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Pseudo-nitzschia is a globally distributed diatom genus that 
includes species that produce the neurotoxin domoic acid 
(DA), the cause of amnesic shellfish poisoning (ASP) (Lelong 
et al. 2012). Among 37 described Pseudo-nitzschia species, 
14 have been shown to contain toxigenic members, although 
toxin production within a species tends to be inconsistent. 
Species of this genus are particularly common members of 
the coastal phytoplankton communities of eastern boundary 
upwelling systems (Trainer et al. 2010, 2012), with some 
efficient DA producers exhibiting a wide distribution (Hasle 
2002). Consequently, Pseudo-nitzschia species are often 
found within phytoplankton communities in the Benguela 
Current upwelling system on the west coast of southern 
Africa (Pitcher and Calder 2000). In this system, DA has 
been measured in seawater samples containing Pseudo-
nitzschia cells, although the toxigenic species have yet to be 
identified (Fawcett et al. 2007; Hubbart et al. 2012). 

Our study undertakes identification of a Pseudo-nitzschia 
species in Algoa Bay, an open, relatively shallow (<70 m), 
eastward-facing bay located on the south-east coast of 
South Africa. Following its dominance in the plankton in the 
spring of 2012, our study further reports on the cell toxin 
content of this taxon and the consequent threat it poses to 
shellfish culture in Algoa Bay.

Material and methods

A single station (St1: 33°56.71′ S, 25°37.87′ E) located 
on an oyster farm in the western sector of Algoa Bay was 

sampled on three consecutive days, 2–4 October 2012. 
On 3 October 2012 a north-east transect was sampled, 
comprising a further six stations at intervals of one nautical 
mile (St2: 33°56.14′ S, 25°38.90′ E; St3: 33°55.61′ S, 
25°39.92′ E; St4: 33°55.02′ S, 25°40.89′ E; St5: 33°54.47′ S, 
25°41.96′ E; St6: 33°53.85′ S, 25°42.92′ E; St7: 33°53.38′ S, 
25°43.98′ E).

Environmental and phytoplankton sampling
An SBE-19 Seacat CTD and WETLabs fluorometer 
(WETStar) were used to profile the water column at each 
station. Water samples collected from discrete depths by NIO 
bottles were subjected to nutrient analysis and fluorometric 
measurements of extracted chlorophyll a. NO3

– was analysed 
according to Nydahl (1976), and PO4

3– and SiO4
4– according 

to Grasshoff et al. (1983) scaled down to 5 ml samples. 
Chlorophyll a analysis followed Parsons et al. (1984) and 
the data were used to calibrate in situ fluorescence profiles. 
Phytoplankton samples from the NIO bottles were fixed in 
buffered formalin (0.3% final concentration) and counted by 
the inverted microscope Utermöhl method (Hasle 1978).

Culture and identification of Pseudo-nitzschia
A unialgal culture of the Pseudo-nitzschia species dominant 
in Algoa Bay on 3 October 2012 was established from 
isolation of clonal chains of cells. The culture was maintained 
in F/2 medium at 16 °C on a light:dark cycle of 12:12 h. 

For light microscopy, live cultures were examined with 
a Zeiss AXIO Observer.A1 inverted microscope and 
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photographed with an attached AxioCam ERc 5s camera. 
Scanning electron microscopy (SEM) was used to determine 
frustule morphometrics for identification of Pseudo-
nitzschia species. For SEM, 10 ml samples of culture were 
acid-cleaned by addition of 1 ml of 10% HCl, 2 ml of 30% 
H2SO4, and 10 ml of a saturated aqueous solution of KMnO4 
for 24 h. Samples were cleared by addition of 10 ml of a 
saturated aqueous solution of oxalic acid prior to rinsing 
several times with distilled water. Samples were then dried 
onto Nucleopore filters adhered to SEM stubs, coated with 
carbon and viewed with an FEI NOVA Nano 230 scanning 
electron microscope with a field emission gun.

Sequence analysis
Subsamples of the Pseudo-nitzschia culture established in 
this study were fixed in absolute ethanol. Prior to genomic 
DNA extraction, fixed cells were concentrated by centrifu-
gation and rinsed twice for 5 min in double-distilled water. 
Genomic DNA was extracted with the QIAamp® DNA micro 
kit (Qiagen) following the manufacturer’s instructions. A 
fragment of the LSU rDNA was amplified with the universal 
primers D1R (Lenaers et al. 1989) and D3Ca (Scholin et 
al. 1994) according to conditions described by Lundholm 
et al. (2002). Purified PCR products were sequenced 
using a BigDye terminator cycle sequencing kit (Applied 
Biosystems) and ABI3730xl genetic analyser (Applied 
Biosystems) according to the sequencer manufactur-
er’s instructions. Both forward and reverse primers (D3Ca 
and D1R respectively) were utilised for cycle sequencing. 
Each sequence was edited and assembled by CLC Main 
Workbench v. 6.8.4 (CLC bio, a Qiagen company) and 
homology searches were carried out with the BLASTN 
algorithm provided by the NCBI.

The LSU rDNA sequence of the Pseudo-nitzschia species 
isolated from Algoa Bay was aligned with sequences 
from 50 known Pseudo-nitzschia taxa and one outgroup 
diatom species (Cylindrotheca closterium) downloaded 
from GenBank. Alignments were exported into Phylip 
format for construction of maximum likelihood (ML) trees 
using PHYML v. 3.1 (Guindon and Gascuel 2003). The 
Tamura-Nei substitution (HKY85) model and gamma 
parameters were used for construction of the ML tree. 
Gamma parameter values were estimated by the PHYML 
software. The reliability of the inferred phylogenetic tree 
was assessed by the bootstrap test with 1 000 bootstrap 
resamplings. Tree files were viewed and edited via Mega 
v. 6.0 (Tamura et al. 2013).

Domoic acid analysis
Particulate domoic acid was determined from cultures of 
P. multiseries after filtration (50 ml) upon Whatman GF/F 
filters (nominal pore size 0.7 μm). Samples were assayed 
by a quantitative enzyme-linked immunosorbent assay 
(ELISA, Biosense Laboratories – ASP test kit) and analysed 
by liquid chromatography coupled with tandem mass 
spectrometry (LC/MS-MS). For the ELISA, DA concentra-
tions were determined according to Kleivdal et al. (2007) 
using a 10-point calibration curve derived from certified DA 
standard (NRC CRM-DA-e). The LC/MS-MS determination 
of particulate domoic acid concentrations followed the multi-
toxin method of Krock et al. (2008).

Results

Environmental parameters and composition of the 
microplankton community
Surface waters along the transect of 3 October 2012 
showed a small range in temperature (18.05–18.26 °C) 
with the warmest waters at the inner stations (Figure 1a). A 
weak thermocline was present inshore at around 8 m depth, 
increasing to around 16 m depth at the offshore stations. 
Nutrient concentrations were generally low. Surface NO3

–

concentrations were ≤0.10 mmol m–3 but increased with 
depth to a maximum of 1.27 mmol m–3. Concentrations of 
PO4

3– were also low (0.11–0.66 mmol m–3), whereas SiO4
4– 

concentrations were much higher (2.95–21.15 mmol m–3). 
Chlorophyll a concentrations ranged from 0.2–4.0 mg m–3, 
with higher concentrations near the thermocline, particularly 
at the inner stations (Figure 1b). 

Enumeration of the microplankton (defined here as size 
range 10–200 μm) showed a diatom-dominated community 
with cell concentrations ranging from 197–905 cells ml–1 

(Figure 1c). Community composition remained somewhat 
consistent along the transect with diatoms contributing 
between 81% and 98% to the total cell count. Pseudo-
nitzschia species were typically the most abundant diatom, 
contributing between 21% and 51% to the total diatom 
cell count. Cell concentrations of Pseudo-nitzschia species 
ranged from 53 cells ml–1 (St5) to 307 cells ml–1 (St3). 
Other common diatoms (>20 cells ml–1) included species 
of the genera Bacteriastrum, Cerataulina, Chaetoceros, 
Coscinodiscus, Detonula, Eucampia, Guinardia, Lauderia, 
Leptocylidrus, Schroederella and Thalassiosira. The only 
other microplankton to exceed 20 cells ml–1 included 
dinoflagellates of the genera Peridinium and Prorocentrum.

Pseudo-nitzschia identification by microscopy
The dominant Pseudo-nitzschia species observed in Algoa 
Bay on 3 October 2012 was P. multiseries (Figure 2). 
This identification was based on the linear to lanceolate 
shape of cells; the measures of the apical (68–140 μm) 
and transapical (3.4–6 μm) axes of the cells; the number 
(14–16) of transapical striae and fibulae within 10 μm; the 
number of rows of poroids (3) within valve striae; and the 
number of poroids (5/6) within 1 μm. Apparent variation 
in poroid size, notably in Figure 2d and 2e, is attributed to 
internal and external views of the valves.

LSU phylogeny of Pseudo-nitzschia multiseries
A BLAST search of the GenBank database revealed that 
the LSU rDNA sequence (752 bp) of the Algoa Bay isolate 
showed high similarity (99%) to a number of P. multiseries 
isolates (GenBank accession numbers AF417655, 
U41389, AF440770, KF006834). The phylogenetic analysis 
confirmed the above findings. The Algoa Bay isolate formed 
a monophyletic group together with P. multiseries isolates 
from Japan, Australia and the USA (Figure 3). This clade 
was supported by a high bootstrap value (91%) with the ML 
analysis. 

Toxin content of Pseudo-nitzschia multiseries
Cultures of P. multiseries isolated from Algoa Bay were 
shown to produce DA. The toxin content of two subcultures, 
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(a) Temperature (°C)

(b) Chlorophyll a (mg m 3)

(c) Phytoplankton community abundance (197–905 cells ml–1)

P. multiseries

Dinoflagellates
Other diatoms

Other 
phytoplankton

0 m    0 m 0 m 0 m 0 m    0 m 0 m    

5 m 10 m 10 m 10 m

Figure 1: A 6-nautical-mile transect in the western sector of Algoa Bay on 3 October 2012 showing (a) temperature, (b) chlorophyll a, and 
(c) multiple pie diagrams depicting the abundance of the phytoplankton community (abundance proportional to pie-diagram diameter) and 
community composition at 0, 5 or 10 m depth

10 μm

20 μm

(a)

(b)

(c)

(d) (e)

20 μm

5 μm5 μm

Figure 2: (a, b) Light micrographs providing girdle view of a Pseudo-nitzchia multiseries chain in culture showing cells attached by their 
overlapping apices; scanning electron micrographs of (c) whole valve and (d, e) the central regions of valves showing the poroid striae and fibulae
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Figure 3: Maximum-likelihood tree inferred from the D1–D3 hypervariable domains of the LSU rDNA of Pseudo-nitzschia collected from Algoa 
Bay in South Africa, 50 taxa in the genus Pseudo-nitzschia and one outgroup species (Cylindrotheca closterium). The tree with the highest 
log likelihood (–2 539.82303) is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 
(1 000 replicates) is shown next to the branches. Numbers next to the specific names correspond to the accession numbers for the LSU rDNA 
sequences. There were a total of 700 positions in the final dataset. The bar indicates 2 base substitutions per 100 nucleotides 
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grown and harvested under the same conditions, appeared 
similar, by ELISA and LC/MS-MS methods (Table 1). 
Particulate DA concentrations in these cultures ranged from 
3.61 to 4.76 μg l–1 and resulting cellular levels of DA ranged 
from 0.076 to 0.098 pg DA cell–1.

Discussion

Although P. multiseries is recognised as cosmopolitan 
(Hasle 2002), its identification in Algoa Bay provides the first 
account of this species in the coastal waters of South Africa. 
Historically, the world’s first recorded event of amnesic 
shellfish poisoning (ASP) in 1987, caused by consump-
tion of blue mussels Mytilus edulis, was traced to a bloom 
of P. multiseries off Prince Edward Island, Canada (Bates 
et al. 1989). Identified at that time as Nitzschia pungens f. 
multiseries it is now known as P. multiseries following the 
reinstallation of the genus Pseudo-nitzschia by Hasle (1994) 
and the raising of the rank of Pseudo-nitzschia pungens f. 
multiseries from form to species by Hasle (1995). The two 
forms were distinguished by the structure of the valve face 
striae, with f. multiseries bearing 3–4 rows of small poroids 
compared to the 2 rows of larger poroids of the striae of f. 
pungens. Raising Pseudo-nitzschia pungens f. multiseries in 
rank to species was based on these morphological features 
and also on physiological and genetic features (Hasle 1995). 

The impacts of Pseudo-nitzschia and its toxin have been 
considered by Trainer et al. (2010) to be especially problem-
atic in upwelling systems, particularly in the California 
Current system where P. multiseries and P. australis have 
been identified as posing the greatest risk (Trainer et al. 
2012). Here the impacts of DA are realised almost annually 
through direct toxicity of shellfish and through the effects on 
the health of marine life (Trainer et al. 2012). Although both 
Fawcett et al. (2007) and Hubbart et al. (2012) have shown 
the presence of particulate DA linked to the occurrence 
of Pseudo-nitzschia in the southern Benguela upwelling 
system, the absence of any recorded impact of DA on the 
South African coast is somewhat contrary to the observa-
tions of Trainer et al. (2010) of signifi cant impact within the 
California Current system.

Compared to the west coast, the risk posed by harmful 
algae is significantly reduced on the south-east coast 
of South Africa (Pitcher and Calder 2000), with past 
reports of toxin-producing algae confined to a single 
account of diarrhetic shellfish poisoning (DSP) (Pitcher 
et al. 1993). However, the dominance of P. multiseries in 
Algoa Bay during the spring of 2012 suggests that it may 
be an important component of the phytoplankton of this 
region and could therefore pose a significant threat. The 
presence of P. multiseries in the bay in October, when 
winds are typically strongest and temperatures moderately 
low (Schumann et al. 2005), fits the ecological profile 

of Pseudo-nitzschia occurring during periods of mixing 
(Trainer et al. 2012).

Assessment of the risk posed by Pseudo-nitzschia is 
complicated by variability in cellular toxicity. The cell toxin 
quotas derived from the cultures of P. multiseries isolated 
from Algoa Bay (0.08–0.10 pg DA cell–1) are somewhat 
lower than those determined from samples collected on the 
west coast of South Africa (0.17 pg DA cell–1 [Fawcett et 
al. 2007]; 0.21 pg DA cell–1 [Hubbart et al. 2012]), but fall 
within the range reported for coastal assemblages and 
often attributed to variable nutrient regimes (Trainer et al. 
2012). Although particulate DA levels in these cultures were 
considered sufficiently high to trigger trophic transfer, the 
relatively low concentrations of Pseudo-nitzschia observed 
in Algoa Bay are unlikely to contribute to particulate DA 
concentrations that would cause bivalve toxicity to exceed 
regulatory levels.

Owing to the potential impacts of DA on marine organisms 
and humans, further studies are required to better describe 
Pseudo-nitzschia diversity, population dynamics and 
toxigenicity on the coast of South Africa. Further to these 
studies, the uptake of DA by locally harvested or cultured 
shellfish needs to be investigated to better assess the 
potential impact on these operations. 
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