Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago


Contact
Julia.Boike [ at ] awi.de

Abstract

The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in Arctic regions dominated by soil freeze/thaw processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a high Arctic tundra area at the west coast of Svalbard based on eddy covariance flux measurements. The annual cumulative CO2 budget is close to 0 g C m−2 yr−1, but displays a strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (snow-free ground), the CO2 exchange occurs mainly as a result of biological activity, with a dominance of strong CO2 assimilation by the ecosystem. (2) The autumn (snow-free ground or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (snow-covered ground), low but persistent CO2 release occurs, overlayed by considerable CO2 exchange events in both directions associated with high wind speed and changes of air masses and atmospheric air pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas) is associated with both meteorological and biological forcing, resulting in a carbon uptake by the high Arctic ecosystem. Data related to this article are archived at http://doi.pangaea.de/10.1594/PANGAEA.809507.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Research Networks
Publication Status
Published
Eprint ID
36737
DOI 10.5194/bg-11-6307-2014

Cite as
Lüers, J. , Westermann, S. , Piel, K. and Boike, J. (2014): Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago , Biogeosciences, 11 (22), pp. 6307-6322 . doi: 10.5194/bg-11-6307-2014


Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Geographical region

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item