial lakes and covering the spatial and tempo-



ral variability of basal drainage systems. The impact of basal hydrology on the
ice dynamic is estimated in various experiments, considering distinct feedback
mechanisms. It is demonstrated, that a coupling at full complexity leads to a
considerably negative mass balance of the investigated synthetic ice sheet. The
results reveal the capabilities of the new hydrological concept and emphasize
the necessity to incorporate subglacial hydrology in ice sheet models.
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ZUSAMMENFASSUNG

Der Antarktische Eisschild beeinflusst durch seine komplexen Wechselwir-
kungen mit Atmosphdre und Ozean sowohl die globalen Temperaturen als
auch den Meeresspiegel und ist damit ein wichtiger Faktor im Klimasystem
der Erde. Aktuelle Klimaberichte weisen einen kontinuierlichen Anstieg der
globalen Temperaturen und ein fortschreitendes Abschmelzen von Gletschern
und Eisschilden nach. Das gesamte Eisvolumen der Antarktis hat das Poten-
tial, den globalen Meeresspiegel um ungefdhr 58 Meter anzuheben. Es ist
deshalb von besonderem Interesse, die Eisdynamik der Antarktis in Bezug
auf ihren Massenabfluss und somit ihren Einfluss auf den Meeresspiegel zu
verstehen. Beobachtungen der letzten Dekaden offenbaren die Existenz eines
ausgedehnten hydrologischen Netzwerkes aus subglazialen Seen und Fliissen
unter dem Antarktischen Eisschild, welches grofie Auswirkungen auf die Eis-
dynamik hat. Das Ziel dieser Arbeit ist die Untersuchung dieser subglazialen
hydrologischen Komponenten und ihrer Wechselwirkungen mit der Dynamik
des dartiberliegenden Eisschildes.

Dafiir wurde das Eismodell RimBAY um ein subglaziales Hydrologie-Modul
erweitert. Dieses ermdglicht die Simulation basaler Wasserfliisse sowie die
Identifikation der Positionen und Ausmafie subglazialer Seen. Das erweiterte
Modell wurde auf den Antarktischen Eisschild angewandt und die Ergeb-
nisse durch Auswertung von Radarprofilen aus Dronning Maud Land vali-
diert. Somit konnten 31 neue potentielle subglaziale Seen identifiziert werden.
Die gesamte Anzahl subglazialer Antarktischer Seen wurde auf 1300+300
und ihre gesamte Oberfldche auf ungefdahr 0.6% des Antarktischen Eisschildes
abgeschitzt. Davon sind gegenwadrtig 379 subglaziale Antarktische Seen be-
kannt. Weiterhin wurden starke rdumliche Korrelationen zwischen modellier-
ten basalen Wasserfliissen und beobachteten Eisstromen festgestellt.

Die Region der Antarktischen Siple Coast wurde ndher untersucht. Die
hohen Eisgeschwindigkeiten der dortigen Ross Eisstrome wurden in einer aus-
fiihrlichen Recherche auf das Vorkommen einer leicht deformierbaren wasser-
gesdttigten basalen Schicht aus unkonsolidierten Sedimenten zuriickgefiihrt.
Das somit definierte Regime des basalen Wasserflusses erméglicht die Simula-
tion von basalen Dranagestrukturen, welche eine sehr gute Ubereinstimmung
mit beobachteten Mustern erhdhter Eisgeschwindigkeiten zeigen. Dartiberhin-
aus wurden prognostische Simulationen des basalen Wasserflusses vorgenom-
men, indem durch Satelliten gemessene Anderungsraten der Eisoberflache mit
der heutigen Eisgeometrie verrechnet wurden. Diese Methode zeigt eine hohe
lokale Variabilitdt der basalen Dranagestrukturen. Insbesondere ein groflerer
basaler Wasserzufluss, welcher derzeit unter den Kamb und Whillans Eis-
stromen miindet, wird innerhalb der ndchsten 200 Jahre unter den Bindschadler
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Eisstrom umgeleitet, was zu einem zukiinftigen Anstieg der Eisgeschwindig-
keiten innerhalb des Bindschadler Eisstromes fiihren kann.

Um einen tieferen Einblick in die komplexen Wechselwirkungsmechanis-
men zwischen einem Eisschild und seiner sublazialen hydrologischen Umge-
bung zu erlangen, wurde die Modellierung von Eisdynamik und subglazialer
Hydrologie gekoppelt und auf ein idealisiertes Modellgebiet angewandt. Dafiir
wurde ein neues hydrologisches Konzept entwickelt und in RimMBay imple-
mentiert. Es umfasst zusitzlich die dynamische Entstehung von subglazialen
Seen und ist damit in der Lage, die raumliche und zeitliche Variabilitdt des
basalen Drdnagesystems realistisch abzubilden. In mehreren Experimenten
mit verschiedenen Kopplungsgraden wird der entscheidende Einfluss der sub-
glazialen Hydrologie auf die Eisdynamik demonstriert. Bei voller Komplexi-
tat der Kopplung wird eine deutlich negative Massenbilanz des idealisierten
Eisschildes nachgewiesen. Diese Ergebnisse zeigen das Potential des neuen
hydrologischen Konzepts und unterstreichen die Notwendigkeit, subglaziale

Hydrologie in Eismodellen zu berticksichtigen.
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GENERAL INTRODUCTION

In 1955, the glaciologist and later director of the British Scott Polar Research
Institute, Gordon de Quetteville Robin, investigated temperature distributions
in ice sheets and stated carefully:

“It is suggested that a rise from temperatures below melting point at the base of ice
sheets may provide an explanation of the occasional catastrophic advances of certain
glaciers.” (Robin, 1955)

Today, a growing number of remote sensing and ground-based observations
across Antarctica and Greenland are highlighting the existence of subglacial
water in a variety of forms, ranging from large subglacial lakes to water flow
in millimeter-thick layers at the ice-substrate interface. Subglacial hydrological
processes are recognized to have a great impact on ice dynamics and to con-
tribute through complex feedback mechanisms to changes in ocean circulation,
sea level and global climate evolution.

1.1 MOTIVATION

The cryosphere is an important part of the global climate system and com-
prises those portions of the Earth’s surface where water is in its solid form,
frozen into ice or snow. Elements of the cryosphere are found at all latitudes
and encompass glaciers, ice caps and ice sheets as well as lake and river ice,
sea ice, snow cover and frozen ground (Fig. 1).

_| Sealce _| Ice Shelves S Seaice 30 Yr Ave Extent
_| Glaciers _] Continuous Permafrost . 50% Snow Extent Line
_| Ice Sheet j Discontinuous Permafrost = Max Snow Extent Line

Figure 1: Components of the Earth’s cryosphere in the Northern and Southern Hemi-
sphere (Fig. after Goddard Space Flight Center, 2011).
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Figure 2: The Antarctic Ice Sheet (white) with its ice shelves (gray) and other geo-
graphical features (Fig. after British Antarctic Survey, 2007).

The cryosphere is linked to its environment by many processes. It influences
moisture fluxes, precipitation, hydrology, atmospheric and oceanic circulation.
In particular, the high albedo of snow-covered areas has a large impact on
the radiation balance. A change in extent of these areas directly affects the
surface temperature of the Earth. Moreover, the components of the cryosphere
store large amounts of water whereas nowadays about 99% of the global ice
volume is concentrated in the ice sheets of the polar regions, in Greenland
and in Antarctica. They have the potential to alter the global sea level by
several meters under the influence of climate changes within the next centuries
(Rignot et al., 2011b).

In its Fifth Assessment Report in 2013, the Intergovernmental Panel on Cli-
mate Change (IPCC) reveals a steady increase of global temperatures and an
ongoing shrinking of glaciers and ice sheets over the last decades (IPCC, 2013).
Consequently, the investigation and understanding of the ice dynamics of the
large ice sheets is of particular interest since a raising sea level is threatening
human habitats and economy.

The focus of this thesis is on the investigation of the Antarctic Ice Sheet (AIS)
which is situated on a continental land mass at the South Pole (Fig.2). It is
subdivided into the Antarctic Peninsula and the West and East Antarctic Ice
Sheets which are separated by the Transantarctic Mountains. Nearly half of
the Antarctic coast line is covered by ice shelves, floating ice extensions of the
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Figure 3: Beneath the AIS 379 subglacial lakes have been discovered so far. They are
connected by subglacial rivers and form a widespread hydrological network
which influences the dynamics of the overlaying ice. The largest subglacial
lake is Lake Vostok. (Fig. by National Science Foundation, 2007b)

AlS. According to Fretwell et al. (2013), the total ice volume of the AIS has an
sea level equivalent of about 58 m.

The evolution of the Antarctic ice volume is determined by its mass balance.
Any imbalance of the dynamic equilibrium between mass gain and mass loss
results in either a growth or a decrease of the ice body. The AIS gains mass
by surface snow accumulation. The mass loss is dominated by two processes
in approximately equal shares (Depoorter et al., 2013): First, mass is lost by
calving of glaciers and ice shelfves where ice breaks off and forms icebergs.
Second, the floating ice shelves loose mass at their base by melting due to the
ocean heat flux. In comparison, only a vanishing low portion is contributed
by ice melting at the base of grounded ice and by surface melting (only at the
Antarctic Peninsula).

The mass balance of the AIS can be estimated by measuring ice surface eleva-
tion changes with laser or radar satellite altimetry, by detecting mass changes
using gravimetry or by balancing the observed accumulation and ice flow over
the grounding line (e.g., Shepherd et al., 2012). Current assessments of the
Antarctic mass balance reveal a negative tendency, corresponding to a contri-
bution of 0.27+0.11 mm per year to global sea level rise (IPCC, 2013).

The ice flow from the interior of the AIS towards its margins is caused by
gravity and is the combined result of creep flow and basal sliding (e.g., Greve
and Blatter, 2009). The flow follows the ice sheet surface gradient and reaches
surface velocities in the order of meters per year in the inner regions of the
ice sheet. At the ice sheet margins, the ice flow is dominated by several fast
flowing ice streams. They transport large amounts of ice at velocities of up to

3
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Figure 4: Effects of subglacial hydrology by the example of the Recovery Region,
Antarctica: The hydrologically connected Recovery Lakes (A-D) collect basal
melt water from upstream areas and release it towards the bedrock trench
underneath the Recovery Glacier. There the concentrated flow of water is
supposed to lower the basal friction of ice and thus increase ice flow veloci-
ties (yellow arrows) (Fig. by Bell et al., 2007).

several hundred meters per year towards the coast or are feeding into adjacent
ice shelves (Rignot et al., 2011a). Large ice surface velocities are commonly
associated with processes at the ice-bed interface, e.g., sediment deformation
or the occurrence of basal water, enhancing the basal sliding.

The existence of water at the ice base is proven by the observation of 379
subglacial lakes within the last five decades (Wright and Siegert, 2012, Fig. 3).
They have been identified using airborne radio-echo sounding (RES), satellite
altimetry and ground-based seismic investigations. Subglacial lakes can occur
despite the very low surface temperatures of the AIS because geothermal heat
flux, frictional heating generated by ice sliding over the bedrock and internal
deformation of the ice sheet act as heat sources. In combination with the insu-
lating effect and the pressure of the up to 4700 meters thick ice cover, the ice
base can locally reach its pressure melting point, first theoretically predicted
by Robin (1955). Model studies reveal that about 55% of the base of the AIS
might be at its pressure melting point (Pattyn, 2010).

Observations also indicate interactions between different subglacial lakes
over distances of several hundred kilometers (e.g., Wingham et al., 2006b;
Fricker and Scambos, 2009; Fricker et al., 2010) and thus reveal that these lakes
are not isolated, but belong to distinct subglacial hydrological networks (Fig. 3).
Basal water lubricates the base of the ice sheet locally and hence leads to a re-
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duced basal drag of the overlaying ice. As a result, fast flowing ice streams
can evolve above areas of enhanced subglacial water flow and the ice velocity
increases over subglacial lakes (e.g., Bell et al., 2007, Fig. 4). Increased ice ve-
locities affect the mass balance of the AIS and thus have a considerable impact
on global sea level rise. Consequently, it is necessary to incorporate basal hy-
drology into ice sheet models as it is considered to be one of the key processes
required to achieve more realistic results with respect to climate projections
(IPCC, 2013).

1.2 OBJECTIVES AND STRUCTURE OF THE THESIS

The aim of this thesis is to gain a better understanding of the Antarctic sub-
glacial hydrological environment which belongs to the least accessible regions
on Earth. Its main components comprise water storage by subglacial lakes
and basal water transport between lakes and towards the grounding line. For
the transport of water different flow regimes exist, having distinct impacts on
the ice sheet’s basal sliding conditions. The type of the locally dominating
flow regime depends on the prevalent basal water pressure and the geological
properties of the ice’s substrate. Therefore, determining the distribution and
nature of water flow at the bed of the AIS is considered a milestone regarding
predictions of the ice dynamics under the influence of a warming climate. In
this work a variety of approaches is combined to gain further insights into the
character and distribution of subglacial water flows and its interactions with
ice dynamics. The applied methods range from the analysis of airborne RES
data and satellite altimetry observations to hydrology and ice modeling and
thus unite remote-sensing and modeling strategies.

The outline of this thesis is described as follows: Chapter 2 and 3 provide
the necessary background knowledge and specific preliminaries for the three
main research Chapters 4 to 6. Chapter 7 contains the final conlusion and an
outlook. Below, the objectives of each chapter are described in more detail:

Chapter 2 gives a brief introduction to the elements of an ice sheet-shelf
system and the principles of ice flow. It contains an overview about different
existing ice models and presents the fundamental equations of ice modeling.
The essential equations for the calculation of ice velocities, ice temperature and
ice sheet-shelf evolution are derived, corresponding to their implementation in
the Revised Ice Model Based on Frank Pattyn (RIMBAY) (Thoma et al., 2014) which
is used in this work.

Chapter 3 describes the components and the current state of research of the
Antarctic hydrological environment. The focus is on the history, detection and
occurrence of subglacial lakes as well as the distinction of different basal water
flow regimes and their impact on ice flow. Principle approaches of modeling



GENERAL INTRODUCTION

subglacial hydrology and their implementation in RIMBAY are presented.

In Chapter 4 the distribution of the two main elements of subglacial hydrol-
ogy (subglacial lakes and basal drainage pathways) is investigated for the AIS,
raising two main research questions: To which extent are subglacial lakes cov-
ering the base of the Antarctic Ice Sheet? To answer this question, locations
and extents of subglacial lakes are modeled by using the observed ice sheet to-
pography. The results are validated by a comparison with the latest inventory
of Antarctic subglacial lakes and the selective interpretation of radar profiles
from RES flight campaigns of the Alfred Wegener Institute (AWI). What are
the drainage patterns of melt water flow beneath the Antarctic Ice Sheet on
a continental scale? This question is addressed by modeling Antarctic basal
water pathways with RIMBAY. Drainage patterns and particular lake drainage
pathways are analyzed as well as correlations between simulated water flow

and satellite-observed ice surface velocities.

Chapter 5 focuses on interactions of subglacial hydrology and ice dynamics
in the West Antarctic Ice Sheet (WAIS) and addresses the following questions:
What controls the spatial and temporal variability of the Ross Ice Streams at
the Siple Coast? The impact of basal hydrology is estimated by considering
local seismic, radar and borehole observations of geological and hydrological
properties as well as sliding velocities at the ice base. Additionally, detected
ice surface elevation changes by the satellites altimetry campaigns IceSat and
CryoSat-2 are consulted. Can modeled basal drainage patterns explain the
current configuration of the Ross Ice Streams? Which potential impact have
satellite-observed surface changes on the evolution of drainage pathways
and what might be the implications for future ice stream dynamics? This
question is approached by assessing the local flow regime of basal water and
modeling basal water pathways and catchment areas for the current and the
estimated prognostic ice sheet geometry with RIMBAY.

In Chapter 6 examines the question: How much do interactions of ice dy-
namics and subglacial hydrology affect the mass balance of an ice sheet?
For answering this question, a new hydrological concept is developed and
coupled to the ice model RIMBAY. In increasing levels of complexity regarding
the coupling of hydrology and ice model, the distinct effects of the particular
interactions are investigated and compared for a synthetic ice sheet.

Chapter 7 concludes the key findings and provides an outlook for possible

future studies.



UNDERSTANDING ICE DYNAMICS AND ICE MODELING

This chapter provides a brief introduction to the components of ice-sheet shelf
systems and the basics of ice flow for the example of Antarctica. Subsequently,
an overview of existing ice flow models is given and the fundamental equa-
tions of ice modeling as well as their implementation in the Revised Ice Model
Based on Frank Pattyn (RIMBAY) is described.

2.1 BASICS OF THE ANTARCTIC ICE SHEET-SHELF SYSTEM

In the following, a short introduction to the elementary processes of ice flow
and a definition of the basic components of the Antarctic Ice Sheet-Shelf sys-
tem (Fig. 5) is given. More comprehensive explanations can be found, e.g., in
Cuffey and Paterson (2010).

The Antarctic Ice Sheet (AIS) measures 13.9 - 10° km? in area and 26.9 - 10° km?
by volume (values inclusive ice shelves, Fretwell et al., 2013) and is situated on
a continental land mass at the South Pole (Fig. 2). It reaches an ice thickness of
more than 4700m and an elevation of over 40oom in the continental interior.
The ice sheet surface is interrupted by mountain ranges and locally protrud-
ing single mountains, called nunataks. At the surface of the ice sheet katabatic
winds carry high density air from the higher and colder elevations down the
ice surface slope towards the coast following gravity. The AIS gains mass by
surface accumulation, in detail via precipitation of snow or diamond dust, a
type of ground-level cloud composed of tiny ice crystals. The ice crystals at
the surface partly evaporate again by sublimation. Snow which is left over

Figure 5: Schematic illustration of several features which belong to an ice sheet/shelf
system, e.g., the Antarctica Ice Sheet with its shelves, and have to be consid-
ered in modeling approaches (Fig. after Sandhédger, 2000).
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from previous seasons is recrystallized into firn, which is denser then snow.
Over the years, the thickness and weight of the firn layer increases, leading to
a further densification until ice forms. The ice then flows under the force of
gravity and through the combined effect of creep flow and basal sliding from
the ice sheet interior to its margins. Depending on the basal thermal regime,
the ice can also be frozen to the bedrock. In this case, the flow of ice is solely
determined by internal deformation. Smooth ice ridges at the ice sheet surface
are separating opposing flow directions, called ice divides.

The mass transport of ice in coastal areas of the AIS is dominated by outlet
glaciers and ice streams: channels of fast flowing ice tens of kilometers wide
and hundreds of kilometers long that reach velocities of up to 1kma™'. Their
enhanced sliding velocities are initiated by processes at the ice base, e.g., sedi-
ment deformation and lubrication by basal water. Water between the ice base
and the underlying substrate originates from basal melting, which is caused by
the complex influences of geothermal heat flux, internal deformation of the
ice, pressure by the overlying ice column and basal friction due to the sliding
of ice over the bed. Basal water can accumulate and form subglacial lakes, large
bodies of water beneath the ice sheet. These subglacial hydrological processes
are described in detail in Chap. 3.

Outlet glaciers are constrained in the sides with exposed bedrock while ice
streams are bounded by areas of slowly moving ice. At the edges of ice streams
shear forces cause ice deformation and recrystallization which make the ice
softer and thus concentrate the deformation to narrow bands at the shear mar-
gins. As a result of intense local shear stress, deep surface cracks form, called
crevasses. Outlet glaciers and ice streams feed into the ocean or into ice shelves,
smooth areas of floating freshwater-ice adjacent to an ice sheet. The grounding
line divides areas of grounded and floating ice. Floating ice shelves might be
locally lifted up by shallow islands or bumps on the seafloor, forming ice rises.
At the base of ice shelves the ocean heat flux causes basal melting, leading
to a thinning of the floating ice. Mass is also lost by calving from ice shelves,
outlet glaciers and ice streams: ice breaks off at the frontal ice-ocean margins
and drifts into warmer waters where it melts eventually. Large pieces of calved
and floating ice are also called icebergs. In the region of the Antarctic Peninsula
also mass loss by surface melting and ablation occurs locally.

2.2 ICE MODELING

Ice models have to face numerous challenges: They must attempt to incorpo-
rate the physics of the complex and highly anisotropic material ice in order to
describe its internal flow. Additionally, they have to deal with the interactions
between ice sheets and ice shelves and their environment at different response
time scales. These are processes at the ice surface (temperature, accumula-
tion, ablation), the ice bottom (heat flux, sliding, interaction with basal water)

and the ice exterior (calving fronts, geographical constrains, e.g., bedrock to-
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pography and nunataks). Some of these external forcings are subject to large
uncertainties (e.g., geothermal heat flux) or locally only sparse observational
data are available (bedrock elevation). Moreover, the application of ice models
ranges from small mountain glaciers (e.g., Alpine glaciers of some kilometers
length) to continental ice sheets (Greenland or Antarctic Ice Sheet with extents
of several thousand kilometers). And finally, all these tasks should be solved
at reasonable computational coast and time scales.

Consequently, several models have been developed during the last decades
which are either specialized in a certain subject or aim for a broad scope of
applications. Some of these models are open source and thus are steadily
improved by a large community of users. Other models base on a commercial
package where ice modeling is only one of several possible applications. In
general, all ice models can be categorized regarding their discretization which
can be Finite Elements (FE) or Finite Differences (FD). FE models are, e.g.,
Elmer/Ice (e.g., Gagliardini and Zwinger, 2008; Gudmundsson et al., 2012;
Gillet-Chaulet et al., 2012), the Ice Sheet System Model (ISSM, e.g., Larour et al.,
2012) and Comsol (e.g., Aschwanden and Blatter, 2009; Humbert et al., 2009).
Examples for FD models are the Parallel Ice Sheet Model (PISM, Winkelmann
et al.,, 2011; Martin et al., 2011), the Community Ice Sheet Model (CISM, e.g.,
Bougamont et al., 2011; Lemieux et al., 2011) and the Simulation Code for
Polythermal Ice Sheets (SICOPOLIS, Greve, 1997a,b; Sato and Greve, 2012).
An overview about recent ice models is given by Bindschadler et al. (2013).

Although all ice models base on the same fundamental equations (see be-
low), they use different implementation strategies to encounter the above chal-
lenges which can lead to different modeling results. Since analytical solutions
are available for idealized setups (e.g., Huybrechts et al., 1996; Bueler et al.,
2007) but not for realistic domains, it is difficult to determine the errors of
each particular model. Therefore, the model validities have to be estimated by
comparing the model outcomes for a series of benchmark experiments (e.g.,
Huybrechts et al., 1996; Pattyn et al., 2012, 2013; Bindschadler et al., 2013).

In this work, the ice model RIMBAY (Thoma et al., 2014) is used. It is based on
the FD higher-order numerical ice-flow model of Pattyn (2003), which has been
tested and applied to many scenarios (e.g., Pattyn, 2002; Pattyn et al., 2004;
Pattyn et al., 2008; Pattyn, 2010). RIMBAY itself has been developed since 2009 at
the Alfred Wegener Institute (AWI) in Bremerhavenm, where the original model
was improved and extended in numerous aspects. The validity of RIMBAY is
proven by several applications (e.g., Thoma et al., 2010, 2012, 2014; Determann
et al., 2012; Goeller et al., 2013) and latest benchmark tests (Pattyn et al., 2013).
In the following, the fundamental equations of ice modeling and the main
calculations of ice velocity and temperature related to the applications in this
work are presented. A list of the used physical constants is given in Tab. 1
and a schematic sequence plan of a model run is drafted in Fig.7. For a
comprehensive description of the ice model implementations it is referred to
Thoma et al. (2014).
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2.2.1 Fundamental equations

In general the field equations for ice modeling follow a continuum thermo-
dynamic mechanics approach based on the conservation of mass, momentum

and energy (e.g., Pattyn, 2003)

i = o
T V- (piV) (1)
dv = o
mEE:V-T+m9 (2)
de = =
PiCp 3, = \V4 (KVG) +Q (3)

with
p; ice density
V  ice velocity with V = (vx, vy, Vvz) = (W, v, W)
g gravitational acceleration with g = (0,0, g)
T  stress tensor
0 potential ice temperature
¢p heat capacity of ice
k  thermal conductivity of ice

Q internal frictional heating due to deformation.

Treating the ice as an incompressible fluid with a constant density the con-

servation of mass equation (Eq. 1) simplifies to

- , ou o0v 0w
The hydrostatic pressure p is defined by the trace of the stress tensor T with
1
p=—3tr(7) (5)
1
= 3 (Txx + Tyy + Tzz)- (6)

Since the hydrostatic pressure is isotropic, only the deviations from p on the
trace of the stress tensor 7 affect the ice deformation. Consequently, it is pro-

ceeded with the deviatoric stress tensor t/ defined as
T{j = Tij + P Oy (7)
1
=Tij — g (Txx + Tyy + Tzz) ‘Sij (8)

where 0y; is the Kronecker-delta. Neglecting the acceleration term in Eq. 2, the

linear momentum can be written as

aT;cx aT;ﬂJ aT;z ap
_F_p
ox * oy * 0z ox
ot ot ot op
yx yy yz
— =0
0x + oy * 0z oy ©)
aT;x T aT;y + aT;z o aj _
0x dy 0z 0z
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Symbol Name Value Unit

[od pressure melting factor 8.7.10" Km™

YT thermal exchange velocity 1074 ms™*

i density of ice 910 kgm™

Po density of ocean water 1028 kgm™3

Pw density of melt water 1000 kgm™3

K thermal conductivity of ice 2.1 Wm™ K™

C sliding rate 107 Pam™/3s/3

Cp heat capacity of ice 2009 Jkg™ K™

Cpo heat capacity of ocean water 3974 Jkg K™

g gravitational constant 9.81 ms™

L specific latent heat of fusion for ice 335 k] kg™
sliding coefficient 1/3

n flow exponent 3

So salinity of ocean water 35 gkg™

To ocean temperature 271.45 K

Table 1: Constants used in ice model RIMBAY.

The stresses T/; can be linked to the strain rates éi; using Glens flow law for

y
polycrystalline ice (Cuffey and Paterson, 2010)

€1] =A (9*) T{jn (10)

where 0* is the ice temperature corrected for pressure-melting (Greve and Blat-
ter, 2009), A (0*) is a temperature-dependent rate factor parametrized accord-
ing to the Arrhenius relationship after Hooke (1981) and n the flow exponent.
Equation 10 can be also reformulated to

Ti; = éyj (11)

with the effective ice viscosity 1 defined as

] Ky —— .
n:EA(G ) n e]n . (12)

The effective strain rate € is the second invariant of the strain rate tensor can
be written as

. T,
€ = Zij Eei)’ eij- (13)

Using the principle of mass conservation (Eq. 4), it can be formulated as

. .2 .2 . . .2 .2 .2
€= \/(-:XX + €5y T Exx€yy + Exy T €52 + €42 (14)

11
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Following the relation between strain rates é;; and velocity gradients with

. 1 avi an
=2 (a]+a> (15)

Eq. 11 can be rewritten as

ou 1T(fouw_ ov 1 (ou al)
9x 2 \ oy ox 2 0
I = 1(2u , ov ov 1(ov , ow
Tll 2T‘| 2 (ay + ax> oy 2 (az + y) (16)
1 (0u ow 1 (0v ow ow
7 (5 +5%) Z<&+@> oz

Finally, the so-called Full Stokes (FS) equations for ice modeling are obtained
after combining Eq. 9 and 16:

ox 0x oy \ dy 0x 0z \ 0z 0x 0x
0 ou ov 0 ov 0 ov ow op
o (may +10) 2y (1ay) 32 (g #13y )~y =0 0
0 ou ow 0 ov ow 0 ow op
o <T]az +T]ax> + 3y (ﬂaz +ﬂay> + Py <2T]az> ~ 3z Pig

In order to find an expression for the pressure p in Eq. 17, Eq.7 is rearranged.
With the use of Eq. 11 the pressure is then yielded as a function of the horizon-
tal velocities and the vertical normal stress.

/ 1

P="Tux — Tyy — Tzz
_ ou n ov (18)
= —<1 ox ' dy Tzz

The stress 1., is obtained by a vertical integration of the last term in Eq. 9 from
the surface S to the height z (e.g., Van der Veen and Whillans, 1989; Pattyn
et al., 2008):

Toz = —pig (S —2) T, dz'. (19)

S

0 , , 0

+aXJTXZdZ +@
z

Ne——n

The first term on the right-hand side in Eq. 19 describes the hydrostatic stress
contribution while the second and the third term describe the vertical resistive
longitudinal stress. In the hydrostatic approximation only the first hydrostatic
term is considered and pressure p can be written as

ou ov
=-M(—+— ig(S—z).
b= (5o 5 ) rmo(s—2) (20
All equations are converted into terrain-following o-coordinates (Fig. 6) by
o — S ; z (21)

where H is the ice thickness. In this manner the vertical coordinate always
ranges from o = 0 at the surface to o = 1 at the ice base and is thus in-
dependent of the local ice thickness and the bedrock elevation. The related
coordinate transformation is omitted here, referring back to Pattyn (2003) or
Greve and Blatter (2009).
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O']ZO

o] SN

i i4+1 i+2 i+3 i+4
—Ax—

X

Figure 6: Schematic cross-section of an ice sheet as an example: terrain-following o-
coordinates which become closer from the ice surface elevation S towards
the bedrock elevation B. The ice thickness is given by H =S — B.

Basal Conditions
Horizontal Velocity

Vertical Velocity
Ice Evolution

Figure 7: Sequence of iteratively solved variables for SIA and ssSA (here the product Hn

is calculated, instead of 1) within RIMBAY (Fig. after Thoma et al., 2014).
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2.2.2  Velocity calculation

2.2.2.1  Horizontal velocity

Solving the FS equations for a larger model domain needs a considerable com-
putational effort. Therefore, common approximations of these equations have
been established. They allow the modeling of entire ice sheets including
their ice shelves in reasonable time spans with an acceptable accuracy (e.g.,
Hindmarsh, 2004). Only thereby, comprehensive parameter studies like in-
vestigations about the impact of various forcing scenarios on current day ice
sheets become possible. In the following, two approximations are briefly intro-
duced: the Shallow Shelf / Shelfy Stream Approximation (SsA) (Morland, 1987;
MacAyeal, 1989) and the sIA (Hutter, 1983; Morland, 1984). For the sake of
completeness, also the Higher Order Model (HOM) approximations by Pattyn
(2003) and Blatter (1995) are mentioned, which are not discussed in detail.

SHALLOW SHELF APPROXIMATION Floating ice shelves move on a stress-
free base (the ocean) and thus show barely internal deformation. Hence, the
assumption can be made that the horizontal velocity is depth-independent.

au_av_

aiz—aiz— (22)

Consequently, several terms can be neglected in Eq. 17, which then simplifies

2 (), 3 (du w\ ¥ _

0x ”ax dy ”ay T‘ax ox

0 ou ov 0 ov op

— IN=—+n— — | 2n—=)|—=—=0

0x (”ay +“ax> * oy ( ”ag> oy 23)
0 ow op
— | 2Nn— | — — = pig-
az<”az> oz "9

Applying the hydrostatic approximation (Eq.20) the vertical momentum bal-

to

ance equation vanishes and an integration of Eq. 23 from the ice base B to the
surface S leads to (e.g., MacAyeal, 1989; Greve and Blatter, 2009; Pattyn, 2010)

0 ou ov 0 ou ov 0S
— |2Hn [ 2— 4+ — — |Hn({ —+— || — = p;gH—
ax[ ﬂ( ax+ay>}+ay[ ”<ay+ax>} Tox = Pig ox

d oV au d U aV 35S
9 o (22Y O 9 (Y VY gy = g
ay[ n(aeraX)]Jrax{n(aeraX)] oy = P9y

where H = S — B is the ice thickness, V = (U, V) is the vertically averaged hor-

(24)

izontal ice velocity and T, = (Tbx, Tby) is the basal shear stress. The latter can
be formulated in terms of the basal friction parameter B2 and the horizontal

ice velocity:

T, = p2V. (25)
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For floating ice (e.g., ice shelves or ice above subglacial lakes) the basal friction
parameter 3 is zero and, consequently, the basal shear T, in Eq. 24 vanishes.
The lacking vertical shear stresses reduce the effective strain rate ¢ (Eq. 14) to

e = \Jeo el + Eaxtyy + 2, (26)

SHELFY STREAM APPROXIMATION  Fast flowing ice streams show a similar
behavior to floating ice since they slide with small internal deformation over
slippery or deformable bed structures. Thus, the above approximations made
for the Shallow Shelf Approximation are valid for them too and Eq. 24 and 25
can be used with a basal friction parameter 32 > 0, calculated below.

SHALLOW ICE APPROXIMATION  For large ice sheets (e.g., Antarctica) the
horizontal extension (=4 00o km) is orders of magnitudes larger than the verti-
cal extension (ice thicknesses up to ~400om). Under the assumption that the
horizontal variations of the vertical ice velocities are much smaller than the

vertical variations of the horizontal ice velocities, the normal stress deviators

!/ /
XX/ Tyy

ligible. Subsequently, all normal stresses are equal to the negative pressure

T and T, as well as the shear stress in the vertical planes Ty are neg-

accordingly Eq.7 and the momentum balance (Eq. 17) reads

0 ou op
az<naz>_ax0

0 ov op
—(n=) = 2E = 2
0z (ﬂ 62) oy 0 (27)
op
_aiz = Pig-

The integration of the vertical momentum balance leads to a further simpli-
fication of the hydrostatic approximation (Eq.20) and defines the pressure p
as

p=0ig(S—z). (28)

Thus, the horizontal velocities become decoupled and a local solution of the
horizontal velocity field i = (u,v) can be obtained by

z
) = ~2(pig) " IVSI" VS | A(6)(S—2)" a2+ (29)
B
where iy, = 1(B) is the basal sliding velocity at the ice-bedrock interface at

elevation B calculated below.

2.2.2.2  Basal sliding

The calculation of the ice velocity requires a boundary condition at the ice
base. For the Shallow Ice Approximation (SIA) this is the basal ice velocity iy
(Eq.29). Assumed that the ice is frozen to solid bedrock, it can be simply set
to zero, leading to a no-slip condition. In case the ice temperature reaches

15
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the pressure melting point at its base it might start sliding even over solid
bedrock. In order to obtain the sliding velocity, a Weertman-type sliding law
(e.g., Pattyn et al., 2013) is applied which links the basal velocity to the basal
shear stress:

1
p2

with C is the sliding rate and m is the sliding coefficient. Following Van der

N I R

1
[Tp|™ " T (30)

3=

Up = Tp = C

Veen and Whillans (1989) the basal shear stress Ty, = (Tbx, Tby) is given by

0B 0B
Tox = T;z - (2T7/<x + T{Jy) & - T;y@
, , ,,0B _, 0B G1)
Toy = Tyl — (ZTyy + TXX) @ — Txy&'

For the SIA these equations simplify to
T, = —pigHVS (32)

and in combination with Eq. 30 the basal velocity is obtained, required for the
upward integration of all horizontal ice velocities (Eq. 29).

For calculating the velocity field in the SSA (Eq.24) the basal shear stress
T, = B2V is needed as a boundary condition. In case of the Shallow Shelf
Approximation no basal friction is present and the basal friction parameter
can be set to 3% = 0. In the Shelfy Stream Approximation the non-vanishing
basal friction can be obtained from Eq. 30:

1, 11
B2 =Cm |Tp|' ™. (33)

In order to reduce the nonlinearity of the SSA momentum balance, the basal
shear stress Ty, in Eq. 33 can be expressed by the approximation given in Eq. 32
(e.g., Cuffey and Paterson, 2010). Typical values for BZ are the range of B2 =0
for a stress-free ice base (e.g., above subglacial lakes and for ice shelves) and
B2 ~25000Pam™a (typical ice velocity of v = 4ma™ at a basal shear stress
of Ty = 100kPa, Cuffey and Paterson, 2010).

2.2.2.3 Vertical velocity

The vertical velocity w at elevation z is obtained by integrating the incompress-
ibility condition (Eq. 4) from the ice base upwards:

w(z) =wp —J <g:: + 2:) dz’. (34)
B

At the ice base the vertical velocity wy, is given by

~ +Vb7y — My (35)

where My, is the basal melt rate, calculated below.
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2.2.3 Temperature calculation

2.2.3.1 Ice temperature

The energy conservation equation (Eq. 3) can be split into an advective, a dif-

fusive and a source term:

0 - .
by [ 50+ €8 | —«T0 4 Q (36)
Advection Diffusion  [nternal Sources

where the heat capacity c, and the thermal conductivity k are assumed to be
constant. For the calculation of the temperature evolution it is presumed that
internal deformation Q is the only internal heat source (Cuffey and Paterson,
2010) with

Q = 2ét’ =4me? (37)

where T’ is the effective deviatoric stress. The neglection of horizontal diffu-
sion leads to

00  k 9’0 00 00 06

= U — Vo —W— - 4nel.

ot picp 022 Hox "ay Yoz +ome G8)
At the ice surface Eq. 38 is forced by the mean surface air temperature 6. At
the ice base, it has to distinguished between floating and grounded ice. For
floating ice a Dirichlet boundary condition according to the temperature of the

pressure melting point is applied (e.g., Cuffey and Paterson, 2010):

Op = —aH (39)

with the pressure melting factor «. For grounded ice the Neumann boundary
condition is used:

aeb _ _G +fbab ( O)
0z K 4

where the basal heat-flow into the ice is given by the geothermal heat flux G
and frictional heating contribution Ty iy, resulting from the ice sliding over the
bedrock.

2.2.3.2 Basal melting

The basal melt rate My, for grounded ice is computed by balancing the heat
fluxes at the ice base. These are the flux of heat into the ice base dependent on
the ice temperature gradient, the geothermal heat flux at the bedrock surface
and the frictional heating at the ice-bedrock interface (e.g., Pattyn, 2003):

1 007
My = —p; b LG4+ Tpv
b L Pi <|< 352 G Tbvb> (41)

where L; is the specific latent heat of fusion for ice and 0} is the basal ice
temperature corrected for pressure melting. The last term in Eq. 41) is the con-
tribution of basal frictional heating which can dominate the melting at the ice
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base in areas of faster ice flow (e.g., Joughin et al., 2004; Cuffey and Paterson,
2010) but can be ignored in areas where the ice is frozen to the bedrock.

For floating ice the basal melt rate My, can be either obtained by an external
forcing, e.g., an ocean model (e.g., Grosfeld et al., 1997; Determann et al., 2012)
or it can be calculated using the parametrization of Beckmann and Goosse

(2003):

Mp = fpocpoYT (To — T¢) At (42)
Pi

where p, is the density of ocean water, cp, is the the specific heat of ocean
water, yT is the thermal exchange velocity and T, is the ocean temperature.
The area A is the effective area for melting and can be regarded as a tuning
factor depending on the particular geometry of an ice shelf and especially its
cavities. The freezing point temperature Tr at the elevation of the ice shelf base
Hy, is parametrized by

Tr = 273.15K +0.0939K — s, - 0.057K+Hyp, - 7.64 - 1074 Km ™! (43)
with the ocean water salinity s,.
2.2.4 Ice sheet evolution
The conservation of mass is given by Eq.1 which is integrated from the ice

base B to the ice surface S under the assumption of a constant ice density p;.
Thus, an equation for the spatial evolution of the ice thickness H = S—B is

gained
oH oUH oVH
(=52 M
ot < ax | ay >+ (44)

where U and V are the vertically averaged horizontal velocities. The mass
balance M in Eq. 44 is defined as

M =M; —Myp (45)

where M comprises local surface accumulation and surface melt-water abla-
tion and My, basal melting and refreezing.



INTRODUCTION TO ANTARCTIC SUBGLACIAL
HYDROLOGY

Investigations over the last five decades reveal the existence of a wide-spread
hydraulic system beneath the Antarctic Ice Sheet. It comprises hundreds of
lakes at the ice-bed interface which are integrated in distinct subglacial hy-
drological networks. In this chapter, the main objects of research regarding
Antarctic subglacial hydrology are considered: subglacial lakes and subglacial
water flow. The origin and interactions of subglacial lakes with the overlying
ice sheet are described as well as the methods and history of their exploration.
Different regimes of subglacial water flow and their impact on the basal slid-
ing of the ice sheet are discussed and illustrated. Furthermore, fundamental
methods of modeling subglacial hydrology are introduced: the calculation of
the basal hydraulic potential and the computation of basal water fluxes and
pathways using the balance flux approach.

3.1 SUBGLACIAL LAKES
3.1.1  Origin and motivation

Antarctic subglacial lakes are discrete bodies of water that form at the base
of the East and West Antarctic Ice Sheets between ice and bedrock (Fig.8).
Despite the very low surface temperatures of the Antarctic Ice Sheet they can
exist because large areas of the ice sheet base are at the pressure melting point,

N

Cored
22 Miles |-

( >~ South Pole
+

% -
/" Lake Vostq

Figure 8: Schematic cross section of Lake Vostok beneath the East Antarctic Ice Sheet,
the largest known subglacial lake (Fig. by National Science Foundation,
2007a).
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actively melting through the combined influence of the insulating ice cover,
strain heating and the geothermal heat flux into the base of the ice sheet. Melt
water then flows under the forces of gravity and overburden ice pressure and
accumulates within subglacial topographic hollows forming subglacial lakes
(e.g., Kapitsa et al., 1996; Wright and Siegert, 2012). Following Duxbury et al.
(2001) todays subglacial lakes might have already existed before the complete
glaciation of Antarctica and survived the subsequent build-up of the Antarctic
Ice Sheet. Pattyn (2004) confirmed this theory with ice model simulations
while Siegert (2004) challenged this view and stated that during the ice sheet
growth the ice would have grounded throughout the entire lake bed.

Subglacial lakes in Antarctica are studied for three scientific reasons: First,
subglacial lakes comprise unique and one of the most extreme habitats on
Earth. They are isolated from the circulation of the atmosphere and subject to
permanent darkness, low temperatures of -2 to -4°C and enormous pressure
of 22-4obar (e.g., Carter et al.,, 2007). It has not been possible to take and
analyse direct water samples yet. However, microbes were found in samples of
accreted ice (water of the lake refrozen to its ice roof) proofing the existence of
life despite the extreme conditions (Abyzov et al., 2001). Within the perspective
of planetary science this indicates that life might exist under the surface of
the Martian ice cap or the icy moons of Saturn and Jupiter (Wynn-Williams
and Edwards, 2000; Duxbury et al., 2001; Siegert et al., 2001). Techniques
developed for the exploration of Antarctic subglacial lakes (Siegert et al., 2007)
have therefore applications to the search of extra-terrestrial life as well.

Second, sediments existing at the base of subglacial lakes may contain high-
resolution records of ice sheet history (e.g., Siegert, 2000). Following Zotikov
(1987) the steady flow of dirty ice across a subglacial lake combined with low
melting rates at the ice-lake interface of about 1mma~' could result in a very
low sedimentation rate. Since subglacial lakes may be millions of years old,
sediment layers in the order of tens or hundreds of meters could have accumu-
lated at the lake bottom. These sedimentary records would date back to the
time at which the lake was formed and could provide climate informations
and biodata older than 5-30million years. Current ice cores only refer back
in ice sheet history for 740000 years (Augustin et al., 2004) whereby a possi-
ble maximum age of about 1.5 million years has been estimated for Antarctic
ice cores (Fischer et al., 2013). However, no sediment cores within Antarctic
subglacial lakes have been drilled so far.

The third reason is the most relevant one for this study: subglacial lakes
are an important component of the widespread hydraulic system beneath the
Antarctic Ice Sheet. They are known to interact with the overlying ice and
considerably affect the ice dynamics. The basal friction of the moving ice sheet
vanishes over subglacial lake surfaces. This leads to a distinct local increase
of the ice velocities (e.g., Kwok et al., 2000; Pattyn et al., 2004) and also has
an impact on the adjacent and faraway ice flow (Thoma et al.,, 2012). The
modeling of water circulation inside a subglacial lake reveals local melting and



3.1 SUBGLACIAL LAKES

refreezing rates at the ice-water-interface in the order of 1--itomma~' (Thoma
et al., 2008, 2009, 2010, 2012). These thermodynamical processes at the lake-ice
boundary alter the ice temperature up to 10 % and thereby modify the highly
non-linear ice viscosity (Thoma et al., 2012) which rules the ice creep behavior.
In summary, it can be stated that subglacial lakes crucially affect the velocity
and direction of the ice flow as well as the thermal regime of the ice sheet.

3.1.2  Detection methods

The detection of subglacial lakes beneath the Antarctic Ice Sheet which is fea-
turing ice thicknesses of over 4ooom is a challenging task. Here, a short de-
scription of the most common techniques used and developed within the last
five decades is presented: the identification of subglacial lakes by radio-echo
sounding (RES), satellite-based ice surface altimetry and seismic explorations

(Fig.9).

RADIO-ECHO SOUNDING  The technique of RES takes advantage of the abil-
ity of electromagnetic waves to travel comparatively freely through both air
and ice. These waves are partially reflected at boundaries between materi-
als with different dielectric properties and therefore different speeds of wave
propagation. A pair of active transmit/receive radar antennas attached to an
airborne (e.g., Oswald and Robin, 1973; Blankenship et al., 2001) or ground-
based vehicle (e.g., Welch and Jacobel, 2003) can thus be used to detect reflec-
tions from the base or within an ice sheet. Airborne RES with a frequency of
60MHz is able to penetrate over 400om of cold ice (e.g., Robin et al., 1977)
because the Antarctic ice with its low temperatures is relatively transparent to
electromagnetic radiation at this frequency (Johari and Charette, 1975). The
basal reflection strength depends predominantly upon the difference in dielec-
tricity of the ice (€=3.2, Bohleber et al., 2012) and the underlying material.
Because the dielectric constant of water (e=81) is much higher than the one of
bedrock (e=4 to 9) the ice-water interface causes the much stronger reflection
(Fig.9a). Additionally, the bedrock surface which is rough compared to the
smooth water surface of a subglacial lake scatters the wave energy, decreasing
its reflection strength further (Siegert, 2000). Consequently, subglacial lakes
can be identified on RES records by specular or mirror-like reflections with an
echo strength being 10-20dB brighter than reflections from ice-bedrock inter-
faces. The depth of subglacial lakes can not be determined by RES because
the majority of the electromagnetic radiation is reflected at the lake surface.
The transmitted part is quickly absorbed and therefore does not yield enough
energy to be recorded at the ice sheet surface.

ICE SURFACE ALTIMETRY Above subglacial lakes the shear stress at the
ice-water interface tends to zero and the overlying ice sheet is floating in
hydrostatic equilibrium. Thus, the ice sheet surface within the confines of
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Figure g9: Detection of subglacial lakes. (a) Airborne radio-echo sounding (RES) fea-
tures bright and flat reflections from water surfaces at the ice base (Fig. by
Siegert et al., 2001). (b) Ice surface topography from laser altimeter and ice-
penetrating radar measurements. The flat featureless region in the center
of the image shows the floating ice over Lake Vostok (Fig. by Studinger
et al.,, 2003). (c) Seismic exploration of subglacial Lake Ellsworth, seismic
charges (blue) send waves down through the ice which are reflected back to
the surface (red) and analyzed (Fig. by British Antarctic Survey, 2008).
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the subglacial lake appears flat and featureless, similar to a floating ice shelf
(Fig. gb). Lakes smaller than 4 km across are not found to have this correspond-
ing flat ice surface because the ice above is neither in hydrostatic equilibrium
nor damps the small basal flow perturbations (e.g., Wright and Siegert, 2011).
Satellite-based altimetry is a method which provides ice surface elevation data
within an accuracy of a few tens of centimeters and thus has the potential to
identify the locations and outlines of subglacial lakes by observing the corre-
sponding flat surface areas (e.g., Bell et al., 2007; Smith et al., 2009). It can be
distinguished between satellite radar and laser altimetry which both have their
advantages. Satellite radar altimetry by, e.g., the satellites ERS-1/2 (European
Remote Sensing satellites), ENVISAT (ENVIronment SATellite) (e.g., Roemer
et al., 2007) and CryoSat-2 (e.g., Wingham et al., 2006a) measures the elevation
averaged over a footprint of about 15km unaffected by cloudage but needs
corrections for measuring inclined surfaces. Satellite laser altimetry by, e.g.,
ICESat (e.g., Studinger et al., 2003; Pritchard et al., 2012) has a relatively small
footprint of about 7om but requires a clear sky and has to deal with uncer-
tainties related to laser mispointing. Observed short-term topographical ice
surface changes can be also used to detect so far unknown lakes (e.g., Wing-
ham et al., 2006b). However, they are also used to estimate the volume of basal
water drainage events and are therefore discussed in the next section.

SEISMIC EXPLORATION  Explosives are buried up to tens of meters below
the ice surface to act as sources for seismic explorations (e.g., Peters et al.,
2008; Woodward et al., 2010). Their detonation generates elastic waves, which
propagate within the ice until they are scattered by any obstacles like bedrock
or water surfaces. The reflections are detected by geophones lined up at the
surface and analyzed (Fig.9c). A new seismic exploration approach uses a
truck-mounted vibrator as seismic source. In contrast to the impulsive char-
acteristics with durations of milliseconds related to an explosive source a con-
trolled vibrator emits energy as a finite amplitude pressure pulse over many
seconds. Energy losses by inelastic behavior are thus much less because of
reduced instantaneous forces (Eisen et al., 2010). Seismic explorations are time
and labor intensive to carry out and therefore not suitable for large-scale in-
vestigations of the Antarctic Ice Sheet. They are more appropriate to locally
confirm deductions about the subglacial environment from RES and satellite
altimetry surveys. In addition, seismic explorations are capable of measuring
the depth and thus the volume of subglacial lakes .

3.1.3 History, inventory and occurrence

In 1960 Russian pilots observed persistently flat regions on the surface of the
East Antarctic Ice Sheet and used them as navigational aids, unwitting that
they are related to lakes beneath the ice sheet (Robinson, 1960). In 1967 the first
subglacial lake was discovered using RES near the Russian Sovetskaya Station
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Figure 10: Map of Antarctica showing contours of ice sheet elevation and all currently
known lakes which were investigated by RES (black triangle), seismic sound-
ing (yellow triangle), gravitational field mapping (green triangle), surface
height change measurement (red circle), shape identified from ice surface
feature (square). Vostok Subglacial Lake is shown in outline. (Fig. by
Wright and Siegert, 2012)
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by Robin et al. (1970), quickly followed by the detection of 17 more lake-type
basal reflections in that region (Oswald and Robin, 1973). Ridley et al. (1993)
identified the outlines of a large lake from ERS-1 satellite data below the Rus-
sian Vostok Station. In combination with RES observations and reanalysed seis-
mic data from 1963 /64 Kapitsa et al. (1996) identified the contemporary largest
and deepest Antarctic subglacial lake, Lake Vostok. Henceforth, the number
of discovered subglacial lakes increased steadily. Siegert et al. (1996) listed 77
lake locations in their inventory in 1996 and until 2005 already 145 subglacial
lakes were surveyed (Siegert et al., 2005). ICESat laser altimetry investigations
by Smith et al. (2009) added another 130 subglacial lakes to the inventory and
extensive RES campaigns eventually lead to the number of 379 presently known
subglacial lakes in Antarctica (Wright and Siegert, 2012). The largest subglacial
lake, Lake Vostok, measures 280x 44 km with a surface area of 14 oookm? and
a maximum lake depth of 1 100m (Studinger et al., 2004; Filina et al., 2008).
Other prominent large lakes are the four Recovery Lakes (1 500-4 500 km?), 9o
Degree East Lake (2 000 km?), Sovetskaya Lake (1 600 km?), Adventure Trench
Lake (780km?), Concordia Lake (617km?), South Pole Lake (42km?), Sub-
glacial Lake Ellsworth (28.9 km?), Vincennes Lake (26.6 km length) and Aurora
Lake (18.3 km length) (Surface areas/lake lengths by Wright and Siegert, 2012)
(Fig. 10).

The discovered Antarctic subglacial lakes are not equally distributed over
the entire ice sheet because their occurrence requires two local conditions: First,
the ice sheet base must be at its pressure melting point to generate melt wa-
ter. Second, appropriate topographic hollows must exist to allow this water
to accumulate. The ice sheet above subglacial lakes is floating in hydrostatic
equilibrium, meaning that the water pressure is equal to the overburden ice
pressure. Consequently, an existing gradient of the ice thickness causes an
inclination of the lake-ice surface which is about 10 times (the exact value de-
pends on the ice density) reverse to the ice surface slope. Hence, subglacial
lakes can only arise in bedrock hollows with gradients being greater than 10
times the reverse ice sheet surface slope (e.g., Shreve, 1972; Siegert, 2002). Sub-
glacial lakes therefore preferably occur in regions with low surface slopes. The
distribution of the identified subglacial lakes in Fig. 10 shows that their major-
ity and especially the large lakes are grouped within 200 km of an ice divide
(Dowdeswell and Siegert, 2003). There, the ice surface slopes are low and the
ice sheet reaches its maximum thickness and thus sufficiently isolates the ice
base from the low surface temperatures allowing the geothermal heat flow to
cause basal melting. A clustering of lakes within coastal regions associated
with fast ice-flow is striking, too (e.g., within the Recovery Ice Stream down-
stream of the Recovery Lakes, Smith et al., 2009) (Fig.10). Fast flowing ice
streams have low surface gradients (e.g., Bennett, 2003) and could produce
basal melt water by frictional heating or sediment deformation due to their
high basal sliding rates (e.g., Beem et al., 2010) or receive upstream generated
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Figure 11: Active subglacial lakes: (a) Schematic illustration of correlated ice surface
lowering (green) and uplift patterns (red) above adjacent subglacial lakes
indicating that these lakes are linked (Fig. by SCAR). (b) Ice sheet surface
deformation caused by the drainage of subglacial Lake Cook, mapped by
CryoSat-2 interferometric mode data (Fig. after McMillan et al., 2013).

melt water from their tributaries (e.g., Joughin et al., 2004).

3.2 SUBGLACIAL WATER FLOW
3.2.1  Observations and estimates

Water flow beneath the Antarctic Ice Sheet eludes a direct monitoring. How-
ever, observations of interactions between subglacial lakes over several hun-
dred kilometers indicate that these lakes are not isolated and distinct sub-
glacial hydrological networks exist (Wingham et al., 2006b; Fricker et al., 2007;
Carter et al., 2009b; Fricker et al., 2010; Fricker and Scambos, 2009). Satellite-
based observations of short-term ice surface elevation changes are interpreted
as an implication of filling or discharge of so-called active subglacial lakes (e.g.,
Smith et al., 2009; Carter et al., 2009b). The extent of detected surface defor-
mations with timescales of months or years can be used to indirectly estimate
the volume of such basal water movements (Fig. 11). Deduced volume fluxes
vary from about 1 to 20m3 s™ (Gray et al., 2005; Fricker and Scambos, 2009). In
some cases up to gom3 s~ (Wingham et al., 2006b; Fricker et al., 2007) and even
peak values of about 300m3s™ (e.g., Carter and Fricker, 2012) are estimated.

3.2.2  Water flow regimes

For the transport of water at the base of an ice sheet there are two fundamental
water flow regimes: channelized and distributed flow systems (e.g., Fountain
and Walder, 1998; Hewitt et al., 2012; Schoof et al., 2012). Both can exist in
parallel and have different characteristics. Depending on the prevailing water
pressure and the local geological properties at the ice base one regime can
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(@) (b)

Figure 12: Channelized water flow: (a) Schematic semicircular Roethlisberger channel
(cut into the ice base) which size is determined by the relation between
melting and creep closure (Fig. after Schoof, 2010). (b) Nye channels
(cut into the subglacial bedrock) may be accompanied by Roethlisberger
channels incised into the ice above (Fig. by Fountain and Walder, 1998).

dominate the water drainage (e.g., Flowers et al., 2004; Schoof, 2010; Hewitt,
2011; Sundal et al., 2011). Both regimes are described as follows:

CHANNELIZED FLOW  Channels at the ice-bedrock interface transport basal
melt water at high effective pressure (ice overburden pressure minus water
pressure) (Shreve, 1972). The energy dissipated by the friction of fast flowing
water melts the ice at the roof of the channel and counteracts the tendency for
ice creep (caused by the overburden ice pressure) to close the channel (Fig. 12a).
As a result, channel sizes rapidly adapt to the amplitude of prevailing water
fluxes (e.g., Spring and Hutter, 1982). The effective pressure increases (water
pressure decreases) with increasing water flux. Hence, bigger channels attract
water from smaller ones and grow at their costs. This leads to the formation of
an effective arborescent channel drainage structure (e.g., Schoof, 2010). Con-
sequently, channelized systems are spatially concentrated and transport large
volumes of water. Examples of channelized systems include Roethlisberger
channels incised into the ice base (Roethlisberger, 1972) (Fig.12a) and Nye
channels cut into bedrock (Nye, 1973) (Fig. 12b). Channelized systems act to
reduce slip by drawing water from off-axis flow and increasing coupling there.
Their net effect is to reduce ice slip and thus ice discharge.

DISTRIBUTED FLOW  Distributed systems are laterally extensive and trans-
port a small volume of water at low effective pressure. One example for dis-
tributed water flow is given by systems of linked and water-filled cavities (Lli-
boutry, 1968; Fowler, 1986; Gagliardini et al., 2007). They emerge by the ice
flowing over bedrock bumps and forming cavities at their lee sides. The size
of each cavity is mainly governed by the size and form of the obstacle at the
ice base, by the ice sliding velocity and by the ice overburden pressure which
tends to close the cavity by ice creep (Fig. 13a). Such cavities are connected by
small orifices which are the major restriction for water flow in cavity networks
and thereby keep the effective pressure in the entire system down. An ideal-
ized subglacial cavity network is shown in Figs. 13b and 13c where a plan view
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Figure 13: Distributed water flow through linked cavities: (a) Schematic basal ice cav-
ity behind a bedrock protrusion. Its size is defined by the interplay between
ice sliding and creep closure (Fig. after Schoof, 2010). (b) and (c) Idealized
network of linked cavities at the ice base. The white areas in the plan view
show grounded ice, the gray areas are water-filled basal cavities connected
by orifices and the arrows indicate the water flow directions. The cross
sections reveal the limiting impact of the orifices on the water flow of the
system (Figures by Fountain and Walder, 1998).
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Figure 14: Distributed water flow: (a) Darcian flow within till or sediment at the ice
base. (b) Flow in wide, shallow and ice-roofed channels cut into the till.

(Figures after Fountain and Walder, 1998)
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and two cross sections illustrate the key role of the orifices. Other examples
for distributed flow systems are flow through a water film between ice and
bedrock (Weertman, 1972) and flow within groundwater and till (Alley et al.,
1986) (Fig.14a). The water flow in channels eroded into sediment at the ice
base (Fig. 14b) shows the properties of distributed flow systems, too. Walder
and Fowler (1994) found that these wide, shallow and ice-roofed channels form
a distributed, non-arborescent system due to the specific sediment properties
and the mechanics of sediment transport. In summary, it can be stated that
all these distributed water flow systems tend to enhance slip along the ice-bed
interface, because effective pressure decreases with increasing water flux.

3.3 SUBGLACIAL HYDROLOGY MODELING

During the last decades promising efforts have been made to achieve mathe-
matical descriptions of the particular flow regimes introduced above (e.g., Lli-
boutry, 1968; Roethlisberger, 1972; Weertman, 1972; Spring and Hutter, 1982;
Fowler, 1986; Walder and Fowler, 1994; Gagliardini et al., 2007). Meanwhile,
mathematical descriptions for collocated distributed and channelized water
flow systems are available, too (Flowers et al., 2004; Schoof, 2010; Schoof et al.,
2012; Hewitt, 2011; Hewitt et al., 2012). They are well implementable for the
modeling of small mountain glaciers where high resolution data-sets of the
order of hundreds of meters for ice thickness and bedrock elevation exist.
However, for large ice sheets or even continental scale modeling their appli-
cation is limited, since the available data base is too coarse. Locally, numer-
ous airborne campaigns in Antarctica (e.g., IceBridge, IceCap, IceGrav) make
high-resolution bedrock digital elevation models available. But for the whole
Antarctic Ice Sheet typical elevation models provide the required geophysical
data on a 1 to 5km grid scale (Le Brocq et al., 2010; Fretwell et al., 2013) and
still large areas of the bedrock are interpolated. Describing channelized water
flux between adjacent grid cells at these scales would require the assumption
of an appropriate channel density (Hewitt, 2011) or to model the hydrology at
higher resolution than the bedrock topography data available and face major
computational costs.

Additionally, the governing flow regime itself depends very much on the
local geological properties at the ice base (Sec. 3.2.2). They might range from
solid bedrock, rough debris and till, to soft sediments. For the Antarctic Ice
Sheet these very important basal conditions are only known from a very sparse
number of boreholes (e.g., Kamb, 2001). Thus, they are basically unknown for
the majority of the Antarctic continent as the ice sheet base has been quite
inaccessible for direct observations thus far. This inaccessibility means as well,
that none of the existing mathematical theories for possible flow regimes can
be easily proofed by in-situ explorations of the hydraulic system at the base of
the Antarctic Ice Sheet.
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In this study, the interactions between ice dynamics and subglacial hydrol-
ogy are investigated on large and even continental scales. In order to confine
the computational costs and avoid the uncertainties related to insufficient in-
formations about the geological properties at the ice base, the focus is directed
towards modeling approaches reduced to the essentials of subglacial hydrol-
ogy: First, the calculation of the hydraulic potential and its gradients to deter-
mine the flow direction of basal water and to identify spots where water could
accumulate and form subglacial lakes. Second, the computation of the bal-
ance flux to spatially trace subglacial water flow and obtain local balance flux
rates. In the following, the primary objective is the description of distributed
flow systems because they are (in contrast to channelized systems) assumed to
lower the friction at the ice-bed interface and thus considerably influence the

ice dynamics.

3.3.1 Basal hydraulic potential

Independently of the prevalent flow regime, melt water at the base of the ice
sheet follows the gradient of the hydraulic potential p (Shreve, 1972)

P = Pw9gzZ+ pw (46)

with py the water density, g the acceleration of the gravity and p,, the water
pressure at the considered point of elevation z. The effective pressure peg. at
the ice base is defined as the ice overburden pressure p; minus water pressure

Pw:
Peff. = Pi — Pw- (47)

For distributed water flow systems the assumption can be made, that the effec-
tive pressure pe. is close to zero (e.g., Budd and Jenssen, 1987; Alley, 1996) and
thus pw ~ pi. Sparse borehole measurements show p,, > 0.95p; (e.g., Kamb,
2001) and confirm this approximation. Consequently, the hydraulic potential
p can be approximated by

P = pwgz + i (43)

with the ice pressure p; = p;gH, where H is the ice thickness and p; the ice den-
sity. For reasons of vividness Eq. 48 with [p] = Pa is converted into the water
equivalent hydraulic potential P = p/(pwg) with [P] =m a.s.l,, obtaining

P=B+HX (49)

Pw
where B is the bedrock elevation. The calculation of the hydraulic potential for

distributed water flow (Eq. 49) was implemented in the Revised Ice Model Based
on Frank Pattyn (RIMBAY).
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Figure 15: Hollow filling algorithm, applied to a one-dimensional hydraulic poten-
tial P(x): (a) Simple hollows are set to their lowest neighbor (cyan). (b)
More complex hollows are iteratively filled up (in the following order: cyan,
blue, green, red). The concept can be extended for the application to two-
dimensional hydraulic potentials.

3.3.2 Filling of hydraulic potential hollows

A natural hydraulic potential surface (Eq.49) defined by a realistic bedrock
and ice sheet topography most likely contains several local minima or hollows.
The upstream hydraulic potential area of a hollow is called its catchment area.
The flow of basal water generated in this area follows the hydraulic gradient
towards the hollow. Under the precondition that the ice base adjacent to a hol-
low in the hydraulic potential is at its pressure melting point, melt water can
accumulate in the hollow and form a subglacial lake. This finding can be used
to predict locations and extents of potential subglacial lakes by identifying and
filling the hollows of a given hydraulic potential.

A filling algorithm was developed and implemented in RIMBAY which in-
cludes the filling of adjacent hollows and is therefore nontrivial. In an iterative
way all minima in the potential are identified and set to the value of their low-
est neighbor until no more minima exist. A tree search algorithm ensures, that
minima are identified, too, which consist of adjacent grid cells with exactly the
same value surrounded by higher values (Fig. 15).

3.3.3 Balance flux

A well established method to trace the paths of subglacial melt water is the bal-
ance flux concept (Quinn et al., 1991; Budd and Warner, 1996; Tarboton, 1997;
Le Brocq et al., 2006, 2009). This concept is easy to implement, fast and well ap-
plicable to continental scale modeling (e.g., Pattyn, 2010). The approach makes
the assumption that the water pressure is equal to the overburden ice pressure
and thus only includes distributed flow. It presumes a basal hydraulic system
in steady state and delivers the associated water flux for every grid cell, but
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does not describe water pressures. Below, the concept and its implementation

are introduced and some basic examples are presented.

CONCEPT In a two-dimensional horizontal (x,y) domain, where My, (x,y)
is the basal melt rate as water volume equivalent, v (x,y) is the vertical
averaged water velocity and W(x,y) is the thickness of the water layer, the
steady-state balance condition reads

div (Wv(w)) — M, (50)

with the divergence operator div. Using Gauss’s divergence theorem Eq. 50

can be expressed in its integral form:

H My, dx dy :J wyW . qdl. (51)
S C

Here, the gain of melt water within any closed area S in the (x,y) domain
balances the net outward water flow through its boundary C with length 1 and
the outward pointing unit vector . The right-hand term in Eq. 51 represents
the scalar volume flux ® with [®] = m3a~' which can be calculated for any

section C’ of the boundary with

0= J Wy LR/ dL. (52)
C/

A horizontal vector flux density ¢ with [¢] = m?a~! is given by

b =Wy (53)

Its spatial distribution ¢(x,y) is commonly referred to as the balance flux dis-

tribution.

IMPLEMENTATION  Under the assumption that water flow follows the steep-
est gradient of the hydraulic potential (Eq. 48), the balance flux concept can be
implemented following three different algorithms (Quinn et al., 1991; Budd
and Warner, 1996; Tarboton, 1997). All of them yield the balance flux ¢y
(Eq. 53) at every grid point (i,j) for a finite differences discretization with a
rectangular (x,y) grid of grid spacing Ax and Ay. However, the three algo-
rithms differ in the number of adjacent grid cells which are locally involved
in the calculation of the balance flux, illustrated in Fig.16. A comprehensive
comparison of these different schemes is given by Le Brocq et al. (2006).

In RIMBAY, the algorithm of Budd and Warner (1996) was implemented
(Fig. 16a). It uses the four nearest neighbor grid cells to solve Eq.50. In the
following, a detailed description of the implementation is given: The gradients
P¥; and P?J. of the hydraulic potential P; ; are expressed by central differences
as
Pijr1 —Pij1

2Ay

Pit1) —Pi1

TAX (54)

X Yy _
Py, = Py, =
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Figure 16: Schematic diagrams to illustrate the differences of the algorithms by (a)
Budd and Warner (1996), (b) Quinn et al. (1991) and (c) Tarboton (1997).
For the central grid cell (i,j) the flow direction 0; ; is indicated by an arrow,
the potentially water-contributing grid cells are marked in light gray and
the water receiving grid cells in dark gray (Figures by Le Brocq et al., 2006).

with a magnitude of

P =y () + (71) 59

The direction of the water flow at an angle 0 to the x axis is given by

Px. PY.
0. = ing:: = - 6
€os 0 ; P sin B 5 P (56)
Rewriting Eq. 51 leads to an expression for the total scalar volume flux d)ioju Y
out of the (i,j) grid cell with
D% = My i ;AxAy + 0L (57)

where the total scalar influx of water d)glr;) is the sum of outflow contributions
of next-neighbor upstream grid cells. The apportionment of the water outflow
towards the downstream grid cells is estimated by the direction of the water
flow with angle 0;; (Eq. 56) leading to

(D>'<(f>ut) _ ‘COS ei/j ’ (out)
k2 ‘sin 91,5‘ + |Cos 015 ‘ k2

: (58)
oYU |sin B35 (out)

- !sin Gi,j‘ + ‘cos Gi,j| 2

Consequently, the scalar outflux for all grid cells can be calculated by sorting
and treating all grid cells in order of descending hydraulic potential P; ;, be-
cause the outflux dDEO]u Yin Eq. 57 is always given by the local melt rate and the
influx from the previously treated upstream grid cells. The vector flux ¢y
into the direction of the flow angle 0;; at the center of a grid cell is obtained
by

(out)

i
|cos 0] + [sin 0y 5/)

where L = Ax = Ay is the side length of the grid cell.
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Figure 17: Scalar balance water flux on an inclined plane following the Budd and
Warner (1996) scheme (Fig. 16a) by RIMBAY. Only at grid cell (i,j) = (2,19)
a basal melt rate My, of Tma™' is defined. The hydraulic potential is illus-
trated by its equipotential lines. (a-c) Flux for different grid orientations.
(d) Flux is ending in a hollow of the hydraulic potential. (e) Flux crosses
the hollow after modification of the hydraulic potential. (f) Flux is directed
around obstacles, e.g., Nunataks (gray).
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APPLICATION  Scalar balance water fluxes computed by RIMBAY for several
idealized setups are illustrated in Fig.17. The model domain comprises an
area of 20x20 grid cells with a grid spacing of 1m. The basal melt rate is
set to tma~! at one grid cell in the upper left corner of the model area and
is zero everywhere else. Figures17a, 17b and 17c show the water flux across
an inclined plane with different orientations of the steepest gradient towards
the grid orientation. The water flux follows the hydraulic gradient showing
a clearly diffusive behavior. The level of diffusivity is influenced by the grid
orientation (Le Brocq et al., 2006).

An obvious weakness of the balance flux concept is demonstrated in Fig. 17d
where additionally a hollow is defined in the hydraulic potential. The up-
stream generated melt water follows the hydraulic gradient and is directed
into the hollow where the flux ends and thus not contributes to downstream
water flux. However, the concept of the balance flux calculation assumes a
hydraulic system in steady state. Under that condition the hollow should be
filled with water and provide a continuous overflow at the lowest point of its
rim. In order to simulate this the hydraulic potential is modified in RIMBAY
before the calculation of the balance flux following two steps: First, all hol-
lows in the hydraulic potential (Sec. 3.3.2) are identified and filled. As a result,
flats emerge at the potential surface where the hydraulic gradient (Eq. 54) is
zero and no flux direction (Eq. 56) can be computed. To overcome this, every
flat is slightly tapered into the direction of its previously identified discharge
point (Goeller et al., 2013). This approach ensures that all melt water produced
inside the model domain reaches its margins. Particularly hydropotential sur-
faces of realistic model domains exhibit numerous hollows where upstream
flux contribution would vanish without the above modifications. Figure 17e
shows the modified hydraulic potential from Fig. 17d and how the flux is sub-
sequently able to cross the filled-up and tapered hollow. Other authors (e.g.,
Le Brocq et al., 2009; Pattyn, 2010) follow an alternative approach to guarantee
flux conservation by iteratively setting all minima in the hydraulic potential
to the value of their neighbor’s mean. In comparison to the above introduced
algorithm this approach has the lower computational costs but tends to alter
the locations where filled hollows overspill.

A balance flux algorithm for the computation of water flux beneath ice
sheets should also take into account the possible presence of obstacles, e.g.,
Nunataks. They are defined as bedrocks which are locally protruding from
the ice sheet. Following the definition of the hydraulic potential (Eq. 49) they
act as a potential barrier for the basal water flux. In the ice model RIMBAY
grid cells can be defined as Nunataks independent of their hydraulic potential.
An extra check in the implementation ensures the redirection of the water flux
around them, shown in Fig. 17f.
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For the study of the hydraulic system beneath the Antarctic Ice Sheet the above
introduced hydraulic modeling approaches are applied on a continental scale.
In this way, insights into the topography of the basal hydraulic potential are
gained and locations and extents of potential subglacial lakes can be predicted.
This method is evaluated by a comparison of the results with the latest in-
ventory of Antarctic subglacial lakes and a selective interpretation of radar
profiles from radio-echo sounding (RES) flight campaigns by the Alfred We-
gener Institute (AWI). The findings are used to estimate the number and extent
of Antarctic subglacial lakes yet to be discovered. In addition, the pathways
of basal melt water are simulated allowing the analysis of general drainage
patterns, particular lake drainage pathways and the correlation between basal
hydrology and observed ice velocities.

4.1 BASAL HYDRAULIC POTENTIAL

The hydraulic potential (Shreve, 1972) at the base of the Antarctic Ice Sheet is
defined by basal water pressure and bedrock elevation. Its gradients determine
the flow of basal melt water which can accumulate in hollows of the hydraulic
potential, forming subglacial lakes. These subglacial lakes belong to the dis-
tributed flow systems (Sec. 3.2.2) and therefore it is presumed that the effective
pressure (ice overburden pressure minus water pressure) at the ice base above
a subglacial lake is zero. This assumption allows to simplify the calculation of
the hydraulic potential when the primary focus is on the investigation of dis-
tributed flow systems, respectively subglacial lakes. In that case, the hydraulic
potential at the base of grounded ice can be calculated using bedrock elevation
and ice pressure derived from ice thickness and ice density (Eq. 49, Sec. 3.3.1).
The respective data sets for Antarctica are provided within the Bedmap2 data
set (Fretwell et al., 2013) and are resampled to a grid resolution of 5km.
Figure 18 shows the bedrock elevation, the calculated hydraulic potential
and the surface elevation for the Antarctic Ice Sheet. The bedrock topogra-
phy features distinct mountain ranges as well as regions with lower surface
roughness. Elevations range from about -2500m in deep troughs beneath
the central West Antarctic Ice Sheet (WAIS) to above 40oom in the Ellsworth
and Transantarctic Mountains. About 45 % of the Antarctic bedrock (beneath
grounded ice) are identified to be below sea level. Certain areas of the Antarc-
tic bedrock in Fig. 18 seem quite featureless. They result from large-scale inter-
polations because locally only very sparse measured points are available. The
ice sheet surface appears relatively smooth due to the flow properties of ice
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Figure 18: Surface and bedrock elevation (Bedmap2 data set, Fretwell et al., 2013) and
calculated basal hydraulic potential for the Antarctic continent (confined
to areas of grounded ice). The hydraulic potential is mainly influenced
by the surface elevation but shows the attenuated imprint of the bedrock
topography. Discussed geographical features are labeled in Fig. 2, Sec. 1.1.



4.2 PREDICTING SUBGLACIAL LAKES

which tends to equalize differences in surface elevation by internal deforma-
tion. The East Antarctic Ice Sheet (EAIS) rises above 4 00om in its central part
while the ice sheet surface is decreasing towards the coasts. The hydraulic po-
tential is reflecting the combined influence of bedrock elevation and ice pres-
sure and lies well defined above sea level. Its elevation is mainly governed
by the elevation of the ice sheet but it does not show the smoothness of the
ice surface. Instead, the surface of the hydraulic potential reflects the spatial
variability of the bedrock elevation in an attenuated form.

4.2 PREDICTING SUBGLACIAL LAKES

In this section, positions and extents of subglacial lakes in Antarctica are pre-
dicted following a method which is solely based on the observed topography
of the Antarctic Ice Sheet and the underlying bedrock.

4.2.1  Assumptions and method

Model results of Pattyn (2010) show that about 55 % of the Antarctic Ice Sheet
base is at its pressure melting point and could produce melt water while the
rest of the ice sheet might be frozen to the bedrock. The underlying ice tem-
perature calculation (Eq.38, Sec.2.2.3) which is commonly used for ice flow
modeling considers (besides advection and diffusion terms) several thermal
influences: Internal heating by internal ice deformations and the mean annual
air temperature at the ice sheet surface as well as the combined influence of the
geothermal heat flux and frictional heat contributions at the ice-bed interface,
resulting from the ice sliding over the bed. Especially these basal processes
are assumed to have the major impact on the thermal balance of the ice sheet.
The sliding of ice over bedrock is described by a number of theories (review by
Fowler, 2010) which unfortunately can not be approved by observations due
to the inaccessibility of the Antarctic Ice Sheet’s base. The available geother-
mal heat flux data sets (Shapiro and Ritzwoller, 2004; Maule et al., 2005) show
large differences and also a lack of confirmation by direct measurements. Con-
sequently, the implementation of the thermally relevant basal processes in ice
modeling is still on a very basic level and subject to large uncertainties.

In the following, it is assumed for reasons of simplicity that the whole
Antarctic Ice Sheet base is at its pressure melting point and produces melt
water, possibly leading to an overprediction of subglacial lakes which is cor-
rected in Sec. 4.4 by a validation of the results using radar observations. The
melt water follows the gradient of the hydraulic potential (Eq. 48) and pools
within hollows of the hydraulic potential surface. Under the assumption that
the hydraulic system is acting on much smaller time scales than the ice dy-
namics, the hydraulic system is in a quasi-stationary equilibrium state. Ac-
cordingly, all hollows of the hydraulic potential are assumed to be filled to
their maximum level forming subglacial lakes.
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Figure 19: Antarctic Ice Sheet: Locations and extents of 10183 predicted subglacial
lakes (blue). Coast and grounding line (black) by NSIDC and ice divides
(red) by AGAP. Map sections a/b are shown in detail in Fig.22a/22b for a
comparison with observed lakes.

The theoretical prediction of subglacial lakes in Antarctica is done within
three steps: First, the basal hydraulic potential ic calculated as described in
the section above. Second, the algorithm introduced in Sec.3.3.2 is used to
fill up all hollows in the hydraulic potential resulting in a modified hydraulic
potential. And third, the predicted subglacial lake surfaces are obtained as the
distribution of non-zero elements of the difference between the modified and
the original hydraulic potential.

4.2.2  Results and discussion

With the above method, 10 183 hollows can be identified and filled in the basal
hydraulic potential of the Antarctic Ice Sheet which are interpreted as poten-
tial or predicted subglacial lakes. The locations and extents of all predicted
subglacial lakes are shown in Fig.19. The majority of the lakes and particu-
larly all larger lakes are clustered close to the ice divides. There, the ice sheet
surface is relatively flat and the hydraulic potential is primarily influenced by
the bedrock. Thus, troughs in the bedrock are also troughs in the hydraulic
potential allowing the basal melt water to pool. Towards the ice sheet mar-
gins the lake concentration is decreasing because of the higher prevailing ice
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Figure 20: Surface area distribution of all 10183 predicted lakes, linear scaled up to
surfaces of 1275km? and as a list beyond.

sheet surface gradients. Their influence on the basal hydraulic potential is
dominating the bedrock gradients by about one order of magnitude. As a con-
sequence, hydraulic hollows and by association subglacial lakes occur only at
comparatively deep bedrock depressions.

Furthermore, the local concentration of predicted lakes depends on the num-
ber of locally available RES flight lines which were used to reconstruct the
bedrock topography. Currently, the bedrock is well surveyed in most Antarc-
tic regions (e.g., Dronning Maud Land (DML) or the Siple Coast) but, also, there
are still areas (e.g., beneath the EAIS) where it has to be reconstructed from a
very sparse number of measurements (Fretwell et al., 2013). A higher resolu-
tion of the known bedrock elevation necessarily results in an increased number
of hollows in the hydraulic potential and, thus, more predicted lakes. This ad-
ditionally explains the spatially varying concentration of predicted lakes and
is confirmed by the use of an earlier data set for Antarctic bedrock elevation
and ice thickness based on far less comprehensive observations (Albmap by
Le Brocq et al., 2010) where only 2764 potential lakes are found.

Altogether, an area of 590900km? is found to be covered by surfaces of
predicted Antarctic subglacial lakes (4.9 % of the area of Antarctic grounded
ice). This is in agreement with estimates of Siegert (2000) stating that ~5 % of
the ice sheet base might be occupied by subglacial lakes and modeling results
of Livingstone et al. (2013) who found a lake coverage of 3.7 % based on the

prediction of 12767 lakes with a similar distribution.

The areal extents of the particular predicted lakes ranges from 25 to 16 375 km?

(Fig.20). Their majority (6829 lakes, 67 %) comprises surfaces of 25km? cor-
responding to a single grid cell at the applied grid resolution of 5km. The
average lake size is 58 km? and only 30 predicted lakes (0.3 %) have surfaces

of 1000km? and beyond.
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Figure 21: Antarctic Ice Sheet: Locations of all 379 observed subglacial lakes (trian-
gles, inventory by Wright and Siegert, 2012). 206 of them (red triangles)
were successfully predicted. Coast and grounding line (black) by NSIDC
and ice divides (red) by AGAP. Map sections a/b are shown in detail in
Fig. 22a/22b.
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Figure 22: Hydraulic potential (gray) with predicted (blue) and observed subglacial
lakes (triangles, inventory by Wright and Siegert, 2012) for two selected
regions in central East Antarctica (Fig. 19 and 21). Observed lakes matching
with a predicted lake are illustrated by red triangles, all other observed
lakes by white triangles. Outlines of observed lakes (red lines) by Filina
et al. (2008) and Studinger et al. (2003).
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4.3 COMPARISON OF PREDICTED AND KNOWN SUBGLACIAL LAKES

In order to test the validity of the introduced method to predict subglacial
lakes in Antarctica, the locations of the predicted lakes are compared to the
locations of in situ observed subglacial lakes.

4.3.1  Method and results

So far, 379 lakes have been identified beneath the Antarctic Ice Sheet using
satellite altimetry, airborne RES or seismic investigations. They are listed in
an inventory compiled by Wright and Siegert (2012). For the following com-
parison, the listed geographic positions of the observed lakes are interpreted
as the central lake positions, because for only 7 of these lakes an estimate of
their outlines exists while for 131 lakes not even a length is given. For all
predicted lakes the outlines are determined and expanded by a buffer zone of
5km which is thought to compensate the uncertainties originating from the
5km grid resolution. A predicted subglacial lake is considered to successfully
match an observed subglacial lake if the central position of the observed lakes
is situated inside the expanded outlines of the predicted lake.

With this method 206 observed Antarctic subglacial lakes (54 % of all known
lakes) are found to be correctly predicted. Figure21 shows an overview of
the entire inventory of Antarctic subglacial lakes and highlights the success-
fully predicted lakes. Additionally, the names and geographic positions of the
successfully predicted lakes are provided in a tabular form in the appendix
in Sec. A.1. The area around Lake Vostok and the so-called Lake District in
East Antarctica are shown in detail in Fig.22. All larger lakes like Lake Vos-
tok, Lake go Degree East, Adventure Trench Lake, Lake Concordia and Lake
Aurora were successfully predicted. Particularly for the known outlines of
Lake Vostok, Lake go Degree East and Lake Concordia the congruence with
the predicted lake extents is outstanding.

4.3.2 Discussion and implications

The correct prediction of the majority of the known subglacial lakes demon-
strates the good performance of the introduced method. In comparison, Liv-
ingstone et al. (2013) recalled 61 % of the known lakes with similar predictions
but using larger buffer zones depending on the lake size for the matching.
At first view, these prediction success rates are astonishing since the lake sur-
face reflectors are incorporated in the bedrock topography and ice thickness
data in the used Bedmap2 data set (Fretwell et al., 2013). For this reason, no
hollows in the hydraulic potential should occur at the locations of existing
subglacial lakes. Indeed, this is the case for lakes which are filled with water
up to their hydraulic lip and might account for some of the observed sub-
glacial lakes which could not been theoretically predicted. A high percentage
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of the known subglacial lakes in the current inventory, however, was detected
by ice sheet surface elevation changes and therefore belongs to the group of
active subglacial lakes (e.g., Smith et al., 2009). These kind of lakes are peri-
odically filling and draining and might have had an intermediate filling level
at the time of the respective RES bedrock elevation and ice thickness survey.
The difference between the actual lake surface and the highest possible wa-
ter level would then be interpreted as hydraulic hollow and consequently as
a predicted lake. Another reason for the successful identification of known
subglacial lakes, despite the incorporation of the lake surface reflector in the
topography data sets, could be justified by the processing of the topography
data. Although the originally along-track resolution of RES records is com-
paratively high, the interpolation onto a grid size in the order of kilometers
could smooth out the elevation of a narrow lake outlet. In this manner, the
rim of an existing and water-filled basal hydraulic hollow would be artificially
raised, what again leads to a detection of a hydraulic hollow and therefore to
the prediction of a subglacial lake at this spot.

Interpolation artefacts, originating from bedrock geometry processing and
creating hydraulic hollows, can also be a reason for the over-prediction of sub-
glacial lakes and explain the large discrepancy between 10183 predicted and
so far only 379 observed subglacial lakes in Antarctica. Another argument
to explain the above discrepancy in the number of lakes can be found in the
surface area distribution of the predicted lakes (Fig.20). The majority of the
predicted lakes has surfaces of 25 km?, corresponding to an idealized circular
lake diameter of 5.6km. Buried beneath ice thicknesses of up to 4km, such
small lakes have no impact on the appearance of the ice surface. The ice col-
umn above these lakes is mainly supported by the lateral ice sheet and not
in floating equilibrium (e.g., Wright and Siegert, 2011). Accordingly, no sur-
face flattening occurs at the ice sheet surface above such small lakes, which
in contrast is characteristic above lakes with the size of several times the ice
thickness (e.g., Bell et al., 2007; Smith et al., 2009). The inventory of Antarc-
tic subglacial lakes by Wright and Siegert (2012) mostly includes lakes which
were identified by ice sheet surface features observed by satellite laser altime-
try (Sec.3.1.2). Consequently, the current inventory might be lacking a large
amount of these so far undiscovered smaller lakes. This hypothesis will be
investigated in the next section, where the existence of uncharted predicted
lakes is verified on the basis of AWI RES profiles.

4.4 RADAR-BASED VALIDATION OF PREDICTED LAKES

In this section, the specific analysis of RES profiles at the locations of predicted
lakes is used as a tool to estimate the predictive value of the applied method
regarding the prediction of so far uncharted subglacial lakes.
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4.4.1 Matching with flight lines and analysis

Numerous RES flight campaigns of the AWI surveyed large parts of the Antarc-
tic Ice Sheet during the summer seasons of the Southern Hemisphere in the last
decade. In this study, all RES flight lines' between 1994 and 2013 (there were no
campaigns in 1999/2000, 2006/07 and 2009/10) are taken into consideration
for a comparison with the locations of the 10183 predicted subglacial lakes.
Some of the RES records of the 2012/13 seasons are not readily processed to
this date and could not be taken into account for that reason. At 804 locations
a flight line is found to cross the outlines of a predicted lake. Restricting the
search results to areas where the radar penetrated the ice sheet and reached the
bedrock, 270 flight lines crossing 263 predicted subglacial lakes are obtained.
For these flight lines images of the associated radar profiles are processed for
the segment matching the extent of the predicted lake whereby this segment is
expanded by 5km at both sides. In a visual analysis of all 270 images the radar
reflections at the ice sheet base are checked for lake surface signatures. Lakes
at the ice base have a very characteristic appearance in radar profiles. The dif-
ferent dielectric properties of ice and water cause a much stronger reflection
at ice-water interfaces than at ice-bedrock interfaces. Additionally, subglacial
lake surfaces appear strikingly flat in contrast to the surrounding mostly un-
dulated bedrock. In summary, it can be stated that surfaces of subglacial lakes
produce extended flat and bright basal radar reflection, which the respective
radar profiles are analyzed for. A thorough description of the identification of
lakes at the base of ice sheets on the basis of RES records is given in Sec. 3.1.2.

4.4.2  Results and interpretation

The interpretation of 270 radar profiles at the locations of 263 predicted sub-
glacial lakes yields the identification of potential subglacial lake surfaces in
4o flight lines crossing 33 predicted subglacial lakes (Fig.23). Three of these
flight lines cross known subglacial lakes: two Lake Vostok and one the Ad-
venture Trench Lake (red triangles). As expected, the associated radar profiles
show clearly recognizable lake surface reflections. The radar profiles of the
remaining 36 flight lines show potential basal lake surfaces at the locations of
31 predicted and so far uncharted subglacial lakes (blue triangles). In 230 of
the analyzed radar profiles no typical basal water reflections are found (gray
triangles).

Figure 24 shows three selected radar profiles in DML of locations where so far
uncharted lakes are predicted. The radar profiles show the surface and the in-
ternal stratigraphy of the ice sheet as well as the bedrock beneath the ice sheet.
The extents of the predicted lakes are indicated and show a very good corre-
lation with the extents of the hollows in the bedrock topography. For these

Geographical positions of flight lines and associated radar profiles provided by Daniel Stein-
hage (AWT)
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Figure 23: All AWT RES flight lines (orange) in Antarctica from 1994 to 2013 with loca-
tions marked by triangles where flight lines cross the outline of a predicted
subglacial lake. Red diamonds indicate predicted and already known sub-
glacial lakes (Lake Vostok and Adventure Trench Lake) ascertained by a
cleary visible lake surface reflection in the associated radar profile. Gray
triangles stand for predicted and so far uncharted subglacial lakes where
no lake-surface could be detected in the radar profiles. Predicted and so far
uncharted subglacial lakes where a potential lake surface reflection is found
in the radar profile are pointed out by blue triangles. For three selected pre-
dicted lakes the radar profile is shown in Fig. 24. Coast and grounding line
(black) by NsIDC and ice divides (red) by AGAP.
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Figure 24: Selected radar profiles of AWI RES flight lines crossing predicted and so far

uncharted subglacial lakes (Fig.23). All three profiles show a hollow in
the bedrock topography in good agreement with the predicted maximum
possible lake extent. Profile (a) and (b) show strong and flat lake-like radar
reflections at the bottom of the bedrock troughs. The basal reflections in
profile (c) show no indications for the existence of accumulated basal water.

47



48

MODELING ANTARCTIC SUBGLACIAL HYDROLOGY

selected profiles, the hydraulic potential is mainly governed by the bedrock
topography because the ice sheet surface is flat compared to the variations of
the bedrock elevations. Assuming the bedrock hollows filled by water to their
maximum level, exactly the predicted lake extents are identified. Although
the predictions are based on data sets where bedrock and ice sheet geometry
were interpolated onto grids with spatial resolutions of 5km, the predictions
and observations show a remarkably precise congruence. This approves the
validity of the applied algorithm to identify and fill hollows in the hydraulic
potential.

The radar profiles in Fig.24a and 24b additionally show bright and flat re-
flections at the bottom of the bedrock hollows. These reflectors are interpreted
as the surfaces of subglacial lakes which have lengths between 3 and 5km.
Their existence reveals that the ice sheet locally is at its pressure melting point
and produces melt water. However, the observed bedrock trough is not filled
to its maximum level. This might have two different reasons: The identified
lakes might have a narrow outlet in the direction orthogonal to the orientation
of the flight line which is not incorporated in the topography data set due
to the density of locally available measured data and the applied interpolation
method (Fretwell et al., 2013). They also might be active subglacial lakes which
recently drained and therefore are not filled to their possible maximum extent
(Smith et al., 2009).

In Fig. 24c the basal radar reflections around the bedrock trough show no
evidence for the occurence of accumulated water despite the prediction of a
subglacial lake at this position. A possible explanation could be again an
existing outlet in the direction orthogonal to the orientation of the flight line
which is not incorporated in the used gridded data set. Available melt water
would then not be able to accumulate but would flow further downstream
the hydraulic potential. Another possibility for the observed absence of a
predicted lake despite the existence of an appropriate hydraulic hollow could
be found in the local thermal regime of the ice sheet. Possibly, the ice sheet
base is not at its pressure melting point at this location. In this particular case,
the ice would be frozen to the bedrock and no melt water would be produced.
Consequently, even hydraulic hollows would stay dry.

4.4.3 Conclusion and estimates

Out of 263 predicted lakes which are crossed by AwI flight lines, 33 lakes
could be identified by analyzing the associated RES profiles. Beside two al-
ready known subglacial lakes 31 new subglacial lakes are found. In general,
the interpretation of radar profiles does not always provide unambiguous re-
sults and in some cases additional investigations (e.g., seismic explorations)
might be necessary to achieve clarity. Therefore, the uncertainty with respect
to the number of identified subglacial lakes is estimated to eight. In this way,
a corresponding prediction success rate of 1343 % is obtained. This rate is
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gained almost exclusively by the evaluation of AWI RES flights covering DML,
the region southeast of the Neumayer III Station. (Fig.23). Despite the very
good coverage by remote sensing campaigns, only a very few subglacial lakes
have been found in this region so far (Fig.21, Wright and Siegert, 2012). Ac-
cording to model results from Pattyn (2010), the ice sheet base for some parts
of DML could not be at its pressure melting point. As a consequence, locally no
melt water would be available to form subglacial lakes. This study is based on
the simplified assumption that the Antarctic Ice Sheet is wholly warm-based
which might lead to an over-prediction of subglacial lakes in this particular
region. For this reason, the prediction success rate of 13+3 % should be con-
sidered as a lower boundary for estimates concerning the entire Antarctic Ice
Sheet. Furthermore, the predictive power might be increased in future studies
by combining the applied approach with other methods regarding the auto-
mated analysis of bedrock roughness (Steinhage et al., inprep.) and basal
radar reflection strength along flight lines (Kasper et al., in prep.).

Ensuing from the results of the radar-based validation of predicted sub-
glacial lakes in DML, the overall number and surface area of Antarctic sub-
glacial lakes can be estimated. In total, 10183 subglacial lakes with an overall
surface of 590900km? are predicted. Corresponding to the obtained predic-
tion success rate of 13+3 %, 1300%300 subglacial lakes are estimated to exist
beneath the grounded Antarctic Ice Sheet. Compared to the current inven-
tory (Wright and Siegert, 2012) which lists 379 subglacial lakes, there are still
921£300 lakes to be discovered, indicating that only about 30 % of all existing
lakes are known so far. Due to the explanations above, the applied success
rate and, by implication, the obtained number of undiscovered lakes should
be considered as a lower boundary of the estimate. Applying the obtained pre-
diction success rate on the overall predicted subglacial lake surface, the area
of approximately 77000+18 000 km? (0.64+0.15 %) beneath the Antarctic Ice
Sheet is estimated to be covered by subglacial lakes. Wright and Siegert (2011)
assessed the total surface of known subglacial lakes to be approx. 50000 km?
using the circular approx. for lakes crossed by just a single survey line. This
means that about 65 % of the subglacial lake surfaces are already charted while
only about 30 % of the estimated number of subglacial lakes is known so far.
Consequently, the majority of the undiscovered subglacial lakes is estimated to
be comparatively small with an average surface extent of approx. 29 km?. This
finding is very reasonable since all larger subglacial lakes can be supposed to
be already discovered by satellite altimetry.

4.5 SIMULATION OF BASAL MELT WATER PATHWAYS

The melt water flow pattern beneath the Antarctic Ice Sheet is computed in
order to gain a better understanding of the structure of the basal hydraulic
network, particularly subglacial lake drainage pathways and spatial correla-
tions between basal hydrology and ice stream locations.
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4.5.1  Motivation and method

A wide-spread hydraulic network beneath the Antarctic Ice Sheet transports
basal melt water over thousands of kilometers from the center of the conti-
nent to the grounding lines (e.g., Wright et al., 2012). On its way from the
interior of the ice sheet to the ocean this water typically feeds and drains sev-
eral subglacial lakes (e.g., Wingham et al., 2006b; Carter et al., 2009b; Fricker
et al., 2010). The knowledge of the spatial configuration of this subglacial
drainage system reveals information about how and which subglacial lakes
are connected (e.g., Siegert et al., 2009) and where particular subglacial lakes
drain at the Antarctic coast line (e.g., Wright et al., 2008). Additionally, spatial
patterns of basal water flow can be used to explain the positions of ice streams.
Depending on the flow regime (Sec. 3.2) the presence of basal water can lower
the basal friction at the ice base and, thus, lead to increased ice flow.

In the following, the potential pathways of melt water beneath the Antarctic
Ice Sheet are calculated with the ice model RIMBAY. First, the ice sheet geom-
etry of the Bedmap2 data set (Fretwell et al., 2013) is used to calculate the hy-
draulic potential at a model resolution of 10 km, according to Sec. 4.1. Second,
the scalar balance flux of basal melt water is computed following Budd and
Warner (1996), where the hydraulic potential was modified in order to guaran-
tee flux conservation (Sec. 3.3.3). The uncertainties related to the knowledge,
respectively modeling, of the local basal melt rates are avoided by prescribing
a constant basal melt rate for the entire grounded ice sheet. In this manner, the
computed scalar balance water flux can be converted into flux values which
locally express the percentage of the entire grounded ice sheet being drained.

This method provides an update to the work presented by other authors
who modeled basal water pathways for Antarctica: Pattyn (2010) computed
the balance flux as above but used the older Bedmap data set (Lythe et al.,
2001). Wright et al. (2008) (using Bedmap) and Livingstone et al. (2013) (using
Bedmap2) applied a routing algorithm from the ArcHydro package (part of
the GIS software ArcMap). This algorithm directs the water flow at every
grid cell entirely into the direction of the largest hydraulic gradient which is
particularly unrealistic when both gradients are of a similar order. The balance
flux scheme is more diffusive in such cases and thus better capable to describe

natural water flow.

4.5.2 Patterns of basal water flow

Figure 25 shows the modeled subglacial melt water flow for Antarctica. At
large scales the basal water flow follows the general surface gradient of the
Antarctic Ice Sheet from the ice divides to the grounding lines. Several distinct
catchment areas are revealed by the flow patterns. They are separated by
watersheds which are largely congruent with the ice divides.
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Figure 25: Simulated basal melt water pathways for the Antarctic Ice Sheet (topogra-

phy by Bedmap2, Fretwell et al., 2013). The color scale shows the water
drainage in percent of the total catchment area. Dashed circles mark exem-
plary regions with (1) angular, (2) distributary, (3) dendritic and (4) parallel
drainage patterns. Particular drainage pathways can be tracked for a se-
lected number of subglacial lakes (stars). Coast and grounding line (black)
by NsIDC, ice divides (red) by AGAP.
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The patterns of simulated basal water flow are not uniform but show varia-
tions between different Antarctic regions because they are determined by slope
and structure of the hydraulic potential. Twidale (2004) (who investigated pat-
terns of surface rivers) distinguishes between parallel, radial and distributary
flow patterns which are mainly induced by slope and straight, angular, trel-
lis and annular arrangements produced by structure. Four of these patterns
are identified to dominate the simulated subglacial water flow in Antarctica
(exemplary regions are marked by circles in Fig. 25):

1. Angular drainage patterns are mostly found in West Antarctica and caused

by strong variations of the bedrock elevation, originating from the local
geology.

2. Distributary flow patterns defined as the convergence of distinctly delim-
ited distributaries are found, e.g., in the area around the tributaries of
the Recovery Ice Stream. They reflect the basal topographic focusing of
basal melt water flow by bedrock troughs which attract all surrounding
available water due to their low hydraulic potential.

3. Close to the ice divides in the interior of the ice sheet classical dendritic
flow patterns dominate the drainage. There, the prevalent low surface
gradients allow the melt water to flow mainly under the influence of the
bedrock topography and build up arborescent networks.

4. At the ice sheet margins the direction of basal melt water flow is pri-
marily controlled by the high surface gradients and therefore parallel
drainage patterns predominate.

The general pattern of the simulated melt water pathways is in good agree-
ment with previous results of other authors. Compared to Pattyn (2010) who
used the older Bedmap data set (Lythe et al., 2001), the drainage system is
shown in much more detail. Due to the higher amount of available data
points in the used Bedmapz2 data set (Fretwell et al., 2013) especially the den-
dritic drainage patterns illustrate also smallest water tributaries. Wright et al.
(2008) and Livingstone et al. (2013) chose another approach and are capable
to identify single flow lines. However, they can not reveal the variability in
the diffusivity of water flow. That is the strength of the used balance flux
concept. It also yields distinct flow lines where the hydraulic potential is well
structured. In contrast, it shows a more diffusive flow where the hydraulic
potential is featureless and flat. Thus, no precision regarding to the obtained
flow patterns is pretended which is not given in regions of flat or bad surveyed
(and large-scale interpolated) bedrock topography.

4.5.3 Drainage pathways of subglacial lakes

The simulated pattern of melt water flow beneath the Antarctic Ice Sheet gives
evidence which subglacial lakes are connected by basal water flow and which



4.5 SIMULATION OF BASAL MELT WATER PATHWAYS

lakes are hydrologically separated from each other. Additionally, it can be
stated where every particular subglacial lake drains into the Antarctic Ocean.
Below, these considerations are performed exclusively for a selection of promi-
nent lakes: the Recovery Lakes, Lake Ellsworth, South Pole Lake, go Degree
East Lake, Adventure Trench Lake, Lake Aurora and Lake Vostok (Fig. 25).

The Recovery Lakes are four large smooth basins situated at the onset of the
Recovery Ice Stream (Bell et al., 2007). Similar to results derived from radar
observations (Langley et al., 2011), the simulated water flow pattern shows
that these lakes are connected and drain through a joint outlet underneath the
Filchner Ice Shelf.

Lake Ellsworth is located slightly east of an ice divide in the Ellsworth
Mountains in West Antarctica but west of the shifted corresponding water-
shed. Therefore, it is found to drain into the Amundsen Sea (=560 km) and
not underneath the much closer Ronne Ice Shelf (=160 km) similar to estimates
from Vaughan et al. (2007).

The South Pole Lake is clearly identified to drain underneath the Filchner-
Ronne Ice Shelf and the go Degree East Lake to drain underneath the onset of
the Amery Ice Shelf. Water draining Lake Aurora could be identified to flow
comparatively straight towards the coast line east of the Law Dome (Wright
et al., 2012).

The largest subglacial lake, Lake Vostok, as well as the Adventure Trench
Lake are confirmed to drain on different pathways through the mountain
range of the Transantarctic Mountains underneath the Ross Ice Shelf (e.g.,
Wright et al., 2008; Livingstone et al., 2013). Following Wright et al. (2008) the
drainage pathway of the Adventure Trench Lake is highly sensitive to small
changes of the ice sheet. The authors stated that a change of ice sheet sur-
face elevation in the order of meters can redirect the drainage pathway on
a continental scale. This result is also demonstrated in Fig.25 which shows
the Adventure Trench Lake to be situated very close to a watershed. A mi-
nor future change of the local ice sheet geometry has the potential to redirect
the lake’s outflow towards the hydrological tributaries of the David Glacier
(Fig. 26) and thus possibly cause a speed-up of its velocity.

4.5.4 Locations of ice streams and enhanced basal water flow

Considering observed ice surface velocities of the Antarctic Ice Sheet (Rignot
et al., 2011a) many areas of significantly increased ice flow can be identified
(Fig. 26a). These ice streams and fast flowing glaciers reach velocities of several
hundred meters per year and are feeding into adjacent ice shelves or the ocean.
Their precise locations are determined by several controls, as for instance, sub-
glacial melt water routing (Winsborrow et al., 2010). Particularly, distributed
basal water flow regimes are capable to decrease friction at the ice-bed inter-
face and thus lead to enhanced ice sliding velocities (Sec. 3.2). The computed
basal water pathways in Fig.26b follow the gradients of the basal hydraulic
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Figure 26: The locations of Antarctic ice streams and fast flowing glaciers showing a
very good correlation with areas of enhanced and focused subglacial melt
water flow. The dashed rectangle (A) marks the hydrologically enclosed
study area of the following chapter. Coast and grounding line (black) by
NSIDC, ice divides (red) by AGAP



4.6 SUMMARY

Lake Lake Lake outline Lake Count Symbol Figure

in crossed by  identified in
predicted inventory  flightline radar profile

v 10183 =¥ 19, 22
v 379 OA+A 21,22
v v 206 A 21, 22
v v v 2 2 23
v v v v 2 L 2 23
v v 263 a+A 23
v v v 31 A 23

Table 2: Summary of the results for the prediction of subglacial lakes and their
inventory- and radar-based validation including the associated symbols and
figures where they appear.

potential. It is calculated under the assumption that the effective basal water
pressure is zero and is therefore valid for distributed water flow.

A comparison of the patterns of ice velocity and basal water drainage in
Fig. 26 reveals a high correlation between fast ice flow and areas of enhanced
and focused water flow. The locations and extents of all large ice streams
and fast flowing glaciers can be successfully traced back to congruent basal
drainage patterns. Even details like the southern tributary of the Recovery Ice
Stream and the three tributaries of the Slessor Glacier are depicted in both the
velocity field and in the drainage structure.

Additionally, it is found that the basal water flow originating from 22.5%
of the subglacial Antarctic hydraulic catchment area is draining into the ocean
at only four spots: the mouth of the Byrd Glacier (8.1 %) at the Ross Ice Shelf
and the mouthes of the Recovery Ice Stream (6.5 %), the Slessor Glacier (3.0 %)
and the confluent Academy Glacier and Foundation Ice Stream (4.9 %) at the
Filchner-Ronne Ice Shelf. Depending on the basal melt rates in the respective
upstream areas, this spatially concentrated fresh water entry into ice shelf
cavities could be huge and considerably affect ocean currents (e.g., Hellmer
et al., 2012).

The dashed rectangle in Fig. 26b delimits a hydrologically enclosed region
around the Siple Coast. The observed temporal variability of ice streams
makes it the perfect study area for the further investigation of the interplay
between ice dynamics and basal water flow in the next chapter.

4.6 SUMMARY

Based on the calculated basal hydraulic potential for the Antarctic Ice Sheet the
locations and extents of 10183 potential subglacial lakes covering 4.9 % of the
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ice sheet base are predicted (Tab. 2). The validity of this method is approved by
the successful theoretical prediction of 206 observed subglacial lakes in the cur-
rent inventory (379 lakes, Wright and Siegert, 2012). A comparison of AWI RES
flight lines and predicted lake outlines yields 263 matches, where in 33 of these
radar profiles basal water reflections are identified. Two of them are associated
with already known subglacial lake surfaces and 31 reveal the locations of so
far uncharted subglacial lakes. Based on the obtained prediction success rate,
the total number of Antarctic subglacial lakes can be estimated to 1300+300.
The estimated surface area of these lakes adds up to 77 000£18 0ooo km?, corre-
sponding to approx. 0.6 % of the ice-bed interface. Respective to assessments
of the current inventory (Wright and Siegert, 2011) it can be stated that 30 % of
all Antarctic subglacial lakes and 65 % of the total estimated lake-covered area
are discovered at present. The simulation of Antarctic basal melt water flow
unveils complex subglacial drainage patterns. It is found that melt water con-
tributions from about 23 % of the basal water catchment area are draining into
the ocean at only four particular spots. Connections and drainage pathways
of selected subglacial lakes are discussed and the striking spatial correlation
of simulated enhanced basal water flow and observed ice streams are demon-
strated.



INTERACTIONS OF SUBGLACIAL HYDROLOGY AND
ICE DYNAMICS AT THE SIPLE COAST, ANTARCTICA

This chapter focuses on the West Antarctic Ice Sheet (WAIS) and the local inter-
actions of subglacial hydrology and ice dynamics. The spatial and temporal
variability of the Ross Ice Streams at the Siple Coast is investigated and pos-
sible controls on their locations are discussed. The mass balance of this area
is determined, using results from two different satellite altimetry campaigns:
ICESat and CryoSat-2. The observed patterns of ice surface elevation change
are interpreted and the influence of subglacial water routing on the ice dy-
namics is estimated. After that, present-day pathways and catchment areas
of water flow beneath the Ross Ice Streams are simulated and compared to
observed patterns of fast ice flow. The evolution of the basal drainage sys-
tem is simulated by applying the satellite-observed ice surface changes to the
present-day ice sheet topography. Finally, the results are discussed, regarding
their implications for the future evolution of the Ross Ice Streams.

5.1 STUDY AREA AND MOTIVATION

The ice volume of the WAIS is estimated to 2.2 million km3 (Lythe et al., 2001),
hence it contains about 10 % of the Antarctic ice. The approximately 97 % ice-
covered WAIS (Fretwell et al., 2013) is mainly marine based, meaning that the
majority of the bedrock lies below sea level. Therefore, the WAIS is assumed
to be potentially unstable under future climate warming where a partial col-
lapse could contribute to global eustatic sea level rise by 3.3m (Bamber et al.,
2009). Consequently, the understanding of the hydrology and ice dynamics
concerning future developments is essential.

For the investigation of the WAIS system a domain is chosen which encom-
passes parts of Marie Byrd Land and the Siple Coast (see rectangle A in Fig. 27).
The study area is enclosed by ice divides in the north and in the east (please
note the orientation of the map where south is in the upper right corner).
These ice divides also perform as subglacial watersheds, whereby the area of
interest can be considered as hydrologically enclosed at these margins (Fig. 26b,
Chap. 4). Beyond the Transantarctic Mountains a small part of the East Antarc-
tic Ice Sheet (EAIS) is included, because it belongs to the basal hydrological
catchment area of the Siple Coast. In the west, the area of investigation is
bounded by the Ross Ice Shelf.
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Figure 27: West Antarctica with Marie Byrd Land, Siple Coast and Ross Ice Shelf. The
study area is defined by rectangle A and relevant ice divides (AGAP) are
marked in red (Fig. after British Antarctic Survey, 2007).

5.2 THE ROSS ICE STREAMS

The Ross Ice Streams, being responsible for the vast majority of the ice trans-
port from the interior of the WAIS towards the Ross Ice Shelf, are introduced in
this section. Their variability in the past and local controls on their locations
are discussed as well as observations and estimates of the hydraulic system
underneath.

5.2.1 Present-day configuration and variability in the past

The ice dynamics at the Siple Coast (subdivided into Gould Coast, Siple Coast
and Shirase Coast) are clearly dominated by several major ice streams, also
called the Ross Ice Streams. Initially, they were refered to as Ice Stream A to F
but meanwhile all of them were named. Figure 28 shows their outlines and ice
catchment areas plus the ice ridges in between. The southernmost Mercer Ice
Stream (A) is separated by the Conway Ice Ridge from the confluent Van der
Veen (B1) and Whillans Ice Stream (B2) at the Gould Coast. The lower part of
these two converging ice streams is named for the dominant tributary of the
Whillans Ice Stream and refered to as Ice Stream B in the following. The former
Kamb Ice Stream (C) is located at the central Siple Coast and flanked by the
Engelhardt Ice Ridge in the south and the Raymond Ice Ridge and the Siple
Dome in the north. At the Shirase Coast the Bindschadler (D) and MacAyeal
Ice Stream (E) are divided by the Shabtaie Ice Ridge before they unite in the
Ross Ice Shelf. The northernmost Echelmeyer Ice Stream (F), isolated by the
Harrison Ice Rigde, is much smaller then the other Ross Ice Streams and will
be neglected in the following considerations for this reason.
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Figure 28: The Ross Ice Stream with ice drainage basins in white and ice stream out-

lines in black following RAMP imagery: A —Mercer, B1—Van der Veen, B2 -
Whillans, C-Kamb, D - Bindschadler, E—MacAyeal and F—Echelmeyer Ice
Stream. For location of map section see Fig.27. (Fig. after Joughin et al,,

2002)
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The Kamb Ice Stream, measuring 745km from the onset of the northern-
most tributary to the grounding line, began to stagnate ~150 years ago (Rose,
1979). Its former position is reconstructed from short-pulse radar profiles
(Fig.28). They show scatter from buried crevasses, which are presumed at
the surface when the ice stream was still active. The thickness of the undis-
turbed ice layers over these crevasses allows a back dating and reveals a se-
quential stagnation. The stagnation wave had its initiation at the grounding
line of the ice stream 130+25 years ago, followed by the slow-down of the
middle part 100£30 years ago and finally ended at the upstream part only ~30
years ago (Retzlaff and Bentley, 1993; Anandakrishnan et al., 2001; Catania
et al., 2006). Surface-based ice-penetrating radar profiles show an undulating
internal stratigraphy and thus prove its former fast flow conditions with pre-
stagnation flow velocities exceeding 350ma~! in the trunk of the ice stream
(Ng and Conway, 2004). With the same observation techniques evidence for
a former ice stream crossing Ice Stream C to D at the northeast flank of the
Siple Dome was found (Jacobel et al., 1996). But also the existing Whillans
Ice Stream was detected to decelerate. Over the period 1974—97 Joughin et al.
(2002) estimated a velocity loss of about 23 % with a combination of conven-
tional interferometry and speckle-tracking methods applied to RADARSAT-1
data. This was confirmed by Scheuchl et al. (2012) using full Interferometric
Synthetic Aperture Radar (InSAR), revealing a velocity change of —1ooma”' (-
25.3 %) for the Whillans Ice Stream and —goma~' (16,7 %) for the Mercer Ice
Stream at their grounding lines between the years 1997 and 2009.

5.2.2  Local controls on ice stream locations

Observations reveal a high variability in the mass flux of the Ross Ice Streams
as well as a significant short-term variability in ice stream shear margin and
grounding line positions (Catania et al., 2012). Since the ice streams are re-
sponsible for the majority of the mass export from the inner ice sheet to the
grounding line their evolution plays a key role for the future mass balance
of the WAIS. In order to understand or even predict their dynamic behavior,
seven potential controls on ice stream locations are defined by literature (e.g.,
Winsborrow et al., 2010): topographic focusing, topographic steps, macro-scale
bed roughness, calvin margins, subglacial geology, geothermal heat flux and
subglacial melt water routing. They are likely to influence the spatial and
temporal dynamics of ice streams.

Following Winsborrow et al. (2010) the primary controls most commonly
associated with fast ice flow are topographic focusing, calving margins, sub-
glacial geology and subglacial melt water routing which are discussed below
regarding their particular influence on the Ross Ice Streams.

TOPOGRAPHIC FOCUSING  For the Ross Ice Streams the topographic focus-
ing is given only for the southern tributary of the Mercer Ice Stream. It crosses
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Figure 29: Siple Coast: (a) Present-day ice surface velocity (Rignot et al., 2011a) with
Ross Ice Streams and positions of observed subglacial lakes (black triangles,
inventory by Wright and Siegert, 2012). Velocity color scale is truncated,
maximum values reach up to 7ogma~' in the Whillans and 668 ma~! in the
Bindschadler Ice Stream. (b) Bedrock topography (Bedmapz, Fretwell et al.,
2013) with ice divides (red) by AGAP and grounding line (black) by NsIDC.

the Transantarctic Mountains between Ohio and Wisconsin Range and is thus
fixed at this location. All other ice streams are located at the comparatively flat
submarine bedrock of the Siple Coast which does not feature any considerable
trenches or canyons in correlation with the existing patterns of fast flowing ice

(Fig. 29b).

CALVIN MARGINS  There is no existing calving margin associated to the ice
streams in this area. The Ross Ice Shelf covers the Siple Coast in its entirety and
thus uniformly buttresses the flow of ice across the grounding line (Fig. 27).

SUBGLACIAL GEOLOGY The prime control which creates the precondition
for ice streams to evolve in the area of investigation is clearly given by the
subglacial geology. Numerous seismic campaigns detected a layer of till un-
der the Ross Ice Streams (e.g, Rooney et al., 1987). Beneath the Whillans Ice
Stream this unconsolidated layer of sediment was estimated to be 5-6 m thick
on average and presumed to be glacial till (e.g., Alley et al., 1986). The ra-
tio of till viscosity to effective ice viscosity is small (MacAyeal, 1989). Conse-
quently, the vertical shear associated with horizontal flow is confined to the
deforming bed alone and thus the deformation of till can be regarded as the
primary mechanism by which the ice streams move (Alley et al., 1987). Bore-
hole measurements with a tethered stake apparatus by Engelhardt and Kamb
(1998) yielded a basal sliding in the amount of 83-100 % of the total ice mo-
tion. However, rigid bedrock substrata may contact the ice base beside the
deformable till in small areas and cause vorticity in the velocity field. At these
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spots the ice surface appears rumpled, visible, e.g., at Landsat images of the
MacAyeal Ice Stream (MacAyeal, 1992). In seismic reflections upstream of the
Kamb and Bindschadler Ice Streams Peters et al. (2006) observed sedimentary
basins, which are considered to control the onsets of these ice streams. The in-
land termination of these sediments suggests that a possible future migration
of the latter onsets is unlikely (Siegert et al., 2004). At the grounding line of
the Whillans Ice Stream Alley et al. (1989) discovered a till delta tens of meters
thick and tens of kilometers long. These sediments originate from upstream
locations and are transported downstream by the moving ice. Beyond, this
sedimentary wedge at the grounding line is believed to stabilize the position
of the grounding line even despite moderate changes in sea level (Anandakr-
ishnan et al., 2007).

SUBGLACIAL MELT WATER ROUTING The observed existence of till gives
the precondition for the development of ice streams at the Siple Coast. How-
ever, their exact locations are defined by the pathways of melt water flow. The
general prevalence of basal water at the Siple Coast was confirmed by a range
of radar sounding campaigns (e.g., Alley et al., 1986; Bentley et al., 1998; Ja-
cobel et al.,, 2009). They found high reflection strengths at the trunk of the
ice streams, interpreted as wet bed, and low reflections at the ice rises in be-
tween, interpreted as dry bed. The transitions between the areas with detected
wet and dry beds show exact correlation with ice stream margins. Boreholes
drilled to the ice bottom confirm that the ice base is at melting point inside
the confines of the ice streams and reveal a dry bed outside (e.g., Engelhardt
et al., 1990; Engelhardt, 2004). In addition, seismic investigation approved a
highly porous basal till layer which is saturated by water (e.g., Blankenship
et al., 1987, at the Whillans Ice Stream).

Particularly the observed spatial and temporal variability of the Ross Ice
Streams can be most likely explained with the variable melt water pathways,
which act on much shorter time scales than other controls, e.g., the variability
of the subglacial geology or the geothermal heat flux.

5.2.3 Subglacial lakes and melt rates beneath the ice streams

The discovery of many subglacial lakes (Wright and Siegert, 2011) gives clear
evidence for the presence of basal water. Furthermore, satellite laser altime-
ter elevation profiles show patterns of varying ice surface elevation which are
interpreted as the surface expression of subglacial water movement through
a system of channels between linked lakes (e.g., Fricker et al., 2007; Fricker
and Scambos, 2009). A striking feature of these active lakes is their clustering
within the confines of ice streams (Smith et al., 2009) (Fig.29a), such as the
subglacial Lake Whillans beneath the Whillans Ice Stream (Horgan et al., 2012;
Christianson et al., 2012). For example, in a tributary of the Kamb Ice Stream
an area of ~125km? slumped vertically downwards by up to 0.5m between
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September 26 and October 18, 1997 (Gray et al., 2005). Such single lake dis-
charge events can cause temporal subglacial water fluxes from 20 to 300m? s~
(Gray et al., 2005; Fricker et al., 2007; Fricker and Scambos, 2009; Carter and
Fricker, 2012). Although these observations reveal a widespread, dynamic sub-
glacial water system that may exert an important control on ice flow and mass
balance, the precise local melt rates are barely known since they elude direct
measurements. Analytical model results, e.g., for the Whillans Ice Stream, in-
dicate melt rates between 3~ymma-! for the upstream and 20-somma-' for
the downstream domain (Beem et al., 2010). With another modeling approach
Joughin et al. (2003) found, that most melting occurs beneath the tributaries
where larger basal shear stresses and thicker ice favor higher melt rates in

the order of 10—20mma'.

The ice stream tributaries and the inland ice are
accounted for about 87 % of the total melting generated beneath the Ross Ice
Streams including their catchments (Joughin et al., 2004). Following Parizek
et al. (2003) this melt water transports latent heat from beneath inland ice to
the base of the ice streams. The temperature at the bottom of the ice streams
itself and accordingly the melt rates are low, caused by the scarce internal
ice deformation and the consequently lacking internal frictional heating. This
was confirmed by temperature measurements in boreholes at the Whillans Ice
Stream and is consistent with observations of its deceleration over the last
decades which might lead to a possible shutdown in the future (Joughin et al.,

2004).

5.3 ICE SURFACE ELEVATION CHANGE OBSERVED BY SATELLITE ALTIME-
TRY

In this section, ice surface elevation change rates gained by two different satel-
lite campaigns are used to estimate the mass balance at the Siple Coast. Ob-
served patterns of elevation change are compared and discussed, regarding
particularly the impact of basal hydrology on the ice dynamics.

5.3.1 Origin and processing of ICESat and CryoSat-2 data

Satellite altimetry data originating from the ICESat and CryoSat-2 mission are
used. Here, a short introduction of the two satellite campaigns and the on-
board instruments is given:

ICESAT  The Ice, Cloud and Land Elevation Satellite (ICESat, Zwally et al.,
2002) mission from 2003 to 2009 was part of the National Aeronautics and
Space Administration (NASA) Earth Observing System. The onboard Geoscience
Laser Altimeter System (GLAS) measured cloud and aerosol heights, land to-
pography, vegetation characteristics and ice sheet mass balance. The satellite
provided multi-year elevation data needed to determine ice sheet mass balance
as well as cloud property information. In addition to the polar-specific cover-
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age of the Antarctic and Greenland Ice Sheets and the Arctic up to latitudes of
86° north and south, it provided topography and vegetation data around the
globe.

CRYOSAT-2  The satellite CryoSat-2 (description only published for the sim-
ilar CryoSat-1, which crashed shortly after its launch, by Wingham et al,,
2006a) was launched by the European Space Agency (ESA) in 2010. It carries a
radar altimeter which is able to operate in Synthetic Aperture Radar (SAR) and
Interferometric mode and is therefore called Synthetic Aperture Radar Inter-
ferometric Radar Altimeter (SIRAL). CryoSat-2 is orbiting the earth at a higher
inclination than ICESat, reaching latitudes of 88° north and south. Its radar
altimeter SIRAL was particularly designed for accurate measurements of icy
surfaces and is capable of detecting annual thickness variations of sea ice and
small elevation changes of ice sheet surfaces.

In the ICESat mission the rate of surface height change was measured by
using a time series of repeat-track satellite laser altimeter from 2003 to 2008
(Pritchard et al., 2009, 2012). In the processing of the data® for the Siple Coast
region, all values exceeding 0.8 m of absolute elevation change are regarded as
discordant values and ignored. The remaining data points are bilinear inter-
polated onto a 10km grid and smoothed out with a Gaussian filter of 60 km
width. The CyroSat-2 surface elevation change rates are gained by the com-
parison of surface elevation measurements in 2011 and the 2012 (Helm et al,,
2014), where a cross point analysis yields about one million data points for the
Siple Coast region. To transfer the data onto a 1o0km grid a blockmedian filter
with a radius of 15 km is applied. Thereafter, all values exceeding 0.8 m of abso-
lute elevation change are ignored and remaining data values are smoothed out
with a Gaussian filter of 60 km width, similar to the ICESat data processing.

5.3.2  Mass balance derived from surface elevation change rates

The surface elevation change rates derived from both ICESat and CryoSat-2
measurements are shown in Fig.30. The depicted values comprise all effects
on the local mass balance: snow accumulation, surface snow drift by wind,
ice thickness changes by horizontal ice in- and out-flow as well as basal melt-
ing and refreezing. Summing up the rates of surface height change for all
grounded ice nodes, a slightly positive mass balance is found for both cam-
paigns. According to the ICESat observations with a given uncertainty of
+o.0yma”! for the surface change rates (Pritchard et al., 2009), the grounded
ice volume is rising by 504+-63km3a! (0.0036 % ). For an assumed average ice
density of pj=910kgm™3 the latter volume change corresponds to a growth of
46+57Gta™! (gigatons per year) . The CryoSat-2 observations reveal a 28 %

ICESat surface elevation change rates provided by Hamish Pritchard (BAS), personal communi-

cation.
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Figure 30: Siple Coast: (a) Ice sheet surface elevation (Fretwell et al., 2013) and ice
surface elevation change rates (dS/dt) derived from (b) ICESat (Pritchard
et al., 2012) and (c) CryoSat-2 measurements (Helm et al., 2014). Bounding
ice divides by AGAP and grounding line (black) by NSIDC.

65



66

SUBGLACIAL HYDROLOGY AND ICE DYNAMICS AT THE SIPLE COAST

larger volume increase of 64+63 km3a™' (0.0046 %) for grounded ice, corre-
sponding to 58+57Gt a~! mass accretion. Here, an uncertainty similar to
the ICESat measurements was assumed, because the estimation of the un-
certainty for the CryoSat-2 measurements is still in progress (Helm et al,,
2014). Calculating the mean for the above satellite campaigns a mass grows
of 52457Gta™! is indicated. Joughin and Tulaczyk (2002) used ice-flow ve-
locity measurements from synthetic aperture radar to reassess the mass bal-
ance of the Ross Ice Streams. They also found strong evidence for ice sheet
growth (26.8+14.9 Gt a~'), in contrast to earlier estimates by Shabtaie and Bent-
ley (1987) which indicated a mass deficit (~20.9 Gta™'). Although the measured
mass balance at the Siple Coast by ICESat, CryoSat-2 and Joughin and Tulaczyk
(2002) shows variations and the given uncertainties are large, they all indicate
a slightly growth of the ice mass.

5.3.3 Spatial elevation changes and basal hydrology

The average thickening corresponds to approximately 25% of the accumula-
tion rate, with most of this growth occurring on the former Kamb Ice Stream.
There, the surface elevation changes reach maximum values of +0.65ma~’,
clearly visible as the central blue patch in Fig. 30 for both satellite campaigns.
The stagnation of the Kamb Ice Stream approximately 150 years ago might be
caused by a subglacial topographic change which redirected lubricating basal
water to the adjacent Whillans Ice Stream (Anandakrishnan and Alley, 1997).
That might have initiated the sequential slow down of the Kamb Ice Stream,
beginning at the grounding line and proceeding upstream (Sec. 5.2.1). Conse-
quently, the upstream tributaries (still visible in the present-day ice velocity
field in Fig.29a) feed into the now stagnant Kamb and cause the observed
thickening. The resulting bulge again boosts the diversion of melt water to-
wards the adjacent Whillans Ice Stream. Currently, it is not clarified whether
the redirection of basal melt water by a subglacial topographic change caused
the stagnation of the Kamb Ice Stream (Anandakrishnan and Alley, 1997) or
the ice stream stagnation caused the redirection of water through the resulting
thickening (Price et al., 2001; Conway et al., 2002). Surface change rates from
both satellite campaigns consistently reveal a surface elevation loss at a maxi-
mum of 0.38 ma~! in the area of the Whillans Ice Stream (red patch south of the
blue Kamb bulge in Fig. 30). This can be interpreted as an enforced transport
of ice towards the grounding line due to enhanced basal lubrication. Follow-
ing Joughin and Tulaczyk (2002) the Whillans Ice Stream, which was thought
to have a significantly negative mass balance, is close to balance, reflecting its
continuing slowdown (Scheuchl et al., 2012). Furthermore, Joughin and Tu-
laczyk (2002) speculated, that the overall positive mass balance may signal an
end to the Holocene retreat of these ice streams. In contrast, Conway et al.
(2002) stated, that caution is needed drawing conclusions about the large-scale
mass balance of the entire ice sheet when using the observation of short-term
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mass changes. Catania et al. (2012) supported this statement, interpreting the
stagnation of the Kamb Ice Stream as just one stage in the thermodynamic
cycle of an ice stream in that region due to the interplay of the ice streams and
the internal variability of the entire coupled complex system.

5.4 MODELING BASAL WATER PATHWAYS AND CATCHMENT AREAS

At the Siple Coast, the recent stagnation of the Kamb Ice Stream and the discov-
ery of numerous relict ice-flow features indicate a steady competition between
several preferred ice-flow paths of the Ross Ice Streams. Subglacial melt wa-
ter routing is considered to be the main control on the ice stream locations at
the Siple Coast (Sec. 5.2.2) and has the potential to explain their observed vari-
ability in the past (Sec.5.2.1). In this section, the prevailing basal water flow
regime at the Siple Coast is estimated based on in-situ observations. Present-
day and prognostic pathways and catchment areas of basal melt water flow
are simulated and investigated with respect to correlations with present-day
ice velocity observations and implications for future locations and velocities of
the Ross Ice Streams.

5.4.1 Present-day ice sheet simulation

Borehole measurements and seismic investigations reveal the prevalence of
a meters-thick layer of unconsolidated sediments (glacial till) at the ice base
of the Siple Coast. This layer is highly porous and saturated by water. The
water pressure was determined to be within 0.5 to 1.5bar (50 to 150kPa) of
the overburden ice pressure (e.g. Alley et al., 1986; Blankenship et al., 1987;
Engelhardt et al., 1990; Kamb, 2001). For example, a column of 1 00om ice (a
common ice thickness at the main trunk of the Whillans Ice Stream) with an ice
density of 910 kg m= applies a gravitational pressure of 89.27 bar (8 927 kPa) to
the bed. The measured difference between basal water and ice pressure of 0.5
to 1.5bar corresponds to a deviation of only 0.6 to 1.7 % for the above example.
Hence, the water pressure at these measuring sites is very close to the ice
pressure and one can assume an effective pressure (ice minus water pressure)
of zero. Consequently, the basal flow regime is expected to be distributed and
it can be taken advantage of the balance flux concept (Sec.3.3.3) to calculate
the melt water pathways and catchment areas.

In the following model runs, the Revised Ice Model Based on Frank Pattyn (RIM-
BAY) is forced with a constant basal melt rate for all grounded ice nodes. In
this way, the influence of the whole basal water catchment area is equally rep-
resented and the fluxes can be expressed as percentage of the total catchment
area. Thus, the uncertainties related to the calculation of basal melt rates be-
neath the Ross Ice Streams (Sec. 5.2.3) are avoided and the focus is set on the
water pathways and catchment areas sizes. The flow of basal melt water is
assumed to follow the basal hydraulic potential. This is calculated under the
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assumption of a distributed water flow system (Sec. 3.3.1) using the bedrock
elevation and ice thickness data provided by the Bedmap2 data set (Fretwell
et al., 2013). The Bedmap2 data set has a resolution of 1 km for whole Antarc-
tica, which is resampled to data sets with grid sizes of 5, 10 and 20 km for the
Siple Coast region. The basal water volume flux is computed with the Budd
and Warner (1996) balance flux algorithm corresponding Sec.3.3.1 whereby
flux conservation is guaranteed.

5.4.2 Present-day subglacial hydrology

Figure 31 shows the pathways of basal melt water for the three different model
resolutions of 5, 10 and 20km grid size. The color scale illustrates the local
drainage in percent of the total catchment area. For the 5 and 10km model
resolution the outflow concentrates towards 6 embayments at the grounding
line (5 embayments for the 20 km resolution). This finding is consistent with
results from Carter and Fricker (2012) who investigated the variable supply of
subglacial melt water to the grounding line, using a similar steady-state water
model and estimates for lake volume change derived from ICESat data.

The simulated basal water pathways match very good with the areas of
fast ice flow depicted in Fig.31d. That significantly supports the assumption,
that the locations of the ice streams are controlled by subglacial water routing.
Furthermore, the flow patterns of the two coarser model resolutions clearly
show how upstream water tributaries of the former Kamb Ice Stream (C) are
partly draining into the Willans Ice Stream. The 5 km model run reveals a more
finely branching flow system which also covers the trunks of all present-day
ice streams. However, there are still non-neglectable melt water contributions
towards the downstream part of the stagnated Kamb Ice Stream. This does not
necessarily mean the model results are wrong. Airborne radio echo sounding
field campaigns detected a wet bed derived from strong reflections for the
main trunk of the Whillans and the stagnated Kamb Ice Stream (e.g., Bentley
et al., 1998). The detected transitions towards dry bed areas in the inter-ice
stream regions match precisely the margins of the Kamb Ice Stream, which
already slowed down 150-30 years ago (Sec.5.2.1). Within the former Kamb
Ice Stream margins low radar reflectivity was limited to so-called sticky spots
(small areas with high basal ice traction) and along the Kamb margins (Jacobel
et al.,, 2009). A borehole drilled to the ice bottom at a sticky spot also found
a dry bed there (Jacobel et al., 2009). That supports the hypothesis that sticky
spots control the stagnation and possible reactivation of ice streams, once the
basal melting passes a certain threshold (Joughin et al., 2004). Anandakrishnan
and Alley (1997) assumed that the loss of lubrication on localized sticky spots
at the ice bed interface can cause the shutdown or the redirection of an entire
ice stream. On the other hand sticky spots, often observed to be located along
the ice streams margins, act as water sources and supply the ice stream with
melt water. The ice sliding at high basal traction in combination with strong
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Figure 31: (a-c) Simulated basal water pathways at the Siple Coast for present-day
bedrock elevation and ice thickness (Fretwell et al., 2013). The color scale
shows the drainage in percent of the total catchment area and is truncated
for a better visibility of the pathways, maximum values at the grounding
line are 20% (5km), 31 % (10km) and 42% (20km). (d) Ice surface ve-
locity (Rignot et al., 2011a), color scale is truncated, maximum values are
7ogma~! in the Whillans and 668 ma~! in the Bindschadler Ice Stream. All
figures contain 5 defined cross sections, corresponding to the locations of
the Ross Ice Streams (A-E) to quantify the associated water drainage in the
following. Bounding ice divides by AGAP and grounding line (black) by
NSIDC.
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Figure 32: Relative hydraulic catchment areas upstream of the defined cross sections
for the Ross Ice Streams (A-E, Fig.31) as a percentage for three different
model resolutions. At present, the largest water catchment area is draining
underneath the Whillans Ice Stream (B).

internal deformation provides a powerful heat source for basal melting from
which the adjacent ice stream, which itself is comparatively cold, benefits by
enhanced lubrication. Additionally, the ice-thickness perturbations induced
by ice flow over variable traction create local hydraulic minima. That explains
the observed collocation of sticky spots and subglacial lakes (Sergienko and
Hulbe, 2011).

The relative sizes of the water catchment areas for all Ross Ice Streams are
illustrated in Fig. 32 for the different model resolutions. They reference to the
total upstream area of 5 defined cross sections of approximately 140 km length,
corresponding to the locations of the main trunks of the 5 major ice streams
(Fig.31).

Beside small variations caused by the applied model resolution they agree
very well. The Whillans Ice Stream (B) overspreads the heaviest flow of water
which is draining 32+ 4.5 % of the upstream catchments (mean value and er-
ror range are derived from the results of the three different model resolutions,
Fig.32). This supports the fact, that Whillans Ice Stream is the fastest flowing
Ross Ice Streams with ice surface velocities up to 7o9ma~'. Beneath Bind-
schadler (D) and MacAyeal Ice Stream (E) drain the comparable percentages
of 22.3+0.5% and 24.1 £ 0.8 % of the total catchment area, well-fitting to their
similar velocities of up to 668 ma~'. As expected, the flow beneath the smaller
and slower Mercer Ice Stream (A) drains the smallest part with 9.9+ 1.9 % of
the total upstream catchment. Despite the fact that the Kamb Ice Stream (C)
stagnated tens of years ago, the basal flow underneath drains the considerable
amount of 12.6 =3 % of the total upstream Siple Coast catchment. Here, com-
plex and yet not fully understood control mechanisms at the ice base appear
to rule the ice motion in the face of a observation-proved wet bed as already
discussed above.



5.4 MODELING BASAL WATER PATHWAYS AND CATCHMENT AREAS

5.4.3 Prognostic simulation using ICESat and CryoSat-2 ice surface elevation change
rates

The evolution of the basal drainage network at the Siple Coast is investigated
by altering the present-day ice sheet geometry and, thus, the basal pressure
conditions according to measured ice surface change rates. In two experiments,
using the ice model RIMBAY, the surface elevation change rates observed by the
ICESat and the CryoSat-2 campaign (Sec. 5.3, Fig. 30) are added to the present-
day ice sheet thickness (Fretwell et al., 2013) at model resolutions of 5, 10
and 20km. In this way, the ice surface change exactly corresponds to the
ice thickness change for grounded ice. However, for floating ice an observed
surface change dS/dt refers to a change in ice thickness H according to

dH 1 ds

FT TS (¢0)
where p; and p, are the average densities of the ice shelf and the ocean wa-
ter. The conversion factor in Eq. 60 is roughly 9, depending on the local ice
shelf density. The grounding line, which is the border between grounded and
floating ice and the associated different application of the observed dS/dt to
the evolution of the ice thickness H, is recalculated in RIMBAY every time step
and hence variable. The pattern of the observed dS/dt is based on a fixed
grounding line, which is in the majority of cases not exactly collocated with
the modeled grounding line. This mismatch leads to huge overestimates of
the ice thickness change in the vicinity the actual grounding line, given by
the ice model. Since the evolution of the ice shelf thickness is not particularly
important for the prognostic calculation of the melt water pathways, the ob-
served surface elevation change rates is simply added to both the thickness of
grounded and floating ice nodes, without taking into account Eq.60. In this
way, the error of the thickness evolution is minimized in the area around the
grounding line but underestimate the thickness change for the ice shelf which
is not relevant for subglacial water tracing.

Again, a constant basal melt rate is prescribed for all grounded ice nodes
because the primarily interest goes to the water pathways and the catchment
area sizes. This melt rate does not affect the ice thickness in these simulations
and is only used for the calculation of the balance flux. The hydraulic potential
is recalculated for every time step and is modified accordingly to guarantee
flux conservation before the application of the Budd & Warner balance flux
scheme (Sec.3.3.3). Starting with the present-day ice thickness, the satellite
derived surface elevation change rates are applied for an extended period of
200 years. This alters the basal hydraulic potential resulting in a modification
of the basal water pathways.
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5.4.4 Prognostic subglacial hydrology

The results for the three different model resolutions are depicted in Fig. 33. The
color scale illustrates the percentual drainage of the total catchment area and
the 5 cross sections mark the locations of the Ross Ice Streams. Beneath the
outer ice streams Mercer (A) and MacAyeal (E) the water flow patterns show
no remarkable changes within the next 200 years. However, underneath the
central three ice streams the water pathways show a very dynamic behavior.
Here, in the middle part of the stagnated Kamb Ice Stream (C), the strongest
growth in ice thickness occurs following the satellite observations (compare
with Fig.30). This area is marked with a red circle in all figures. The arising
ice bulge increasingly diverts the basal melt water at this spot and leads to
a lateral separation of the flow patterns. At present, a major upstream water
tributary (tagged with a red star) is feeding into the Kamb (C) and the Whillans
Ice Stream (B) area. Within the next 200 years this water influx will be entirely
redirected towards the Bindschadler Ice Stream (D). Consequently, the water
flow beneath the Kamb Ice Stream will be lacking this contributions. This main
characteristic of the computed future water pathways is found consistently for
both satellite surface change data sets at model resolution of 5 and 10km
emphasizing the significance of the result. The 20 km resolution model runs
reveal this redirection to a lesser extent. Obviously, this resolution is too coarse
to point out such details in the water flow patterns.

The basal volume water fluxes towards the grounding line through 5 cross
sections corresponding to the locations of the trunks of the Ross Ice Streams
under the influence of the ICESat and CryoSat-2 surface change rates are bal-
anced for the next 200 years (Fig.31). Due to the chosen constant melt rate,
the temporal evolution of the water catchment area upstream of every cross
section can be computed as a percentage of the total upstream catchment area
of all cross sections. Figure34 shows the evolution of the catchment areas
for the model runs with 5km resolution at a time step of 1 year. The graphs
confirm the above analysis of the water pathways. The water catchment areas
feeding underneath Mercer (A) and MacAyeal Ice Stream (E) remain stationary
over the period of the next 200 years. The water catchment area of the Kamb
Ice Stream (C) first gains about 2% in size from the Whillans (B) catchment
within the next 10 years. After that it continuously looses area in favour of the
Bindschadler Ice Stream (D). Again the analogy of the influences of the two
satellite derived surface change rates on the evolution of the basal hydraulic
system is striking. Additionally, the black line in Fig. 34 shows the develop-
ment of the total upstream catchment areas which reveal very slight variations
in size due to the shifting of water sheds by the applied ice thickness changes.
Remarkable features are the occurring steps within all graphs. They indicate
points in time when larger water tributaries are linked to (or delinked from) a
catchment due to the dynamics of the basal water pathways.
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(g) 20km, present-day (h) 20km, +200yr, ICESat (i) 20km, +200y1, CryoSat-2

Figure 33: Simulated present-day basal water pathways beneath the Ross Ice Streams
(A-E) and their simulated positions after 200 years using ICESat and
CryoSat-2 surface elevation change rates at three different model resolu-
tions. The color scale shows the drainage in percent of the total catchment
area. The red circle marks the area where a redirection of a major hydraulic
tributary (marked with a red star) of the Kamb (C) and Whillans Ice Stream
(B) to the Bindschadler Ice Stream (D) takes place at the higher model reso-
lutions. Bounding ice divides by AGAP and grounding line (black) by NSIDC.
The designation of longitudes and latitudes is omitted due to the lack of
space, for location of map section see, e.g., Fig. 31.
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Figure 34: The temporal evolution of the water catchment areas upstream of the de-
fined cross sections for all Ross Ice Streams (A-F, Fig. 33) under the impact
of the observed surface elevation changes from (a) ICESat and (b) CryoSat-2
for the next 200 years. T shows the variation of the total upstream catch-
ment area. Model resolution is 5km.
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Figure 35: The percentual change of the water catchment areas of the Ross Ice Streams
(A-E) after the application of (a) ICESat and (b) CryoSat-2 surface elevation
change rates for 200 years at 5, 10 and 20 km model resolution.



5.5 SUMMARY

The percentual variations of all catchment areas at all model resolutions
for the next 200 years are summarized in Fig.35. Both the ICESat and the
CryoSat-2 surface change rates indicate a future loss of about 12 % (at 5km
model resolution) of the water catchment area feeding underneath the Kamb
Ice Stream (C) while the water catchment area of the Bindschadler Ice Stream
(D) increases by the same amount. In this way, the water catchment area of
the Bindschadler Ice Stream grows by roughly 50 % and the lower part of the
stagnated Kamb Ice Stream becomes almost hydrologically separated from the
upper regions of the Siple Coast. Due to the found spatial correlations between
simulated basal water flow and observed ice surface velocities in Sec.5.4.2,
this might be a continuation of the processes which caused the stagnation
of the Kamb Ice Stream in the past and could lead to an acceleration of the
Bindschadler Ice Stream in the future.

55 SUMMARY

The Ross Ice Streams transport mass from the inner WAIS towards the ground-
ing line with velocities of up to several hundred meters per year (Rignot et al.,
2011a). However, their positions and velocities are found to be very variable
in the past. For instance, observations revealed a stagnation of the Kamb Ice
Stream during the last 150 years (e.g., Rose, 1979) and a deceleration of the
Whillans Ice Stream by —25.3 % between 1997 and 2009 (Joughin et al., 2002).
Since the Ross Ice Streams are dominating the ice dynamics at the Siple Coast,
their evolution plays a key role concerning the future mass balance of the WAIS.
In order to understand triggers for their spatial and temporal dynamic behav-
ior, the availability of the primary controls on locations of ice streams (Winsbor-
row et al., 2010) are investigated for the particular region of the Siple Coast. A
widely spread and meters thick basal layer of unconsolidated sediments (e.g.,
Alley et al., 1986) creates the precondition for fast ice flow by bed deformation
due to the viscosity of the till, which is significantly lower than the viscosity
of ice (e.g., MacAyeal, 1989). The exact locations of the ice streams, however,
are determined by the pathways of subglacial melt water flow (e.g., Bentley
et al., 1998). This hypothesis is supported by the analysis of ice surface eleva-
tion change rates obtained from the ICESat and CryoSat-2 satellite campaigns
(Pritchard et al., 2009; Helm et al., 2014). The interpretation of surface change
patterns reveals, that redirections of subglacial flow paths are most likely the
reason for the observed variability of the central Ross Ice Streams. In addition,
the mass balance of the Siple Coast is estimated using satellite altimetry and
found to be slightly positive with 52+57 gigatons per year, corresponding to
an ice volume growth of about 0.004 %.

The regime of water flow beneath the Ross Ice Streams is assessed to be
distributed and the basal water pathways are simulated for the present-day ice
sheet topography following the balance flux concept. All current ice stream
outlines are found to be clearly associated with areas of enhanced water flow.
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Furthermore, the ice velocities of the ice streams are found to be related to the
water catchment area sizes draining underneath.

Applying satellite-derived present-day surface elevation changes to the present-
day ice sheet surface for 200 years allows an estimation of future basal drainage
routes. According to this simulation, the basal water pathways at the Siple
Coast are highly sensitive to small ice thickness changes due to the smooth
bedrock. A major hydraulic tributary of the Kamb and Whillans Ice Stream is
estimated to be redirected underneath the Bindschadler Ice Stream within the
next 200 years. Accordingly, the water catchment area feeding underneath the
Bindschadler Ice Stream is estimated to grow by about 50 percent while the
lower part of the stagnated Kamb Ice Stream becomes increasingly separated
from the upper hydraulic tributaries of the Siple Coast. This might be a contin-
uation of the subglacial hydraulic processes which caused the past stagnation
of the Kamb Ice Stream. Furthermore, this might also lead to a future increase
of the ice velocity within the Bindschadler Ice Stream.



COUPLED MODELING OF ICE DYNAMICS, SUBGLACIAL
LAKES AND BASAL DRAINAGE NETWORKS IN A
SYNTHETIC DOMAIN

In this chapter, the complex interactions between ice flow dynamics and sub-
glacial hydrology are investigated in a coupled modeling study using the
Revised Ice Model Based on Frank Pattyn (RIMBAY). A new hydrological concept is
presented, covering the dynamic evolution of subglacial water drainage path-
ways and subglacial lakes. The benefits of this new approach are demonstrated
in the application to a synthetic model domain and the comparison with the
balance flux concept within five different experiments.

6.1 A NEW BALANCED WATER LAYER CONCEPT

A realistic modeling approach has to incorporate several interactions in the
evolution of the ice dynamics and the basal hydraulic system of an ice sheet:
Ice thickness and bedrock elevation locally define the pressure conditions at
the ice-bedrock interface (e.g., Shreve, 1972). Thus, the pathways of basal water
flow and the locations of subglacial lakes are determined. Basal water in turn
lubricates the base of the ice sheet locally and thus reduces the basal drag
of the overlying ice. As a result, fast flowing ice streams can evolve above
areas of enhanced subglacial water flow (e.g., Joughin et al., 2004) and the ice
velocity increases over subglacial lakes (e.g., Kwok et al., 2000; Pattyn et al,,
2004; Thoma et al., 2010, 2012). The basal sliding velocity and the related
basal friction influence the thermal regime of the ice sheet and thereby control
the basal melt rate (e.g., Parizek et al., 2003; Joughin et al., 2003). The filling
or draining of subglacial lakes causes a lifting or lowering of the floating ice
above and thus affects the ice sheet geometry (e.g., Gray et al., 2005; Wingham
et al., 2006b; Fricker and Scambos, 2009; Smith et al., 2009).

The prediction of subglacial lakes by identifying hollows in the hydraulic
potential (Sec. 3.3.2 and 4.2) and the balance flux concept (Sec. 3.3.3) are no ap-
propriate methods to meet the above described requirements of coupled mod-
eling. They do not include the filling and draining of subglacial lakes which
depends on the availability of upstream generated melt water and changes
of the ice sheet geometry. For this reason, they do not cover the variability
of basal water flow downstream of subglacial lakes, too. Another disadvan-
tage of the balance flux concept is the lacking mass conservation on realistic
topographies: only a fraction of the melt water produced inside the model
domain reaches its margins, because upstream flux contributions are lost at
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Figure 36: Schematic cross-section of an ice sheet as an example for a FD discretization
with 8 terrain-following o-coordinates, becoming closer from the ice surface
S towards the ice base Hg. In the following model runs 21 o-levels are used.
The ice thickness is given by H = S — Hg. The water layer W is situated
between ice base Hp and bedrock B and can locally also have a thickness

of zero.

local minima of the hydro-potential surface. Additional computational effort
is necessary to conserve the flux over these hollows (Sec. 3.3.3).

To transfer the advantages of the balance flux concept and to overcome
its weaknesses, the balanced water layer concept is introduced (Goeller et al.,
2013). This new approach assumes a distributed flow regime and is fully mass
conservative on any topography without the necessity of any additional mod-
ifications. For inclined regions of the hydraulic potential it yields the balance
flux. In addition, this concept allows water to accumulate in hollows of the
hydraulic potential and hence to form subglacial lakes. Once lakes are filled to
their maximum level, melt water generated upstream flows through the lakes
to their discharge point and thus contributes to downstream flow.

6.1.1  General formulation

For distributed subglacial water flow regimes the basal hydraulic potential p
(Shreve, 1972) at the ice-bedrock interface can be expressed as

P = pwatergB + picegH (61)

where B is the bedrock elevation, H is the ice thickness, g is the gravitational ac-
celeration and pwater and pjce are the densities of fresh water and ice (Sec. 3.3.1).
Defining a water layer with thickness W (Fig. 36) between bedrock with eleva-
tion B and ice base Hp leads to

P = pwaterg(B +W) + picegH (62)

where p is the hydraulic potential at the top of the water layer respectively at
the ice base. Equation 62 with [p] = Pa is converted into the water equivalent
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hydraulic potential P = p/(pwg) with [P] = m a.s.l.. In addition, a time index
t is added, reflecting the fact, that bedrock B, ice thickness H, water layer
thickness W and consequently the hydraulic potential P are time-dependent
in general:

Pt =B+ Wt H P (63)

Pwater

The balance equation for the evolution of the water layer W' is given by

owt
ot

_ diV(Wt\—)(water)) + M:tc) (64)

where v(Watr) is the vertical averaged water velocity and M} is the basal melt
rate. The values for bedrock elevation B, ice thickness Ht and basal melt rate
My are provided by an ice model, which is coupled to the hydrology model.
Presuming that the water velocity is much higher than the ice velocity, the
hydrology can be brought to an equilibrium state with the ice sheet geometry
on every time step. Stating that the water velocity follows the gradient of the
hydraulic potential, Eq.64 can be solved iteratively: First the current water
layer thickness W' is computed by adding the melt water input M{ - At to
the water layer thickness W'~ of the previous time step. Then the available
water is redistributed along the gradient of the hydraulic potential (Eq. 63) in
an iterative way until a stationary basal water distribution W* is found.

This basic concept is applicable to all kind of ice models, whether they use a
finite difference, finite element or finite volume discretization. The ice model
RIMBAY is based on FD. Consequently, the implementation of the hydrology
model is formulated in FD, too, allowing a direct coupling of both models.

6.1.2 Implementation for finite differences

The potential P}; for a grid cell (i,j) at time step t is composed of a constant
part Pf;‘ = B{,)- + HJ{J- Pice/ Pwater and the adjustable water layer thickness W{‘,j,

which has to be balanced out with respect to the potential P{E,j' The iteration is
all done for time step t, so the time index is omitted for reasons of clarity.

Pi,j = P;j + Wi/j (65)

The balanced water layer concept operates on an Arakawa C-grid (Arakawa
and Lamb, 1977). Hence, the gradients of the hydraulic potential P; ; are de-
fined at the margins of the grid cells as

OPi; _ Piy1j—Pij and 0Pij  Pijr1 — Py

0x Ax oy Ay

(66)

The instantaneous transport of water between adjacent grid cells for one itera-
tive step is expressed by T7; and T j» where the sign gives the direction and the
product with the grid size AxAy the volume of the water transport (Fig. 37). In
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Figure 37: Notation for staggered Arakawa C-grid: at the grid center: basal water layer
thickness W ;, hydraulic potential P; j, normalization Ny ;, water flux ¢y
(for coupling to an A-grid ice model), at the grid cell edges: water transport
Tixj and Tiy/ 7 hydraulic gradients dP; ;/0x and 9P; ;/dy, water flux d)’-f,j and
(b}i’,j (for coupling to an C-grid ice model).

order to normalize all directional water transports out of a grid cell (i,j), the
norm Nj ; is introduced with

oPi_1; OP; ;
Nj; = max =1 o) + max [ ——2,0
’ ox ox

(67)
oP: -
+ max L) 1,0 + max —apl’],O .
oy oy
The differences of the potential between adjacent grid cells are defined as
AxPi; = [Piy1,; — Pyl (68)

AyPij =IPijr1 —Pijl.

So the water transports T;; and TZ ; with [T ]/ Y] = m can be calculated for all

grid cell edges by
min(Wj;, e APy ;) oPi; <0
X _ _ aPi,j Ni,j ' ox
v ox min(WiH,j, £ AxPi,j ) else
Nit1, '
(69)
min(Wj, e AyPy ;) 0Py <0
v _ %y Nij B
i

dy min(Wj 511, ¢€ AyPij; ) , else.

Niji1
with the convergence parameter ¢ € (0,1). They are determined by the di-

rection, the amount and the normalization of the water transfer. The sign of
the hydraulic gradient (Eq.66) gives the direction of the water transport in
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Eq. (69). The normalization is done by the ratio of the hydraulic gradient and
Nj; of the water-contributing (upstream) grid cell. To achieve convergence, a
water amount corresponding to a fraction ¢ of the differences of the potential
(Eq. 68) is transported. These transfered amounts are bounded by the maxi-
mum available volume of water so that ¢ A P;; or € AyP; ; will never exceeds
Wi,]' .

Finally, the water layer for the next iteration step is obtained by

W.(i.ter'Jrl) = W.(i.ter') + TX 15— T*. + Ty Ty (70)

1,) 1,) 1—1) 1) 1,)— i,j7

and it is started again at Eq. (65), until the change of the water layer thickness
for all n grid cells is found under a certain threshold AW (threshold)

T Z )W (iter+1) l(1]ter] < AW(threshold)‘ (71)

Here, the target precision of the basal water distribution rules the choice of
Awthreshold) “vohere a smaller value leads to a better levelness of subglacial

lake surfaces but needs further iterations.

Closed lateral boundary conditions for the balanced water layer concept
(e.g., at ice-nunatak interfaces) can be easily implemented by setting the water
transport to zero at the respective grid cell edges. Open lateral boundaries do
not require a special treatment. However, one can sum up all outward water
transports at these margins to yield a water flux in order to force another
coupled model, e.g. an ocean model at ice-ocean interfaces.

6.1.3 Scalar and vector water fluxes on C- and A-grids

The scalar volume flux ® with [®] = m3s™' defines the total water volume
which is horizontally transfered between adjacent grid cells within time step
At. On a C-grid, consequently, ®F; and (D}i’,j are obtained, which are defined
at the grid cell edges. These volume fluxes are computed by adding up all
instantaneous water transports (Eq. 69) during the above iteration:

A A AxA
Oy =t Y T, ol ==

iter. iter.

Tiy, i (72)

As the volume flux (Eq.72) between two grid cells can be Considered to be
orthogonal to the grid cell edges, the vector flux ¢ with [¢] = m?s™! is directly

derived by
X @7 .
i y o i
d)l] Ay’ (bi,)' = Ax (73)

It is fairly simple to couple the water flux calculated by the balanced water
layer concept to an ice model running on a C-grid, because both water flux
and ice velocities are determined at the edges of a grid cell.
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Some more transformations are required if one wants to derive a scalar and
vector water flux at the grid cell center for a coupling with an A-grid ice model.
(ou

First, the total volume flux @, t) through a grid cell is approximated by the
outflows @7 and d)}i’,j across the grid cell edges to

(Dgf;u” = max (—®¥_; ;,0) +max (®%;,0)
) (74)

137

+ max (—@{571,0) + max (d)}.' 0

Then the flux direction 0;; relative to the grid orientation is determined by
fitting a plane to the hydraulic potentials of the next four neighbor cells. Ac-
cording to Budd and Warner (1996) the vector flux ¢;; at the center of a grid
cell with side length L = Ax = Ay is similarly to Eq. 59 in Sec. 3.3.3 given by

) 1‘E,(;ut)

|cos 01|+ |sin 6 ;)

The obtained balance vector flux ¢;; is the steady-state solution of the water
balance equation (Eq. 64) with div ¢ ; = My ;.

6.2 COUPLING OF HYDROLOGY AND ICE MODEL

The three-dimensional thermomechanical finite differences ice-flow model RIM-
BAY is applied in Shelfy Stream Approximation mode (Eq.24 and 25, Sec.2.2.2)
(e.g., MacAyeal, 1989; Pattyn, 2010; Thoma et al., 2014). The Shelfy Stream
Approximation is chosen for grounded ice instead of the Shallow Ice Approx-
imation to incorporate shear stress coupling between adjacent grid cells (e.g.,
Greve and Blatter, 2009). The computations for the ice dynamics are all per-
formed on an Arakawa A-Grid (Arakawa and Lamb, 1977), treating model
variables, e.g., bedrock elevation, ice thickness and velocity, as located at the
grid center.

WATER LAYER — ICE GEOMETRY  With the surface elevation S in the hori-
zontal ice velocity calculation (Eq. 24, Sec. 2.2.2) and the relation S = B4+W +H
the geometry of the ice model is directly coupled to the hydrology model by
the basal water layer W (Eq. 63 and 64). The basal water layer, which is situ-
ated between bedrock and ice base, can gain a certain thickness and thus lift
the overlying ice by this amount.

WATER LAYER / LAKE — ICE SLIDING  All grid cells where the basal water
layer thickness W exceeds one meter are treated as subglacial lakes and the
basal friction parameter B2 (Eq.25, Sec.2.2.2) for the calculation of the hori-
zontal ice velocity (Eq. 24, Sec. 2.2.2) is fixed to zero there.

WATER FLUX — ICE SLIDING To parameterize the hydrology-dependent
basal ice sliding a relevant coupling variable would be the basal water pres-
sure (e.g., Clarke, 2005; Cuffey and Paterson, 2010; Schoof, 2010), which is not
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provided by the balanced water layer approach. Similar balance flux applica-
tions (e.g., Le Brocq et al., 2009) assume a laminar water flow and then couple
the sliding to the steady-state water-film depth. In order to avoid further as-
sumptions about the particular type of the distributed water flow regime, a
simple physically plausible correlation of the sliding rate C (Eq. 30, Sec.2.2.2)
and the subglacial water flux ¢ (Eq.75) is introduced. It enhances the common
calculation of the basal friction parameter 2 (Eq. 33, Sec. 2.2.2) by introducing
a water flux dependent sliding rate C(¢):

C() = Co exp ™0 (76)

with sliding coefficient m =1/3, Co = 107 Pam™/3 s%/3 (Pattyn et al., 2013) and
the reference flux ¢y, scaling this correlation. Consequently, an increased flux
¢ implies a smaller ice sliding rate C(¢) and thus an enhanced slipperiness,
which decreases 32 to a possible minimum of zero. A reasonable reference
flux ¢o can be obtained by adapting it to observed ice surface velocities. An
overview of indirectly estimated basal water fluxes for Antarctica is given in
Sec.3.2.1.

WATER LAYER — BASAL MELTING  The ice temperature is calculated by solv-
ing the energy conservation equation and neglecting the horizontal diffusion
for 21 terrain-following vertical layers, which become thinner towards the ice
base (Fig.36). The basal melt rate My, is calculated with Eq. 41 in Sec. 2.2.3 and
forces the water layer thickness W in every time step (Sec. 6.1.1).

63 MODEL DOMAIN, EXPERIMENTS AND RESULTS

In the present study, a rectangular model domain on the scale of 60 x 200 km?
with a grid resolution of 2 km is used (Fig. 38). Closed free-slip boundaries are
defined at the lateral ice sheet margins and the ice divide. At the ice sheet front
a free-flux boundary allows mass loss, which could be interpreted as calving
into an adjacent ocean. In experiments, where a hydrological model is applied
(Tab. 3), the ice sheet front is treated as an open and the lateral margins and
the ice divide as closed hydrological boundaries.

The bedrock consists of randomly distributed peaks with a linear increas-
ing random amplitude up to 1 km. This artificial topography with mountains
and troughs roughly mimics typical characteristics of observations, e.g. in the
Gamburtsev Mountains region in East Antarctica (Fig.40b, Bell et al., 2011)
or the Ellsworth Mountains (Woodward et al., 2010) in West Antarctica. Al-
though the used terrain generation algorithm overestimates the number of
enclosed bedrock basins compared to observations (e.g., Anderson and Ander-
son, 2010), it is well suitable to demonstrate the balanced water layer concept.

In this study, the glacial isostatic adjustment is omitted and a constant
bedrock elevation B is applied for simplicity (Eq.63). All experiments are car-
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Figure 38: Model domain with mountainous bedrock and steady-state ice sheet topog-
raphy in the control run (CR).

Hydrology Coupling
model Hydrology Ice

Balanced Water layer Geometry

T—
BW water layer \_) Melting

concept Sliding
Balanced Water layer \ Geometry
BWF water layer \J : Melting
concept Water flux Sliding
Balance
BE BFt flux «— _ Melting
> -
concept Water flux Sliding

Table 3: Schematic overview of the coupling between hydrology and ice model for all
coupled experiments.
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Figure 39: Control run (CR)

ried out with the same bedrock topography to guarantee comparability and
are run for 20000 years until both the ice dynamics and the hydrological sys-
tem are in a steady state. A time step At of 1year guarantees a compliance
with the Courant-Friedrich-Levy criterium:

At
<

vl xS 1. (77)

The ice surface temperature Ts is set to —10 °C, the accumulation rate Ms
is 0.5ma™!, and the geothermal heat flux G is 0.15 Wm™ all over the model
domain. Compared to measurements in Antarctica, the above surface temper-
ature (Comiso, 2000) and accumulation rate (Arthern et al., 2006) is relatively
high. Also the chosen geothermal heat flux is in the upper range of the es-
timated spectrum for Antarctica (Shapiro and Ritzwoller, 2004; Maule et al.,
2005), which simply leads to higher melting rates and thus to a faster conver-
gence of the basal hydraulic system in the model runs.

6.3.1  Control run without hydrology (CR)

All experiments start with the same steady-state ice sheet (Fig.38), which is
called the control run (CR). The total accumulation balances the mass loss
at the ice sheet front at an ice volume of 17001 km?3. The ice thickness of this
parabolic ice sheet varies from 2294 m at the ice divide to 263 m at the ice sheet
front, where the ice velocity increases up to 535ma~'. The variations of the ice
velocity show clearly the influence of the mountainous bedrock (Fig. 39a). The
melt rate (Eq. 41) is taken into account for the calculation of the ice thickness
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evolution (Eq. 44) and the vertical ice velocity. However, no subglacial hydrol-
ogy model has been applied. Accordingly, there is no flux-sliding-coupling
(Eq.76) incorporated and C(¢$)=Cy. Figure 39b shows the melt rates, which
are lowest in the interior of the ice sheet, where the ice velocities are low and
thus the melting is governed by the geothermal heat flux (Eq. 41). In the vicin-
ity of the ice divide they range from about 1mma~' to maximum values of
15mma”' in deep bedrock troughs, where the ice thickness reaches its maxi-
mum and thus insulates the ice sheets base best from the surface temperature.
Towards the ice sheet front the ice velocities increase and the melting is clearly
dominated by frictional heating, reaching values up to 76mma~'. The mod-
eled melt rates are higher than estimates for the Antarctic Ice Sheet (e.g., Carter
et al., 2009a; Pattyn, 2010), due to the chosen thermal boundary conditions for
a faster convergence of the hydraulic system in the next experiments.

6.3.2  Balanced water layer: lake-sliding coupling (BW)

Starting from the control run, the balanced water layer concept is applied with
C(d) =Co. As a consequence melt water is able to accumulate in hollows of the
hydraulic potential and starts to form subglacial lakes. The convergence pa-

rameters are set to AW (threshold) -10

=10 '"m and ¢ = 0.5, which is a good compro-
mise between fast convergence and reasonable accuracy. The hydraulic system
reaches a steady state after running the model for 20 0oo years, meaning all sub-
glacial hollows are filled and the entire generated melt water of 0.288km3a™"

is leaving the model domain at the ice sheet front. Grid cells, where the basal
water layer thickness exceeds one meter, are defined as subglacial lakes. Above
these lakes a stress-free ice base is assumed. In total, 266 subglacial lakes are
found covering 2 256 km? with a water volume of 372 km?. The percentage of
the bed covered with subglacial lakes is 18.8 % for the model domain. Com-
pared to estimates of the lake coverage for the whole Antartic continent with
~0.4 % (~50 000 km? of known lakes, Wright and Siegert, 2011) this number is
high. The discrepancy can be explained by the used topography. It is meant to
loosely resemble particular Antarctic areas with a mountainous bedrock (and
even for these it overestimates the number of enclosed basins) and is thus not
representative for the whole Antarctic continent. Fitting to observations the
majority of the lakes in BW is situated close to the ice divide, where the ice
surface gradient is low and the bedrock elevation gradients are high (Tabacco
et al., 2006). The surfaces of the lakes are inclined due to the basal pressure
conditions resulting from the ice thickness gradients over the lakes (Fig. 40a).
This corresponds to observations in Antarctica (Fig. 40b), where lake surfaces
reflect the ice surface slope with an amplification of factor nine (e.g., Bell et al.,
2011). The largest lakes reach up to 100km? extent and water depths up to
636 m (Fig. 41a). The ice velocity in BW shows clear evidence of spatial vari-

ations in basal stresses, as there are many spots with an enhanced velocity
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(a) Profile of the modeled ice sheet at y=22 km for experiment BW, showing
several subglacial lakes and their inclined surfaces due to the ice thickness
gradient. (b) Radar observations reveal basal water reflections in valleys of
the Gamburtsev Mountains, Antarctica (Fig. after Bell et al., 2011).
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Figure 41: Balanced water layer concept with lake-sliding coupling (BW)

in correlation with the location of subglacial lakes (Fig. 41b), and the total ice
volume decreases to 16 443 km3, which will be discussed in Sec. 6.4.

6.3.3 Balanced water layer: lake- and flux-sliding coupling (BWF)

In a second experiment BWF, again the balanced water layer concept is ap-
plied but extended BW by coupling the basal water flux (Eq.75) to the basal

*m?a!, which is just

sliding rate (Eq.76). The reference flux is set to ¢po=10
an example to illustrate the flux-sliding interaction. The generated melt water
amounts to 0.286 km3 a~!. Figure 42a shows the basal balance water flux with
a maximum of 197794 m? a”!, forming a branching stream system. All the melt
water from upstream areas flows through plenty of subglacial lakes towards
the ice sheet front. The feedback of the flux-sliding coupling to the distribu-
tion and water volume of the subglacial lakes is minimal. In comparison to BW
their total volume diminishes by only 2.2 % to 364 km3. As a consequence of
the flux-sliding coupling ice streams evolve above the very focused subglacial
water streams. They are about 4 km wide and move about 20ma™" (=50 %)
faster than the adjacent ice (Fig. 42b). Arteries of increased ice velocities reach
also far upstream into the ice sheet where velocity differences to BW of up to
5ma~! (= 25%) can be seen locally. The ice velocity reaches its maximum with
595ma” at the ice sheet front. Consequently, the total ice volume diminishes
to 15769 km3.
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Figure 42: Balanced water layer concept with lake- and flux-sliding coupling (BWF)

6.3.4 Balance flux: flux-sliding coupling (BF and BF*)

Two more benchmark experiments are performed, where the Budd and Warner
(1996) balance flux scheme (Sec. 3.3.3) is applied with the same flux-sliding cou-
pling as in BWF. For the calculation of the balance flux the hydraulic potential
(Eq. 63) is used with W = 0, because the balance flux scheme does not provide
the accumulation of water within subglacial hollows.

In experiment BF 0.307 km3 a’!

melt water is produced. But only a constant
water flux of 0.166km3a~' (54 %) leaves the model domain at the ice sheet
front, while the significant amount of 0.141 km3a~' (46 %) is lost in hollows
of the hydraulic potential. The ice volume diminishes as a consequence of the
flux-sliding coupling to 16722 km?3.

The limitation of BF are overcome in BF" by modifying the hydraulic po-
tential before the calculation of the balance flux. All hollows in the hydraulic
potential are filled up and the resulting flats are slightly tapered into the di-
rection of their previously identified discharge point. In this way, flux con-
servation is guaranteed (comparable with, e.g., Le Brocq et al., 2009) and the
entire generated melt water of 0.312km3 a! leaves the model domain at the
ice sheet front. The flux-sliding coupling causes a decrease of the ice volume

to 16 224 km?.

64 COMPARISON AND DISCUSSION OF THE RESULTS

The comparison of the subglacial water balance for all experiments is shown in
Fig. 43a. In BF 46 % of the generated melt water is lost inside the model domain.
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This confirms the necessity of the preceding modification of the hydraulic po-
tential in BF" to obtain reasonable results with that method, which means an
additional computational effort. This extra effort is not required for the bal-
ance water layer concept, which is water volume conserving on any hydraulic
potential. Additionally, the fluxes into hollows of the hydraulic potential and
over the model margin show a time-dependent behavior in BW & BWF. Both
start with the same values as BF. Then the flux into hollows of the hydraulic
potential decreases as these slowly fill up. Simultaneously, the flux over the
model margin increases. The small steps in the time series of the fluxes in-
dicate the time when single hollows are filled and thus the entire melt water
produced in their upstream catchment area starts contributing to downstream
areas and the flux over the model margin. Once all hollows are filled, the en-
tire generated melt water is transported through them and contributes to the
flux over the model margin as in BF. So the balanced water layer concept is
able to describe the transitional behavior of the hydraulic system between BF
and BF ™.

The differences of the absolute ice velocity between the experiments and the
control run reveal the influence of the basal hydraulic system on ice dynamics
and mass balance. BW indicates that ice velocities above subglacial lakes are in-
creased, while downstream of the lakes the velocity decreases again (Fig. 44a).
This effect is consistent with observations of the surface velocity field based
on radar interferometry, e.g., for Lake Vostok by Kwok et al. (2000), and could
be reproduced by models for a single lake (Pattyn et al., 2004; Thoma et al.,
2010, 2012). Although the velocity increase of the ice in BW is only a local
phenomenon above subglacial lakes, they do have an impact on the mass
balance of the entire ice sheet. Figure43b shows the temporal development
of the total ice and lake volume for the different experiments (Summary in
Tab. 4). Compared to the control run, for BW an ice loss of 558 km3a™' (-3.3%)
is found. Taking into consideration the stored subglacial water volume of
372km3, which replaced the corresponding ice volume, there is still an over-
all volume (Vice + Viyater) loss of 186 km?> (1.1 %). In comparison to the direct
mass loss caused by basal melting of 0.288km3 a~!, the indirect contribution
of the accumulated basal water to the mass balance of the ice sheet is large.

Due to the flux-sliding coupling the ice velocity field in BWF shows also the
imprint of the basal water fluxes (Fig. 44b). Ice streams drain mass from the
central areas and thus cause a thinning and flattening of the ice sheet. That
again results in a lower basal shear stress (Eq. 32, Sec. 2.2.2), which is driven by
the ice surface gradient. Consequently, less hydrologically active areas beside
the ice streams show significantly lower ice velocities and therefore contribute
to a stabilization of the ice sheet. Nevertheless, the mass balance of BWF
compared to the control run is negative, since the ice volume is reduced by
1232km3 (=7.2%.). The overall volume loss amounts to 868 km?> (5.1 %).
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Figure 44: Absolute ice velocity variations of (a) BW, (b) BWF and (c) BF" compared
to the control run (CR). Values are truncated at +25ma~"'.

In BF only 54 % of the melt water reaches the model margin, thus the effect
of the flux-sliding coupling is relatively small and the ice volume solely de-
creases by 279km? (-1.6 %). In BF* the ice velocity field shows the influence
of the basal water fluxes (Fig. 44c) just as BWF. However, since this approach
is not capable of storing melt water, the impact of the subglacial lakes on ice
dynamics is missing. As a consequence the ice volume diminishes for the

amount of 777km?3 (=4.6 %) only.

6.5 SUMMARY

The introduced balanced water layer concept for subglacial hydrology takes a
different approach than previous balance flux schemes (e.g., Budd and Warner,



6.5 SUMMARY

Vice (km3) Avice (0/0) vwater (km3)

CR 17001 0
BW 16 443 —3.3 372
BWF 15769 —7.2 364
BF 16722 -1.6 0
BF* 16224 —4.6 0

Table 4: Ice volume, change of ice volume compared to the control run (CR) and stored
subglacial water volume for all experiments.

1996). It yields a mass conserving balance flux on any topography and is able
to accumulate water in subglacial hollows where subglacial lakes can develop.
The balanced water layer scheme is self-contained and can be coupled to any
ice flow model, operating in Shallow Ice, Shallow Shelf or Higher Order Ap-
proximation on numerical Arakawa A- or C-grids. The water layer thickness
modifies the geometry by lifting the ice base, while water fluxes can be param-
eterized to increase the basal ice velocities. Above subglacial lakes the basal
shear stress of the ice vanishes completely.

Coupling this new hydrology concept to the ice model RIMBAY reveals the
large impact of these interactions on the mass balance of a synthetic ice sheet.
Particularly, the predominance of ice loss through water flow induced ice
streams against the stabilizing influence of less hydrologically active areas
leads to a significantly negative ice mass balance. In combination with the
effect of subglacial lake surfaces, which locally cause an increased ice flow, the
total ice volume decreases by —7.2%. In comparison to the direct mass loss
caused by basal melting, the indirect contributions of the basal water fluxes
and water accumulations to the overall mass balance of the ice sheet are large.
The established balance flux schemes quantify these effects only partially as
their ability to store subglacial water is lacking. Consequently, the new hy-
drology approach, providing the dynamic generation of subglacial lakes and
the self-organization of subglacial water drainage systems, combined with a
flux-friction coupling significantly improves the modeled dynamics of glacial
systems.
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FINAL CONCLUSION AND OUTLOOK

The Antarctic subglacial environment is hidden beneath a kilometers-thick
layer of ice and is one of the Earth’s most unexplored regions. However, it
plays a key role regarding the comprehension and prediction of ice sheet dy-
namics. Water at the ice-bedrock interface tends to lubricate the base of the
ice sheet and thus leads to increased ice sliding rates of ice streams and outlet
glaciers. These control the mass export of the Antarctic Ice Sheet and thus its
contribution to global sea level rise which is of particular interest against the
background of a warming climate. The objective of this thesis is the investiga-
tion of this subglacial hydrological environment and its interactions with ice
flow dynamics.

This chapter summarizes the key findings of the Chapters 4, 5 and 6 and
discusses their main implications, regarding the objectives of this thesis, listed
in Sec. 1.2. The brief outlook finally describes potential subsequent studies and

relevant future research questions.

7.1 CONCLUSION

This thesis aims for a better understanding of distribution and nature of water
flow at the bed of the Antarctic Ice Sheet (AIS) and the interactions between
subglacial hydrological environment and ice flow dynamics. Within this the-
sis the Revised Ice Model Based on Frank Pattyn (RIMBAY) has been successfully
enhanced by a subglacial hydrology module. It provides the modeling of po-
sitions and extents of subglacial lakes and the simulation of basal melt water
balance fluxes, following established concepts. In addition, a new hydrological
approach has been developed and implemented, allowing the dynamic gener-
ation of subglacial lakes and covering the spatial and temporal variability of
basal water drainage systems.” Thus, valuable insights into the distribution of
Antarctic subglacial lakes and their drainage networks are obtained. Further-
more, the revealed dynamic interactions between subglacial hydrology and ice
flow dynamics emphasize the importance of subglacial hydrological processes
with respect to ice modeling. The new hydrological concept has the potential
for better predictions of the mass export of large ice sheets under the influence
of climate warming and thus their contribution to future global sea level rise.

Co-authorship in Thoma et al. (2014), due to the implementation of the basal hydrology module
in RIMBAY.
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FINAL CONCLUSION AND OUTLOOK

The main findings of the research Chapters 4, 5 and 6 are already summa-
rized in their last sections. In the following, the key objectives of the above
chapters are presented in a condensed form by answering the research ques-
tions (Sec. 1.2):

Chapter 4: To which extent are subglacial lakes covering the base of the
Antarctic Ice Sheet? The distribution of Antarctic subglacial lakes has been
modeled, using RIMBAY. The comparison of the model results with locations
and extents of known subglacial lakes (Wright and Siegert, 2012) shows a good
agreement. The validation of model predictions by the selective interpretation
of radar profiles from radio-echo sounding (RES) flight campaigns of the Alfred
Wegener Institute (AWI) in Dronning Maud Land (DML) reveals 31 locations of
so far uncharted basal water surface and thus so far unknown subglacial lakes.
Based on the above findings, the total number of subglacial lakes existing
beneath the AIS is estimated to about 1300+300. Their summarized surface
area is assessed to cover about 77 000418 000 km? (0.6440.15%) of the Antarctic
ice-bed interface. These findings indicate, that currently about 30% of the
Antarctic subglacial lakes and about 65 % of the estimated total lake-covered
area are discovered.

What are the drainage patterns of melt water flow beneath the Antarctic
Ice Sheet on a continental scale? The water flow beneath the AIS has been
modeled with RIMBAY using the balance flux concept. The basal water flow
has characteristics very similar to observable surface rivers, showing angular,
distributary, dendritic and parallel flow patterns. A widespread hydrologi-
cal network is found to establish hydrological connections between subglacial
lakes as well as from subglacial lakes towards the ocean within distinct catch-
ment areas. The respective water sheds mainly follow observed positions of
ice divides. The simulated flow of basal water underneath the AIS focuses to-
wards the grounding line where strong spatial correlations between areas of
enhanced water flow and observed locations of ice streams are revealed. About
23% of the total Antarctic subglacial water catchment area are found to drain
into the ocean at only four particular spots: underneath the Byrd Glacier, the
Recovery Ice Stream, the Slessor Glacier and the confluent Academy Glacier
and Foundation Ice Stream.

Chapter 5: What controls the spatial and temporal variability of the Ross
Ice Streams at the Siple Coast? Literature research showed, that seismic ex-
plorations detected a widely spread and meters thick basal layer of unconsoli-
dated sediments beneath the ice sheet at the Siple Coast (e.g., Alley et al., 1986),
creating the precondition for high basal sliding rates by sediment deformation
(MacAyeal, 1989). Engelhardt and Kamb (1998) confirmed this hypothesis by
measuring basal sliding velocities through a borehole which are found within
83 to 100% of the surface velocities. Radar investigations found a wet bed in-
side the confines of the Ross Ice Streams and a dry bed outside (e.g., Bentley
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et al.,, 1998). This was approved by observations at the bottom of boreholes
(e.g. Engelhardt et al., 1990) and seismic explorations (e.g., Blankenship et al.,
1987). Additionally, the basal water pressure in boreholes was measured to be
almost equal to the ice pressure (e.g., Kamb, 2001). In summary, it is concluded
that the spatial and temporal variability of the ice streams at the Siple Coast
is caused by variable basal melt water pathways: Basal water flow within a
till layer at low effective pressure (ice minus water pressure) belongs to the
distributed flow regimes, which are known to enhance the basal sliding of ice.
Due to the smooth bedrock, the water pathways are assessed to be highly sen-
sitive to small ice thickness perturbations and thus basal pressure-condition
changes, explaining the observed variability of the Ross Ice Streams in the
past. Own analyses and interpretations of ICESat (Pritchard et al., 2012) and
recent CryoSat-2 (Helm, in prep.) ice surface elevation change rates explicitly
confirms this conclusion and additionally reveal a slightly positive mass bal-
ance of the Siple Coast region, estimated to a growth of 52457Gta™.

Can modeled basal drainage patterns explain the current configuration of
the Ross Ice Streams? Based on the above findings, the water flow beneath
the Ross Ice Streams has been modeled with RIMBAY using the balance flux
concept. All current ice stream outlines are found to be clearly associated with
areas of enhanced water flow. Furthermore, the ice velocities of the ice streams
are found to be related to the water catchment area sizes draining underneath.

Which potential impact have satellite-observed surface changes on the
evolution of drainage pathways and what might be the implications for fu-
ture ice stream dynamics? Applying satellite-observed present-day surface el-
evation changes to the present-day ice sheet configuration for 200 years allows
an estimation of future basal drainage routes. According to this simulations,
a major hydraulic tributary of the Kamb and Whillans Ice Stream is estimated
to be redirected underneath the Bindschadler Ice Stream within the next 200
years. Accordingly, the water catchment area feeding underneath the Bind-
schadler Ice Stream is estimated to grow by about 50% while the lower part of
the stagnated Kamb Ice Stream becomes increasingly separated from the up-
per hydraulic tributaries of the Siple Coast. This might be a continuation of the
subglacial hydraulic processes which caused the past stagnation of the Kamb
Ice Stream. Furthermore, this might also lead to a future increase of the ice
velocities within the Bindschadlers Ice Stream and an increased ice drainage
of the corresponding hinterland.?

Chapter 6: How much do interactions of ice dynamics and subglacial hy-
drology affect the mass balance of an ice sheet? This question is addressed,
by the dynamic coupling of the hydrology and ice module in RIMBAY and an
application to a synthetic model domain. Various complex feedback mecha-
nisms between ice sheet geometry, subglacial lakes, basal melting, basal water

This chapter forms the basis for a manuscript that is going to be submitted to Geophysical
Research Letters (Goeller et al., in prep.).
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flow and shear stress at the base of an ice sheet reveal the performance of the
new hydrology concept. It is demonstrated, that the ice loss through water
flow induced ice streams dominates over the stabilizing influence of less hy-
drologically active areas. Subglacial lake surfaces reduce basal drag, causing
increased ice velocities and thus leading to a further negative ice mass bal-
ance. At full complexity of the hydrology-ice coupling, the total ice volume
of the investigated synthetic ice sheet decreases by —7.2%. In comparison, it
is shown that the balance flux scheme (Budd and Warner, 1996) covers the
above effects only partially because its ability to store subglacial water is lack-
ing. It is concluded, that indirect contributions of basal water flow and water
accumulations by interactions to the ice dynamics to the overall mass balance
of the ice sheet are large even though the direct mass loss by basal melting
might be small. Consequently, the new hydrology approach, providing the
dynamic generation of subglacial lakes and the self-organization of subglacial
water drainage systems, combined with a flux-friction coupling significantly
improves the modeled dynamics of glacial systems.3

7.2 OUTLOOK

The research results presented in this thesis successfully address all proposed
research questions. However, they also encourage further investigations in the
following areas:

¢ In Chapter 4 the distribution of Antarctic subglacial lakes is modeled.
The subsequent validation by the analysis of RES radar-profiles from DML
revealed that about 13% of the modeled subglacial lakes could be identi-
fied by basal lake-surface reflections. In future studies, this predictive
power might be significantly increased by combining the applied ap-
proach with other methods regarding the analysis of bedrock roughness
(Steinhage et al., in prep.) and basal radar reflection strength along flight
lines (Kasper et al., in prep.). Thus, the precision of estimates about the
total Antarctic subglacial lakes coverage could be improved.

¢ In Chapter 5 future basal water pathways beneath the Ross Ice Streams
are estimated by applying satellite-derived surface elevation change rates
to the present day ice sheet configuration. Ice streams in other Antarctic
regions are assumed to be controlled by basal hydrology, too. Conse-
quently, the application of this method to other Antarctic regions would
yield profound insights into the local variability of basal water flow and
thus ice flow and mass export under the influence of climate warming
and changing ice sheet geometries.

¢ Chapter 6 shows the potential of coupling subglacial hydrology and ice
flow modeling. In subsequent studies, this approach can be applied to,

3 This chapter is based on Goeller et al. (2013), which has been published in The Cryosphere.
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e.g., the Siple Coast. This would allow to make more precise statements
about the future dynamics of the Ross Ice Streams because the feedback
of subglacial hydrology towards the ice flow is included, which is not
the case in the prognostic modeling approach in Chap.5. In this way,
assessments of the future mass balance would gain precision.

Although the theory of Robin (1955) about water at the base of glaciers and ice
sheets has been confirmed by numerous remote-sensing and in-situ observa-
tions, details about the characteristics of basal water flows and their particular
impact on the overlying ice dynamics are still unclear. Enhanced observation
methods are necessary to confirm and improve current theoretical descriptions
of subglacial water flow regimes and thus lead to a more comprehensive un-
derstanding of this utmost important processes for ice sheet dynamics and
climate research.
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SUBGLACIAL LAKES IN ANTARCTICA

A.1 PREDICTED SUBGLACIAL LAKES MATCHING KNOWN LAKES

Table 5 shows a list of 206 subglacial lakes in Antarctica which were both theo-

retically predicted applying the modeling approach in Sec. 4.2 and observed by

in situ seismic investigations, radio-echo sounding (RES) flights or ice surface

elevation changes. The tally, position and name of the lakes in Tab. 5 follow

the current inventory of Antarctic subglacial lakes by Wright and Siegert (2012),

comprising 379 subglacial lakes in total.

Table 5: Known Antarctic subglacial lakes which were successfully predicted.

Inventory tally Longitude Latitude Name
1 88.50°E 78.10°S Sovetskaya Lake
2 104.50°E  78.15°S Lake Vostok
3 124.80°E  76.57°S SPRI-3
6 125.02°E  74.07°S Concordia Lake
7 150.00°W  88.30°S SPRI-7
8 123.94°E  72.31°S SPRI-8
10 127.41°E  75.94°S SPRI-10
15 119.54°E  73.45°S SPRI-17
16 135.34°E  76.24°S Adventure Trench Lake
19 124.95°E  75.97°S SPRI-22
21 126.48°E  75.69°S SPRI-24
26 140.95°E  69.71°S SPRI-29
30 118.50°E  74.03°S SPRI-33
31 119.37°E  74.46°S Aurora Lake
32 126.30°E  77.12°S SPRI-35
36 148.86°E  75.73°S SPRI-39
39 125.18°E  76.19°S SPRI-42/43
41 154.13°E  79.43°S SPRI-45
42 100.40°E  77.40°S SPRI-46
44 64.52°E 88.73°S SPRI-48
50 92.50°E 77.10°S SPRI-54/59

continued on next page
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Inventory tally Longitude Latitude Name
52 155.68°E  71.13°S SPRI-56
54 93.50°E 76.80°S SPRI-60
56 129.41°E  72.74°S SPRI-62
58 118.11°E  76.07°S SPRI-65
59 118.60°E  78.00°S SPRI-66
63 161.56°W  89.97°S South Pole Lake (SPRI-70)
70 90.57°W  78.99°S Subglacial Lake Ellsworth
71 121.63°E  75.46°S ITL-1
73 122.31°E  75.42°S ITL-3
78 125.92°E  75.02°S ITL-9
83 119.72°E  73.70°S ITL-17
85 26.94°E 74.30°S M-310
87 27.29°E 75.17°S M-511
89 37.43°E 77.50°S M-2011
91 27.03°E 75.46°S M-2713
94 77.89°E 82.34°S M-3010
94 77.89°E 82.34°S M-3010
101 144.66°E  77.10°S WLK-6
102 145.09°E  76.71°S WLK-14
103 144.29°E  76.43°S WLK-12
104 144.75°E  76.12°S WLK-24
106 139.23°E  80.41°S DCS/DCSx/Xo2b-Xo2e
107 120.08°E  81.84°S DCS/DCSx/Xo1c
109 117.99°E  75.85°S LVS-12
110 88.88°E 79.30°S LVS-9
112 91.08°E 77.38°S 90 Degree East Lake
116 120.13°W  81.45°S Kamb1o
118 135.00°E  75.94°S Uz
119 135.77°E  76.34°S Uz
121 107.13°E  78.58°S unnamed
132 107.80°E  78.05°S unnamed
137 105.37°E  78.60°S unnamed
139 103.62°E  77.88°S unnamed
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Inventory tally Longitude Latitude Name
146 103.36°E  77.50°S unnamed
147 103.86°E  75.91°S unnamed
148 105.00°E  78.58°S unnamed
150 97.29°E 73.62°S  Komsomolskoe Subglacial lake
151 95.54°E 69.75°S Pionerskoe Subglacial Lake
152 150.11°E  77.42°S WLK-4
153 148.93°E  76.88°S WLK-5
154 153.72°E  77.16°S WLK-7
155 150.94°E  77.00°S WLK-8
157 150.21°E  76.88°S WLK-10
158 147.75°E  77.32°S WLK-11
159 139.04°E  75.76°S WLK-13
160 126.59°E  75.23°S Horseshoe Lake (WLK-15)
163 137.35°E  76.02°S WLK-19
166 137.33°E  76.12°S WLK-23
168 135.75°E  75.65°S WLK-27
170 143.81°E  76.15°S WLK-29
171 146.04°E  76.49°S WLK-30
174 147.24°E  77.29°S WLK-33
175 148.30°E  76.80°S WLK-34
176 150.14°E  76.67°S WLK-35
177 149.68°E  76.99°S WLK-36
178 150.47°E  76.49°S WLK-37
179 150.61°E  77.08°S WLK-38
180 150.92°E  76.90°S WLK-39
181 150.93°E  77.28°S WLK-40
184 119.23°E  75.61°S LVS-1
186 118.71°E  75.71°S LVS-3
187 103.32°E  77.46°S LVS4
189 108.16°E  78.02°S LVS-6
191 143.83°W  89.76°S PPT-1
192 120.39°W  88.91°S PPT-2
193 86.10°W  89.85°S PPT-3
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Inventory tally Longitude Latitude Name
197 141.81°W  84.97°S PPT-8
199 150.00°W  84.75°S PPT-11
201 144.12°W  84.87°S PPT-15
202 149.68°W  84.66°S PPT-16 (Lake Mercer)
203 13.77°W  89.48°S PPT-17
209 139.78°W  88.49°S PPT-23
211 126.29°W  89.33°S PPT-26
216 78.70°W  89.34°S PPT-32
218 7.61°E 88.26°S PPT-35
219 83.34°W  89.32°S PPT-36
222 78.86°W  89.17°S PPT-39
223 117.81°W  88.41°S PPT-40
226 116.90°W  88.36°S PPT-43
228 14.28°E 82.40°S Recovery A
229 18.13°E 82.85°S Recovery B
230 21.37°E 84.31°S Recovery C
232 154.19°W  84.60°S Mercer1
233 157.42°W  83.73°S  Whillans1 (Lake Engelhardt)
234 160.27°W  84.03°S Whillans2a
235 158.20°W  84.34°S Whillans2b
236 153.69°W  84.24°S Whillans3 (Lake Whillans)
237 148.72°W  84.37°S Whillansg (Lake Conway)
244 120.15°E  74.07°S ITL-23
249 125.06°E  76.07°S ITL-28
250 61.34°W  84.14°S Academy1
251 57.45°W  84.54°S Academy2
254 53.70°W  84.84°S Academys
255 55.22°W  85.32°S Academy6
256 53.72°W  85.56°S Academyy
257 52.93°W  85.65°S Academy8
259 50.99°W  85.77°S Academy1o
260 48.41°W  85.80°S Academy11
261 45.38°W  85.71°S Academy12
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263 39.57°W  85.78°S Academy14
266 131.50°W  80.35°S Bindschadler1
267 130.20°W  79.94°S Bindschadler2
269 125.57°W  80.73°S Bindschadlerg
273 149.61°E  81.80°S ByrdSs3
274 143.71°E  80.75°S ByrdS4
275 143.38°E  80.58°S ByrdSs
276 143.66°E  80.32°S ByrdSe
276 143.66°E  80.32°S ByrdS6
277 143.74°E  80.03°S ByrdSy
278 142.41°E  80.01°S ByrdS8
280 139.03°E  81.83°S ByrdS1o
283 142.83°E  78.93°S ByrdSi3
284 139.78°E  78.83°S ByrdSi4
285 138.96°E  78.81°S ByrdSis
286 155.34°E  71.87°S CookE1
287 155.79°E  72.80°S CookE2
292 152.92°E  75.24°S Davids
293 152.25°E  75.73°S Davidg
294 152.46°E  74.88°S Davids
295 145.24°E  75.39°S David6
296 140.64°E  85.84°S EAP1
297 135.48°E  85.68°S EAP2
299 128.37°E  85.91°S EAP4
300 124.42°E  85.66°S EAPs5
304 135.56°E  75.81°S EAP9g
305 73.66°W  84.52°S Foundation1
308 74.49°W  82.13°S InstituteE1
309 79.01°W  82.62°S InstituteE2
312 140.40°W  81.95°S Kamb
312 140.40°W  81.95°S Kamb
313 131.20°W  82.01°S Kamb1
313 131.20°W  82.01°S Kamb1
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Inventory tally Longitude Latitude Name
314 129.84°W  82.19°S Kamb2
315 128.60°W  81.94°S Kamb3
316 127.44°W  81.97°S Kamby
317 127.48°W  82.27°S Kambs
318 124.34°W  82.06°S Kambé6
320 123.14°W  82.38°S Kamb8
321 121.63°W  82.32°S Kambg
324 68.28°E 74.00°S Lambert1
325 157.12°E  84.77°S Lennox-King1
326 145.36°W  79.95°S MacAyeal1/Mac1
326 145.36°W  79.95°S MacAyeal1/Mac1
327 144.08°W  79.83°S MacAyeal2/Mac2
329 149.11°E  78.09°S Mulock1
334 29.08°W  81.15°S Recovery1
337 20.05°W  81.32°S Recovery4
338 9.61°W 81.28°S Recoverys
338 9.61°W 81.28°S Recoverys
339 7.24°W 81.43°S Recovery6
340 5.98°W 81.64°S Recoveryy
341 4.12°W 81.80°S Recovery8
342 2.34°E 82.91°S Recoveryg
343 5.94°E 83.50°S Recovery1o
344 8.42°E 81.72°5 Recovery11
345 84.17°W  78.18°S Rutford1
347 21.56°W  79.84°S Slessor2
349 17.09°W  79.34°S Slessoryg
350 17.04°W  79.20°S Slessors
351 14.30°W  78.77°S Slessor6
352 11.05°W  79.25°S Slessory
353 107.50°E  70.10°S Totten1
354 110.51°E  70.83°S Totten2
357 136.91°W  83.85°S Whillans6
361 121.57°E  68.70°S Wlikes2
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Inventory tally Longitude Latitude Name
362 142.81°W  80.02°S Macs
363 139.00°W  79.74°S Macg
364 139.11°W  79.64°S Macs
365 11.65°E 82.00°S unnamed
366 130.40°E  70.43°S Ro3zWa 1
367 135.00°E  71.62°S RogEa 9
369 129.06°E  71.84°S RosEa 5
373 122.58°E  74.29°S Ro8Wa o.1
374 122.50°E  74.30°S Ro8Wa 0.2
375 106.05°E  75.98°S R13Ea 8
376 100.82°E  74.08°S RisEa 4
377 112.54°E  67.80°S Site A

A.2 PREDICTED AND RADAR-IDENTIFIED SO FAR UNKNOWN SUBGLACIAL
LAKES

Table 6 shows a list of 31 theoretically predicted and so far uncharted sub-
glacial lakes in Antarctica where lake-like basal radar reflections were identi-
fied in the corresponding RES profiles. The result is based on the visual inter-
pretation of 270 RES flight lines from flight campaigns of the Alfred Wegener
Institute (AWI) between 1994 and 2013 where the flight lines cross the contours
of the predicted lakes. The tally for predicted lakes in Tab.6 follows the in-
ventory of all 10183 predicted lakes, whereby some predicted lake locations
are crossed by more then one flight line (e.g., lake 152). The given position is
corresponding to the central shot number in the specified shot number range.
As an additional information, the first two digits in the flight number describe
the year of the respective flight campaign.

Table 6: Predicted lake locations where lake-like basal radar reflections were identified
in AWI RES profiles.

Predicted lake tally Longitude Latitude Flightline Shot numbers

152 8.11°E 73.46°S 022119 6040—6144
152 8.10°E 73.47°S 042016 11177—-11334
152 8.23°E 73.53°S 042021 2830-2860
154 12.43°E 73.27°S 042010 15—223
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Predicted lake tally Longitude Latitude Flightline Shot numbers
155 725°E 73.53°S 042021 1975-1993
201 10.91°E 73.81°S 082029 39230—39419
210 16.21°E 73.41°S 042032 7282 — 7304
220 2.90°W 74.18°S 032003 11190—11222
234 8.01°E 74.25°S 042016 12929—-13284
243 10.31°E 74.09°S 082029 9939 — 10004
246 7.27°E 74.25°S 022027 14561 — 14568
284 9.98°E 74.37°S 042015 6288 -6314
332 6.09°W 74.85°S 032021 12125—-12364
411 6.82°W 75.16°S 982406 253 —262
457 937°W  75.37°S 052012 25012-25273
474 6.97°W  75.58°S 052010 4758 — 4887
474 6.57°W 75.56°S 052109 2732 -2780
474 6.61°W 75.56°S 982407 2263 -2327
489 9.00°W 75.56°S 052012 24403 —24622
499 5.01°W  75.70°S 052107 2743-2837
499 4.90°W  75.70°S 982102 52575337
662 10.45°E 76.49°S 082029 15838 — 31083
799 12.07°W  77.14°S 952306 2315-2814
816 13.90°W  77.11°S 952309 4858 — 4870
831 41.93°E 73.26°S 062017 19077 —19102
958 18.89°W  77.48°S 952409 8645—8653
1100 15.00°W  78.32°S 952210 2839-3039
1138 32.21°E 76.81°S 032141 2796 —-2819
1480 34.14°E 78.11°S 032139 6073 —6075

3999 60.29°E 88.16°S 112120 6641—7283
5054 93.34°E 73.13°S 082121 12119—12134
7379 118.12°E  76.83°S 082120 4247 — 4256
7833 121.09°E  75.93°S 082120 5792 —5894
8001 122.14°E  75.58°S 082120 6423 —6435
8741 130.56°E  74.56°S 082117 18930—18942
9704 154.80°E  73.24°S 082117 9297 —9468
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