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Abstract. Beaded streams are widespread in permafrost re-

gions and are considered a common thermokarst landform.

However, little is known about their distribution, how and

under what conditions they form, and how their intriguing

morphology translates to ecosystem functions and habitat.

Here we report on a circum-Arctic survey of beaded streams

and a watershed-scale analysis in northern Alaska using re-

mote sensing and field studies. We mapped over 400 channel

networks with beaded morphology throughout the continu-

ous permafrost zone of northern Alaska, Canada, and Rus-

sia and found the highest abundance associated with medium

to high ground-ice content permafrost in moderately sloping

terrain. In one Arctic coastal plain watershed, beaded streams

accounted for half of the drainage density, occurring primar-

ily as low-order channels initiating from lakes and drained

lake basins. Beaded streams predictably transition to allu-

vial channels with increasing drainage area and decreasing

channel slope, although this transition is modified by local

controls on water and sediment delivery. The comparisons of

one beaded channel using repeat photography between 1948

and 2013 indicate a relatively stable landform, and 14C dat-

ing of basal sediments suggest channel formation may be

as early as the Pleistocene–Holocene transition. Contempo-

rary processes, such as deep snow accumulation in riparian

zones, effectively insulate channel ice and allows for peren-

nial liquid water below most beaded stream pools. Because

of this, mean annual temperatures in pool beds are greater

than 2 ◦C, leading to the development of perennial thaw bulbs

or taliks underlying these thermokarst features that range

from 0.7 to 1.6 m. In the summer, some pools thermally strat-

ify, which reduces permafrost thaw and maintains cold-water

habitats. Snowmelt-generated peak flows decrease rapidly by

two or more orders of magnitude to summer low flows with

slow reach-scale velocity distributions ranging from 0.01 to

0.1 m s−1, yet channel runs still move water rapidly between

pools. The repeating spatial pattern associated with beaded

stream morphology and hydrological dynamics may pro-

vide abundant and optimal foraging habitat for fish. Beaded

streams may create important ecosystem functions and habi-

tat in many permafrost landscapes and their distribution and

dynamics are only beginning to be recognized in Arctic re-

search.

1 Introduction

Channels with regularly spaced deep and elliptical pools con-

nected by narrow runs are a common form of many streams

that drain Arctic permafrost foothills and lowlands. These

channels are often referred to as “beaded” streams because

during summer low flows, pools appear as beads-on-a-string

of runs (Oswood et al., 1989). Beaded streams are gener-

ally treated in scientific textbooks on permafrost (e.g., Davis,

2001), hydrology (e.g., Woo, 2012), and aquatic ecology

(e.g., McKnight et al., 2008), yet to our knowledge field in-

vestigations of these systems has been limited to Imnaviat

Creek in northern Alaska (e.g., Oswood et al., 1989) and the

Yamal Peninsula in Siberia (Tarbeeva and Surkov, 2013).
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Table 1. Summary of a circum-Arctic inventory of beaded stream networks in the zone of continuous permafrost based on a survey of

high-resolution (< 5 m, summer) imagery available in Google Earth™ during 2012–2013. The relative proportion of high-resolution imagery

available in each region was used to estimate the total number of stream networks and drainage density assuming an average network length

of 10 km.

Region Area Percentage of area with Identified Estimated Estimated

(km2) high-resolution stream networks stream networks drainage density

imagery (snow-free) (km km−2)

Northern Canada 2 347 072 9 22 244 0.001

Northern Alaska (USA) 185 907 80 275 344 0.019

Northern Russia 2 123 067 11 148 1346 0.006

Figure 1. Examples of beaded stream networks located by scan-

ning high-resolution (< 5 m) imagery available in Google Earth

in (a) Russia (Anabar River watershed), (b) USA (near Nuiqsut,

Alaska), and (c) Canada (Tuktoyaktuk Peninsula).

Our understanding of the physical and chemical charac-

ter of beaded streams mainly comes from Imnavait Creek in

the Arctic foothills of Alaska (Oswood et al., 1989). Sub-

sequent studies of this and adjacent systems suggest how

beaded morphology functions in permafrost thaw (Brosten

et al., 2006), hydrologic storage and hyporheic exchange

(Merck et al., 2012; Zarnetske et al., 2007), and thermal

regimes (Merck and Neilson, 2012). Thermal stratification

in pools up to 2 m deep often occurs in beaded channels dur-

ing summer low flows (Oswood et al., 1989) and this may

play a role in permafrost thaw, hydrologic transport, and nu-

trient processing as the Arctic climate changes (Zarnetske et

al., 2008; Merck and Neilson, 2012). In the winter, foothill

streams freeze solid (Best et al., 2005) such that bed sedi-

ments thaw slowly and to a limited depth compared to ad-

jacent alluvial channels (Brosten et al., 2006; Zarnetske et

al., 2007). Winter analysis of multiple aquatic habitats on

the Arctic coastal plain (ACP), however, shows that beaded

streams can maintain liquid water under ice and potentially

develop perennially thawed sediments (Jones et al., 2013).

These physical regimes of water and energy flow in Arc-

tic streams, coupled with channel morphology and drainage

network organization likely also dictate how these ecosys-

tems function as aquatic habitat (Craig and McCart, 1975).

Hydrographic analysis of the Fish Creek watershed on the

ACP show that beaded streams form the dominant connec-

tions between larger river systems and abundant thermokarst

lakes, thus influencing both hydrology and the movement of

aquatic organisms between habitats (Arp et al., 2012b).

Beaded streams are thought to be a common Arctic

thermokarst landform and occur mainly in association with

ice-wedge networks of polygonized tundra (Pewé, 1966).

The formation of channel drainage in these streams oc-

curs along ice-wedge troughs with mature drainage chan-

nels resulting in complete degradation of ice wedges by ther-

mal erosion (Lachenbruch, 1966). Classification of Arctic

streams place beaded channels within the tundra class as

compared to springs and mountain classes (Craig and Mc-

Cart, 1975). In foothill watersheds, beaded streams are typ-

ically fed by linear hillslope water tracks (McNamara et

al., 1999), while on the ACP these channels initiate mainly

from thermokarst lakes and drained thermokarst lake basins

(DTLBs) (Arp et al., 2012b; Whitman et al., 2011). Based

on existing research, it is uncertain whether high densities

of beaded streams exist beyond this long-standing focal site

(Imnavait Creek/Toolik Lake) and this more recent studied

watershed (Fish Creek). Newly published work from Russian

permafrost zones is also expanding our knowledge of beaded

stream distribution (Tarbeeva and Surkov, 2013). Still, an un-

derstanding of their formative processes and the broader wa-

tershed functions they provide are currently lacking.

Knowing where beaded streams occur in permafrost land-

scapes and how these fluvial forms are organized within

drainage networks will help advance our understanding of

their broader role in watershed, ecosystem, and biological

functions across the Arctic. Such analyses will also help

in predicting changes in these thermokarst fluvial systems
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Figure 2. The distribution of beaded streams located using Google Earth and from aerial surveys across the North Slope of Alaska in relation

to permafrost ice content (Jorgenson et al., 2008) and the Pleistocene glacial maximum (Manley and Kaufman, 2002). The locations of the

Fish Creek watershed (focus area of this study) and Imnavait Creek (focus area of the majority of pervious work on beaded streams) are

indicated.

Figure 3. The drainage network of Fish Creek watershed (location

shown in Fig. 2) showing all beaded stream networks that were de-

lineated from 2.5 m CIR photography. River systems and individual

beaded stream catchments where more detailed field and geospatial

studies were conducted for this study are indicated.

with respect to climate and land-use changes and correspond-

ing permafrost responses and hydrologic feedbacks. In this

study, we (1) describe the distribution of beaded streams

from circum-Arctic to regional scales, (2) explore whether

the distribution and variation in beaded morphology helps ex-

plain physical functioning, the evolution of beaded streams,

and their responsiveness to external drivers, and (3) high-

light the important role that these ecosystems serve in aquatic

habitat. This work expands our understanding of beaded

streams beyond the foothill regions of Arctic Alaska where

most of all previous work has been completed, both in terms

of fundamental aspects of permafrost and fluvial processes

as well as aspects relevant to fish and other aquatic biota.

2 Methods

2.1 Study areas, distribution surveys, and classification

The distribution and abundance of beaded streams were de-

termined by using a nested survey design and a range of

survey methods. These nested domains ranged from a (1)

circum-Arctic assessment confined to the zone of continu-

ous permafrost using imagery in Google Earth (GE) (Table 1,

Fig. 1), (2) aerial transects across landscape gradients on the

North Slope of Alaska (Fig. 2), and (3) a census of the Fish

Creek watershed (4700 km2) using high-resolution photogra-

phy (Fig. 3). We also conducted field studies throughout this

watershed and used data from an ongoing monitoring net-

work at several streams in the lower portion of the watershed

to characterize biophysical processes and habitat.

The circum-Arctic survey utilized imagery available in GE

to identify channels with beaded morphology. This analy-

sis focused on the continuous permafrost zone north of 66◦

latitude. We utilized the historical image browser function

in GE to access the highest resolution imagery (< 5 m) pos-

sible for a given region. This analysis focused on portions

of Alaska (USA), Siberia (Russia), and northern Canada to-

taling approximately 4.5 million km2. We found that most

channels with beaded morphology could be identified when

scanning images at a 1 : 6000 scale when the imagery had

a resolution of 5 m or finer and was mostly snow-free. The

availability of high-resolution, snow-free imagery in Alaska

was quite good, covering 80 % of the continuous permafrost

zone surveyed. In Russia and Canada, the availability of

such imagery was much lower, 11 and 9 %, respectively, as

of 2013 (Table 1). Prospective beaded channels recognized

while scanning were inspected more closely (finer scale) to

verify their form and the course was marked as the furthest

downstream network point of the continuous beaded channel.

www.biogeosciences.net/12/29/2015/ Biogeosciences, 12, 29–47, 2015
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Figure 4. Oblique photographs showing typical pool-run morphol-

ogy (a) and examples of beaded channel forms (b–e) compared to

alluvial channel (f) morphology.

Surface elevation, latitude, and classes of permafrost ground

ice were attributed to each point using thematic data sets

for pan-Arctic (Brown et al., 1998) and Alaska-focused per-

mafrost and ground ice distribution (Jorgenson et al., 2008)

and surface elevation. In order to compare among regions

with differing extents of sufficient imagery, we extrapolated

the number of surveyed streams based on the proportion of

high-resolution imagery available to estimate the total num-

ber of beaded stream networks in the circum-Arctic contin-

uous permafrost zone (Table 1). We additionally estimated

drainage density of beaded channels based on assuming an

average network length of 10 km, which results in only a

broad regional average and definitely varies considerably on

finer scales.

Regionally (Alaska North Slope) focused aerial surveys in

a Cessna 185 were flown on 10 July 2011 on a clear day along

three transects. One 270 km transect was from the Brooks

Range divide north to the Colville River delta, which moves

from glaciated terrain in the upper foothills to vast areas

north of the Pleistocene glacial maximum (Fig. 3). Another

transect was 130 km from Prudhoe Bay to the lower Fish

Creek watershed on the ACP, and a third transect spanned

36 km of land area from Fish Creek to the lands north of

Teshekpuk Lake representing an inner to outer ACP gradient.

During the transect flights at approximately 150 m elevation,

one observer had a sufficient view of approximately 500 m

land surface to one side of the plane, thus covering approxi-

mately 220 km2 of land surface in these surveys. During the

flight each stream observed was marked with a GPS, pho-

tographed, and later these photographs were inspected to de-

termine which streams could be classified as having beaded

morphology.

The watershed census of beaded streams was conducted

in the Fish Creek watershed as part of a broader effort to

map, classify, and understand watershed hydrography and

its role in watershed runoff processes (Arp et al., 2012b).

The Fish Creek watershed is located in the northeastern por-

tion of the National Petroleum Reserve – Alaska (NPR-A)

on the ACP (Fig. 3). Surface deposits grade from marine-

alluvial silt with some pebbly substrates in the east to inac-

tive eolian sand dune fields in the west (Carter, 1981; Carter

and Galloway, 2005). The sand-bedded alluvial rivers, Fish

Creek (Uulutuuq, Iñupiat name) and its tributary Judy Creek

(Iqalliqpiq), drain this area and form a delta in the Beau-

fort Sea just west of the Colville River delta. Both rivers

begin as beaded streams, Judy in a narrow arm extending

into the foothills and Fish in the sand sea. The Ublutuoch

River (Tingmiaqsiuqvik) also starts as a beaded stream, but

maintains this morphology for a longer distance before be-

coming a gravel-bedded alluvial channel near its confluence

with Fish Creek (Fig. 3). All perennial channels in the Fish

Creek watershed were delineated from 2002 mid-July color

infrared (CIR) photography (2.5 m resolution) in a GIS envi-

ronment. Streams with beaded morphology were quantified

according pool density and size (measured as width perpen-

dicular to the direction of flow) and valley gradient from a

5 m interferometric synthetic aperture radar (IfSAR) digital

elevation model (DEM) at a segment scale, typically a 1–

3 km length that was representative of individual drainage

networks. These segments were also placed into four classes

according to predominant pool (channel bead) shape and

connectivity to runs: (1) elliptical (round) pools separated by

distinct connecting runs (Fig. 4b), (2) coalesced pools (ellip-

tical pools merged together) without distinct connecting runs

(Fig. 4c), (3) large irregularly shaped pools often connected

by long runs (Fig. 4d), and (4) connected thaw pits in degrad-

ing polygonized tundra connected by perennial or ephemeral

streams (Fig. 4e). We used this classification to help evalu-

ate if pool form of beaded morphology was correlated with

landscape position within the watershed and permafrost ice-

content or other thermokarst landforms (e.g., thermokarst

lakes and DTLBs). We visited approximately 20 % of these

stream channels in the Fish Creek watershed during late July

2011 to verify beaded morphology and classification and to

collect additional field measurements, as described below in

the next section.

2.2 Geospatial and field measurements

A subset of stream channels mapped and classified in the

Fish Creek watershed (Arp et al., 2012b) were used for

detailed geomorphic and hydrologic analysis in this study.
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Specifically, we targeted a set of each channel class rep-

resenting beaded streams and alluvial channels (Fig. 4), as

well as points of channel initiation. During field visits, we

measured stream discharge using the velocity–area method.

Along stream reaches equaling 20 or more channel widths

(typically 100–300 m), we surveyed the water surface eleva-

tion at 5–7 points with an engineer’s level, stadia rod, and

tape to measure the channel slope. At the same time, channel

cross sections that bisected pools were surveyed at 2–3 loca-

tions to measure pool geometry as well as the incised zone

surrounding the channel (gulch) indicated by riparian vege-

tation and form.

In order to better understand controls on beaded stream

morphology, we conducted similar surveys in the field, and

from geospatial data (CIR photography and DEMs) along a

longitudinal gradient of Fish Creek and the Ublutuoch River

from their headwaters downstream (Fig. 3). For each fluvial

system, at least three reaches were studied in the field where

the channel had distinctly beaded form and three reaches

were studied downstream where the channel had transitioned

to an alluvial form. Additional locations were later selected

to better refine this transition including identification of sed-

iment sinks (flow-through lakes) or clear-water inputs (lake-

fed tributaries) relative to potential sediment sources includ-

ing contact points with hillslopes and sand dunes, and tribu-

taries originating from DTLBs or upland tundra. Such local

controls on delivery of new water and sediment to channels

were expected to help explain changes in form downstream,

similar in concept to mountain drainage networks flowing

through lakes (Arp et al., 2007) and as hypothesized for Arc-

tic drainage networks (Tarbeeva and Surkov, 2013). The to-

tal length of channels analyzed for the Fish Creek watershed

was about 135 km and the total length of channels analyzed

for the Ublutuoch River watershed was about 70 km.

2.3 Analysis of channel change and history

To better understand the evolution of beaded channels we

compared the position and morphology of one channel over

a 64 a period using high-resolution (1 : 24 000 scale) photog-

raphy from 1948 (black and white, Naval Arctic Research

Laboratory, BW NARL) and 2013 (color-infrared at 25 cm

pixel size, Aerometric Inc) located in the Fish Creek water-

shed. This was done to examine the hypothesis that beaded

streams evolve in a manner similar to observed degradation

of ice-wedge intersections, but lacking channel connectivity.

The 1948 BW NARL photographs were acquired from the

University of Alaska Fairbanks GeoData Center and scanned

at 1200 dpi. The scanned images were georeferenced with 20

ground control points (primarily, stable ice-wedge intersec-

tions) to a light detection and ranging (lidar) data set (detailed

below) using a spline transformation and converted to a pixel

size of 0.5 m. The 2013 color photography was acquired, by

Aerometric Inc., on 4 September to complement airborne li-

dar data. Manual analysis of both data sets was conducted in

black and white to avoid any bias that may have arisen due

to differences in film types and their separation by so many

years of time. Particular attention was given to any changes

in channel form (location and plan-view dimensions) rela-

tive to ambient polygonized tundra within a 100 m buffer of

the channel and the presence and dynamics of thaw pits. All

stream channels in both images were independently delin-

eated manually and individual pools and ice-wedge intersec-

tions with pits marked with a central point. We tracked in-

dividual pools (beads) and thaw-pits from 1948 to 2013 and

also recorded those features that were observed in one time

period but not the other. The channel gulch/riparian corri-

dor was also delineated for both periods, based primarily on

the darker (greener) signature of taller sedges, willows, and

dwarf birch and moister understory bryophyte communities.

In order to estimate the timing of pool initiation, long-

term sedimentation rates, and the depositional environment

of pools, we collected sediment cores to analyze sediment

stratigraphy and estimate age–depth relationships using 14C

dating. In April 2012, two overlapping cores were collected

from a large, deep pool in Crea Creek (Fig. 3) to a depth

of 75 cm (base of unfrozen talik) using a Russian peat corer.

Each core was photographed and subsampled at 5 cm incre-

ments with subsamples placed in Whirl-Pak™ bags. Here we

identified what appeared to be basal sediments where the

channel initiated, as indicated by an organic sediment layer

with fibrous terrestrial organic remains sitting above a ho-

mogenous and thick sand layer extending down into the base

of the talik. We sampled an individual twig from this basal

section for 14C dating. Several moss and sedge samples were

also collected from above the basal layer in organic-rich,

sandy sediments, similar to organic-rich gyttja deposited in

lakes of the region, for dating as well. Another core was

collected from a pool in 2013 at nearby Blackfish Creek

(Fig. 3) and macrofossils were collected from above several

distinct sand horizons within the core. The plant macrofossils

were prepared for analysis with an acid-base treatment and

analyzed for 14C content using standard acceleratory mass

spectrometry techniques at the NOSAMS (National Ocean

Sciences Accelerator Mass Spectrometry) facility at Woods

Hole Oceanographic Institute. All radiocarbon dates were

calibrated to calendar ages using the IntCal 13 curve (Reimer

et al., 2013) and are reported as the mean and 2σ ranges of

the calibrated ages.

2.4 Hydrologic monitoring and habitat analysis

As part of an ongoing monitoring program (Fish Creek Wa-

tershed Observatory; Whitman et al., 2011), streamflow, wa-

ter temperature, and other water quality parameters have

been recorded at hourly intervals at five stream-lake systems

since 2008. These small catchments (Fig. 3) are being mon-

itored by the Bureau of Land Management (BLM) Arctic

Field Office to collect baseline data prior to expected changes

in land use, primarily new oil development, and associated
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Figure 5. The distribution of beaded stream channels throughout

the circum-Arctic in relation to latitude, elevation, and permafrost

ground-ice content. Stream networks were identified using imagery

in Google Earth in the zone of continuous permafrost where high-

resolution imagery was available. The location of streams in the

Fish Creek (focus area for this study) and Imnavait Creek (focus

area for majority of previous beaded stream research) watersheds

are indicated with yellow stars.

lake-water extraction for ice road construction and facility

operations in the NE NPR-A. Stream gauging was conducted

using autonomous pressure transducers (Onset U20-001-01)

anchored to pool beds, which were corrected to local atmo-

spheric pressure to measure water height. Stream discharge

was measured using the velocity–area method with either

an ADCP (acoustic doppler current profiler; Flowtracker™)

or electromagnetic (Hach™) velocity meter mounted to a

top-setting wading rod. Approximately 20 velocity measure-

ments were made per cross section at increments spaced to

not exceed 10 % of total discharge. Typically we made 3–4

measurements near the snowmelt peak flow in early to mid-

June, 2–3 measurements during peak-flow recession in late

June or early July and 2–3 measurements again in late July

and late August. Rating curves were fit with a log or power

law equation to estimate continuous discharge during the ice-

free season; separate high-flow and low-flow rating curves

were often required. Based on temperature sensors placed

in channel runs and comparison with time-lapse cameras set

during several years, we assumed that streamflow ceased dur-

ing October in most years.

We tested how contrasting beaded stream morphometry

and watershed features affected hydrologic residence times

and velocity distributions using tracer tests on two stream

reaches with contrasting morphology and flow regimes

(Fig. 6). At Crea and Blackfish creeks (Fig. 3), we identi-

fied 325 and 232 m reaches, respectively, starting and ending

at channel runs to ensure initial mixing and sampling of the

Figure 6. Morphological characteristics of beaded streams com-

pared according to pool (bead) density, size, and shape classes (ex-

amples shown in Fig. 4 and locations shown in Fig. 3) at the segment

scale (1–3 km channel length) in the Fish Creek watershed.

advective flow. Rhodamine WT (RWT), a pink fluorescent

dye, was used as a water tracer because it can be detected

at low concentrations and only small quantities are required

to reach target concentrations, which is an important prac-

tical consideration for remote field sites. RWT has low bi-

ological reactivity, yet does sorb to organic matter and be-

gins photodegrading after several days of sunlight exposure

at low concentrations (Vasudevan et al., 2001). Thus, RWT

is not truly conservative,however, is widely used to charac-

terize channel hydraulics and transient storage processes, in-

cluding previous work in Arctic beaded streams (Zarnetske

et al., 2007). Based on targeted downstream peak concentra-

tions of 30 ppb (parts per billion), we made pulse additions of

RWT at reach heads and monitored concentration at the reach

bottom using a YSI 6600-V2 water quality sonde with a

RWT probe. This experiment typically lasted a day or longer

to account for all tracer moving through the system. RWT

tracer data were then fit with the model One-dimensional

Transport model with In-channel Storage and Parameteriza-

tion (OTIS-P) to estimate advective channel area (A), storage

zone area (AS), dispersion (D), and the storage exchange

coefficient (α) (Runkel, 2000). The percentage of RWT re-

covery averaged 81 % with an average sorption coefficient

(λ) of 1× 10−5 used to account for this loss downstream.

A tracer breakthrough curve data was plotted as cumulative

solute recovered downstream and converted to velocity dis-

tribution by dividing reach length by travel time. RWT in-

jections were conducted at both Crea and Blackfish creeks in

mid-June near peak flows, in early July (late peak-flow re-

cession), and late August (low summer baseflow).

Stream thermal regimes were quantified using the same

pressure transducers anchored to pool beds that also record

Biogeosciences, 12, 29–47, 2015 www.biogeosciences.net/12/29/2015/
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temperature, along with thermistors (Onset U12-015) near

the surface of pools (30 cm below) and in channel runs of

each beaded stream; all recording at hourly intervals. These

paired temperature measurements were used to assess ther-

mal regimes and timing and extent of stratification in pools

assuming that a ratio of surface temperature to bed temper-

ature > 1.1 indicated stratification. Using this system, one

pool and corresponding channel run have been monitored

among five streams year-round from 2009–2013 (Fig. 3). To

assess variability in thermal regimes and particularly stratifi-

cation within stream systems, we selected an additional three

pools of varying depth and area in both Crea and Blackfish

creeks (Fig. 3) in 2012 and instrumented these with addi-

tional bed and surface thermistors. These were retrieved and

downloaded in late August 2013.

During the late winters (March and April) of 2010–2013,

we visited several of these same beaded stream reaches con-

current with lake-ice, snow, and water chemistry surveys.

When opportunities existed, we measured snow depth ei-

ther with a 3 m avalanche probe or by digging a pit, or both,

above frozen pools located with a GPS. Holes were augered

through the ice and ice thickness and below-ice water depth

was measured using an ice-thickness gauge (Kovacs Enter-

prises LCC™). We also measured the depth of thawed sedi-

ment (talik) using multiple 1.2 m threaded stainless steel rods

fitted with a blunt tip and driven with a slide-hammer to the

depth of refusal (typically 10–20 pounds with no downward

movement). When possible, these late winter surveys were

done repeatedly at the same pools including measurements

of dissolved oxygen, specific conductance, and pH to assess

the quality of overwintering fish habitat.

3 Results and discussion

3.1 Beaded stream distribution

Using available high-resolution imagery in GE across the

circum-Arctic, we found 445 individual channel networks lo-

cated in northern Alaska, Russia, and Canada with beaded

morphology (Table 1). This survey was restricted to land ar-

eas north of 66◦ latitude, which was mainly in the zone of

continuous permafrost, though two streams identified were

within areas classified as discontinuous and three within

areas classified as sporadic permafrost. The availability

of high-resolution snow-free imagery strongly reduced the

number identifiable channels in Siberia and Canada. Extrap-

olations to the entire region of continuous permafrost based

on the area we could accurately survey, suggests greater than

1900 individual beaded stream networks with 13 % in north-

ern Canada, 18 % in Alaska, and 69 % in northern Russia

(Table 1). The density of beaded streams in Alaska was es-

timated to be about 3 times higher than in Russia and 19

times higher than Canada, likely related to its small but wide

unglaciated, ice-rich permafrost coastal plain of the Alaska

North Slope relative to abundant mountain and foothills ter-

rain of much of northern Russia and the expansive Laurentian

Shield covering much of northern Canada.

In Russia, 148 beaded streams were identified and clus-

tered mainly in several different locations. From east to west

these included coastal plains along the Chukchi Sea, lake-

rich valley bottoms west of the Kolyma Delta, mountainous

headwaters of the Yakutia region, higher elevations of the

Yamal Peninsula, and very high densities in the foothills of

the Anabar River watershed (Fig. 1a). Recent field studies

were completed on beaded streams on the Yamal Peninsula

and these researchers also remotely identified channels with

beaded morphology in other Russian taiga and steppe ter-

rains using Google Earth (Tarbeeva and Surkov, 2013). Com-

paratively fewer beaded streams were identified across the

Canadian Arctic (22 total) (Table 1). This is likely related to

regional geology associated with the dominance of exposed

bedrock and thin sediment cover and lack of ice wedges on

the Canadian Laurentian Shield. From west to east, small

clusters of beaded streams were found on the coastal plain

east of Herschel Island and south of the Mackenzie River

delta, the lake-rich Tuktoyaktuk Peninsula (Fig. 1c), the

coastal plain around the Coronation Gulf and village of

Kugluktuk, and the Banks Peninsula within Bathurst Inlet,

where high-resolution imagery was available during this GE

survey.

Because of greater availability of high-resolution imagery,

over 60 % of the beaded streams we located were in Alaska

even though this was a much smaller area surveyed (Table 1).

The southernmost beaded streams in Alaska were found on

the coastal plain of the Seward Peninsula and between Ki-

valina and Point Hope with an additional cluster higher in the

Noatak River valley (Fig. 2). On the North Slope of Alaska,

beaded streams were dense and more evenly distributed in

the western foothills and along the Chukchi coastal plain.

Lower densities of beaded streams were found in the cen-

tral sand sea region and only a few beaded channels were

found on the outer coastal plain of the Barrow Peninsula

and north of Teshekpuk Lake. This lack of channels with

beaded morphology on the outer coastal plain is perhaps un-

expected, given the ubiquitous presence of ice-wedge poly-

gons in which beaded drainage forms. We have observed

however that most channels in this region tend to take a plane

bed form without alluvial features, which may relate to very

high pore-ice content that in addition to wedge-ice makes

soils in this region extremely ice-rich, often exceeding 80 %

by volume (Brown, 1968, Kanevskiy et al., 2013). The outer

coastal plain is also extremely flat with very low drainage

densities and very high coverage of thermokarst lakes and

DTLBs (Hinkel et al., 2005), such that all fluvial systems

are in low abundance and the ones present are strongly lake-

affected. On the inner coastal plain and foothills, channels

likely develop along moderately sloping terrain with vary-

ing densities of ice wedges, but otherwise low pore-ice con-

tent. Thus, bead morphology likely develops as ice-wedge
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networks thermally erode, yet the expansion of pools and

runs is confined to the original ice-wedge casts likely be-

cause ice-poor permafrost is more resistant to thermokarst

erosion. High densities of beaded streams were also found

throughout the Kuparuk River watershed from the foothills

to the coastal plain and on the narrower coastal plain east of

the Sagavanirtok River to Barter Island (Fig. 2).

Looking at the full set of beaded streams in relation to

the ground-ice content of permafrost shows that 50 % were

found on high ground-ice content permafrost, 32 % on mod-

erately high ground-ice content permafrost, and 18 % on

low ground-ice content permafrost (Fig. 5). Regions with

high ground-ice content were typically associated with ei-

ther epigenetic permafrost along the coastal region and

syngenetic yedoma permafrost in the foothills region. Ap-

proximately 50 % of all beaded streams were found below

60 m a.s.l. (above sea level) elevation and 90 % were found

below 210 m a.s.l. elevation (Fig. 5). Seven beaded streams

were discovered above 500 m a.s.l. These were found in both

Alaska and Russia. Our survey did not identify the even

higher-elevation Imnavait Creek, 861 m elevation (Figs. 2,

5), since the only high-resolution GE imagery for this area

was acquired during winter snow cover when beaded mor-

phology could not be observed, demonstrating the limitations

associated with this identification approach. However, such

snow-covered scenes were relatively rare in most imagery

we used. Imnavait Creek, along with 12 beaded streams that

were identified in our inventory, occurs above the Pleistocene

glacial maximum (Fig. 2) indicating that streams with beaded

morphology can readily form in glaciated terrain.

In our aerial surveys across the Alaskan North Slope,

we located 43 beaded streams from three transects covering

436 km of flight lines or approximately 220 km2, suggesting

a density of 0.20 streams per square kilometer or a drainage

density of roughly 0.10 km km−2. Comparing transect lines

to landscape classification of permafrost ground-ice content

shows that these surveys covered (29 %) low, (59 %) moder-

ate, and (12 %) high categories (Fig. 2). However, of the rec-

ognized beaded streams along these courses, a much higher

proportion was associated with moderate ice-rich permafrost

(76 %). Only three streams occurred on high ground-ice con-

tent permafrost, two on very flat outer coastal plain areas

with glaciomarine sediments, and one in yedoma deposits of

the foothills (Fig. 2). The majority of stream channels on the

outer coastal plain, with very low drainage densities, would

be generally classified as plane bed (Montgomery and Buff-

ington, 1997) or F5-6 from Rosgen’s classification (Rosgen,

1994), and would have also been termed lacustrine channels

(Arp et al., 2012b) because they are nearly all mostly fed by

lakes. Still, polygonized tundra tends to be more pronounced

and uniform in this region, and so a general lack of channels

with beaded morphology was unexpected.

Beaded streams in the Fish Creek watershed range in el-

evation from 6 to 125 m and the full range of permafrost,

ground-ice contents (Jorgenson et al., 2008). We invento-

ried 126 beaded streams as individual catchments or drainage

networks within this 4700 km2 watershed located on the in-

ner Arctic coastal plain of northern Alaska (Fig. 3). Based

on previous analysis of lakes, streams, and river channels

here (Arp et al., 2012b), beaded streams represent 1168 km

of channel length or 47 % of the entire fluvial system. The

equivalent drainage density of beaded stream channels is

0.25 km km−2. Estimated drainage densities for the broader

regions surveyed with GE were far lower compared to this

watershed (Table 1).

Since the majority of beaded streams on the ACP initiate

as first-order channels below thermokarst lakes or DTLBs

(Arp et al., 2012b), their distribution throughout the Fish

Creek watershed is linked to lake distribution (Fig. 3). The

exception to this pattern is in the headwaters of Judy Creek,

which form a narrow arm extending into eolian silt deposits

with bedrock outcrops. In this area, lake densities are low

and many streams initiate as colluvial channels (Arp et al.,

2012b), which then transition to beaded morphology down-

stream, similar to patterns reported for the higher-elevation

foothills of the Kuparuk watershed (McNamara et al., 1999).

An example of this drainage pattern is also evident in Fig. 1a.

Thirteen percent of all beaded streams in the Fish Creek wa-

tershed are located within this region of ice-rich eolian loess.

Relatively lower densities of beaded streams occur in the eo-

lian sand sea regions (western half of Fish Creek watershed)

where permafrost is classified as having low ground-ice con-

tent (Fig. 2) and where most lakes formed between relict

dunes (Jorgenson and Shur, 2007) and are up to 20 m deep

(Arp et al., 2012b). The highest densities of beaded streams

occur in the lower Fish Creek watershed where surface geol-

ogy is dominated by alluvial and marine silts and sands with

some pebbly deposits and permafrost is moderately ice-rich

(Carter and Galloway, 2005). Our results suggest some vari-

ation in beaded stream distribution within the inner coastal

plain, particularly with lower densities associated with eolian

and alluvial sand deposits and higher densities on marine and

loess silt deposits. However, we still find that beaded streams

are often the dominant form of low-order channels through-

out a wide range of permafrost terrain on the Alaska North

Slope and this is likely the case in much of northern Russia

as well (Tarbeeva and Surkov, 2013).

3.2 Morphology in relation to landscape and watershed

positions

Since abundant large, deep pools are the defining character-

istic of streams with beaded morphology, we initially classi-

fied and quantified these channels according to pool (bead)

morphology and density (Fig. 6). On a reach scale (hundreds

of meters) or segment scale (up to several kilometers be-

tween tributary junctions), pool density, form, and size was

often distinct. However, on a more extensive drainage net-

work scale, which is the scale we used for classification,

pool density varied to a greater extent. Counts of pools from
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high-resolution CIR photography showed densities ranging

from 2 pools per 100 m of channel up to 10 per 100 m

(Fig. 6). Lachenbruch (1966) suggested that polygon spac-

ings range from 5 to 50 m based on variation in ground

strength and the width of stress relief zones, which approxi-

mately matches the range of beaded densities reported here.

This indicates that local controls, such as size, pattern, and

form (i.e., low- and high-centered polygons) of tundra or

broader-scale thermokarst landforms such as DTLBs (Frohn

et al., 2005; Hinkel et al., 2005), may be the main cause of

such variability in channel morphology.

Of the 126 individual beaded channel networks in the Fish

Creek watershed, 40 % were classified as elliptical with dis-

tinct connecting runs, 17 % had mostly coalesced pools and

short or non-existent runs, 34 % had predominantly irregu-

larly shaped pools, and the remaining 8 % were classified

as connected thaw pits (Figs. 4, 6). The majority of beaded

channels are shown to initiate from either lakes and DTLBs

(Arp et al., 2012b) and these took a wide range of pool

forms downstream. In the Fish Creek watershed, most chan-

nels with small elliptical pools were located in the higher

elevation areas associated with eolian sand and loess de-

posits compared to lower elevation marine sand and silt de-

posits. Whether this pattern relates to size and form of ice-

wedge networks that develop in sandy soils or how eroding

sandy soils moderate expansion by infilling pools or inter-

actions with vegetation deserves further consideration. The

other channel classes were more evenly distributed through-

out the watershed and by surficial geology.

Comparing channels of the entire watershed by individ-

ual slope and drainage area helps us to understand how the

larger drainage network is organized from channel initia-

tion points (channel heads) to larger alluvial sand-bedded

channels (Fig. 7). This slope–area relationship is consis-

tent with patterns more universally observed across a wide

range of drainage networks (Montgomery and Buffing-

ton, 1997; Montgomery and Dietrich, 1989; Whiting and

Bradley, 1993). In the Fish Creek watershed, channels ini-

tiating from hillslopes are steepest with slopes averaging 2 %

and with drainage areas < 1 km2. Channels initiating from

lakes, which all form beaded streams, had average slopes of

0.4 % and drainage areas > 1 km2 (Fig. 7). Channel initia-

tion thresholds reported for the foothill’s beaded stream Im-

navait Creek are 0.02 km2 (McNamara et al. 1999) – roughly

1 and 2 orders of magnitude smaller than hillslope- and lake-

initiated channels, respectively, in this ACP watershed. Be-

cause beaded channels compose approximately half of the

drainage network in the Fish Creek watershed (Arp et al.,

2012b), they correspondingly have a wide range of drainage

areas (2–54 km2) and slopes (< 0.1–0.8 %) (Fig. 7). Analy-

sis of beaded channels in Yakutia, Russia, show a narrower

range of drainage areas (3–10 km2) with slopes smaller than

0.2 % (Tarbeeva and Surkov, 2013). Alluvial channels form

the higher-order portions of most drainage networks and in

Table 2. Comparison of beaded stream morphology and ambi-

ent thermokarst features between black and white photography ac-

quired in 1948 and color infrared photography acquired in 2013 for

a 2.7 km segment of Crea Creek in the lower Fish Creek watershed.

Attribute compared 1948 2013

Pools

number 132 134

total area (m2) 7861 8334

mean area (m2) 59.6 62.2

number unique 23 25

Gulch/riparian zone

total area (m2) 221 802 241 247

mean width (m) 82.1 89.4

Thaw pits

total number 74 66

number unique 55 47

the Fish Creek watershed they typically begin at drainage ar-

eas > 40 km2 and channel slopes smaller than 0.03 % (Fig. 7).

To better understand how beaded streams fit within fluvial

systems of the ACP and evaluate what controls their mor-

phology, we selected two drainage networks for more de-

tailed analysis of longitudinal channel dynamics from head-

waters downstream (Fig. 8). Fish Creek has its headwaters

near the western divide of the watershed at 78 m a.s.l. It is

located entirely within the eolian sand sheet and initiates

from a deep depression lake (Fig. 3). This channel network

first flows through several more depression lakes and in be-

tween maintains a classic beaded morphology (Fig. 4a). Over

the next several kilometers, the channel cuts through both

vegetated and unvegetated sand dunes, which likely supply

coarse sediment. The channel also contacts steeper hillslopes

that could contribute sediment as well. This portion of the

channel appears transitional since reaches of beaded mor-

phology are interspersed with more sinuous channels hav-

ing point bars and meander cut banks (Fig. 8a). At kilometer

20 downstream, the channel steepens considerably below a

tributary fed by a DTLB and then cuts through two more

sand dunes, before taking a more even slope for the remain-

ing 110 km with sand-bedded alluvial characteristics. Thus,

Fish Creek quickly transitions from beaded to alluvial mor-

phology likely because of ample sediment supply associated

with the eolian sand landscape (Fig. 6a).

The other system we analyzed, the Ublutuoch River

(Fig. 3), begins at a lower elevation than Fish Creek,

58 m a.s.l., in the southern portion of the watershed at the

eastern margin of the eolian sand sheet. The channel initiates

from a large set of coalesced depression lakes, totaling about

5 km2, seen as the flat profile in Fig. 8b. The first 12 km of

this stream are relatively steep with a regular density of pools

typical of beaded morphology. Several oxbow lakes occur

lower in this segment, indicative of channelmigration, but the
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Figure 7. The organization of the major channel forms and channel

initiation points (heads) in the Fish Creek watershed are shown in

relation to drainage area and channel slope (measured from a 5 m

DEM).

Ublutuoch then flows through several more lakes, likely trap-

ping all sediment and resetting the system to a beaded form

with a flatter slope. At kilometer 24 downstream, a tributary

from a large DTLB enters from the north and, at this point,

the channel starts taking a more sinuous form with oxbow

lakes and other floodplain features (Fig. 8b). We suggest that

this segment of stream from kilometer 24 to 56 is transitional

between beaded and alluvial morphology – a much longer

transition than was observed along the upper Fish Creek. Sur-

rounding uplands here are entirely within the zone of marine

silt and sand without distinct sediment contributions from ad-

jacent sand dunes. Near the end of the segment, the channel

becomes much more sinuous with oxbows and meander scars

becoming evident, yet regular pools (beads) persist. At kilo-

meter 56, the stream contacts a distinctly higher hillslope that

we think supplies sediment to the channel and after which it

takes on a distinct alluvial form lacking any evenly spaced

beaded morphology (Fig. 8b). During the entire transitional

channel course, the slope is nearly constant at about 0.02–

0.04 %. It then flattens greatly to < 0.01 % over the last 5 km

and becomes quite deep (exceeding 5 m in some pools) and

very sinuous (2.3) with high, regular banks before its conflu-

ence with Fish Creek.

3.3 Channel change and formation

To evaluate the hypothesis that beaded streams form in ice-

wedge networks and that pools progressively expand over

time, more detailed studies were conducted in one system,

Crea Creek, in the lower Fish Creek watershed (Fig. 3), to

look at decadal-scale changes and estimate its time of forma-

tion. Using remote sensing change detection over 64 a, we

found no changes in the channel position along this 2.7 km

Figure 8. Headwater to downstream patterns of a beaded stream

originating in the eolian sand deposits, Fish Creek (a), compared

with a beaded stream originating in alluvial–marine deposits, Ublu-

tuoch River (b), showing changes in channel elevation and the den-

sity of pools and oxbow (meander-cutoff) lakes relative to sediment

sources and sinks.

segment (Fig. 9). The total number of pools in this segment

remained relatively stable, though tracking individual beads

showed that 18 % disappeared or could not be observed from

1948 to 2013 and a similar number of new pools (19 %) were

identified in 2013 that could not be observed in the 1948

imagery (Table 2). The majority of these were very small

(diameters < 4 m) and we think it is likely that changes in

vegetation or variation in water levels between images may

have obscured their detection. The mean pool size in 1948

was 60 m2 compared to 62 m2 in 2013, resulting in little net

change in total pool area over this period. Tracking the size

of individual pools found in both images showed that about

one-third shrank by more than 10 % surface area, about one-

third expanded by more than 20 % surface area, and the re-

maining pools were essentially unchanged. Thus, our analy-

sis suggests progressive expansion of these thermokarst land-

forms, yet the channel course appeared entirely unchanged

over this period. In comparison to other thermokarst land-

forms, thermokarst lakes in this region also progressively ex-

pand their lake basins, 0.10 m a−1 on average (Jorgenson and

Shur, 2007), but can drain catastrophically if a shoreline ex-

pands beyond a lower gradient or is breached by another lake
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Figure 9. Comparison of two segments of the Crea Creek channel

in 1948 (a, c) and 2013 (b, d) showing that pools, the riparian gulch,

and adjacent thaw pits can be clearly observed in each image. The

location of a sediment core collected for 14C dating is indicated

with a yellow triangle (location of Crea Creek is shown in Fig. 3).

or migrating river (Grosse et al., 2013). Alluvial channels on

the ACP are considered highly dynamic and often with very

high rates of bank erosion due to interactions with permafrost

such that major changes in channel course can occur over

short time periods (Scott, 1978). Our observations of a stable

course along Crea Creek over 64 a, along with an apparent

lack of beaded channels that appear abandoned on the ACP,

suggest long-term behavior more similar to bedrock channels

(Wohl, 2000). However, Tarbeeva and Surkov (2013) suggest

the beaded streams are transient features and become easily

filled with sediment from headwater thermokarst and other

hillslope erosive processes. We suggest that sediment deliv-

ery plays a role in how beaded streams transition to other

fluvial forms, but his typically operates at lower positions in

the watershed.

We also delineated the riparian zone or gulch of this

beaded stream, indicated in plan view by higher moisture

and the contrast between upland tussock tundra and vege-

tation composed of willows, tall sedges, and dwarf birch, to

see if other changes beyond the main channels were evident

(Table 2). Such changes could correspond to progressive sub-

sidence of ice-rich permafrost by thermokarst degradation

or shrub expansion as has been noted throughout many ar-

eas of the Arctic (Sturm et al., 2001). Consistent with what

can be observed in the shorter reaches in Fig. 9, the over-

all change in riparian gulch width was slight, a 9 % increase

(Table 2). Analysis of repeat photography in this same area

has shown a recent increase in degrading ice-wedge polygons

to form thaw pits (Jorgenson et al., 2006). We also recorded

and tracked thaw pits (ice-wedge junctions with ponded wa-

ter) between the two images within a 100 m zone on either

side of the channel, but outside of the riparian gulch. This

showed a somewhat similar pattern as that found when track-

ing pools in the channel of Crea Creek. In total, we found 120

individual thaw pits or 1 pit per 2500 m2, typically in clusters

associated with high-centered polygons. In 1948 we found

74 thaw pits, 55 of which were not observed in 2013, and in

2013 we found 66 thaw pits, 47 of which were not observed

in 1948 (Table 2). This suggests that thaw pits may progress

through a form of succession in which they degrade, collect

water, paludify and/or partly drain or dry, such that detec-

tion is obscured after several decades. This is a similar se-

quence to that demonstrated for denser networks of thaw pits

in polygonized tundra in adjacent upland areas of the Fish

Creek watershed (Jorgenson et al., 2006). We suggest that

beaded channels may evolve in a similar manner with most

pools gradually expanding and some contracting with chang-

ing vegetation. Such behavior seems particularly apparent in

viewing coalesced beads of some channels (Fig. 4c). Yet our

impression based on this photographic comparison and qual-

itative observation of other channels with repeat photography

is that channel courses and networks appear to behave more

like bedrock channels that are set in place and potentially

very old.

Analyzing the stratigraphy and geochronology of sedi-

ments in a large pool of Crea Creek may attest to the tim-

ing of stream channel formation and the depositional envi-

ronment since initiation. A fibrous, organic-rich layer with

abundant terrestrial plant material separated the transition

from organic-poor, medium-grained sand to organic-rich,

silty sediment that is the uppermost unit – we interpreted this

layer as basal sediments that were dated to 9.0 (±40), and

13.6 (±215) ka cal BP (before present) (Fig. 10). The terres-

trial macrofossils (shrub twigs) in this fibrous unit and the

two dates that span 4 ka suggest this layer may have been a

terrestrial soil that persisted for millennia on top of eolian

or alluvial sand deposits, but predated the initiation of the

beaded stream pool. Alternatively, this layer may represent

the depositional environment of an early stage of the beaded

stream pool where terrestrial vegetation was overhanging and

being deposited, and adjacent soils were being eroded by

ice-wedge degradation and supplying a range of reworked

material with different 14C ages to be deposited onto this fi-

brous layer. Regardless, we interpret the 9.0 ka moss macro-

fossil sampled from the upper portion of the fibrous layer

to be a conservative upper limit age on the initiation of the

beaded stream pool. At this time, we do not know whether

the lower limit of this age estimate is near the 9.0 ka time

period, or represents the late Holocene. The large age gap

from 9.0 ka at 42 cm to ∼ 0.7 ka at 22 cm suggests that either

a water-level lowering event caused a hiatus of sedimenta-

tion through much of the Holocene, or that high-flow events
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Figure 10. Diagram of generalized sediment core stratigraphy from

a large pool in Crea Creek (indicated in Fig. 9) collected in both

2012 and 2013 showing the location of macrofossil fragments col-

lected for radiocarbon dating. The sharp transition from organic-

rich gyttja to medium sand is interpreted to be the base of the pool

at its time of formation.

or other processes eroded the sediment deposits representing

most of the Holocene (Fig. 10). However, there was no pre-

served wetland or terrestrial soil layer interrupting the gyttja

unit, which would have accompanied a water-lowering event.

The Crea beaded stream pool we examined appears to have

had episodic sedimentation during the Holocene that is peri-

odically eroded by either high-flow events or ice scouring.

The stratigraphy and 14C dates from a core in a deep

pool in Blackfish Creek also suggest unconformities in sed-

imentation of beaded stream pools. The Blackfish pool had

sandy organic-rich gyttja with several 3–6 cm bands of coarse

sand that graded upward to fine sand. These suggested up-

stream scouring events that mobilized and transported high-

and coarse-sediment loads episodically, potentially from

the catastrophic drainage of upstream lakes. A number of

DTLBs occur upstream of this site and their drainage dates

are currently unknown, but may correspond to these events.

The basal age of this unit from a sedge fragment yielded a

date of 590 (±30) a BP, considerably younger than we found

at Crea Creek (Fig. 10). A paired sedge and willow macrofos-

sil extracted from above a coarse sand horizon at 20–30 cm

indicated ages of 1430 (±25) a BP and 125 (±25) a BP. Our

interpretation of this core and analyzed ages is that the basal

material was either not reached or had been remobilized and

that a number of very high-flow events in this stream’s re-

cent history had deposited upstream material of varying ages.

Figure 11. Late winter profiles (March or April) of several pools

(beads) surveyed in multiple beaded streams from 2010 to 2013 (“?”

indicated that no measurement of thawed sediment depth was at-

tempted). An example photograph from one pool surveyed in 2013

shows a 1.9 m tall person (G. Grosse) standing on the frozen pool

surface for scale.

These flow events may have partially eroded some of the

late-Holocene record and/or deposited reworked macrofos-

sils, which yielded less certain 14C ages. The depositional

environments of beaded streams seem discontinuous and dif-

ficult to interpret because of unconformities and reworked

plant macrofossils. In the right situation, however, pool sed-

iments may record upstream watershed events such as lake

drainage, as we think is preserved in the Blackfish Creek

core. At this time, the typical lifespan of the beaded streams

we studied remains uncertain, but our best estimate places

the Crea Creek channel’s formation near the Pleistocene–

Holocene transition. The Blackfish Creek core was much

more complicated and provided no apparent clues to the age

of this beaded channel.

3.4 Physical processes affecting morphology and

habitat

3.4.1 Winter processes

Because winter is the dominant season in the Arctic and most

beaded streams are ice-covered and likely stop flowing from

October to late May or early June, understanding their state

during this period is of great interest. An important character-

istic of beaded stream channels on the ACP is that their often

deep gulches, 0.5–2.0 m, rapidly fill with blowing snow early
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in the winter, effectively leveling the snow-surface topogra-

phy with the surrounding tundra. This deep snow insulates

ice on pool surfaces, reducing its rate of thickening, and im-

pacting soil active-layer dynamics as well. Measured snow

depths above beaded streams averaged 122 cm and ranged

from 70 cm on a small pool in Crea Creek to 192 cm above

a pool in Bill’s Creek (both in the lower Fish Creek water-

shed) (Fig. 11). In contrast, surrounding tundra snowpack

rarely exceeds 40 cm depth by late winter. Not only does

this thick snowpack insulate ice and soil, but it also persists

much longer in the spring and contributes a much larger por-

tion of snow-water per unit area directly to runoff (Arp et al.,

2010). From 12 beads we surveyed from 2010 to 2013, only

one was found to be entirely frozen to the bed by March or

April (Fig. 11). A more detailed and extensive survey of wa-

ter below ice was conducted in March and April of 2013 us-

ing ground-penetrating radar (GPR) and high-resolution syn-

thetic aperture radar (TerraSAR-X) in this area and found

the majority of pools had liquid water below ice (Jones et

al., 2013). The average ice thickness of pools surveyed was

106 cm and ranged from 89 to 129 cm (Fig. 9). For compar-

ison, lake ice thickness in this same region and years ranged

from 118 cm in 2011 to 171 cm in 2013 (Arp et al., 2012a;

Jones et al., 2013). The average depth of water we found

below the ice was 44 cm and ranged from 4 up to 106 cm

(Fig. 11). This water was typically under pressure from ice

expansion and the weight of snow, such that upon drilling

through the ice, water typically floods the frozen pool sur-

face. On at least two occasions live fish (Alaska blackfish,

Dallia pectoralis) were pushed out of the drill hole to the

surface by flowing water during these surveys. Monitored

dissolved oxygen levels in one bead showed a rapid drop

to hypoxic conditions by mid-January and measurements in

March typically showed levels below 5 % of saturation or

< 1 mg L−1. Alaska blackfish, however, are known to toler-

ate such conditions (Scott and Crossman, 1973; Crawford,

1974), providing evidence that some beaded stream pools

can function as overwintering habitat for select Arctic fish

species. While we suspect that these stream pools are not

preferred overwintering locations for most fishes, these rel-

atively warm unfrozen sediments may be important habitat

for invertebrate and microbial communities.

Despite the relatively small diameter of pools, thawed sed-

iment underlie most of them and measured depths averaged

120 cm and were up to 170 cm in one pool with sand-gravel

sediment (Fig. 11). Similar talik depths are reported for pools

or broadenings in beaded channels in Russia (Tarbeeva and

Surkov, 2013). This suggests that beaded stream channels

further disrupt the ground thermal regimes of otherwise con-

tinuous permafrost landscapes at a scale relative to their size,

whereas large river channels and lakes with floating ice result

in taliks reaching tens of meters or more in depth (Brewer,

1958; Lachenbruch et al., 1962). Since 2009, we have been

monitoring bed temperatures in a set of pools within beaded

stream systems in the lower Fish Creek watershed. Typically

winter bed temperatures rapidly approach the zero-degree

curtain and average winter temperatures (November–April)

consistently average 0 ◦C (±0.1). Similarly, mean annual bed

temperatures (MABTs) fall within a narrow range averag-

ing 2.9 ◦C and varying interannually almost entirely accord-

ing to summer temperatures (Fig. 12a). Such MABTs above

freezing also suggest the presence of a talik (Burn, 2002; En-

som et al., 2012), as we confirmed with field measurements.

The presence of year-round unfrozen sediment and some

liquid water in pools may be an essential factor support-

ing microbial- and invertebrate-based food webs, which then

feed summer productivity and the use of beaded streams as

important foraging habitat. Additionally, perennially thawed

sediment also likely enhances the survival and productivity

of macrophytes that provide additional habitat and forage.

3.4.2 Summer processes

Much of the variation in the MABT of pools is determined

by whether pools become thermally stratified during the sum-

mer. Monitoring of surface temperatures relative to the pool

beds and temperature in the channel runs suggests a wide

range of mixing behaviors and stratification regimes among

pools both between different stream systems and from pool to

pool in a single stream. For example in three beaded streams

monitored from 2009 to 2012, a 1.3 m pool never became

stratified, another 1.4 m pool was stratified by 10 % or more

(i.e., surface temperature / bed temperature > 1.1) for 13 days

per summer on average, and a 2.1 m pool had a stratifica-

tion ratio of 1.2 and was stratified for over a month on aver-

age per year (Fig. 12b). This generally suggests that deeper

pools stratify to a greater degree and for longer periods. To

assess interpool variability, we instrumented an additional

three pools in Crea and Blackfish creeks from June 2013

through August 2013 with surface and bed thermistors. In

Crea Creek with pools depths of 1.6, 1.7, and 2.0 m, the cor-

responding average stratification ratios (and durations with

ratios > 1.1) were 1.05 (5 days duration), 1.09 (23 days),

and 1.03 (4 days), respectively (Fig. 12b). In Blackfish Creek

with deeper and coalesced pools, instrumented pools had 1.5,

2.2, and 2.6 m depths and the corresponding stratification ra-

tios and durations were 1.04 (5 days), 1.16 (24 days), and

1.10 (19 days). Thus, there is, as expected, some relation-

ship between pool depth and stratification, but this is gen-

erally weak and suggests other factors control how water

mixes among different pools. A single densely instrumented

pool in Imnavait Creek was shown to stratify in a complex

and dynamic manner (Merck and Neilson, 2012), similar to

more extensive work completed there originally (Oswood et

al., 1989). The velocity of upstream runs and morphology

of pools at run inflows is certainly one factor. A steeper run

upstream of Bill’s Creek was likely the cause of continuous

mixing during all flows, ambient air temperatures, and wind

regimes, which produced higher MABTs (Fig. 12a) and pos-

sibly the deepest talik we measured (Fig. 11).
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Figure 12. Thermal regime characteristics of single pools at three

beaded streams averaged over 4 a (error bars are standard devia-

tions). In 2013, three additional pools within two of these beaded

streams were monitored to assess within-stream variability of ther-

mal characteristics. Thermal regimes were characterized by mean

annual temperatures at pool beds (a) and stratification ratios as the

average ratio between the pool surface and bed during the period

from July to mid-August in each year (b). Pool depths are averaged

during the same period that temperature was summarized in each

plot.

The extent and structure of emergent aquatic macrophytes

in pools likely also plays a role, where some shallow beads

have very dense macrophyte beds (Potamogeton spp., Arc-

tophila fulva, and Hippuris vulgaris are the most common

plants) that likely create a rough and thick boundary layer

enhancing stratification. Adjacent pools of seemingly similar

depth and surface area are often devoid of vegetation, creat-

ing greater habitat heterogeneity within beaded stream sys-

tems. Variation in water color due to dissolved organic car-

bon may play some role; however, rarely do beaded streams

in this part of the ACP have highly stained water from or-

ganic acids as has been observed in other beaded stream sys-

tems at foothill locations (Merck and Neilson, 2012; Oswood

et al., 1989).

Ecologically, the important point in terms of fish habitat is

that within a single beaded stream, varying degrees of mix-

ing and thermal stratification from pool to pool likely create a

range of temperature zones that can be utilized to either avoid

thermal stress or optimize energetics for foraging and other

activities. For example, some salmonids behaviorally ther-

moregulate by moving to warmer areas after foraging bouts

in cooler water in order to accelerate metabolism and as-

Figure 13. Streamflow hydrographs and temperature regimes for

two beaded streams (Crea (a) and Blackfish (b) creeks) with con-

trasting channel and watershed morphology. Bed and surface tem-

peratures were monitored in multiple pools within each reach to

document the timing, magnitude, and variation in stratification in

relation to streamflow (streamflow is indicated by QW, tempera-

tures are indicated at pool beds by Tbed and pool surface by Tsur,

and timing of water tracer injection studies are indicated with red

circles by RWTinj; all data are presented as mean daily values from

hourly measurements).

similate more quickly (Armstrong et al., 2013). Stratification

within a single bead and heterogeneity in thermal character-

istics of nearby beads within a network may provide similar

opportunities to behaviorally optimize growth and foraging

efficiency during summer. This thermal variability may also

play a key role in the distribution of fish prey items, including

the forage fish ninespine stickleback (Pungitius pungitius) as

well as invertebrate and plankton communities (McFarland,

2012).

Similar to the development of stratification in Arctic lakes,

stream pools tend to stratify starting in early July following

snowmelt runoff and associated cold temperatures and turbu-

lent mixing. An episode of intense summer warming leading

to stratification was clearly observed in pools at Crea and

Blackfish creeks starting on 9 July 2013 when the surface

water temperature rose rapidly from 8 to 16 ◦C over sev-

eral days while beds warmed more slowly, albeit to differing

degrees (Fig. 13). In Crea Creek, the mean daily temperature

difference between the pool surface and bed was as high as

2.5 ◦C in one pool and only 0.9 ◦C in the other (Fig. 13a).

For the same warming event in Blackfish Creek, levels of

stratification were 1.1 ◦C in one pool and 4.7 ◦C in the other

(Fig. 13b). Another warming event in late July caused even

higher stratification, up to 5 ◦C, in pools of both streams.
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Figure 14. Examples of reach-scale water velocity distributions

(reach length/travel time) measured using hydrologic tracer tests

(rhodamine WT pulse additions) shown as cumulative tracer recov-

ered downstream. Results from two beaded streams, Crea Creek

(blue squares) and Blackfish Creek (red triangles) are compared

to an alluvial stream (black circles) in a mountain meadow (Arp

unpublished data, stream described in Arp et al., 2007); all three

streams had similar discharges ranging from 85 to 140 L s−1 during

tracer tests and slopes ranging from 0.1 to 0.2 %, but with otherwise

differing morphologies (experimental data and inverse modeling re-

sults shown in Table 3).

In beaded streams on the ACP, we have observed that

peak flows predictably occur only 1–2 days after streams

begin to flow initially, which is first on top of the ice and

often partly beneath the rapidly melting snowpack in stream

gulches. Over 5 a of gauging on five separate beaded streams,

the timing of peak flows ranged from 1 to 10 June with

peak hourly discharges of 1–10 m3 s−1, which typically ex-

ceeds summer flows by 2 orders of magnitude or more. This

fast consistent response is similar to that observed for larger

river systems of the ACP (Arp et al., 2012b; Bowling et al.,

2003), which are fed predominantly by beaded streams and

their source-water lakes. A related characteristic is that wa-

ter temperatures are very near 0 ◦C at flow initiation and rise

very rapidly directly following peak discharge, often warm-

ing to 10 ◦C or more over a 2–3 day period (Fig. 13). These

rapid changes in flow and temperature regimes may provide

important cues to fish migrating along larger river courses

fed by beaded streams. Arctic graylings (Thymallus arcti-

cus) are known to seek habitats that warm most rapidly in

the spring to spawn, and the quickly rising temperatures of

beaded streams may contribute to their importance as spawn-

ing habitats (Heim, 2014). In fact, we often see individual

fish migrating up beaded channels with water flowing over

bedfast ice just prior to peak flows, when their dark bodies

can be easily observed crossing the white ice surface. Track-

ing studies of Arctic grayling tagged in Crea Creek, show a

rapid pulse of upstream migration into the system during and

after peak flow (Heim, 2014). This early upstream migration

may represent an adaption to maximize time spent in produc-

tive spawning habitats at the earliest possible time in order to

provide a longer period of growth for offspring.

More broadly, the period of peak flow across this hy-

drologic landscape represents a period of high connectivity

among aquatic habitats, where fish can disperse from rel-

atively limited deepwater overwintering habitats and move

into shallow, seasonally flowing habitats like beaded streams.

Again, in late August through September, changes in flow

and temperature may become important environmental cues

that fish use to time migratory movements out of beaded

streams (Heim, 2014). Migration out of Crea Creek in the fall

was strongly correlated to decreases in stream temperature,

as the channel connection to the Ublutuoch River became

restricted due to ice formation. Low flows and colder tem-

peratures increase the risks of utilizing Crea Creek (Arctic

grayling were not found to overwinter within the drainage),

yet persistence of fish within the drainage through Septem-

ber may be advantageous in terms of growth and acquisition

of energy reserves prior to the onset of winter (Heim, 2014).

With respect to the basic physics of flow through stream

systems characterized by multiple evenly spaced pools (stor-

age zones), the attenuation of flows seems intuitive. This has

implications for streamflow dynamics, movement and trans-

formations of solutes (carbon, nutrients, and contaminants),

the transport of particles including mineral and organic sed-

iment, plankton (both semimobile and drift), and the move-

ment of fish. Because most beaded streams are set within a

permafrost framework without interactions with groundwa-

ter systems, the development of hyporheic flow through bed

material or banks is unlikely. Storage processes have been

investigated in Imnavait Creek and adjacent beaded streams

around Toolik Lake in Alaska where the glaciated setting

and corresponding porous substrates, and known spring sys-

tems, may allow hyporheic storage to play a significant role

in beaded stream hydrology (Merck et al., 2012; Zarnetske

et al., 2007). Still, we suggest that the characteristic large

size and frequency of pools of beaded streams strongly dom-

inates transient storage, even when groundwater systems are

present and allowing for hyporheic exchange, which is prob-

ably rare in continuous permafrost zones of the ACP where

surface-water interactions with groundwater are absent.

The distribution of water velocity at the reach scale in a

beaded stream with large, deep and coalesced pools (Black-

fish Creek) compared to a stream with shallower elliptical

pools (Crea Creek) using tracer tests highlights how such

morphology functions in water storage and residence time

(Fig. 14). For example, the much more rapid velocities ob-

served in an alluvial channel with otherwise similar dis-

charge and slope underscores this impact on dense, evenly

spaced pools on the hydrologic functioning of beaded chan-

nels. A similar range of reach-scale velocities are reported

when comparing beaded channels to other channel types in

Arctic drainage networks (Tarbeev and Surkov, 2013, Zar-

netske et al., 2007).

www.biogeosciences.net/12/29/2015/ Biogeosciences, 12, 29–47, 2015



44 C. D. Arp et al.: Distribution and biophysical processes of beaded streams

Table 3. Results from reach-scale tracer injections for Crea (325 m, shallow elliptical beads) and Blackfish (232 m, deep coalesced beads)

creeks during the summer of 2013 (RWT is rhodamine WT, Q is stream discharge, A is the advective cross-sectional area, U is advective

zone velocity, D is the dispersion coefficient, AS is the storage zone cross-sectional area, AS/A is the relative storage zone area, α is the

storage zone exchange coefficient, AR and UR are the cross-sectional area and velocity, respectively, of a single channel run). Comparisons

of these results are made to two other RWT tracer studies of similar sized streams with beaded and other channel morphologies.

Experiment data Total channel hydraulics Channel storage zone Channel run (single)

Site Date Solute added Q A U D AS AS/A α AR UR

(RWT, g) (m3 s−1) (m2) (m s−1) (m2 s−1) (m2) (s−1) (m2) (m s−1)

beaded streams in Fish Creek watershed in 2013 (this study)

Crea 14-Jun 70.4 1.17 5.29 0.22 3.33 5.32 1.01 1.9E-03 2.48 0.54

Crea 5-Jul 49.9 0.13 1.89 0.04 0.88 2.71 1.43 5.9E-04 0.43 0.39

Crea 25-Aug 19.9 0.03 1.95 0.01 0.38 2.55 1.31 1.2E-03 0.10 0.33

Blackfish 13-Jun 92.4 1.73 9.81 0.18 1.90 9.08 0.93 3.2E-03 2.90 0.70

Blackfish 6-Jul 41.4 0.09 7.00 0.01 0.45 6.60 0.94 1.5E-03 0.52 0.33

Blackfish 24-Aug 19.1 0.03 – – – – – – 0.36 0.15

multiple stream types near Toolik Lake in 2004 (Zarnetske et al., 2007)

Lake inlet 17-Jun – 0.26 – 0.16 1.48 – – 2.0E-4 – –

Lake outlet 18-Jun – 0.09 – 0.07 1.71 – – 5.0E-4 – –

Beaded 25-Jun – 0.05 – 0.02 1.75 – – 3.0E-4 – –

Beaded 21-Jun – 0.44 – 0.09 1.94 – – 6.0E-4 – –

multiple stream types in a mountain meadow in 2004 (Arp unpublished data, streams described in Arp et al., 2007)

Alluvial 11-Aug – 0.14 – 0.22 – – 0.69 1.6E-4 – –

Lake outlet 10-Aug – 0.17 – 0.06 – – 0.23 6.7E-4 – –

Residence times of water in these two beaded channels

increase predictably with decreasing flows and relatively

higher storage areas (Table 3). At the start of peak-flow reces-

sion, over 10 % of the water in both channels was still moving

at velocities lower than 0.1 m s−1. During summer flows, the

fastest reach-scale velocities did not exceed 0.2 m s−1 in Crea

Creak and 0.05 m s−1 in Blackfish Creek. Even though indi-

vidual run velocities often exceed 0.5 m s−1 or greater, the

water in the channel exchanges with storage zones (pools)

sufficiently to slow the total movement of water by up to

an order of magnitude or much more. Such slow transport

rates of water in beaded stream systems may have important

implications for maintaining in-stream flow during dry sum-

mers when evapotranspiration far exceeds rainfall on daily

to weekly timescales. The major source of water to these

channels are upstream lakes (Arp et al., 2012b; Bowling et

al., 2003), and the evenly spaced storage-rich nature of these

streams may function to maintain more constant flows and

reduce evaporative losses during summer drought periods.

The summer of 2013 when these experiments were con-

ducted was very wet and rainy compared to previous years

when we have monitored discharge in these streams. Still,

in 5 a of monitoring, starting in the summer of 2008, we

have not yet observed interruptions in flow during summer

drought periods in the five gauged streams. At least some

alluvial streams in the Arctic foothills of Alaska have ex-

perienced prolonged periods of no flow over certain reaches

during drought conditions when only minimal flow through

interstitial gravels disrupt migration of the Arctic grayling

(Betts and Kane, 2011). In some instances, individual Arctic

graylings have been observed traveling over 160 km within

a year visiting different key habitats within a “migratory

circuit” (West et al., 1992). Thus, connectivity among spa-

tially separated habitats is critical to this life history strategy,

and beaded streams may function in maintaining hydrologic

connectivity and fish passage between alluvial rivers, tundra

lakes and ponds. Extreme drought conditions occurred on the

ACP and foothills during the summer of 2007 and the hydro-

logic response has been well documented in rivers (Betts and

Kane, 2011; Arp et al., 2012b), thermokarst lakes (Jones et

al., 2009a), and upland tundra (Jones et al., 2009b) in this

region. Whether beaded streams in this area maintained hy-

drologic connectivity between river and lake systems through

this dry summer was undocumented and warrants reconstruc-

tion through hindcast modeling.

The other key function that the hydraulics of beaded

streams provides is productive foraging habitat for Arctic

fishes. This stems from the observation that larger forag-

ing fishes (e.g., Arctic grayling) spend much of their time

holding in channel runs downstream of pools, where they

efficiently ambush drifting zooplankton, invertebrates, and

ninespine stickleback (McFarland, 2012). The rapid shift

in velocities from pools to runs may function as a key

delivery system of forage that either resides primarily in

beaded stream pools (i.e., ninespine stickleback and aquatic

macroinvertebrates) or comes downstream as drift from lakes
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Figure 15. Conceptual diagram showing morphology, physical

regimes, habitats, and organisms of a hypothetical pool-run system

in the summer (a) and winter (b) based on observations and moni-

toring studies in multiple beaded stream systems during these time

periods over many years.

(i.e., zooplankton) or laterally from riparian vegetation (i.e.,

terrestrial invertebrates). Such a setting may in part be the

same reason why lake inlets and outlets are such productive

ecosystems (Jones, 2010). The difference here is that along

the course of beaded streams, this lake outlet delivery system

is replicated multiple times over a short distance (i.e., 5 times

per 100 m on average; Fig. 6). Approximately half of the Fish

Creek drainage network is composed of beaded streams, the

equivalent of 1200 km of stream length (Arp et al., 2012b).

If we assume a pool density of five per 100 m, this gives us

an estimated 60 000 pools (beads) throughout this watershed.

Recently, the development of a Fish Creek watershed clas-

sification of lakes > 1 ha shows 4362 lakes, of which 45 %

have perennial stream outlets and another 30 % have at least

ephemeral outlets (B. M. Jones, unpublished data). In terms

of potential fish habitat for summer foraging, this comparison

suggests that pools in beaded streams increase the number of

potential fish habitat zones for ambush foraging by 18-fold

across the landscape over lake inlets and outlets alone.

4 Conclusions

This body of research on beaded streams in continuous per-

mafrost landscapes documents a wide and varied distribu-

tion across the circum-Arctic in relation to ground-ice con-

tent in the upper permafrost, topography, and elevation. On

the inner coastal plain of northern Alaska, our surveys indi-

cate that beaded streams compose the majority of drainage

networks and most channels initiate from and are fed by

lakes. At least in northern Alaska, lakes supply water for

new development in the form of ice roads and other indus-

trial and municipal uses. Knowing how such practices af-

fect downstream ecosystems warrants investigation. Chan-

nels with beaded morphology are maintained downstream,

eventually forming alluvial channels in relation to varied wa-

ter and sediment supply. This suggests that new land distur-

bances, such as road construction or thermokarst processes

that can alter these watershed fluxes, will factor into future

drainage network changes. It also appears that beaded stream

channels are relatively stable over time and potentially very

old, such that any observations of rapid channel change may

be indicative of more extreme forcing agents, either anthro-

pogenic or climate driven. Given these concerns and the high

density of beaded stream systems in many Arctic landscapes,

expanded research into the role of these ecosystems in per-

mafrost, hydrological, and biological processes will be es-

sential.

The coupled biophysical processes of beaded stream sys-

tems that provide key ecosystem functionality are described

conceptually in Fig. 15. We found high spatial and tempo-

ral thermal variability among pools, which likely play an

important role in permafrost thaw and cold-water habitats

(Fig. 15a). Beaded morphology appears to also play an im-

portant role in summer feeding habitats and hydrologic con-

nectivity for migrating fish, the quality and availability of

which is critical during short Arctic summers. During long

Arctic winters, beaded stream gulches fill with deep snow

that effectively insulates ice and permafrost and plays a role

in creating taliks and providing overwintering habitats for

certain fish and invertebrate communities (Fig. 15b). This

conceptual understanding of beaded stream systems helps

summarize seasonal and reach-scale ecosystem functions of

interest to physical and biological scientists including man-

agers concerned with changing human uses of Arctic lands

and waters.
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