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Abstract The study of ecosystem functioning—the fluxes of energy and material
through biotic and abiotic components of an ecosystem—is becoming increasingly
important in benthic ecological research. We investigated the functional structure of
macrozoobenthic communities at four long-term sampling sites in the southern
North Sea using biological traits assigned to life history, morphological and
behavioural characteristics. The “typical” species of the macrofaunal assemblages
at the sampling sites was characterized by small to medium body size, infaunal
burrowing life style, deposit feeding habit, omnivory diet type, short to medium life
span, gonochoristic sexual differentiation, <2 years age at maturity, high fecundity,
and planktotrophic development mode. Functional diversity differed significantly
among the four sites. As part of the present study, trait information for >330
macrofaunal taxa have been compiled in a comprehensive database.
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1 Introduction

Distribution, abundance and community composition of the North Sea macrozoo-
benthos are strongly influenced by a variety of physical, chemical and biological
factors (Bremner et al. 2006; Franke and Gutow 2004; Kroncke et al. 2004).
Temperature, water depth, food supply and sediment type have been shown to have
critical, though sometimes variable effects on macrofaunal distribution

M. Ghodrati Shojaei (P<)) - L. Gutow - J. Dannheim - H. Pehlke - T. Brey
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research,
Am Handelshafen 12, 27570 Bremerhaven, Germany

e-mail: Mehdi.Shojaei@awi.de

M. Ghodrati Shojaei
Department of Marine Biology, Faculty of Marine Science, Tarbiat Modares University,
Tehran, Iran

© Springer International Publishing Switzerland 2015 183
G. Lohmann et al. (eds.), Towards an Interdisciplinary Approach

in Earth System Science, Springer Earth System Sciences,

DOI 10.1007/978-3-319-13865-7_20



184 M. Ghodrati Shojaei et al.

(Dutertre et al. 2013; Hillebrand 2004; Posey et al. 1995). Additionally, biological
interactions (e.g. competition, predation) among species influence the diversity of
marine assemblages (Defeo and McLachlan 2005). Many benthic species constitute
a food source for fish and other predators (Pinto 2011). Predatory fish may directly
reduce epifaunal abundances while their effects on infaunal species may be limited
(Schlacher and Wooldridge 1996).

Marine ecosystems are routinely subjected to a wide range of anthropogenic
disturbances (Marques et al. 2009; van der Molen et al. 2013). Exposure to bottom
trawling, aggregate extraction and pollution are responsible for alteration of bottom
habitats and may contribute to changes in growth, mortality and recruitment rate of
species (Bergman and Hup 1992; Dannheim et al. 2014; Worm et al. 2006). These
changes have the potential to modify the structure and functioning of benthic
communities (van der Linden et al. 2012; Worm et al. 2006).

Ecosystem functioning is a general concept that encompasses a variety of phe-
nomena, including ecosystem processes (e.g. energy fluxes), properties (e.g. pools
of carbon and organic matter) and services (e.g. human alimentation) as well as the
resistance or resilience of these factors in response to fluctuating abiotic conditions
(Bremner et al. 2006; Diaz et al. 2008; Hooper et al. 2005; Loreau et al. 2001; van
der Linden et al. 2012). Ecosystem functioning mainly depends on traits or char-
acteristics of the constituent functional groups of organisms (Snelgrove 1997).
Traditional analytical procedures, which derive biodiversity and community
structure from species abundance/biomass data, do not take into account functional
features of species (van der Linden et al. 2012). However, functional diversity, i.e.
the range and number of functional traits performed within an ecosystem (Diaz and
Cabido 2001), is a useful indicator of ecosystem functioning (Hooper et al. 2005).
Several methods based on species morphological and ecological traits have been
proposed to describe and quantify functional diversity of benthic assemblages
(Beche et al. 2006; Bremner et al. 2006; Pacheco et al. 2011; van der Molen et al.
2013). We used biological trait analysis (BTA) to explore the ecological func-
tioning of benthic assemblages (Sigala et al. 2012; van der Linden et al. 2012) and
to compare functional diversity across different assemblages. BTA combines
quantitative structural data (e.g. abundance) with information on biological char-
acteristics of the taxa (Shettleworth 2012) to functionally characterise species
assemblages (Bremner et al. 2006). This method is suitable for analysing assem-
blage responses to environmental parameters (Paganelli et al. 2012; Shettleworth
2012). Hence, BTA provides a link between benthic assemblages, environment and
ecosystem processes (Oug et al. 2012; Pacheco et al. 2011)

The objectives of this study were (a) to determine the dominant functional
characteristics of the German Bight benthos and (b) to identify functional differ-
ences between benthic communities at different sites by comparing functional
diversity.
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2 Material and Methods

A database was generated from a long-term macro-zoobenthos time series at four
sites in the German Bight (Fig. 1). Benthos samples were collected each spring
from 1981 to 2011 (i.e. “taxa by station” matrix). The sites covered the dominant
sediment types (FSd = fine sand, Slt = silt, SSd = silty sand and WB = White Bank
with silty sand in deeper waters) in the south-eastern North Sea with the corre-
sponding typical benthic associations (Salzwedel et al. 1985). At each station and
sampling date, five 0.1 m? samples were taken with a van Veen grab. The samples
were sieved over 0.5 mm mesh and fixed in 4 % buffered formalin. Macro-zoo-
benthic organisms were identified to species level as far as possible, counted and
weighed (wet weight). In total we identified 334 species belonging to 235 genera
and 157 families, respectively. After computing average abundance (N/m ) per
sampling date and station from the five replicate samples, our basic data matrix
consisted of 334 species x four stations x 31 sampling dates. From these data, we
computed average abundance per species and station over the complete sampling
period (1981-2011).
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Fig. 1 Location of the four long-term monitoring sites (i.e. SIt silt; SSd silty sand, FSd fine sand,
WB White Bank) for macro-zoobenthos in the German Bight
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An autecological database (i.e. “trait by species” matrix) was generated from
10 different traits covering life history, behavioral characteristics, morphological
attributes and environmental preferences of benthic species. Traits were selected
either for their importance for the structure and functioning of the benthic system or
for their sensitivity to changes in environmental variables. Each trait comprised
qualitative or quantitative modalities, which allow for a functional characterization
of individual taxa (Table 1). Specific trait modalities were assigned to individual
taxa (i.e. species or genus) using a “fuzzy coding” procedure (Chevene et al. 1994)
with a scoring range for affinities of zero to three. An affinity score of zero indicates
no association of a taxon with a modality, whereas a score of three indicates highest
affinity. For example, the polychaete Pisione remota mostly feeds as predator/
scavenger but may also feed occasionally as deposit feeder. Accordingly, the
species was coded 1 for “surface/subsurface deposit feeder” and 2 for “predator/
scavenger” for the trait variable ‘feeding habit’. Information on biological traits of
taxa was compiled from peer-reviewed literature, species identification guides,
online databases (e.g. BIOTIC 2012) and from personal expert consultations.
Missing data were supplemented by using information referring to closely related
species. To give the same weight to each taxon and trait, the scores were stan-
dardized by scaling the sum of all scores for each trait of a taxon equal to 100. The
standardized modality scores for each taxon were multiplied by the average species
abundance at each station and summed up over all taxa. The results are a “trait by
station matrix” providing the frequencies of occurrence of modalities in each year
and at each station.

The complete trait dataset contained 10 traits subdivided into 43 modalities. The
amount of information available differed markedly among traits. Information on
feeding habit, environmental position and adult motility was abundant, whereas data
on morphological traits (e.g. fragility) and fertilization type were not that readily
available. The full data gathered on the species traits with an attributed reference list
are available as Supplementary Material at PANGAEA—Network for Geological and
Environmental Data (http://doi.pangaea.de/10.1594/PANGAEA.813419).

Functional diversity of an assemblage was calculated using the Quadratic
entropy index (Rao 1982):

s )
FDrao = Z Z dijpip;

i=1 j=1

where s is the number of taxa in the community and p; and p; are the proportion of
the ith and jth taxon in the community, respectively. d;; is the trait dissimilarity
between each pair of taxa i and j measured as Euclidean distance. Accordingly,
FDgao is the sum of the trait dissimilarities among all possible pairings of taxa,
weighted by the relative abundance of the taxa (de Bello et al. 2009). FDrao Was
calculated separately for each of the 11 biological traits and summed up for the
entire assemblage of a site (Darr et al. 2014; van der Molen et al. 2013). FDgao Was
calculated using the ‘ADE-4’ (Thioulouse et al. 1997) and ‘VEGAN’ libraries
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Table 1 Traits and their

.. Traits
modalities used to assess

Modalities

functional composition Feeding habit

Surface deposit feeder

Sub-surface deposit feeder

Suspension feeder

Interface feeder

Predator

Sand licker

Grazer

Parasite

Environmental position

Epifauna

Infauna

Epizoic

Adult movement

Swimmer

Crawler

Burrower

Sessile

Diet type

Omnivore

Carnivore

Herbivore

Larval development

Direct

Lecithotrophic

Planktotrophic

Sexual differentiation

Gonochoric

Synchronous
hermaphrodite

Sequential hermaphrodite

Adult longevity (years)

<1

1-2

3-10

10+

Age at maturity (years)

<1

1-2

34

4+

Fecundity

1-10

10-100

100-1,000

100-10,000

10,000-1 m

1 m+

(continued)
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Table 1 (continued) Traits Modalities
Maximum size of organism <1
(cm) 1-10
11-20
20+

(Oksanen et al. 2013) for the open-source R software, version 3.0.1 (R Develop-
ment Core Team 2009). Similarity in B-diversity (i.e. the variability in species
composition among sampling sites for a given area at a given spatial scale) among
the sampling sites were tested using a test for homogeneity of multivariate dis-
persions (PERMDISP routine, Permanova+ add-on in Primer 6; Anderson et al.
2008). The test was conducted on the basis of species composition (presence/
absence) data in conjunction with compositional dissimilarity (i.e., Sorensen
resemblance measures). Functional diversity was compared among sampling sites
by means of a Monte-Carlo random permutation test (999 permutations). For each
trait, the distribution of modalities was compared among the four sampling sites
using contingency tables (Chi square tests).

3 Results

For each trait, the distribution of modalities differed significantly between the four
sampling sites (each p < 0.001; Fig. 2). All benthic assemblages were dominated by
infaunal organisms (Fig. 2a) with small to medium body size (1-10 cm; Fig. 2b).
Small individuals (<1 cm) occurred mainly at stations Slt and WB. Most individuals
were burrowers while sessile species were rare in all assemblages (Fig. 2c).
Omnivorous organisms dominated the benthos whereas the proportion of purely
herbivorous individuals was generally low (Fig. 2d). The reproductive mode was
mainly gonochoric with development through a planktotrophic larval stage (Fig. 2e,
f). The majority of the animals reached maturity within 2 years (Fig. 2g) and only
few species had a life expectancy of more than 10 years (Fig. 2h). Only the
assemblage at station WB had a higher proportion of individuals with a longevity
>10 years. Feeding types were more heterogeneously distributed (Fig. 2i). Deposite
feeders and interface feeders were generally the most common feeding types.
However, predators/scavengers were also common at all sites. Fecundity mainly
ranged between 10 and 10° ind. fem.™" (Fig. 2j). Only at station St a considerable
proportion of the infaunal assemblage produced more than 10° ind. fem.”" while
only few individuals produced less than 100 ind. fem.™" at all sites.

The average functional diversity of the benthic assemblages ranged from
FDgao = 1.66 = 0.16 at site St to FDgao = 2.01 + 0.06 at site SSd. The functional
diversity was significantly lower at site St than at all other sites (p < 0.001; Fig. 3).
At site WB, the functional diversity was lower than at sites FSD and SSd (p < 0.01)
which were not significantly different (p > 0.05).
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Fig. 2 Distribution of abundance-weighted modality scores (integrated over the entire 30 year
period) within benthic infaunal assemblages at four sites in the German Bight: a environmental
position, b size of organisms, ¢ adult movement, d diet type, e sexual differentiation, f larval
development, g age at maturity, h adult longevity, i feeding habit and j fecundity. Site names are
FSd fine sand, Sit silt, SSd silty sand and WB White Bank. For each trait the distribution of
modalities differed significantly between the four sampling sites (p < 0.001)
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4 Discussion

The functional trait composition of the benthic assemblages in the German Bight
indicates that the benthos of the south-eastern North Sea is generally dominated by
small-sized and short-living opportunistic species. A dominance of opportunistic
species is often characteristic for disturbed ecosystems (Borja et al. 2003; Thrush
et al. 1998). In the North Sea various anthropogenic stressors (e.g. bottom trawling,
eutrophication) have modified the benthic communities towards a suppression of
large, long-living species, which were replaced by small, opportunistic species
(Kaiser and Spencer 1996). For example, continuous physical disturbance of the
seafloor by bottom trawling prevents the recovery of benthic species with multi-
annual life spans, low recruitment and slow post-recruitment development (Kroger
2003). These organisms are out-competed by opportunistic taxa with high
recruitment rates and are, thus, at high risk of regional extinction (Calabretta and
Oviatt 2008).

The test for homogeneity of multivariate dispersions revealed no differences
among the three sampling sites (i.e. FSd, SSd and WB; p > 0.05). Several envi-
ronmental parameters may have contributed to the observed homogenization of
benthic assemblages. However theoretical and empirical surveys have demonstrated
that increased homogeneity mainly owing to anthropogenic and climatic distur-
bances (Passy and Blanchet 2007). Widespread anthropogenic and climatic pres-
sures increase the harshness of habitat conditions and thus, reduce compositional
heterogeneity among sites by decreasing the stochastic processes in structuring
assemblages (Donohue et al. 2009; Olden and Poff 2004).

Pairwise test identified solely Slt as being significantly different (p < 0.01) from
the other three sites in terms of variability in species composition. It is likely
resulted from a lower species richness as well as from the numerical dominance of a
few species (i.e., Nucula spp. and Owenia fusiformis constituted >50 % total
benthic abundance). Numerical dominance of few species can be indicative of a
highly stressed ecosystem (Méndez 2002). Slt was located in the innermost German
Bight, in front of the mouths of the rivers Weser and Elbe. In addition to the role of
the general large scale influences (e.g. bottom trawling) in the shaping of the entire
German Bight ecosystem, it seems that some local scale drivers (e.g. river water run
off), in particular, have caused drastic changes in the benthic assemblages at the Slt
site. The possible effect of riverine discharge could be a function of the interaction
between physical processes (e.g. sedimentation and advection) biological processes
(e.g. losses via low-salinity intolerance) and chemical processes (e.g. nutrient
enhancement) (Palmer et al. 2000). The functional trait composition were different
among all four sampling sites (Fig. 2). For example, the benthic assemblage at the
station WB showed a higher proportion of long-lived species suggesting more
stable conditions and less disturbance in deeper offshore waters. Assembly theory
for ecological communities suggests that two processes, i.e. competition and abiotic
filtering (i.e. ecological filters that select individual taxa from a regional pool
because they own a certain set of traits suitable for a given habitat (Diaz et al. 1998;
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Maire et al. 2012) affect the distribution of trait values within assemblages
(Cornwell et al. 2006). Within a local community, competition aims to ecological
differentiation of coexisting species, whereas abiotic filtering reduces the spread of
trait values, reflecting common ecological tolerances (de Bello 2012; Kang et al.
2014).

The results also revealed that not only functional composition but also functional
diversity differed significantly among sampling sites (Fig. 3). Spatial differences in
functional diversity of benthic assemblages may emerge as a result of the envi-
ronmental variation as well as distinct behaviors, processes and functions that are
known to prevail in each ecosystem type (Dimitriadis et al. 2012; Levin et al. 2001).
In conclusion, two important results can be deduced from our results: First, changes
in benthic assemblages (e.g. homogenization of benthic assemblages in this study)
are not necessarily linked with changes in ecological functions played by organ-
isms. Second, biological traits analysis (BTA) is sensitive method in identifying
differences among benthic assemblages and, thus, can provide additional infor-
mation of community distribution patterns (Alves et al. 2014). For example, this
method has proven to be a very useful approach for determining changes in benthic
assemblages exposed to different disturbances such as bottom trawling (Tillin et al.
2006), marine aggregate dredging (Newell et al. 2004; Robinson et al. 2005) and
eutrophication (Paganelli et al. 2012).
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