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SUMMARY

This paper deals with present-day gravity changes in response to the evolving Greenland
ice sheet. We present a detailed computation from a 3-D thermomechanical ice
sheet model that is interactively coupled with a self-gravitating spherical viscoelastic
bedrock model. The coupled model is run over the last two glacial cycles to yield the
loading evolution over time. Based on both the ice sheet’s long-term history and its
modern evolution averaged over the last 200 years, results are presented of the absolute
gravity trend that would arise from a ground survey and of the corresponding geoid rate
of change a satellite would see from space. The main results yield ground absolute
gravity trends of the order of t1 mgal yrx1 over the ice-free areas and total geoid changes
in the range between x0.1 and +0.3 mm yrx1. These estimates could help to design future
measurement campaigns by revealing areas of strong signal and/or specific patterns,
although there are uncertainties associated with the parameters adopted for the Earth’s
rheology and aspects of the ice sheet model. Given the instrumental accuracy of a
particular surveying method, these theoretical trends could also be useful to assess the
required duration of a measurement campaign. According to our results, the present-day
gravitational signal is dominated by the response to past loading changes rather than
current mass changes of the Greenland ice sheet.

We finally discuss the potential of inferring the present-day evolution of the
Greenland ice sheet from the geoid rate of change measured by the future geodetic
GRACE mission. We find that despite the anticipated high-quality data from satellites,
such a method is compromised by the uncertainties in the earth model, the dominance of
isostatic recovery on the current bedrock signal, and other inaccuracies inherent to the
method itself.
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1 I N T R O D U C T I O N

The bedrock adjustment caused by the changing load of evolving

ice sheets has become a subject of great interest because of

its now well-established coupling with ice dynamics and its

potential as a proxy of past and current ice sheet evolution

(Oerlemans 1980; Le Meur & Huybrechts 1996, 1998; Tarasov

& Peltier 1997). As a consequence, bedrock displacements are

generally computed within ice sheet models in order to reproduce

the specific ice/Earth dynamics using a broad range of methods

ranging from simple parametrizations to elaborate coupled ice/

bedrock models (Le Meur & Huybrechts 1996). Although often

neglected among glaciologists, the gravitational perturbation

associated with the process of bedrock adjustment is also of

interest, as can be judged from the profuse literature following

pioneering work some 60 years ago (e.g. Vening-Meinesz 1937).

Only recently were gravity changes given more consideration

by glaciologists because of their role as a potential proxy for

the current state of balance of the ice sheets and because

they provide a wealth of information on the isostatic process

itself (James & Ivins 1998; Bentley & Wahr 1998). A crucial

problem in the interpretation of gravity signals is the ability to

distinguish between the effects of current mass changes and the

contamination caused by postglacial rebound as recorded in

the isostatic memory of the bedrock.

Gravitational changes induced by an evolving ice sheet

mainly originate from superficial mass exchanges between the

ocean and the ice sheets, and internal mass displacements in

the underlying Earth. Other geodynamic changes such as mantle
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convection also take part in these gravity changes, but they

operate at a much larger timescale (characteristic times of the

order of 106 yr) and therefore can be neglected over the memory

period of the viscoelastic Earth response. The most straight-

forward way to quantify gravity changes is to feed an Earth

response model with a plausible loading scenario (ice and water)

in a forward computation scheme. This is basically the approach

followed here except that the loading scenario is not prescribed

beforehand but modelled through time along with the bed-

rock evolution. The big advantage is that the effects of bedrock

adjustment on ice sheet dynamics can be properly taken into

account as was already done in several previous studies

(Le Meur & Huybrechts 1996, 1998; Tarasov & Peltier 1997).

The properties of our bedrock model further allow one to split

the gravitational signal from the deforming Earth into a long-

term component driven by the past history of the ice sheet, and

an instantaneous one exclusively driven by the current evolution

of the load distribution (Le Meur & Huybrechts 1998).

The main purpose of the calculations presented in this paper

is to determine which orders of magnitude direct observations

of gravity trends are likely to yield and to assess whether

meaningful information regarding ice-thickness changes can

be retrieved. To this end, we present a model-based example of

the current total gravity trend as it could be obtained from a

high-precision gravity survey on the ice-free ground. To obtain

the gravitational changes exclusively driven by the evolving

geometry of the ice sheet, an alternative calculation is presented

based on the usual gravity corrections (Bouguer and terrain

corrections). This provides more accurate results than those

directly output by the bedrock model. For comparison with

future satellite data all over Greenland, a different observable,

namely the rate of change in geoid height, is more relevant.

Although the evolving geopotential is also partly driven by ice

mass changes, as is the case for time-dependent gravity, it can

be directly computed from the bedrock model with no loss in

accuracy and the corresponding results are also shown.

2 T H E T W O M O D E L S A N D H O W T H E Y
I N T E R A C T

2.1 The bedrock model

The bedrock model used for this study (Le Meur 1996a,b;

Le Meur & Hindmarsh 2000) belongs to the category of self-

gravitating spherical viscoelastic earth models (Peltier 1974;

Wu & Peltier 1982; Lambeck et al. 1990; Spada et al. 1992). The

spherical approach is based on a harmonic decomposition and

considers the entire planet when solving the Earth’s response to

a surface load (Fig. 1). Unlike the half-space approximation,

the displacement field and the associated gravitational potential

can be accurately computed from the three equations for elastic

gravitational free oscillations of the Earth (Backus 1967).

The mantle rheology is approximated by a Maxwell body

according to the ‘correspondence principle’ (Biot 1954; Peltier

1974), yielding an ‘equivalent elastic problem’. The solution for

the resulting boundary value system is then Laplace inverted

(Peltier 1985) to give the time-dependent bedrock response to

the impulse point load under the form of dimensionless Love

numbers (see for instance Peltier 1974). As a result of the

inversion, these Love numbers split into an elastic term, hn
E(r),

and several ( j=1, Nm) viscous modes, which are each charac-

terized by a viscous amplitude hV
n, j (r) and a decay time tn, j such

that hn(a, t), the harmonic solution of degree n at the surface

(r=a) and at time t, reads

hnða, tÞ ¼ hEn ðaÞ dðtÞ þ
XNm

j¼1

hV
n, jðaÞ e

ÿ t
qn, j : (1)

In this expression, the time dependence consists of an

instantaneous elastic term, weighted by the d-function, which

is superimposed onto several time-decaying viscous modes.

This property is also conserved in the Green’s function derived

from these Love numbers. The convolution of the Green’s

function with a loading scenario then yields the splitting of

the Earth’s response into a viscous long-term and an elastic

instantaneous contribution.

Following the work of Spada et al. (1992), the bedrock model

has been coded into a semi-analytical form using the algebraic

manipulatorMathematica. This is a more efficient and accurate

approach as it circumvents the round-off errors inherent in the

stepwise numerical solution of most boundary value problems.

We adopted an earth structure that comprises an inviscid

core, a viscoelastic mantle and a purely elastic lithosphere of

100 km thickness, which is here assumed to be compressible

(Fig. 1). Because of its compressibility, the approach followed

for the lithosphere is slightly different from Spada et al. (1992).

The required boundary value problem is solved here assuming

uniform earth parameters for the upper 100 km, which implies

a matrix as in Wu & Peltier (1982). The mantle consists of

three layers, each characterized by its density, shear modulus

and viscosity. Except for the lithospheric compressibility, the

characteristic Earth properties used in the model are adopted

from Spada et al. (1992) and are summarized in Table 1. The

computation yields three different dimensionless Love numbers,

hn, ln and kn (eq. 1), respectively related to the radial displace-

ment, the tangential displacement and the gravity potential

perturbation. The Earth’s response for different observable

Figure 1. Schematic representation of the spherical bedrock model.

A unit impulse point load is applied at the pole and is responsible for

an axisymmetric deflection that is subsequently convolved with the

loading. Parameter values for the different earth layers are given in

Table 1.
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quantities (displacement pattern, gravity anomalies, geoid height,

etc.) can then be obtained by summing the appropriate Love

numbers (or a combination of them) in a Legendre series

to obtain the Green’s function. The actual bedrock response to

a specific load finally results from a double time–space con-

volution with the time–space distribution for this load (Le Meur

& Hindmarsh 2000).

2.2 The ice sheet model

The ice sheet model consists of two main components which

respectively describe the ice sheet system and the surface mass

balance, the latter of which represents the main driving force of

the system. The time-dependent ice dynamics model solves the

fully coupled thermomechanical equations for ice flow on a 3-D

mesh and includes basal sliding as well as heat conduction

in the underlying bedrock. This basically involves the simul-

taneous solution of conservation laws for momentum, mass

and heat under appropriate simplifications, supplemented by

Glen’s flow law (Huybrechts & de Wolde 1999):

Momentum balance : +:ôi þ oigi ¼ 0 with i ¼ x, y, z ; (2)

Continuity equation :

LH

Lt
¼M ÿ +:q and q ¼ vH ¼

ðHþh

h
vðzÞdz ; (3)

Heat transfer :
LT

Lt
¼ 1

ocp
+:ðk+TÞ ÿ V:+T þ W

ocp
; (4)

Glen’s flow law: _eij ¼ AðTÞqnÿ1q0ij , (5)

where ti is the vector in the i-direction whose components are

the stress tensor elements [tij, j=x, y, z], ri is the ice density

(910 kg mx3) and gi is the projection of the gravitational

acceleration along the i-direction. H is the ice thickness, q is the

volume flux, v� is the average horizontal velocity, M is the mass

balance and t is time. The thermodynamic eq. (4) accounts for

vertical heat conduction, 3-D advection and heat generation

by internal deformation. Here, T is temperature, V is the 3-D

ice velocity, W is the internal heating and k and cp are the

temperature-dependent thermal conductivity and specific heat

capacity of ice, respectively. The lower boundary condition is

the geothermal heat flux, GH, of 42 mW mx2. The rate factor

A(T) in Glen’s flow law with exponent n=3 depends on the ice

temperature according to the Arrhenius equation and further-

more allows for different mechanical characteristics of Holocene

and ice-age ice, the latter of which is made to deform three times

faster for the same stress and temperature conditions. Such

flow enhancement was empirically established in Greenland

ice cores, and is related to a marked contrast in crystal size

associated with varying concentrations of chloride and sulphate

ions (Paterson 1991). ėij are the strain rate components, tkij are

the stress deviators and t is the effective stress.

A schematic representation of the main components of

the ice sheet model is shown in Fig. 2. A basic assumption is

that the ice flows in direct response to pressure gradients set up

by gravity. Longitudinal stresses are disregarded so that ice

deformation results from shearing in horizontal planes. Sliding

is of Weertman-type (Weertman 1964) and restricted to areas

where the basal temperature is within 1 uC of the pressure

melting point. There is a free interaction between climatic input

and ice thickness. Calving dynamics are not described explicitly.

Instead, the contemporaneous coastline, which is a function of

both eustatic sea level and local bed elevation, acts as a natural

barrier to grounded ice, beyond which all ice is removed as

calf-ice. The treatment of the coastline allows for ice sheet

expansion down to the continental shelf break during periods

of maximal sea-level depression in so far as the surface mass

balance permits it. The horizontal resolution is 20 km and there

are 31 layers in the vertical. Model input consists of bed topo-

graphy, surface temperature, surface mass balance, thermal

and rheological parameters and an initial state. The environ-

mental forcing is made up of the global sea-level stand and a

prescribed change of background temperature, from which the

mass balance components (snow accumulation and meltwater

runoff) are calculated.

The mass balance model distinguishes between snow accumu-

lation, rainfall, superimposed ice formation and runoff, the

Table 1. Earth parameters used in the unit bedrock model.

Depth (km) Core*

6371–2900

Lower mantle

2900–670

Upper mantle{ Lithosphere·

100–0

670–420 420–100

Viscosity (Pa s) 0 2.1021 1.1021 5.1020 ?
Density (kg mx3) 1.0925r104 4.508r103 4.12r103 4.12r103 3.3r103

Shear modulus (N mx2) 0 1.99r1011 1.1r1011 9.54r1010 7.28r1010

* The inner solid core is not considered
{The lower part of the upper mantle (670–420 km) is sometimes called the ‘transition zone’
· The lithosphere is assumed to be compressible with an elastic modulus l=1.27r1011 N mx2.

Figure 2. Main characteristics of the Greenland ice sheet/bedrock

model. Ice flows from the accumulation zone towards the margin,

where it is removed either by melting and runoff in the tundra or by

calving of icebergs from outlet glaciers, in roughly equal proportions.

Variables are explained in the text.
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components of which are all parametrized in terms of tem-

perature (Huybrechts & de Wolde 1999). Lacking a con-

vincing alternative, the precipitation rate is based on its present

distribution and perturbed in different climates according to

sensitivities derived from ice-core studies. The melt-and-runoff

model is based on the degree-day method. It takes into account

ice and snow melt, the daily temperature cycle, random temper-

ature fluctuations around the daily mean, liquid precipitation

and refreezing of meltwater.

The ice-dynamic model has been rigorously tested within

the framework of the EISMINT intercomparison project and

was extensively used to investigate the Greenland ice sheet on

timescales ranging from ice sheet inception during the Tertiary

to the behaviour during the glacial cycles to the response to

future greenhouse warming (Letreguilly et al. 1991; Huybrechts

1996; Huybrechts et al. 1996).

2.3 Coupling of the two models

The coupling consists first of forcing the bedrock model with

loading changes from the ice sheet model. These also include

changes in the water loading over the ocean from both pre-

scribed sea-level forcing and ocean bottom changes (Le Meur &

Huybrechts 1996, 1998). With these loading data, the bedrock

model computes the corresponding new bedrock topography,

which is then reinserted in the ice sheet model so that the effect

of bedrock height changes on ice sheet dynamics can be fully

accounted for. This is because bedrock elevation controls ice

sheet surface elevation and consequently surface temperature

and the surface mass balance (e.g. Weertman 1961; Oerlemans

1980; Tarasov & Peltier 1997). Additionally, bed elevation and

sea level control the extent of the emerged continental platform

over which the ice sheet can advance and retreat. The coupling

is effectuated at a 100 yr time step. For a standard simulation

over two glacial cycles, the coupled model needs about 50 hr

CPU time on a CRAY C-90 computer. This computational

burden precludes running a large number of numerical experi-

ments, so that only the results from the standard experiment

are discussed in this paper.

3 C H A R A C T E R I S T I C S O F T H E
V I S C O E L A S T I C B E D R O C K R E S P O N S E

At the heart of the bedrock model is the calculation of the

viscoelastic response to a specified loading scenario. This response

is obtained from the Love numbers computed by the bedrock

model, which have to be convolved (in time and in space) with

the space and time distribution of the ice/water load.

3.1 Convolution of the Green’s function

The surface Green’s function G(h, t) represents the axisymmetric

response of the Earth to a point impulse load at the pole (Fig. 1).

It is obtained by summing a solution of the form shown by

eq. (1) in a Legendre series according to

Gðh, tÞ ¼ a

Me

X?
n¼0

hnða, tÞPnðcos hÞ

¼ GEðhÞ dðtÞ þ
XNm

j¼1

GV
j ðh, tÞ , (6a)

with GE(h), the elastic term, written as

GEðhÞ ¼ a

Me

X?
n¼0

hE
n ðaÞPnðcos hÞ (6b)

and Gj
V(h, t), the Green’s function time-dependent expression

for the jth viscous mode written as, according to eq. (1),

GV
j ðh, tÞ ¼ a

Me

X?
n¼0

hVn, jðaÞ e
ÿt

qn, j Pnðcos hÞ : (6c)

Here, Pn are the Legendre polynomials, h is the colatitude

between the central point load and the remote point and a/Me

is a necessary scaling factor, a consequence of the dimension-

less Love numbers, where a and Me are the Earth’s radius and

mass, respectively (see e.g. Wu & Peltier 1982). Practical com-

putation of the resulting series implies the use of appropriate

cut-offs and a careful approach in the problematic computation

of the elastic response at the origin (h=0). The problem is fully

addressed in Le Meur & Hindmarsh (2000), to which the reader

is referred. Since the interest is in the surface response, only

surface Love numbers will be considered, so that hn
E, hn, j

V will

hereafter implicitly stand for hn
E(a), hn, j

V (a).

To obtain the response R(i, j, t) (the vertical displacement in

metres) at any of the 83r411 nodes of our 20 kmr20 km grid

that covers Greenland, the Green’s function G(h, t) is convolved

according to

Rði, j, tÞ ¼
X

i1 , j1[Di, j

ðt

ÿ?
Gðciji1j1 , tÿ t’ÞLði1, j1, t’Þdt’~x~y , (7)

where a discussion of the different terms and their significance

can be found in Le Meur & Hindmarsh (2000). The radius of

influence needed for determination of the subdomain Di, j is set

so that all loading changes that occur within 1000 km of the

point under consideration are taken into account. This requires

us to extend the 83r141 numerical grid by 50 points in each

direction. All these additional gridpoints are assumed to be at

sea so that the loading changes are computed as the water

depth evolution (sea level change minus bedrock change)rrw,

the water density. Despite the overall improvement, this is

partly in error for the northwestern part of Greenland since

the loading over the nearby north American continent was

certainly different. However, the fast-decreasing amplitude of

the response with distance is believed to reduce this error to an

acceptable level.

3.2 Time-dependent properties of the bedrock response

The properties of the Green’s function (6a) enable us to split

the time integral in eq. (7) as follows:

Rði, j, tÞ ¼
X

i1, j1[Di, j

ðt

ÿ?
GEðciji1j1

Þ dðtÿ t0ÞLði, j, t’Þdt’~x2

þ
X

i1, j1[Di, j

ðt

ÿ?

XNmode

j¼1

GV
j ðciji1j1

, tÿ t’ÞLði, j, t’Þdt’~x2 ,

(8)

which introduces the splitting between the elastic and viscous

terms at time t. Note that since Dx=Dy, these two terms can be

replaced by Dx2. The first part of the right-hand side of eq. (8)

can be further simplified according to the properties of delta
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functions as follows:X
i1 , j1[Di, j

GEðciji1j1ÞLði1, j1, tÞ~x2 , (9)

which shows how the elastic term is only driven by L(i, j, t), the

current state of loading. Conversely, the viscous contribution

accounts for all of the past loading contributions as expressed

by the time integral.

3.2.1 Time integration of the viscous term

In practice, the second term of eq. (8) is only integrated over

a memory period of Tmem=30 000 yr, which is sufficient to

approach the exact viscous solution to within less than 2 per

cent. This leads to the following numerical representation:X299

k¼1

Lði1, j1, kÞ
ðtÿ½300ÿkÿ1�*t

tÿ½300ÿk�*t

XN
j¼1

GV
j ðcij,i1 j1

, tÿ t0Þdt0 , (10)

where k is the time index encompassing the entire memory

period Tmem at a resolution of Dt=100 yr. Each of the result-

ing integrals is evaluated analytically, which according to the

expression for Gj
V in eq. (6c) yields the following viscous

response at point (i, j):

a~x2

Me

X
i1, j1[Di, j

"X299

k¼1

Lði1, j1, kÞ
XNm

j¼1

XNh

n¼0

hVn, jqn, j

| e
ÿð300ÿkÿ1Þ*t

qn, j ÿ e
ÿð300ÿkÞ*t

qn, j

� �
Pnðcos cij,i1 j1

Þ
#
, (11)

where Nh is the chosen harmonic cut-off (Le Meur &

Hindmarsh 2000). It should be noted that the time discretization

used here does not account for the viscous relaxation driven by

load changes occurring during the last 100 yr. An alternative

computation was proposed by Ivins & James (1999) in which

linear segments are considered between key epochs. Their

formulation is still compatible with an analytical integration

similar to eq. (11) and has the advantage of integrating the

viscous contribution from very recent load changes (see their

eq. 33). However, given the average viscous relaxation time of

the order of several thousand years, the relaxation process is

completed by less than 5 per cent after 100 yr and only sudden

drastic changes during the last 100 yr would lead to signifi-

cantly different results. Careful inspection of our ice sheet time-

series did not reveal such features, at least not over areas large

enough to have a serious impact on the results.

3.2.2 The elastic term as a function of the current load

The elastic term has the same spatial properties but a

much simpler time dependence. From eqs (9) and (6b), it can be

expressed as

a*x2

Me

X
i1, j1[Di, j

XNh

n¼0

hEn Pnðcos cij,i1j1ÞLði1, j1, tÞ : (12)

3.2.3 Obtaining the bedrock response rate of change

The expressions as given above refer to the bedrock response

to loading changes with reference to an initial state where

isostatic equilibrium is assumed. In order to obtain the current

time trends, differentiation with respect to time is necessary.

For the elastic term, as can be seen from eq. (12), the corres-

ponding time derivative implies the same formula, where the

current loading rate of change d [L(i1, j1, t)]/dt=L̇(i1, j1, t)

replaces L(i1, j1, t). Because of the discrete character of the

loading history function, a similar time derivation would not

be meaningful to obtain the viscous response. Instead, as in

Le Meur & Huybrechts (1998), the viscous trend ṘV(i, j, t)

can only be calculated by replacing L(i1, j1, k) in eq. (11) by a

finite difference equivalent, [L(i1, j1, k+1)xL(i1, j1, k)]/(Dt).

Hereinafter, unless specified otherwise, all bedrock components

(displacement, gravity changes) are to be understood as trends

or time rates of change, and as such are denoted with an over-

dot. Moreover, previous examples made exclusively use of the

hn bedrock Love number (related to vertical displacement). It is

clear that these derivations also apply to any combinations of

any other Love numbers (such as kn, for instance) as required

for the computation of the different gravity trends.

4 T H E P R E S E N T - D A Y G R A V I T Y T R E N D

We first concentrate on the gravity rate of change, that is, the

rate of change of the norm of the gravitational acceleration

vector g that, for instance, a gravimeter would record. The

geoid change is considered in Section 6.2. As demonstrated in

Appendix A, possible changes in the horizontal component of

the acceleration vector can be neglected, so that the gravity

anomaly reduces to the radial gradient of the gravitational

potential, xhW/hr (the same applies for the time trends). This

simplification is not a priori obvious since in some gravity

problems the horizontal component contributes to the ‘terrain

correction’, for instance when the topography is steep (Turcotte

& Schubert 1982). If our statement holds here, it is partly

because the gravity perturbation is small as the present state

is rather similar to the initial reference state. As previously

mentioned, the gravitational changes originate from both the

Earth deformation and the load distribution changes.

4.1 Surface gravity changes resulting from Earth
deformation

The gravitational potential associated with the deformation of

the planet is directly obtainable from the bedrock model. Its

radial gradient can therefore be computed using the appro-

priate Love number combination (g0/a)(n+1)kn as in Wahr

et al. (1995) or in James & Ivins (1998), but without the 1/2 term

that results from the loading change contribution itself and that

we compute separately. The corresponding rate of change is

therefore obtained by substituting this combination for hn in

eqs (11) and (12) and by applying the correct time differentiation

as described in Section 3.2.3.

4.2 Surface gravity changes from the loading changes

The second part of the gravity trend follows from the direct

acceleration provided by the mere presence of the current load.

However this ‘pure loading contribution’ is ambiguous because

the gravitational potential cannot be defined exactly at the

Earth’s surface where the point load is applied. Most authors

use an artefact consisting of giving an artificial thickness

to the point load and compute this potential at the exact middle

(so that gravitational effects from the upper and lower parts
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of the load cancel each other, James, personal communication,

1999). This leads to (g0/a)r(1/2) as the corresponding Love

number combination, which only intervenes in the elastic

part since it expresses the current state of the load (Wahr

et al. 1995; James & Ivins 1998). Unfortunately, owing to the

bedrock model first-order boundary conditions expressing the

presence of the point load at the surface of the planet (Wu &

Peltier 1982), this combination underestimates the gravitational

contribution of the load, especially when loading changes

occur at different heights from that of the measuring point. This

point is fully addressed in Appendix B, to which the interested

reader is referred (see also Agnew 1983). The gravity contri-

bution from loading changes is therefore deliberately omitted

in the Love number combination, but is computed afterwards

independently of the bedrock model, following techniques

traditionally used for topographic corrections in gravimetry.

4.3 Alternative computation of the load-induced
anomaly

The alternative computation has two steps, the first equivalent

to a Bouguer gravity anomaly accounting for the gravitational

effects due to the loading changes at the local grid cell and the

second including the remote effects from more distant loading

changes. The Bouguer term is computed by approximating

the local cell by a disc of similar area (Rc=Dx/
ffiffiffi
n
p

), and by

integrating eq. 5-109 from Turcotte & Schubert (1982, p. 216),

in which the thickness h is now the local load variation L̇(i, j)

for 1 yr (in kg mx2) divided by the appropriate uniform ice

density ri, and for which the observation point is at the surface

(b=0). The corresponding vertical acceleration rate reads

_*gB ¼ 2nG _Lði, jÞ ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2R2

c þ _Lði, jÞ2
q

þ oRc

� �
: (13)

With a maximum load variation of the order of 1 m yrx1 and a

density of 910 kg mx3 for the ice, the last two terms can be

neglected, reducing eq. (13) to 2pGL̇(i, j), equivalent to the first

term of eq. (5) in Wahr et al. (1995). Provided the grid size is

large enough (of the order of a kilometre), this approximation

holds and approximating the cell area with that of the corres-

ponding disc does not alter the result. For the terrain term, we

simply use the law of gravitation again by stating that a remote

grid cell (i1, j1) of area Dx2 whose upper surface S(i1, j1)

undergoes the loading change L̇(i1, j1) will determine a gravity

change at point (i, j ) as follows:

_*gT ¼ G _Lði1, j1Þ*x2

D2
u , (14)

where D is the distance between the points, and u is a unit vector

pointing towards (i, j ) at elevation S(i, j ). After projecting on

the vertical by multiplying with cos(u, g0)=[S(i, j)xS(i1, j1)]/D

and summing over all of the remote points in Di, j within a

radius of influence R, we obtain the terrain correction in (i, j ) as

_*gTði, jÞ ¼
X

i1 , j1[Di, j

G _Lði1, j1Þ*x2

D3
½S i, jð Þ ÿ Sði1, j1Þ� : (15)

Because of the proportionality in 1/D3, this term becomes

insignificant for D larger than a few tens of kilometres. No

correction for the motion of the measuring point is accounted

for at this stage. This will be considered under a free-air

correction term in Section 5.3.5

5 R E S U L T S O F T H E S I M U L A T I O N

This section describes the main characteristics of Greenland’s

evolution during the last two glacial cycles with a special

emphasis on the derivation of the present-day gravity trends.

5.1 Experimental set-up

Because of the long-response timescales of both the ice sheet

and the underlying bed (of the order of 103–104 yr), it is

essential to start the calculations at a time early enough for the

coupled model to forget its initial start-up conditions. To this

end, the ice sheet and bedrock models are first run over the last

two glacial cycles (Fig. 3). A steady-state run under interglacial

conditions served as initial conditions. To obtain this reference

state, it was assumed that the observed present-day bedrock

was in isostatic equilibrium with the observed present-day ice

and water loading. The effects of this assumption, although

only a first approximation, turned out not to be very crucial for

the model results obtained at the end of the simulation.

The model was forced over the last 225 000 yr by prescribing

a temperature change derived from the GRIP d 18O record and

imposing a sea-level history derived from the SPECMAP stack

at a 100 yr resolution (Dansgaard et al. 1993; Imbrie et al.

1984). Although the GRIP d 18O record is known for its defects

prior to about 100 kyr BP, these have a negligible effect on the

present-day ice sheet and bedrock evolution.

Figure 3. Model forcings (upper panel) and simultaneous evolution of

total ice volume and mean bedrock elevation over the last two glacial

cycles. The mean bed elevation corresponds to the bedrock height

averaged over the entire continental platform (above the x300 m

level). The total volume change of the Greenland ice sheet between the

Last Glacial Maximum and the present day is about x6r1014 m3 or

+1.4 m of global sea level.
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5.2 Time-dependent results

5.2.1 Ice and bedrock height evolution

The simultaneous evolution of ice sheet volume and the corres-

ponding mean bedrock elevation is shown in Fig. 3 (lower panel).

The figure displays two complete cycles of growth and decay as

documented in more detail for similar set-ups in earlier papers

(Letreguilly et al. 1991; Huybrechts 1994, 1996). Interestingly,

the spatially averaged bedrock elevation over the Greenland

continental platform appears to be well anti-correlated with

total ice volume. The exact correspondence breaks down how-

ever for the shorter timescales because of the time-delayed

viscous response, as is evident from the time evolution over

the last 25 kyr displayed in Fig. 4. At present, the ice volume

is almost stationary, but residual bedrock uplift still occurs in

response to the strong deglaciation between 10 and 5 kyr BP.

From the evolution of ice volume, it turns out that the

Greenland ice sheet basically completed its retreat from the

Last Glacial Maximum some 5000 yr ago and is now roughly

in equilibrium with the present Holocene climate. The volume

changes over the last 5 and 1 kyr are respectively x4.4r1013

and +3.3r1012 m3, corresponding to global sea-level changes

of +11 and x0.8 cm, respectively. Those contributions are

small compared to the total Greenland volume and sea-level

change of about x6r1014 m3 and +1.4 m since the Last

Glacial Maximum.

The associated ice sheet geometries have been compared

against available geological and glaciological (palaeo-) field

evidence where possible (Funder 1989). In particular, the

retreat history of the ice sheet in central west Greenland is well

constrained by field data. Van Tatenhove et al. (1995) have

shown that the model is in reasonably good agreement with a

succession of dated moraines along a transect parallel to 67uN
extending from the present ice margin down to the continental

shelf break. Not only did the maximum and minimum extents

of the model ice sheet coincide well with the geology, but

also the chronology of the modelled retreat agreed to within

500–1000 yr of the glacial–geological reconstructions, or about

the uncertainty on the 14C ages of the dated moraines. We

take this as an important validation of the model and the

loading history it is able to provide, and believe that this lends

more robustness to the viscous bedrock evolution the model

produces for the present time.

5.2.2 Mean gravity change over the last 25 kyr

The simultaneous evolution of the average load and mean

bedrock displacement over the continental platform enables us

to calculate an approximate average gravity change *gðtÞ in the

infinite-sheet approximation as a function of time,

*gðtÞ ¼ 2nGðoebðtÞ þ oiHðtÞÞ , (16)

where H�(t) and b�(t) are average ice-equivalent thickness and

mean bedrock elevation over the continental platform (above

the x300 m contour), respectively, which are taken as the

difference with respect to the initial state (x225 000 yr). re is a

mean representative density for the outer Earth (3350 kg mx3)

and ri is the ice density (910 kg mx3). *gðtÞ can be con-

sidered as a good indicator for the average degree of isostatic

disequilibrium. It is zero by definition at x225 000 yr, when

isostatic equilibrium was imposed as an initial condition.

Fig. 4 shows how this gravity anomaly stems from both

ice-volume and ensuing bedrock changes. The effect of the ice

loading is dominant because the mean thickness change with

respect to the initial value of 1272 m is generally pronounced.

However, once the volume stabilizes over the last 5 kyr, the

ongoing uplift makes up for almost all of the gravity trend,

which still amounts to about 0.28 mgal yrx1 for the present day.

This corresponds to a mean uplift of about 2 mm yrx1.

The remaining present-day anomaly of x3.47 mgal is almost

exclusively due to the average bedrock depression of 23 m

(x3.23 mgal), whereas the mean ice thickness difference of

about 6.5 m accounts for only x0.24 mgal. It should be

stressed that these values correspond to a specific bedrock

rheology (viscosity profile, lithospheric thickness) among many

possible rheologies. Because of the calculation burden of our

coupled approach, no additional experiments were performed

to test the sensitivity for a plausible range of Earth parameters.

Despite this restriction, we believe we can already provide a

first estimate of the order of magnitude of the gravity anomaly.

A more accurate computation of the gravity anomaly pattern

as computed from the coupled ice sheet/bedrock model is

presented below.

5.3 Present-day evolution patterns

The definition of the time period over which present-day

patterns should be calculated deserves some comment as it

remains ambiguous and somewhat arbitrary. Theoretically,

and with respect to the elastic crustal response, it should be the

real instantaneous change occurring at present time t, but for

numerical and technical reasons (the time step in the calcu-

lations, discontinuous forcing), the ice sheet model cannot

yield a meaningful instantaneous trend. Moreover, in reality,

the relevance of such an instantaneous trend is questionable

because a strong interannual to decadal variability in the surface

mass balance generally overrides a more significant longer-term

ice sheet dynamic trend. In fact, the largest volume change of

the Greenland ice sheet occurs between the beginning and the

end of the summer season, when around 50 per cent of the total

annual accumulation over the entire ice sheet is melted from the

Figure 4. Time-dependent mean ice thickness, mean bedrock elevation

and corresponding infinite-sheet approximation gravity anomaly over

the last 25 kyr. All results refer to the same area of the continental

platform above the x300 m contour and are expressed as differences

with regard to the initial state for the simulation.

Gravity changes over Greenland 841

# 2001 RAS, GJI 145, 835–849



ablation area. In this study we follow the same approach as in

previous analyses (Huybrechts 1994; Le Meur & Huybrechts

1998) and average the model outputs over the last 200 yr to

obtain the present-day evolution, seen as a fair compromise

between the typically strong interannual to decadal variability,

the time resolution of the external forcing (100 yr) and the

relevant physical processes. The implication is that possible

imbalances resulting from mass balance changes within the last

century are discarded (or effectively cancel one another).

5.3.1 Ice-thickness evolution

With the above definition in mind, the coupled ice sheet/bedrock

model yields a Greenland ice sheet that as a whole is almost

stationary. Over the last 200 yr, the corresponding mean ice-

thickness change is around x65 cm and the mean bed uplift

about +35 cm only (Huybrechts & Le Meur 1999). This is

equivalent to a global sea-level rise of only +0.15 cm centuryx1

or an ice volume change of x6 km3 yrx1. Despite a near

overall equilibrium of the entire ice sheet, the geographical

pattern shows a clear distinction between a general thickening

of the accumulation area and a mostly thinning ablation area

(Fig. 5c). Current ice-thickness changes are highest over southern

Greenland, with rates in excess of 20 mm yrx1, whereas thinning

rates locally go up to x100 mm yrx1, especially in the SW and

NE parts of the ice sheet. The single most important explanation

for this pattern is the recovery of the ice sheet from the Little

Ice Age cooling, which ended about 200 yr ago, leading to both

higher accumulation and higher runoff rates. Superimposed on

this pattern are the effects of basal warming following the last

glacial–interglacial transition, the downward propagation of

the harder Holocene ice and heat conduction into the bedrock,

as discussed in more detail in Huybrechts (1994).

5.3.2 Bedrock uplift

Bedrock uplift is primarily driven by past and current loading

changes over both the Greenland continent and the surround-

ing ocean. The longer-term loading history is well represented

by the loading difference between the Last Glacial Maximum

around 18 000 yr BP and the present time (Fig. 5b). The

pattern is dominated by marginal ice sheet retreat, particularly

pronounced in the SW and NE parts of the ice sheet, and

by a thickening of several hundred metres over the central

accumulation area.

Figs 6(a) and (b) show the corresponding viscous and elastic

bedrock uplift rates as discussed in Le Meur & Huybrechts

(1998). They are basically smoothed imprints of the past and

present loading changes shown above. In this model experi-

ment, the viscous response clearly dominates over the elastic

response, with a maximum viscous uplift rate of 6.25 mm yrx1,

which is an order of magnitude larger than the maximum

elastic uplift rate of 0.48 mm yrx1. Also clearly noticeable is

the regional character of the viscous bedrock response, which

takes place in the asthenosphere underneath the large-scale

bending of the lithospheric rigid plate. The slightly more

local aspect in the elastic response probably results from the

instantaneous response of the lithosphere, whose compressibility

would lead to a more local imprint of the small-scale variations

from the overlying load.

5.3.3 Gravity anomalies resulting from Earth deformation

Figs 6(c) and (d) show the gravity trends as they can be derived

directly from the bedrock model. These fields are calculated

from eqs (11) and (12) using the appropriate Love number

Figure 5. Loading characteristics as obtained from the coupled ice sheet/bedrock model. (a) Freely generated surface topography that results for

the present day. (b) Loading change between 18 000 yr BP and the present time, arising from both ice-thickness changes over the continent and

water-depth changes over the ocean, multiplied by their respective densities. (c) Ice-thickness evolution averaged over the last 200 yr.

842 E. Le Meur and P. Huybrechts

# 2001 RAS, GJI 145, 835–849



combination (g0/a)(n+1)kn
V and (g0/a)(n+1)kn

E for the viscous

and elastic responses respectively (see Section 4.1), and in which

a time differentiation replaces the loading function L. Here the

gravitational effect of the load has not been included, which

makes this gravity trend exclusively representative of the Earth

deformation. The similarity in shape between these fields of

gravity change and the respective uplift patterns is therefore

striking. It illustrates the more general correspondence between

the total displacement of mass within the Earth (for which

surface displacements are a good approximation) and the

resulting gravity changes. Due to the regional aspect of the

response, the bedrock surface displacement ḃ at any gridpoint

can roughly be considered as an infinite sheet of growing rate ḃ,

for which the corresponding gravity trend can be approxi-

mated with the ‘Bouguer formula’ as 2pGr�ḃ, with r� a mean

density of 3350 kg mx3 representative of the outflowing mantle.

It therefore leads to an approximate linear relationship of

0.14 mgal mmx1 between the gravity trend (exclusively due

to the Earth’s deformation as produced by the model) and

then surface uplift rate, a point already raised by Wahr et al.

(1995) and James & Ivins (1998). The comparison between

the viscous bedrock displacement and corresponding gravity

anomaly pattern in Fig. 6 gives a ratio of about 0.17 mgal mmx1,

which can be considered consistent with the crude approximation

of the infinite sheet. These values are also in good agreement with

the 0.16 mgal mmx1 obtained by James & Ivins (1998) (after they

removed the x0.32 mgal mmx1 free-air effect from their viscous

x0.16 mgal mmx1 ratio), and with the 6.5 mm mgalx1 proposed

by Wahr et al. (1995).

The elastic trends in Figs 6(b) and (d) also exhibit strikingly

similar patterns but with a much lower factor of proportionality

of around 0.06 mgal mmx1. This ratio again agrees well with

the 0.05 mgal mmx1 found by James & Ivins (1998), but it

seems difficult to invoke a similar explanation entirely based on

the infinite sheet formula, because that would require far too

small a density contrast at the crust/atmosphere interface.

5.3.4 Gravity changes induced by the load changes

This gravity trend is represented in Fig. 7 as computed according

to Section 4.3. From the figures, one can see how the Bouguer

term shows a very similar pattern to that for the current ice

loading changes (Fig. 5c), a consequence of the proportionality

between the two in the infinite sheet formula. One can also see

that over the ice-free ground, where no local loading changes

occur, this anomaly does not exist.

The second mass correction term (‘terrain correction’)

is generally about two orders of magnitude smaller than the

first one, making it only interesting from a qualitative point

of view. The exception is a fairly narrow band along the ice

sheet margin in central west Greenland where it locally reaches

0.13 mgal yrx1. This is evident from the formulation of the

mass correction term itself in eq. (15). Since it is inversely pro-

portional to the distance D between the points cubed, the effect

can only be important over short distances and is all the more

pronounced as the topography is steep and the difference

of altitude between the points is large (James & Ivins 1998;

Dietrich et al. 1998). That is also the reason why the noticeable

thickening of the ice sheet in southern Greenland does not

significantly contribute to the mass correction, because the ice

topography is very flat there.

Adding these two fields gives the total gravity trend due

to the evolving load. Owing to one to two orders of magni-

tude difference between the two, the resulting sum is almost

indiscernible from the Bouguer term, which is already a good

representation as shown in Wahr et al. (1995) or James & Ivins

(1998), so the total gravity trend is not displayed separately. A

comparison can be made with the same gravity anomaly but now

computed from the bedrock model with the (g0/a)r(1/2) Love

number expression that was previously disregarded (Fig. 7c).

Comparison of the two figures (Figs 7a and c) confirms that the

latter approach (based on Love numbers) seriously under-

estimates the load contribution to the gravity rate of change.

The reason comes from the load in the unit bedrock approach

having no physical thickness (infinitely concentrated at r=a),

which is unrealistic in terms of our gravity corrections (see

Appendix B for justification). It confirms that a ‘notional load’

such as that embodied by the delta function used to force

the unit bedrock model is not appropriate to compute the

loading gravitational impact and therefore justifies the approach

followed here with a separate computation.

5.3.5 The total gravity trend a gravimeter would measure at

the Earth’s surface

With today’s instrumental accuracy of 1–2 mgal for the most

recent FG5 absolute gravimeters (Sawasaga et al. 1995), gravity

surveys usually have to be carried out for several years in

order to detect trends of the order of a microgal per year. Such

a requirement makes measurements over the ice or at sea

technically unrealistic, and only absolute gravity surveys on the

ice-free ground at the periphery of the ice sheet seem capable

of providing significant trends. Assuming one wants to repro-

duce what a gravimeter left on the ground would measure, the

theoretical gravity trend (from both Earth deformation and

the loading changes) has to include the effects of the vertical

motion of the device under the form of a free-air correction.

Given a rate of vertical displacement ḃ, this correction reads

(x2g0/a)rḃ. This rate of displacement ḃ is directly obtainable

from the bedrock model with the surface displacement Love

number hn, which makes (x2g0/a)rhn the relevant combination

for the free-air term and gives (g0/a)r1)knx2hn] as the final

term to use in eqs (11) and (12). By multiplying this latter com-

bination with the scaling factor a/Me, one obtains a formula

similar to eq. (21) in James & Ivins (1998), except for the elastic

term, where the pure loading contribution (the 1/2 term) has

been deliberately omitted. The total theoretical gravity trend

for any gravimeter on the ground is finally obtained from

eq. (11) with (g0/a)r[(n+1)kn
Vx2hn

V] replacing hn
V for the

viscous term (with an appropriate finite differentiation instead

of L) and eq. (12) with (g0/a)r[(n+1)kn
Ex2hn

E] replacing hn
E

(with L replaced by L̇) and to which the loading contribution

(Bouger+terrain terms) is added.

The corresponding pattern for the free-air correction rate of

change is shown for the whole of Greenland in Fig. 8(a), where

values at sea (computed from the geoid rate of change as if one

had a gravimeter on board a ship) and over the ice (deduced

from the ice thickness rate of change) are also displayed, but

the latter are of little or no practical interest.

The final theoretical gravity trend is represented in Fig. 8(b).

The insets on the right-hand side summarize the different com-

ponents over the main ice-free area of west Greenland. Over this

area, there is no Bouguer term and the terrain correction is only
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important in a narrow fringe along the ice margin. Therefore,

the initial gravity trend arising from Earth deformation

only needs to be corrected for the vertical uplift of the device

(free-air correction). This last correction is, however, significant,

since it is about twice as large as the gravity trend from the

model (inset c2), and moreover of opposite sign (compare insets

c2 and c3). It is characterized by a x32 mgal mmx1 gradient

(x2g0/a) that more than compensates the 16 mgal mmx1

gradient obtained from Section 5.3.3 for the ratio of the total

gravity anomaly to the total uplift (deduced from weighted ratios

representative of the respective viscous and elastic gravity trends).

Based on our model output, ground absolute gravity trends in

central west Greenland are typically of the order of x0.3 to

x0.4 mgal yrx1, of which the largest part, apart from the free-

air correction, is made up of the viscous effect as discussed

earlier. It confirms that absolute gravity measurements with

an instrumental accuracy of 1–2 mgal require several years of

continuous survey to detect signals of this amplitude.

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

500

1000

1500

2000

2500

0 500 1000 1500

[c] Viscous gravity anomaly

0.1  gal/yrµ

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5

0

500

1000

1500

2000

2500

0 500 1000 1500

[d] Elastic gravity anomaly

0.001  gal/yrµ

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

500

1000

1500

2000

2500

0 500 1000 1500

[b] Elastic bedrock displacement

0.1 mm/yr

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0

500

1000

1500

2000

2500

0 500 1000 1500

[a] Viscous bedrock displacement

mm/yr

Figure 6. Viscous long-term and elastic instantaneous trends as produced by the bedrock model for the present day. The patterns are displayed

either as uplift rates (upper panels) or as corresponding gravity trends where the pure loading gravitational effect is disregarded (lower panels).

The corresponding total patterns (viscous+elastic) are not shown separately as they are similar to the dominant viscous patterns.
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Figure 8. Free-air correction trend (a) computed from the different evolving surfaces. For ice-free surfaces (sea and tundra) the values are in tenths

of mgal yrx1 (left scale) whereas higher values resulting from the locally pronounced ice surface evolution are displayed in tens of mgal yrx1

(right scale). It is interesting to note the good correlation at sea with the geoid rate of change (Fig. 9), which expresses the sea-level change pattern

(the eustatic component is not accounted for here). (b) Total theoretical gravity trend over Greenland obtained by adding the gravity rate of change

directly computed by the bedrock model (Figs 6c and d) to that due to loading changes (Fig. 7a+Fig. 7b) and the free-air correction trend (a).

This pattern is of practical use only on ice-free terrain, the largest area of which is outlined and is presently subject to continuous gravity surveys.

(c) Close-ups of the outlined area summarizing the different patterns previously discussed. (c1) is the total rate of bedrock uplift (viscous+elastic)

whereas (c2) is the total (viscous+elastic) gravity trend directly output by the bedrock model (Fig. 6c+Fig. 6d). (c3) is the sum of the free-air and

gravitational loading contribution trends (which here reduce to a narrow fringe close to the ice sheet margin due to the sole terrain correction). Adding

(c3) to (c2) yields (c4), the total theoretical gravity trend.
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Figure 7. Alternative computation of the previously omitted loading gravitational contribution under the form of a ‘Bouguer-type’ gravity correction

(a) and a ‘terrain-type’ gravity correction (b). (c) represents the gravitational effect obtained from the unit bedrock model by summing the (g0/a)r(1/2)

Love number and convolving it with the present load evolution. A comparison with (a) shows how the former method seriously underestimates this

field. All these patterns have to be understood as time rates of change.
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6 T O W A R D S A N I N F E R E N C E O F T H E
S E C U L A R E V O L U T I O N O F L A R G E I C E
S H E E T S ?

6.1 The secular ice sheet evolution from the viscoelastic
theory

The relevant quantity for sea-level changes is the trend of

ice mass change effective over at least several decades, rather

than the actual evolution at exactly the present time, which is

probably dominated by interannual variations in surface mass

balance. In our modelling we have defined the current evolution

as the ice mass trend averaged over the last 200 years, so the

elastic bedrock time-dependent term as considered in this study

is a good reflection of the secular trend we are interested in. The

caveat to make here is that our calculations only yield the

century timescale background evolution resulting from changes

in environmental forcing extending back into the last glacial

period, but exclude the possible contribution associated with

mass balance changes over the last 100 years. This effectively

assumes that recent decadal mass balance perturbations are on

average small compared to the ice sheet’s residual response to

past climate changes.

Assuming the existence of high-quality observations for

the bedrock response, it is therefore tempting to infer the

corresponding elastic component by subtracting the viscous

long-term response computed by the bedrock model from the

corresponding field data, and to deconvolve the result in order

to retrieve the secular ice loading changes. However, owing to the

regional character of the Earth’s response, the deconvolution

process at a given location requires integration of the bedrock

elastic information over all of the area within the radius of

influence around this point. As a consequence, local gravity

surveys along the ice sheet margin, as for instance started in

central west Greenland by Dietrich et al. (1998), are not

sufficient for such a derivation.

6.2 The high-resolution geopotential from future
satellite missions

The lack of coverage can be overcome by satellite missions

recording the time-dependent geopotential. Several past missions

such as Starlette (Cheng et al. 1989) and LAGEOS (Gegout &

Cazenave 1993; Eanes & Bettadpur 1996) have already contri-

buted to first estimates of the large-scale geopotential rate of

change by providing the first few harmonic terms (J̇2, J̇3, J̇4, . . . ).

New techniques such as those to be implemented for GRACE

(Gravity Recovery and Climate Experiment, to be launched by

NASA in 2001), a forthcoming low-orbit satellite-to-satellite

tracking mission, referred to as SST in USNRC (1997), are

soon expected to investigate the geopotential rate of change

at a much higher resolution (up to the 180u order spherical

expansion term) such that the geoid height rate of change could

theoretically be derived down to a resolution of the order of

a few hundred kilometres. This latter field can also be com-

puted from the bedrock model in our experiment, in which the

appropriate Love number combination to apply in eqs (11) and

(12) now reads (g0/a)(1+kn), together with the appropriate

time differentiation for L. The corresponding results are depicted

in Fig. 9. Like gravity changes, geoid changes are also controlled

by both the Earth’s deformation and current mass exchanges at

its surface. In some areas such as in northwest and central west

Greenland (Fig. 9), the effects of crustal uplift and ice sheet

thinning partly compensate, and probably explain the relatively

low values as compared to ice-free postglacial rebound areas

elsewhere. The large mass loss in central west Greenland is even

responsible for an inversion of the sign of the geoid motion.

From its technical specifications (USNRC 1997), one can

expect the future GRACE satellite mission to be sensitive to

geoid rates of change to an accuracy of about 0.05 mm yrx1 at

the scale of the major drainage basins (500 km side square)

over the assumed 5 yr duration of the mission. According to

the magnitude of this observable as computed here (Fig. 9), this

is likely to yield discernible information.

6.3 The geopotential as a proxy for secular ice sheet
evolution?

Successful application of the differencing procedure to infer the

elastic part of the geoid rate of change requires a firm handle on

error sources. Above all, such a method would suffer from the

uncertainties in the computation of the viscous bedrock term.

This uncertainty has not been rigorously addressed in the present

study by performing a comprehensive sensitivity study for the

full range of Earth parameters (mainly the viscosity profile and
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Figure 9. Rate of change of the geoid as computed by the unit bedrock

model.
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the lithospheric thickness) cited in the literature. However, a

recent study on the Antarctic ice sheet by Kaufmann (2000)

estimated the bedrock uncertainty to be around 0.5 mm yrx1,

and the result for Greenland may be of similar magnitude.

Uncertainties arising from the ice sheet model and the loading

history it produces are believed to be smaller, but following

Bentley & Wahr (1998) in another study on the Antarctic ice

sheet, an additional error of about 0.5 mm yrx1 cannot be

excluded. To this one should add the errors inherent in the

observational data, as discussed more fully in Bentley & Wahr

(1998). Therefore, given the inaccuracies in the viscous response

as well as those from the data, the inferred elastic term obtained

by subtracting the viscous component from measured data will

hardly be distinguishable from zero, unless it is much larger

than our simulations suggest.

Nevertheless, as pointed out by Bentley & Wahr (1998),

an integrated approach combining satellite missions such as

GRACE with future high-precision altimetry and detailed GPS

campaigns on rock exposures offers the prospect to constrain

ice and bedrock models independently and reduce error bars

on the data. One may thus expect that such combined studies

will ultimately produce reliable trends for the evolution of the

Greenland ice sheet.

7 C O N C L U S I O N S

This study discussed the results of a comprehensive com-

putation of the present-day gravity changes induced by the

evolution of the Greenland ice sheet. These results are com-

plementary to the bedrock surface displacement fields obtained

in Le Meur & Huybrechts (1998) for the same experiment. The

model run considered the ice sheet/bedrock system in the coupled

mode, allowing for more reliable results as the mutual inter-

actions between bedrock adjustments and ice sheet evolution

can be fully accounted for. This study has highlighted the

potential and limits of using measured gravity trends, whether

on ice-free ground or area-wide from satellites, to infer infor-

mation on the isostatic evolution in general and the problem

of the current ice sheet evolution in particular. To demon-

strate these issues and establish orders of magnitude, we have

synthetically simulated the gravity anomaly trends one might

expect as a result of the modelled past and current evolution of

the Greenland ice sheet. We find that the gravitational bedrock

signal is strongly dominated by its viscous component and thus

by the past history of the ice sheet. Because of the uncertainties

inherent in bedrock response models, we conclude that the

problem of inferring the current state of balance of the Greenland

ice sheet from measured gravity values is seriously under-

determined and requires, amongst other things, more constraints

on the Earth’s rheology. The prospect of good-quality data from

future space missions is likely to offer improved possibilities

to address the imbalance problem of large ice sheets, but basic

problems due to the interannual variability of the surface

climate and the effects of atmospheric pressure changes on the

measurements (Bentley & Wahr 1998) will remain. Awaiting a

better idea of these sources of uncertainty, the principal merit

of our results is to guide future measurement campaigns by

demonstrating what orders of magnitude one can reasonably

expect, to point to specific spatial and temporal patterns, and to

help with the attribution of measured gravity signals to past

loading changes or current mass changes.
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A P P E N D I X A : N E G L E C T I N G T H E
H O R I Z O N T A L C O M P O N E N T I N T H E
G R A V I T Y A N O M A L Y T R E N D

Let g0 be the zero-order acceleration vector for the unperturbed

state (our reference state) and assume that it defines the local

vertical for an orthonormal reference frame (er, eh, eQ). The

perturbation in gravity that we call Dg is the opposite of the

gradient in the gravitational perturbation potential W, which in

our reference frame is expressed as

*g ¼ ÿ+’ ¼ ÿ L’
Lr

er ÿ
1

r

L’
Lh

eh ÿ
1

r sin h
L’
Lr

er : (A1)

The total acceleration vector g as the sum of g0 and Dg can split

into a vertical vector,

gver ¼ ÿ g0 þ
L’
Lr

� �
er , (A2)

and a horizontal vector,

ghor ¼ ÿ
1

r

L’
Lh

eh ÿ
1

r sin h
L’
Lr

er : (A3)

The square of the norm (g)2 is then the sum of those for its

vertical and horizontal components (gver)
2+(ghor)

2. Differentiating

with respect to time and dividing both sides by 2, we obtain

g _g ¼ gver _gver þ ghor _ghor , (A4)

where g represents
ffiffiffiffiffiffiffiffiffi
ðgÞ2

p
, the norm of the corresponding vector.

Considering Dg as a low-order term, we can approximate both

g and gver by g0. After dividing both sides of eq. (A4) by g, we

obtain

_g^ _gver þ
ghor

g0

_ghor : (A5)

Considering that ġver and ġhor are of the same order and that

ghor/g0%1, as confirmed by the calculations (not shown), the

right-hand side of eq. (A5) can be approximated simply by

ġver=x(hẆ/hr)er. The fact that Dg can be considered as a low-

order term follows from the fact that in our experiment the

present-day state is very similar to the initial reference state.

A P P E N D I X B : T H E G R A V I T A T I O N A L
C O N T R I B U T I O N O F T H E L O A D A S
C O M P U T E D B Y T H E U N I T B E D R O C K
M O D E L

B1 The Love number representation

The Love number expression for the direct gravitational contri-

bution of the current load cannot be derived directly from

the gravitational potential W given by the unit bedrock model.

However, depending on where exactly we consider this contri-

bution, it is rather straightforward to derive appropriate Love

numbers. For this gravitational contribution expressed at the
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Earth’s surface just below the load, one obtains

*gn ¼
g0

a
ðÿnþ ðnþ 1ÞknÞ , (B1)

and for the same contribution just above the load, one obtains

*gn ¼
g0

a
ðnþ 1þ ðnþ 1ÞknÞ : (B2)

The difference (g0/a)(2n+1) between these two expressions

represents the harmonic expansion, which once summed in the

usual harmonic series (6a), gives exactly 4pGd(h), where G is

the universal gravitational constant. This is in fact equal to

twice the ‘Bouguer’ correction for the unit point load d(h), the

necessary correction to apply to the measurement when moving

from just below to just above the load. This led several authors

(Wahr et al. 1995; James & Ivins 1998) to adopt an intermediate

position and use an average Love number expression for the

gravity anomaly at the solid surface,

*gn ¼
g0

a

1

2
þ ðnþ 1Þkn

� �
: (B3)

Such an approach is equivalent to giving an artificial thick-

ness to the load and assuming that the measurement is per-

formed exactly at the middle of the resulting layer so that load

gravitational contributions from below and above exactly

compensate (James, personal communication, 1999). It also

means that the pure gravitational contribution of the load reduces

to the Love number (g0/a)r(1/2), as (g0/a)r(n+1)kn represents

the viscoelastic contribution from the Earth’s deformation.

B2 Justification for a separate computation of the load
gravitational contribution

By summing the preceding Love number expression [(g0/ar1/2)]

in the harmonic series as in eq. (6a), one obtains

a

Me

X?
n¼0

1

2
ðg0=aÞPnðcos hÞ ¼ g0

2Me

X?
n¼0

Pnðcos hÞ : (B4)

Replacing the resulting Legendre series by its trigonometric

expression (Farrell 1972),X?
n¼0

Pnðcos hÞ ¼ 1

2 sinðh=2Þ , (B5)

and noticing that g0/Me=G/a2, we eventually obtain the

gravitational acceleration produced by the unit point load, gU,

at the pole as a function of colatitude h as follows:

gU ¼ G

4a2 sinðh=2Þ : (B6)

It is interesting to note that the same expression can also be

obtained directly from the law of gravitation. This is demon-

strated in Fig. B1. The gravitational acceleration of a point

unit load applied in P (h=0) at a remote point A at colatitude h
can be represented as a vector in the direction of the pole with

an amplitude G/D2. Here, D is the distance (A–P) between the

point load P and the remote point A. The vertical projection

of this vector yields the downward gravitational acceleration

equal to [G sin(h/2)]/D2. Using the sine rule to relate D to the

Earth radius a,

D

sin h
¼ a

sinðn=2ÿ h=2Þ ¼
a

cosðh=2Þ , (B7)

and noting that sin h=2 sin(h/2) cos(h/2) enables us to express

1/D2 as 1/[4a2 sin2(h/2)] and finally to obtain the same expression

as in eq. (B6) for the downward gravity component. Whilst this

similarity gives justification for using (g0/a)r(1/2) for the load

contribution, it also reveals the inaccuracy of such an approach.

Indeed, when applying the law of gravitation, we considered

that both points (A and P) were exactly at a distance r=a from

the centre of the Earth. The result would have been totally

different in the case of a difference of altitude between the two

points, especially if the gravitational effects are pronounced

when these points lie close to each other. The same result also

follows from the Love number approach as a consequence of

the boundary conditions for the unit bedrock model (Longman

1962; Farrell 1972). These boundary conditions are expressed

to first order by positioning the load at r=a, without con-

sidering any surface deformation or existing topography. These

two formulations only make sense for loads exactly at the same

altitude, which considerably reduces this direct gravitational

effect of surface masses (expressed in this way, the contribution

from remote loads arises solely as a consequence of the Earth’s

curvature). A separate full computation is therefore necessary

in order to account properly for the exact location where the

mass changes occur.

Figure B1. Computation of the gravitational acceleration exclusively

due to the presence of the point load from Newton’s law of gravitation.
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