Aerosols and boundary layer structure over Arctic sea ice based on airborne lidar and dropsonde measurements

schmidt.lukas [ at ]


The atmosphere over the Arctic Ocean is strongly influenced by the distribution of sea ice and open water. Leads in the sea ice produce strong convective fluxes of sensible and latent heat and release aerosol particles into the atmosphere. They increase the occurrence of clouds and modify the structure and characteristics of the atmospheric boundary layer (ABL) and thereby influence the Arctic climate. In the course of this study aircraft measurements were performed over the western Arctic Ocean as part of the campaign PAMARCMIP 2012 of the Alfred Wegener Institute for Polar and Marine Research (AWI). Backscatter from aerosols and clouds within the lower troposphere and the ABL were measured with the nadir pointing Airborne Mobile Aerosol Lidar (AMALi) and dropsondes were launched to obtain profiles of meteorological variables. Furthermore, in situ measurements of aerosol properties, meteorological variables and turbulence were part of the campaign. The measurements covered a broad range of atmospheric and sea ice conditions. In this thesis, properties of the ABL over Arctic sea ice with a focus on the influence of open leads are studied based on the data from the PAMARCMIP campaign. The height of the ABL is determined by different methods that are applied to dropsonde and AMALi backscatter profiles. ABL heights are compared for different flights representing different conditions of the atmosphere and of sea ice and open water influence. The different criteria for ABL height that are applied show large variation in terms of agreement among each other, depending on the characteristics of the ABL and its history. It is shown that ABL height determination from lidar backscatter by methods commonly used under mid-latitude conditions is applicable to the Arctic ABL only under certain conditions. Aerosol or clouds within the ABL are needed as a tracer for ABL height detection from backscatter. Hence an aerosol source close to the surface is necessary, that is typically found under the present influence of open water and therefore convective conditions. However it is not always possible to distinguish residual layers from the actual ABL. Stable boundary layers are generally difficult to detect. To illustrate the complexity of the Arctic ABL and processes therein, four case studies are analyzed each of which represents a snapshot of the interplay between atmosphere and underlying sea ice or water surface. Influences of leads and open water on the aerosol and clouds within the ABL are identified and discussed. Leads are observed to cause the formation of fog and cloud layers within the ABL by humidity emission. Furthermore they decrease the stability and increase the height of the ABL and consequently facilitate entrainment of air and aerosol layers from the free troposphere.

Item Type
Thesis (PhD)
Primary Division
Primary Topic
Publication Status
Eprint ID
Cite as
Schmidt, L. (2014): Aerosols and boundary layer structure over Arctic sea ice based on airborne lidar and dropsonde measurements PhD thesis,

[thumbnail of dissertation_schmidt_lukas.pdf]

Download (16MB) | Preview
Cite this document as:

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Geographical region

Research Platforms


Edit Item Edit Item