Impact of open ocean dissolution of olivine on atmospheric CO₂, surface ocean pH and the biological carbon pump

Judith Hauck, P Köhler, JF Abrams, C Völker, DA Wolf-Gladrow

20 August 2014, Climate Engineering Conference 2014, Berlin

Hauck et al., 2013

MITGCM-RECOM2

SILICATE WEATHERING

Hauck et al., 2013

OLIVINE ADDITION

SILICATE WEATHERING

1 Pg per year

3 Pg per year

10 Pg per year

Small

Standard

Large

Only silicic acid

Only alkalinity

Ships

CONTRIBUTION OF ALKALINITY VS NUTRIENTS

IMPACTS

•00000

CONTRIBUTION OF ALKALINITY VS NUTRIENTS

CHANGES IN PRIMARY AND EXPORT PRODUCTION

CHANGES IN PRIMARY AND EXPORT PRODUCTION

IMPACTS

000000

CHANGES IN PRIMARY AND EXPORT PRODUCTION

STANDARD RUN: DIATOM PRIMARY PRODUCTION

STANDARD RUN: NANO PRIMARY PRODUCTION

SCALING FACTORS

NORMALIZED SHIP TRACK DENSITY

GRAIN SIZE

• sinking speed: Stokes' law

SILICATE WEATHERING

• dissolution rate based on Hangx & Spiers, 2009

Ideal scenario

Ideal scenario

SILICATE WEATHERING

Shallower MLD

Ideal scenario

SILICATE WEATHERING

Lower SST

Ideal scenario

SILICATE WEATHERING

Increased grain size

PARTICLE DISSOLUTION IN REAL OCEAN

LIMITATIONS AND RISKS

Limitations

- Distributing 3 Pg olivine per year: full-time commitment of more than 300 large ships \rightarrow compensation of approx. 9% of anthropogenic CO₂ emissions
- Ships of opportunity (using ballast water): maximum potential distribution: 0.9 Pg olivine per year
- Need grain sizes of 1 μ m (sinking speed) \rightarrow grinding reduces carbon sequestration efficiency from approx. 90 to 60%

Risks

- Dissolution of heavy metals possible toxicity?
- Impact on marine species distribution
- Potential for extension of anoxic or suboxic regions
- Environmental and social problems with mining of olivine

LIMITATIONS AND RISKS

Risks

- Dissolution of heavy metals possible toxicity?
- Impact on marine species distribution
- Potential for extension of anoxic or suboxic regions
- Environmental and social problems with mining of olivine
- Simplifications
 - Effects of iron-addition, reduction of water transparency not considered
 - Impact on oxygen not quantified

LIMITATIONS AND RISKS

Risks

SILICATE WEATHERING

- Dissolution of heavy metals possible toxicity?
- Impact on marine species distribution
- Potential for extension of anoxic or suboxic regions
- Environmental and social problems with mining of olivine

Environ, Res. Lett. 8 (2013) 014009 (9pp)

ENVIRONMENTAL RESEARCH LETTERS doi:10.1088/1748-9326/8/1/014009

Geoengineering impact of open ocean dissolution of olivine on atmospheric CO₂, surface ocean pH and marine biology

Peter Köhler, Jesse F Abrams1, Christoph Völker, Judith Hauck and Dieter A Wolf-Gladrow