

REKLIM – Topic 1

Anja Sommerfeld¹

Oumarou Nikiema², Annette Rinke¹, Klaus Dethloff¹, René Laprise²

Outline:

- 1) Introduction and motivation
- 2) Model set-up: HIRHAM5 over Arctic
- 3) Inter-member variability (IV)
- 4) Diagnostic budget equation for potential temperature
- 5) First results of the budget study
- 6) Summary and Outlook

- 1) Introduction and motivation:
- chaotic and non-linear behavior of atmospheric processes
 - \rightarrow internal variability in regional models
 - → changes in initial conditions (IC) influence the evolution of simulations
- ensemble of simulations with different IC
 - → physical processes inducing inter-member variability (IV) and its changes can be analyzed and understood
- study is applied over the Arctic for summer 2012
 - \rightarrow strong sea ice melting
 - → investigation of its influence on atmospheric circulations and resulting effect on IV

Physical parameterizations:

atmospheric general circulation

model ECHAM5 (Roeckner et al. 2003)

Arctic Budget Study of Inter-member Variability using HIRHAM5 Ensemble Simulations

- 2) Model set-up: HIRHAM5 over Arctic:
- HIRHAM5 = hydrostatic regional atmospheric model (*Christensen et al. 2007*)

regional weather forecast model HIRLAM7 (Undén et al. 2002)

• driven by ERA-Interim

Dynamical core:

- horizontal resolution 25 km, 40 vertical levels up to 10 hPa
- 20 ensemble members differing in IC
 - \rightarrow first simulation starts on July 1st 2012 at 0000 UTC
 - \rightarrow last simulation starts on July 5th 2012 at 1800 UTC \int 6 hours
 - \rightarrow analyzed period from July 6th to September 30th 2012

initialization time shifts by

REKLIM

egionale Klimaänderunge

Arctic Budget Study of Inter-member Variability using HIRHAM5 Ensemble Simulations

3) Inter-member variability (IV):

- IV fluctuates in time
- high values between July 27th and August 7th with

- highest IV at 500 hPa
- second peak at 925 hPa
- lowest values at the surface and at 300 hPa

3) Inter-member variability (IV):

- IV increases toward the center of model domain in each level
- 2 centers of high IV at the Laptev Sea and Beaufort Sea/North America

3) Inter-member variability (IV):

aim of this study:

• understanding the reasons of IV and its temporal changes

- \rightarrow applying the diabatic budget study (O. Nikiema et al. 2010)
 - ightarrow diabatic and dynamical contributions to IV

4) Diagnostic budget equation for potential temperature :

Helmholtz-Verbunger

Arctic Budget Study of Inter-member Variability using HIRHAM5 Ensemble Simulations

5) First results of the budget study :

- like IV, contributions fluctuate in time
- positive contribution = generation of IV
- negative contribution = reduction of IV
- B_h and B_v strongest influence on IV $\rightarrow B_h$ contributes to generation of IV $\rightarrow B_v$ contributes to reduction of IV
- other terms fluctuates around zero
 - a) contribution to IV in general is small (A_v , E_v , C)
 - b) balanced over the model domain (A_h, E_h)

5) First results of the budget study :

6) Summary and Outlook:

- budget study for potential temperature to investigate IV tendency in ensemble simulations of HIRHAM5
- IV fluctuates strongly in time and reaches its maximum in 500 hPa
- IV tendency is mainly generated by horizontal (B_h) and reduced by vertical baroclinicty (B_v)
- results for the Arctic differ to those obtained by *Nikiema et al. 2010* and *2011* for North America using the Canadian RCM
 - \rightarrow generation of potential temperature IV: diabatic term C followed by B_h
 - \rightarrow reduction of potential temperature IV: B_{v} , followed by transport term A_{h}
- investigating shorter time periods and individual events of high and low IV
- IV depending on sea ice melting
- application of the budget study for other years

Thanks for

your

attention

